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1. Introduction

A stochastic proces$X,:t > 0} on R’ is called an additive process if it has
independent increments and if it is continuous in probgbiiith cadlag paths and
Xo = 0. It is called a Lévy process if, in addition, it has staioy increments. Path
behaviors and distributional properties of Lévy processee deeply analyzed (see [1],
[19]). Concerning additive processes, the Lévy-Itd aegosition of paths is known in
complete generality. But, in order to get further resultg ave to restrict our study
to some special classes. Examples are the class of se#fsialditive processes in-
troduced in [18] and the class of semi-selfsimilar additvecesses in [12]. Another
interesting class is that of semi-Lévy processes, thaadslitive processes with semi-
stationary (sometimes called periodically stationaryréments. In order to analyze
distributional properties of processes of these classes,iinportant to treat stochastic
integrals (of nonrandom integrands) based on additiveqases. Keeping in mind this
application, we study in this paper stochastic integraletdaon additive processes and
their distributions.

Our study in this paper does not depend on the cadlag prop#dydefine addi-
tive processes in law, Lévy processes in law, and semjL@ocesses in law, drop-
ping the cadlag requirement in their definitions but retainthe requirement of con-
tinuity in probability. We will call an additive process iraw {X,: ¢+ > 0} natural
if the location parametet;, in the generating triplet4,, v;, ;) of the distribution of
X, is locally of bounded variation in . An additive process igumal if and only if
it is, at the same time, a semimartingale. This fact is egdngiven in Jacod and
Shiryaev [5]. Thus we can consider stochastic integralsnftural additive processes
as a special case of semimartingale integrals of Kunita amdaiédbe [9]. But we
will not rely on the theory of semimartingales, but directlgfine stochastic integrals
(of nonrandom functions) and seek the representation otliagacteristic functions of
their distributions. This is in the same line as the studynafependently scattered ran-
dom measures by Urbanik and Woyczynski [23] and Rajput andirRki [15]. We
show that a natural additive process in law &fi induces anR<-valued independently
scattered random measure, and vice versa. Thus our rand@sures aréR¢-valued,
not R-valued as in [23] and [15]. Further, we are interested instroiction of random
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measures on the same probability space as the originaliedgitocess in law is de-
fined.

For a natural additive process in lajX,: ¢ > 0} on R? we use a system of
infinitely divisible distributions{p,: s > 0} and a measure on [0, co) such that

'
Eei(z,XZ} = exp/ log ﬁs(z)a(ds) for z € Rd,
0

where p,(z) is the characteristic function of,. We will call ({p,}, o) a factoring of
{X,}. In fact, existence of a factoring is a necessary and sufticiendition for natu-
ralness. There is a canonical one among such péirs (o), which we call thecanon-
ical factoring of {X,}. For a class ofl x d matrix-valued functionsF s( ) including
all locally bounded measurable functions, stochasticgiatis fB F(s)dX, for bounded
Borel setsB are defined and shown to satisfy

E exp [i <z, / F(s) dXX>} = exp/ log o, (F(s)'z)o(ds) for z € R,
B B

where F § J is the transpose of s( ). Based on this formula we will studypprties
of stochastic integrals. Then we will treat the problem of #xistence of stochastic
integralsfoOO e*2dX,, whereQ is ad x d matrix all of whose eigenvalues have pos-
itive real parts and{X,: ¢+ > 0} is a semi-Lévy process in law. It will be shown that
f0°° e—$2dX; exists if and only if{X,} has finite log-moment.

In a forthcoming paper joint with M. Maejima, these resultdl we applied to
a study of the relationship of semi-Lévy processes, satfsimilar additive processes,
and semi-stationary Ornstein—Uhlenbeck type procesdas.study will extend the the-
ory of the representation of selfdecomposable distrimstiby Wolfe [24], Jurek and
Vervaat [7], Sato and Yamazato [20], [21], Sato [18], andnbé&mnc, Pitman, and
Yor [6] to the case of semi-selfdecomposable ahdd )-decsaipe distributions.

Natural additive processes in law and factorings are dssmlisn Section 2. Their
relations to independently scattered random measurestad&ed in Section 3. Then
stochastic integrals are treated in Section 4. Finally iBech contains the study of
Jo~ e *2dX, for semi-Lévy processes in law.

Our notation and definitions follow [19]. Besides, we use fobBowing: ID =
ID(R?) is the class of infinitely divisible distributions oR?; B(R?) is the class of
Borel sets inR?; Bo(R?) is the class ofB € B(RY) satisfying infcp |x| > 0; B, for
an intervalJ is the class of Borel sets ih B[%,oo) is the class of bounded Borel sets
in [0, co); p-lim stands for limit in probability;S} is the class ofd x d symmetric
nonnegative-definite matricedfl;, is the class ofl x d real matricesM,; = Myx4
is the class ofd x d real matrices; tA is the trace of € S}; M} is the class of
Q0 € M, all of whose eigenvalues have positive (0) real parts;/ is thel x d
identity matrix. Recall that an element of the Euclideancep®? is understood to
be a column vector withi components. Fér € M;.4, F’ denotes the transpose
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of F. The norm of F € M,y is [|F|| = sup, <, |Fx|. Forb > 0 and 0 € Mg,
b2 = 3" (n)~Ylogb) Q" € My. The inner products iR’ and R’ are denoted by
the same symbol ). Thus we have(z, Fx) = (F'z,x) for x € R, z € R/, and
F € M;«,. A set or a function is called measurable if it is Borel meabie. The
characteristic function of a distribution is denoted byi(z). Denote by£(X) the dis-
tribution of a random elemenk . Whef(X) = L(Y), we write X 4 y. For two
stochastic processelsX,} and {Y,}, {X,} 4 {¥,} means that they have an identical
distribution as infinite-dimensional random elementst tha have an identical system
of finite-dimensional distributions, while(, g Y, means that, and, have an iden-
tical distribution for a fixedr . If the characteristic furmti zi(z) of a distributiony on
R? vanishes nowhere, then there is a unique continuous fungtie) on R¢ such that
£(0) = 0 andji(z) = ¢/®. This f () is called the distinguished logarithm ffz) and
written as f ¢ ) = lodi(z) ([19] p. 33). The wordincreaseis used in the wide sense
allowing flatness.

2. Natural additive processes in law and factorings

When {X,: ¢t > 0} is an additive process in law oR‘, we write u, = £(X,) €
ID. Let c(x) be a real-valued bounded measurable function gatcsf

1+o(x]) as|x| — 0,
(2.1) clx) = L,
o(lx|™4) as |x| — oo.
Then we get the Lévy—Khintchine representationupfof the form
. 1 .
(2.2) 1e(2) = exp {—§<z, A7) +/]gp(z,x)u,(dx) +i(z,v)
R(
with
(2.3) ge @ x) =€) —1— iz, x)e(x) .

Here A, € S}, v, is a measure ofR? satisfying,({0}) = 0 and [(1 A |x|?)v:(dx) <
oo, andy; € RY. They are called Gaussian covariance, Lévy measure, aratida

parameter, respectively. The triplet af w,, and~, is denoted by 4;, v, v:).. Here
A, andv, do not depend on the choice ofx ( ). See [19] Theorem 8.1 and fRe8né

Standard choice of x( ) isk <1} (x) or (1+|x[>)~. The system{(A,, v, v): t > O}

satisfies the following:

(l) AOZO, V():O,’}/():O,

(2) A, —A; eSS andy, — v, >0 fors <,

(3) Ay — A, v(B) — v,(B) for all B € By(R?), and~, — 7, ass — t.

Conversely, any system satisfying (1), (2), and (3) indueesquely in law, an addi-
tive process in law (Theorem 9.8 of [19]) and it has a modifizatvhich is an addi-
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tive process (Theorem 11.5 of [19]).

DeriniTion.  An additive process in lawX,} on R¢ is said to benatural if the
location parametet;, is locally of bounded variation im  (that is, of bounded vdda
on any finite subinterval of [0x0)).

This definition does not depend on the choicecof ( ) by the ¥alg assertion.

Proposition 2.1. Let ¢1(x) and cz(x) be real-valued bounded measurable func-
tions satisfying(2.1). Let {X,} be an additive process in law oR? with triplets
(A, v, vYe, and (A, v, v2).,. Then~t is locally of bounded variation if and only if
7?2 is locally of bounded variation.

Proof. We havey? = 7 + f(t) with f(t) = [z, x(ca(x) — c1(x))vi(dx). We can
check thatf () is locally of bounded variation. ]

For example, any Lévy process in lafiX,} is a natural additive process in law,
since~y, = tv;.

Proposition 2.2. If {X,} is an additive process in law oR?, then there is an
R?-valued continuous function(z) on [0, co) such that{X, —a(t)} is a natural addi-
tive process in law.

Proof. Use an arbitrary x( ) satisfying (2.1) and choase (y).= O

Proposition 2.3. Let {X,} be an additive process in law oR‘. Suppose that
flx|<1 |x|v(dx) < oo for all + and let~! be the drift of,,. Then{X,} is natural if

and only ify,ti is locally of bounded variation.
See [19] p. 39 for the definition of the drift.

Proof. Note thaty! = ~, — Jixj<1¥1i(dx) and that [, x1i(dx) is locally of

bounded variation it . O

For example, any additive proce$X,} on R with increasing paths is a natural
additive process.
Henceforth we use

(2.4) c) = (@ +x)7Y

unless mentioned otherwise. Thus the tripldt £, ) of an infinitely divisible distri-
bution stands for 4, v, v). with c(x) of (2.4). The following fact is basic.
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Lemma 2.4. Lety and p,, n =1, 2..., be in ID(R?Y) such thaty, — p as
n — oo. Let (A, v,~) and (A,, v, 7.) be the triplets ofu and p,, respectively. Then

(2.5) trA, + / (AN x| (dx) — tr A+ / (A A |x|?)v(dx)
R4 R4

and

(2.6) =

Proof. Noting thatc £ ) of (2.4) is bounded and continuous, Uiseorem 8.7
of [19]. O

Lemma 2.5. Let {X,} be an additive process in law d&? with triplet (4,, v;, v;)
of u, = L(X,). Then for everyB € B[%,oo), there are a uniqueA; € S; and a unique
measurervy on R? such thatAz andv(C) for any C € Bo(R?) are countably ad-
ditive in B € B[%’OO) and that Ap, = A, and vp,; = v,. The componentsi j;(B),
j, k=1 ...,d, of Ap are absolutely continuous with respect to the measus; on
[0, 1] for eachto. If, moreover {X,} is natural then there is a uniqueyg such that
~g iS countably additive inB € B[%’OO) and Y[, = V-

Proof. Since tA, is increasing and continuoustin , it inducesatomless mea-
sure o1 on [0,00). Let Aj () and ~;(r) be the components off, ang,. Since
|Aj(t) — Aj(s)] < trA, —trA, for s < ¢, Au(t) is locally of bounded variation
and absolutely continuous with respectde. Thus A, ¢ ) induces a signed measure
Aj(B). We have}_,, Aj(B)zjzx > 0, since it is true whemB is an interval. Thus
Ap = (Ajx(B)) € S;. If {X,} is natural, then the assertion oz is proved similarly.
Concerningrg, there is a unique measufeon [0, co) x R¢ such that

(2.7) 7([0,¢] x C) =,(C) for C € B(RY) andr > 0,
as in [19] Remark 9.9. Then it suffices to let(C) = v(B x C). U

DeriniTioN.  Let {X,} be an additive process in law dR?. A pair ({ps: s >
0}, o) is called afactoring of {X,} if the following conditions are satisfied:
(1) o is a locally finite measure on [Bo), that is, a measure on ,[8c) such that
a([0, 1]) < oo for all 1 € [0, c0),
(2) o is continuous (that is, atomless),
(3) ps € ID(RY) for all s € [0, o),
(4) logpy(z) is measurable in  for eache RY,
(5) [, 11095;(z)|o(ds) < oo for all ¢ € [0, 00) and z € RY,
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(6) we have
1

(2.8) i(z) = exp/ log p;(z)o(ds) for all € [0, o) and z € R4.
0

For example, any Lévy process in lafX,} on RY has a factoring given by, =
L(X;) for all s and byo = Lebesgue. The following theorem is a main result of this
section.

Theorem 2.6. Let {X,:t > 0} be an additive process in law dR?. Then {X,}
is natural if and only if{X,} has a factoring.

Denote by @2, vf, +?) the triplet of p,.
Lemma 2.7. If ({p,: s > 0},0) is a factoring of an additive process in law
{X,} on R4, then

(7) A%, ~F, and v#(C) for any C € Bo(RY) are measurable i,
(8) we have

(2.9) /Ot <tr(A{f)+/Rd(1/\ x[2)vP (dx) + |75|) o(ds) < oo for all 1 € [0, ),

(9) we have
(2.10) A, = /O Alo(ds), 1(B) = /0 VI(B)o(ds), i = /0 +Po(ds)

for B € Bo(RY),
(20) f(; log ps(z) o(ds) = logi,(z), the distinguished logarithm qf,(z).

Proof. Since, for each , we can expres8, 7, and v/ (C) by using logo,(z)
as in Section 8 of [19], assertion (7) is proved. To see (8),use

1
)| = exp | Reogh ()eds)
Assertions (9) and (10) follow from (8). Details are omitted U

The “if” part of Theorem 2.6 is proved by this lemma. Indedd{X,} has a fac-
toring ({ps}, o), then~, is locally of bounded variation by the expression in (2.104 a
hence{X,} is natural. The “only if” part of the theorem will be proved the form
of Proposition 2.8 after we introduce the notions of canahioeasures and canonical
factorings.
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DeriniTioN.  Let {X,} be a natural additive process in law & and let|y|, be
the variation function ofy,. Use the notation in Lemma 2.5. Denote by the mea-
sure such thaty|p.q = |v|.. Then a measure on [0, co) defined by

2.12) o(B)=tr Ay + /Rd(l/\ 1¥[2) vs(dx) + 7]

is called thecanonical measuref {X,}. A pair ({p,}, o) is called acanonical factor-
ing of {X,} if it is a factoring of {X,} and if o is the canonical measure §,}.

Proposition 2.8. Let {X,} be a natural additive process in law oR¢. Then
there exists a canonical factoring dfx,}. It is unique in the sense thaif ({p!}, o)
and ({p?}, o) are canonical factorings of X, }, then p! = p? for o-a.e.s. If ({p;}, o)
is a canonical factoring of X, }, then

(2.12) esssupsup | log ps(z)] < oo
5€[0,00) |z|<a

for any a € (0, c0) and

(2.13) esssu;(tr(Af)+ / [« |x|2)uf(dx)+|vf|> < oo,
s€[0,00) R4

where the essential supremums are with respect.to

Proof. Letoi, o2, and o3 be the measures defined by(B) = trAg, 02(B) =
Jea(LA |x[Avs(dx), and os(B) = |7|s. Let k() be the Radon—Nikodym derivative of
o; with respect too for [ = 1, 2, 3. LetAg.k(z) and yﬁ(t) be the Radon-Nikodym
derivatives ofA; 8 ) andy;(B) with respect too; and o3, respectively. For the mea-
sure? in the proof of Lemma 2.5, there are a meastfeon [0, co) and measures?
on R? such thats? is continuous and locally finite/?(C) is measurable i > 0 for
eachC € Bo(R?), [o.(1 A |x[A)vi(dx) = 1, v4({0}) = 0, and

(B x C)= / ot(ds) / vi(dx) for B € By ), C € B[RY).
B C

The argument is similar to the construction of conditionastributions. Letting
vl (dx) = vi(dx)ha(s), AL = (A%(s)) with A% (s) = A% (s)ha(s), andyf = (v7(s)) with
77(s) = 7i(s)hs(s), we can prove that{p,}, o) is a factoring of{X,} and that (2.10)
is satisfied. Properties (2.12) and (2.13) are proved ealily uniqueness of a canon-
ical factoring is proved by (9) and (10) in Lemma 2.7. U

Proposition 2.9. Let {X,} be an additive process in law oR?. Then it is nat-
ural if and only if fi;(z) is locally of bounded variation in  for each e R?.
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Proof. In order to see the “only if” part, notice thdtX,} has a factoring
by Theorem 2.6 and use (2.8). Let us prove the “if” part. Defihe= X, — v,. Then
{v,} is a natural additive process in law and heré (> is locally of bounded vari-
ation inz. We haveEe! (&Y = ¢~ [, (). Sincei,(z) is continuous, non-vanishing,
and locally of bounded variation in for eaech , it follows that(=" is locally of
bounded variation i for each . Hence, ~,) is locally of bounded variation in
for eachz . Hence, so is,. Ol

Proposition 2.10. Let {X,} be an additive process oR?. Then{X,} is natural
if and only if {X,} is a semimartingale.

Proof. This is a consequence of Proposition 2.9 combinedh wicod and
Shiryaev [5], Chapter I, Theorem 4.14. ]

We add some facts on factorings.

Proposition 2.11. If {p,: s > 0} and ¢ satisfy conditiong(1), (2), (3), of the
definition of a factoring and7), (8) of Lemma 2.7,then ({p;}, o) is a factoring of
some additive process in lagX,: r > 0} on R<.

Proof. DefineA, ,v, and~, by (2.10). Then 4;, v, v,) is the triplet of some
i, € ID and satisfies conditions (1), (2), and (3) in the first panglgref this section.
Thus there is an additive process in lg&,} such that{(X,) = x,. Conditions (4)
and (5) of the definition of a factoring follow from (7) and (&hd we can see that
({ps}, 0) is a factoring of{X,}. U

Proposition 2.12 (Time change). Let {X,: r > 0} be a natural additive process
in law on R4, Given an increasing continuous functiorf) from [0, co) into [0, co)
with 7(0) = 0, defineY;, = X,(). Then{Y,: r > O} is a natural additive process in law
on RY. If ({ps}, o) is a factoring of{X,}, then ({p;}, &) defined by

(2.14) pi=pr and ([0, s]) = o((0. 7(s))).
gives a factoring of{Y,}. If ({ps}, o) is canonical then ({p;}, o) is canonical.
Proof is elementary and omitted.

Let us study conditions for naturalness in some classes ditieel processes. In
analogy to definitions in [18] and [19] we give the followingfhition.
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DeriNnimion.  Let Q € M. An R?-valued stochastic procedsy,: + > 0} is called
Q-selfsimilar if, for every a > 1 (hence for every: > 0),

(2.15) (Xar:t >0} 2{a2X,: 1 > 0).

It is called Q semi-selfsimilarif (2.15) holds for some&: > 1. In this case: is called
an epoch

A basic property we need of a gene@le M} is the following: there are positive
constantscy, . .., ¢4 such that

(2.16) cae” x| < e x| < cze™*|x| for s >0 andx € R?

(see [22] p. 139 or [17]). We havey < ¢z andcq < 1 < ¢3 automatically. It follows
that

(2.17) ez te x| < [e9x| < ¢t |x| for s >0 andx € RY.

Theorem 2.13. Let Q € M. Let {X,} be a Q -semi-selfsimilar additive process
in law on R with epocha . Ther{X,} is natural if and only ify, is of bounded vari-
ation on[1, a].

Proof. The “only if” part is evident. Let us prove the “if” parAssume thaty,
is of bounded variation on [L ]. It follows from (2.15) that

(2.18) Yt =% + / ax ry(x)(dx)
R

with
1 1 |x|2 — |aQ)c|2
1+ax2 1+[x[2 (1+][ax[)(L+|x[?)

ra(x) =

Denote by|v|,.q; the variation ofy, on [a1, az]. Then

[V |jan+,anvq < ||aQ|| [V [an ar+y) + / |an| |72 ()| (Vara — van)(dx) .

Finiteness of the last integral follows from (2.17). Hengds locally of bounded vari-
ation on [1oc). As n — oo, [la="2||¥" tends to max ;<. |a"%|, whereq, ..., qa
are the eigenvalues @@  ([8], p. 153). Singee M}, this limit is less than 1. Thus
we can choose an integer > 1 such that|a—"¢|| < 1. Letb =¢™ and uséb as an
epoch of{X,}. We get (2.18) witha replaced by . It follows that

Vlp-n-2.6-7 < 167N [V]gp-n p-ryg +/|X| |75 (x)|(Vp—n — Vp—n—1)(dx).
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Hence we obtain
Q=162 DIloay < 15721 1¥Irws +/|X| | (x) 2 (dx).
Now we see thaty|jp,1) < co. O

Theorem 2.14. Let 0 € M. Let {X,} be a Q -selfsimilar additive process in
law on R¢. Then{X,} is natural.

Proof. It is enough to show thaf, is of bounded variation on [1 2], since we
can use the preceding theorem with = 2. Since we hawer2~y,+ [ 1%x r,(x)r1(dx),
we can prove that;, has continuous derivative in > 0. It follows that~, is of
bounded variation on [1 2]. O

Remark. When Q =cI withc € (0, 00), the Q -semi-selfsimilarity is the -semi-
selfsimilarity studied in Maejima and Sato [12]. Theoremand 10 of [12] show that,
given a semi-selfdecomposable (see [19] Definition 15.%jribution 1 on R? with
spana‘ , there is a wide variety of choice d{X,) for 1 < r < a in construct-
ing a c-semi-selfsimilar additive process in layX,: + > 0} with epocha such that
L(X1) = u. Thus we can find a non-natural -semi-selfsimilar additivecpss in law
{X,:t > 0} with epocha satisfyingC(X1) = u.

3. Independently scattered random measures

Following Urbanik and Woyczynski [23] and Rajput and Rokingl5] and ex-
tending the notion from real-valued ®?-valued, we give the following definition.

Deriniion. A family of R¢-valued random variable§M(B): B € 3%.00)} is
called anR?-valued independently scattered random meas(irs.r.m.) if the follow-
ing conditions are satisfied:

(1) (countably additive) for any sequendd, B, ... of disjoint sets inB%ioo) with
U1 B € By oy» 2-ney M(B,) converges a.s. and equals | X, B,) a.s.,

(2) (independent increments) for any finite sequee..., B, of disjoint sets in
B%‘Oo), M(By), ..., M(B,) are independent,

(3) (atomless)M {a}) =0 a.s. for every one-point s€t}.

Note that, if By, B, ... IS an increasing sequence Hs‘ﬁ)_oo) with B = U;":’l B,
€ B‘[%m), then M B, ) — M(B) a.s. This follows from property (1). Note also that
property (1) implies that () =0 a.s., where O is the origin d&<.

Lemma 3.1. If {M(B)} is an R?-valued i.s.r.m.then L(M(B)) € ID for any
BeBY .
[0.00)
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Proof. LetB € B%‘Oo). DefineY, =M B N [0,¢]). Then it follows from the
defining properties of i.s.r.m. thdty,: + > O} is an additive process in law. Hence
L(Y,) € ID. Thus L(M(B)) € ID, sinceM B ) =Y, for larger . U

Here is our main result in this section.

Theorem 3.2. (i) Let {M(B): B € B[%’oo)} be an R?-valued i.s.r.m. Define
{X,:t >0} by

3.1) X, =M ([0 r])

for t € [0, o0). Then{X,} is a natural additive process in law.

(i) Let {X,:t > 0} be a natural additive process in law dR‘. Then there is an
R¢-valued i.s.r.m{M(B): B ¢ B[%m)} such that(3.1) holds. This is unique in the
sense thatif {M1(B)} and {M»(B)} both satisfy this conditiognthen M1(B) = M»(B)
a.s. for everyB € B[%,oo). Denotepug = L(M(B)). ThenAg, vg, and g in the triplet
of up coincides with those okemma 2.5 For any factoring({p,}, o) of {X,} and
any B € Bj ),

(32) log7is(2) = /B log 7, () (ds) .

Proof. (i) Using Lemma 3.1, denote the location parametef @i (B)) by ~s.
Then~p is countably additive inB € Bﬁ)m), which follows from countable additivity
of M(B) and (2.6) of Lemma 2.4. Hencg = v, is a function locally of bounded
variation by Section 29 of [4].

(i) Let {X,} be a natural additive process in law &f with a factoring {p;}, o).
We will define M (B) for B € B&,m) in several steps.

Step 1. |If J is an empty set or a one-point set, then we defite/ ( ) =0l If
is a finite interval in [Qco) with left ends and right end , that is] =,¢ )s.t 1,
(s, ], or [s,1), then we defineM [ )X, — X;. If B= U;=1 J; with disjoint finite in-
tervals Jy, ..., J, in [0, c0), then we defineVl B ):Z’}:l M(J;). This definition does
not depend on the expression Bf . We see from (2.8) that (8.8ué for thisB . Fi-
nite additivity and independent increment property wittlie class of sets of this type
are obvious.

STEP 2. Let G be a bounded open set in, ). ThenG is expressed uniquely
(up to the order) a$; Uj J;, where Jy, J, ... (finite or infinite sequence) are dis-
joint open intervals (possibly of the form [0 )). If it is a firi sequenceM (€ ) is
defined in Step 1. So we assume that it is an infinite sequerete/;L= (s;, ¢;) and
let ¥, =37"_,(X,, — X,). Then, form < n,

Ee!etn=Yn) = exp logpy(z)o(ds) — 1 asm,n — oo.
Jj

n
j=m+1
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In general, a sequendg, } of R¢-valued random variables converges in probability if
Eel&¥n=Yn) 1 asm ,n — oo with m < n, because, for any > 0,

1 /¢ ,
_/ (1_ ReEe:zj'((Yn)j*(Ym)j)) dz; > P |:|(Yl‘l)j _ (YI‘I‘I)J| > %} ,

€J—¢

where the subscripf denotes tlie th component ([19] p. 430}k fRct is often use-
ful. Since the summands are independent, convergence lalpiiity implies conver-
gence a.s. Thus we defing G ( )E;’ZlM(Jj) a.s. We can prove that this definition
does not depend on the order of summation.

STEP 3. Let K be a compact set anl C [0, c0). Choosery such thatk C
[0,%0) and letG = [Q%) \ K. ThenG is open in [0c0). DefineM K ) byM K ) =
M([0,10)) — M(G). If K is an interval, then this definition is consistent withat
of Step 1. Leta = sup,x. ExpressG :Uj J;j, where Ji, Jo,... is a se-
quence of disjoint open intervals and = (a, tp). Let G, = U’}:l Ji. ThenM K ) =
lim, ., M([0, 10) \ G,) a.s. We have an expression {§) \ G, = Uf;l[s,,,,,, tn.1), where

[sn.1s tnal, - - oy [Snk,» tak,] @re disjoint closed intervals (possibly one-point sets)ol-
lows that
k’l
(3.3) ME)=lim» (x,, - X,,) as.
n—oo =1

Obviously (3.2) is true forB =K . Using the expression (3.3), @@ prove that, if
K; and K, are compact an&K; D K», then

(3.4) Ee!(eME)=M(K2)) = exp log ps(z)o(ds) .
Kl\Kz
We can also show that, Ky, ..., K, are disjoint compact sets, theM K), ...,
M(K,) are independent antt (), K,) =>_7_1 M(K,) a.s.
STEP 4. Let B € B[%,OO). By the regularity of the measure (see Section 52
of [4]), we can find an increasing sequence of compact &gts K>, ... such that
K, C B and lim,_. o(K,) = o(B). As p, g — oo with g < p,

Ee! (=M Ky)=M(Ky) = exp/ log ps(z)o(ds) — 1
K,,\K(,

by (3.4). HenceM K, ) is convergent in probability @as— oco. We defineM 8 ) =
p-lim,_ . M(K,). We can show that this definition does not depend on thecehof
the sequence&,

Step 5. It follows from the definition in Step 4 thad  has properti€
and (2) of the definition of i.s.r.m. and also (3.2).

STEP 6. Proof of uniqueness a¥ . Le#f; and M, be R?-valued i.s.r. m. satis-
fying (3.1). Fix#p > 0. The classS of all B € By satisfying M1(B) = M»(B) is a
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A-system and containg and all intervals of the forms(z ] in [@o]. HenceS = By
by Dynkin's w-A theorem in [2] p. 37. Hencé{,(B) = M»(B) a.s. for everyB . Let
(Ag, vs,vg) be its triplet. ThenAp ;vz, andvg(C) for eachC € Bo(R?) are count-
ably additive inB € B&,m), which follows from countable additivity o K ), as
in the proof of Theorem 9.8 of [19]. Hence we see that they @den with those of
Lemma 2.5. O

Remark. Like in the proof of Proposition 2.1 (b) of [15], one can ctnst an
R?-valued i.s.r.m. on the product measurable spdlﬁé)g@-m, using Kolmogorov's
extension theorem. Namely, let = (wgp)zcpe ~ be a general element of this

[0,00)

space. Start withygz € ID(RY) with triplet (Az, vz, vz) in Lemma 2.5 and define
P((ws,, ---,wp,) € D), D € B((RY)"), as the product ofip,, ..., up, if B, ..., B,

are disjoint. If By, ..., B, are not disjoint, then express,, ..., B, as unions of some
of disjoint setsC; ..., C, and defineP (p,,...,ws,) € D) in the form derived from
the product ofuc,, ..., ue, and check the consistency. However, we cannot in this

way construct{M(B)} in the same probability space that the givEK,} is defined.
(Added to the final version: Pedersen [13] observes that ¢instouction of an i.s.r.m.
from a given natural additive process can be done on the bésie Lévy—Itd decom-
position of the additive process.)

The case where the proce§X,} in Theorem 3.2 is a Lévy process in law is im-

portant. AnR?-valued i.s.r.m.{M(B)} is called homogeneou$f M(B) d M(B +a)
a.s. for anyB € By ., anda > 0.

Proposition 3.3. Let {M(B)} be anR?-valued i.s.r.m. Then the following state-
ments are equivalent
(1) {M(B)} is homogeneouys
(2) M((s,t]) g M((s +a,t+a]) a.s. if0<s <t <ooanda >0,
(3) the process{X,: ¢t > 0} defined byX, = M([0, ¢]) is a Lévy process in law.

Proof is easy and omitted.
Let {M(B)} be anR‘-valued i.s.r.m. Then the canonical measure of the natu-
ral additive process in laW X,} defined by (3.1) is called the canonical measure of

{M(B)}.

Proposition 3.4. Let {M(B)} be anR?-valued i.s.r.m. and its canonical mea-
sure. Then B € B ., satisfiess(B) = 0 if and only if

(3.5 M (C)=0a.s. for all Borel setsC satisfying C B.
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Proof. If o(B) =0, then, for any Borel sef C B, ¢(C) =0 and henceM @ ) =
0 a.s. by formula (3.2). Conversely, if (3.5) holds, thép 29,=0, andvyc =0
for all Borel setsC C B and we haves(B) =0 by formula (2.11). [l

Proposition 3.5. Let {M(B)} be anR%-valued i.s.r.m. If({p°}, c°) is a factor-
ing of the natural additive process in layX,} defined by(3.1), then the canonical
measures is absolutely continuous with respect 4.

Proof. By Theorem 3.2, (3.2) is true both fofp(}, o) and for (0%}, 09). Let
B € By - If 0°%B) =0, theno®(C) =0 for all C B and thusM ¢ ) =0 a.s. for
all C C B, which impliesa(B) = 0 by Proposition 3.4. U

The following useful result is by Urbanik and Woyczynski [28hend = 1.

Proposition 3.6. For n =1, 2..., let {M,(B)} be R?-valued i.s.r.m. Suppose
that for eachB € By, ., there is anR’-valued random variableV/(B) such that

(3.6) p-limM,(B) = M(B) .

n—oo

Then {M(B)} is an i.s.r.m.

Proof. It is clear thatM B ) is finitely additive and satisfie§ énhd (3) of the
definition of i.s.r.m. Sincel(M,(B)) € ID and £L(M,(B)) — L(M(B)), we have
L(M(B)) € ID for each B . Let QA%, v}, ~%) and (@Ag,vg,vp) be the triplets of
L(M,(B)) and L(M(B)), respectively. Define}; = tr(A%)+ [L.(1A|x[*)v}(dx) and 75 =
tr(Ap) + [ (LA |x|?)vp(dx). Then, for eachB 7j — 75 and~ — vz by Lemma 2.4.
Hence by the Nikodym Theorem (see Dunford and Schwartz [316D) 75 and g
are countably additive irB . We claim that, H,, B, ... is a decreasing sequence of
bounded Borel sets witif);2; By = 0, then p-lim_, . M(By) = 0. Indeed, we have
Ui Cj = By for C; = B, \ Bj+1 and henced 7%, vc, = vs,. This shows thatys, — 0.
Similarly, 7, — 0. Since|g.(z, x)| < const (1A |x|?) for any fixedz , it follows that
EeleMB)) _ 1 ask — oo. That is, p-limM B ) = 0. It follows thatM is countably
additive. ]

4. Stochastic integrals based on natural additive processan law

In this section let{X,: ¢+ > 0} be a natural additive process in law &{ and let
({ps}, o) be its canonical factoring. By Theorem 3{X,} induces a uniquéR?-valued
independently scattered random meas{M(B): B < B[%’OO)}. We will define and
study stochastic integrals dfl;«,;-valued nonrandom functions based on this ran-
dom measure. As is remarked in Proposition 2.10, the prof&ss is a semimartin-
gale. Thus stochastic integrals based {0fy} are defined for some class of random
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integrands inL?-theory through random localization; see Kunita and Watan§]

and Jacod and Shiryaev [5]. But we will define stochasticgirls of nonrandom

integrands directly through convergence in probabilityd agive a representation of

the characteristic functions of the distributions of théegrals, as was done in [23]

and [15]. In the case of Lévy processes, this was alreadye diynLukacs [10]; see

also [16]. We prove some properties of the integrals inclgdh Fubini type theorem.
An M, 4-valued functionF £ ) on [0oco) is called asimple functionif

n
(4.1) FG6)=Y 156)R,

=1
for somen , whereBy, ..., B, are disjoint Borel sets in [&) and Ry, ..., R, €
M;xq. It is called astep functionif, in addition, By, ..., B, are intervals or one-point

sets. The following definition of integrals and Propositidri follow [23] of the case
d=1.

DeriNniTioN.  Let F(s) be anM,y,-valued simple function on [() in (4.1) and
let B € By, - Define

(4.2) /B F(s)dX, = /B F(s)M(ds) = Z R;M(BNB)).

j=1
We use [, F(s)dX, and [, F(s)M(ds) in the same meaning.

The definition (4.2) does not depend (in the a.s. sense) orhbie of a repre-
sentation (4.1) off’ s ).

DerinimioN.  An M, «4-valued functionF £ ) on [Doo) is said to beM-integrable
or {X,}-integrableif it is measurable and if there is a sequence of simple fonsti
F,(s),n=1, 2 ..., such that (1)F, { }»» F(s) o-a.e. and (2) for evenB ¢ B&,m),
the sequench F,(s)dX; is convergent in probability as — oc.

Proposition 4.1. If F(s) is M-integrable and ifF(s) and F?(s) are sequences
satisfying(1) and (2) above then

(4.3) p-Iim/B Fi(s)dX, = p-Iim/B FZ(s)dX, a.s. for eachB € By, .

n—oo n—oo

DeriniTioN.  For any M -integrableM,  ;-valued functionF £ ) on [Doo), define

(4.4) /B F(s)dX, = /B F(s)M(ds) = p-lim /B Fy(s)dX, |

n—oo
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using the sequenceg, s () in the definition &f -integrability arsing Proposition 4.1.

Proposition 4.2. Let Fi(s) and Fx(s) be M -integrableM, . ,-valued functions on
[0, 00). Then for any ai, az € R, a1 Fi(s) + axF»(s) is M -integrable and

(4.5) /B(CllFl(S)"'aze(S))dXs :al/BFl(S)dXs +a2/BF2(S)dXS a.s.

for B € B[O )"

Proposition 4.3. Let F(s) be an M -integrableM,,-valued function ono0, o).
Let A(B) = [, F(s)dX, and Az = L(A(B)) for B € B[O )+ Then {A(B): B € B[O Oo)}
is an R/-valued i.s.r.m,.

(4.6) /I [log ps(F(s)'z)| o(ds) < oo for t € (0, o),
0
and
4.7) loghz(z) = / log ps(F(s)'z) o(ds) for B € B[%,oo).
B

Here |Og ,Z)\S(F(S)/Z) mean5(|09 f)\s(w))w:F(S)/Z .

Proof of Propositions 4.1, 4.2, and 4.3. Hi(s) and F»(s) are simple functions,
then ay Fi(s) + axFo(s) is simple and (4.5) is obvious. IF s( ) is a simple function,
then the statements in Proposition 4.3 are easily showrmelhdin this case, it follows
from (3.2) and (4.2) that

Ee B = Eexp [i <z, D> R M(BN B,-)>] =[] Ee'RiMBnED)

J=1 J=1

—Hexp/

BNB;

log 5, (R}z)o(ds) = exp / log p, (Z 15, (s)R) z) o(ds),

j=1

which gives (4.6) and (4.7).
Let F1(s) and F2(s) be the sequences in the statement of Proposmon 4.1. ®efin

Ga(s) = Fls) — Fz(s) A (B) = fB G,(s)dX,, and A(B) = p- I|m,HOOA (B). Since

A, is an i.s.r.m.,A is also i.s.r.m. by Proposition 3.6. By Egoroff’s theorerd]([

p. 88), for anyry, > 0, there are disjoint Borel set§1, C»,... in [0, o] such that
lim, . SURcc, |Ga(s)l| = O for eachl ands([0, 7o] \ C) = 0, whereC =U5 G
Using (4.7) for A, and noting (2.12), we see thate!=A(BNC)) _ 1 asn — oo for
every B € By ., and!. HenceA(B N C) =0 a.s. ThereforeA(BNC) =Y 7% A(BN
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C;) =0 a.s. MoreoverA(B \ C) =0 a.s. sinceA,(B \ C) =0 a.s. by (4.6) forA,. It
follows that A(B) = 0 a.s. for allB € By, and thus for allB ¢ B[%’OO). This proves
Proposition 4.1. Proposition 4.2 is now straightforward.

Turning to proof of Proposition 4.3, lek, s ( ) be simple funcoin the defini-
tion of M-integrability and letA, B ) :fB F,(s)dX, and X} = L(A,(B)). This A,
is an i.s.r.m. It follows from p-limA, B ) =A B ) thatA is an i.s.r.nby Proposi-
tion 3.6 and that Io@’};(z) — logXs(z) by Lemma 7.7 of [19]. Fixto > 0. We see
that IogX’lg(z) is countably additive inB € Bjp, and absolutely continuous with re-
spect too, since it satisfies (4.7) witl¥, s( ) replacing s ( ). Hence Mz) is count-
ably additive inB € Bjo,) and absolutely continuous with respectdaaddy the Vitali—
Hahn-Saks theorem and the Nikodym theorem ([3] p. 158-1E@hce there is the
Radon-Nikodym derivative: s(z ) such thg’g‘) |A(s, z2)|o(ds) < oo and loghs(z) =
S h(s, 2)a(ds). On the other hand, fix and find that Ipg F,(s)'z) — log p,(F(s)'z)
for o-a.e.s, since lo@g;(w) is continuous inw . A use of Egoroff's theorem as in
the proof of Proposition 2.6 of [15] yields that 1pg(F(s)'z) = h(s, z) for o-a.e.s in
[0, t0]. Hence (4.6) and (4.7) follow. ]

Corollary 4.4. Let ({p°}, 0°) be a(not necessarily canonicafactoring of {X,}.
Then in the situation ofProposition 4.3,

t
/ [1og p°(F (s)'z)| 6%(ds) < oo for t € (0, o0),
0
log s (z) = / log 7%(F(s)'z) o%(ds) for B € BY.,.
B

and the additive process in laWY,} defined byY, = A([0,r]) has a factoring
({pi}, 0°), where pi(z) = p2(F(s)'2), z € R.

Proof. By Proposition 3.5, the canonical measuris absolutely continuous with
respect toc®. Thus there is a measurable functians () 0 such thato(ds) =
h(s)o°(ds). Let C = {s: h(s) > 0}. We can prove thap, = (p%)¥/"¢) for s-a.e.s
and thatp; = do for o%a.e.s in [Qoo) \ C, wheredp is the unit mass at 0. Thus the
assertion follows from (4.6) and (4.7). Details are omitted [l

Proposition 4.5. Let ({p°},0c% be a factoring of {X,}. Let F(s) be an
M;xq-valued measurable function locally bounded d@, ). Then F(s) is
M-integrable. If F,(s) is a sequence of simple functions df, cc) such that
F,(s) — F(s) o%a.e. and for any to > O, ||F,(s)|| is uniformly bounded oo, 1],
then

p_"m/Fn(S)dXS:/F(s)dXJ for BeBﬁ)m).
B B

n—oo
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Proof. We can find simple functions, s ( ) such thgts €)F(s) for all s and
|E.(s)]| is uniformly bounded on [Qg] for any 7. Then

E exp [i <z,/ F.(s)dX; — / Fu(s) dXs>} = exp/ log ps ((Fu(s) — Fu(s))'z)o(ds),
B B B

which tends to 1 as m — oo, using (2.12). Hence/, F,(s)dX; is convergent in
probability. HenceF ) isM -integrable. To prove the secont bhathe assertion we
use Propositions 3.5, 4.1, and the argument above. ]

Theorem 4.6. Let F(s) be anM,,,-valued measurable function locally bounded
on [0, o0). Define A(B) = [, F(s)dX, and Y, = A([0, ¢]). Then for any M,,;-valued
measurable functiorG(s) locally bounded or{0, co) and for anyB € Bﬁ,m),

(4.8) /B G(s)dY, = /B G(s)F(s)dX, a.s.

Proof. Choose simple functions, s () ar@; s () such thgts ) F(s) and
Gi(s) — G(s) for all s and, for anyrp > 0, F, (s) andGy § ) are uniformly bounded on
[0, %0]. Then [, Gi(s)dY, = p-lim,_, _ [, Gi(s)Fu(s)dX, from the definitions and, us-
ing (4.7), we getf, Gi(s)F(s)d X, — [, Gk(s)F(s)dX, — 0 in probability asn — cc.
Then, lettingk — oo, we get (4.8). O

Remark. Let F(s) be anM -integrablévl,.,-valued function on [0oc). Some-
times we write

t f(s_l] F(u) dX, for O <s<t<oo
(4.9) / Fu)dX,={0 for 0<s=1< oo
5 - f(m] F(u)dX, for0<t<s <oo.

By Theorem 11.5 of [19], there is an additive process modiﬁna{f/,: t > 0} of the

additive process in law{Y;: ¢+ > 0} of Corollary 4.4. We understangfs’ F(u)dX, in
the meaning that

1
(4.10) / Fw)dX, =Y, —Y,,
without explicit mention.

Theorem 4.7. Let F(s) be M,;.4-valued andG(s) be M, ;-valued both locally
bounded measurable orf0, oc). Then for 0 < 7y < 11 < 0,

(4.11) /[OMG(S) </to F(u)Xm,) ds = /toll </[ G(s) ds) F(u)dX, a.s.
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Lemma 4.8. If G(s) is anM,,«,-valued bounded measurable function fog #1],
then there is a sequenag,(s) of uniformly bounded step functions ¢, ¢1] such that
G,(s) — G(s) except on a set of Lebesgue meadiire

Proof. By Lusin's theorem ([4] p. 243), for each , there is ased setB, C
[t0, 1] such that fo, #1] \ B, has Lebesgue measure 27" and the restriction of
G(s) to B, is continuous. Then, by Urysohn’s theorem in genergokngy, there
is an M,,;-valued, uniformly bounded, continuous functi@f on [f, #1] such that
GY =G on B,. Now choose uniformly bounded step functiaiis ontf] such that
1G(s) — Gos)I| < 27, O

Outline of proof of Theorem 4.7. Define

Y = /111 G(s) (/ F(u)Xm,> ds, 7= /{Il (/[ G(s)ds) F(u)dX, .

STeEpP 1. Show that

11 1
(4.12) Ee'&Y) = Eo'(22) = exp / log /. (F(u)’ / G(s) ds z) o(du).
1o

u

The second equality in (4.12) is a consequence of (4.7).uBaion of E¢@Y) is
done by approximation by, i;lG(s) (ftg”(s) F(u)dXL,) ds, where,(s) = t, for
tik—1 <8 < tpp With 1, =10+ k27" (t1 — 10).

STeEP 2. Prove the identity

11 41
/ stJ:tlx,l—tOX,o—/ X,ds a.s.,

1o fo

by approximation ofs byr,(s) in Step 1. Then, using this, we can show that Z=
a.s., under the assumption th&ts () afids ( ) are step functions.

STeEP 3. LetG(s) be a step function. If there are step functidnss ( )hstiat
F,(s) — F(s) o-a.e., then we can show th#t % a.s. by using Step 2Ffosy () and
G(s) and then, for convergence, using (4.12) withu € B, (s) in place of F ¢ ). Thus
Y=Za.s.istrueifF £ )=% { R withB an open set amlc M,,,. Then the case
whereF §)=1% £ R withB compact is treated and then the case With relBdlext
we can show that Z a.s. whef s () is locally bounded and medsurab

SteEp 4. Show thatt =Z a.s. whel s () ar@ s () satisfy the conditions in the
theorem, using Lemma 4.8 and the result in Step 3. O
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Corollary 4.9 (Integration-by-parts formula).Let F(s) be anM,,-valued func-
tion of classC?t on [0, o0). Then for 0 < 1o < 1, < o0,

" dF(s)
s

(4.13) /I1 F(s)dX; = F(t1)X,, — F(t0)X,, — / X,ds a.s.,

Io fo
where X in the integrand of the last integral is understood é&ablévy process mod-
ification.

Proof. Rewrite [* F(s)dX,, using F §) = F () — ["(dF(u)/du)du and then
apply Theorem 4.7. [l

Theorem 4.10 (Time change). Let 7(¢) be an increasing continuous mapping
from [0, c0) into [0, c0) with 7(0) = 0. Define a natural additive process in law
{Y,;:t >0} onR? by ¥, = X:¢). Let F(s) be anM;4-valued measurable function
locally bounded o0, c0). Then for any Borel setB satisfyin@ C [0, #p] with some
to < 7(00),

(4.14) / RGOS /B F(s)dX, a.s.

Proof. The proces$Y,} is a natural additive process in law by Proposition 2.12.
Denote by{A(B)} the R?-valued i.s.r.m. induced byY,}. Then we can show that
A(r~Y(B)) = M(B) for any Borel set satisfyingg C [0, to] with some 7y < 7(c0).
Thus we can show (4.14) wheneveér is a simple function. Thercaveextend it to
F in the theorem, using Propositions 2.8, 2.12, and 4.5. O

5. Some stochastic integrals over unbounded sets

In the preceding section we defined stochastic integyj’%lf(s) dX; only for
bounded Borel set® in [@c). Now we consider unbounded Borel sdis

DeriniTioN.  Let {X,: ¢ > O} be a natural additive process in law &f and let
M be theR¢-valued independently scattered random measure inducefixby. Let
F(s) be anM -integrableM, . ,-valued function. LetB be an unbounded Borel set in
[0, >0). We define

/BF(s)dXY = /B F(s)M(ds) = p-lim/Bm[OJ] F(s)dXy ,

tToo

whenever this limit in probability exists. In this case weysthat [, F(s)dX; is
definable When B = [o,00) and [, F(s)dX, is definable, we sometimes write
[ F(s)dX, for [, F(s)dX;.
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When {X,} is a Lévy process ofR? and F () =e—*¢ with Q0 € M}, the follow-
ing important facts are known (see [7], [16], [21], [24]). lintegral f0°° e 24X, is
definable if and only if{X,} has finite log-moment, that iff  16¢X,| < oo for all ¢.
If the integralfoOO e24dX, is definable, then its distribution is Q-selfdecomposable,
that is, for eachh € (0, 1), there is a distribution (automatically infinitely diible) p,
such that

fiz) = A2 2)pu() -

Conversely, anyQ -selfdecomposable distribution can beessed a< ([, e*? dX,)
with a unique (in law) Lévy process with finite log-moment.

We study a case whergX,} belongs to a class of additive processes in law more
general than Lévy processes in law.

DeriniTioN. A stochastic proces$X,: ¢+ > 0} on R? is called asemi-levy pro-
cess in lawor additive process in law with semi-stationary incremeotsR? if it is
an additive process in law oR¢ such that, for some > 0,

(5.1) X, — X, 4 X;+p — X4+p for any choice of Ks <t < o0

This p is called aperiod of the semi-Lévy process in law. A cadlag modification of
a semi-Lévy process in law is calledsemi-levy processAn additive process in law
{X,} onR? is said to havdinite log-momenif Elog™ |X,| < co for all ¢.

Remark. Let {X,} be a semi-Lévy process in law di? with period p and let
(A;, v, ;) be the triplet of X, . Then{X,} is natural if and only ify, is of bounded
variation on [Q p ]. There exist non-natural semi-Lévy prsges in law oriR?.

Proposition 5.1. Let {X,: ¢+ > 0} be a natural additive process in law dR’.
Then the following statements are equivalent
(1) {X,} is a semi-levy process in law with periog,
(2) the canonical factoring({p;}, o) of {X,} is periodic with periodp in the sense
that ps = py+, for o-a.e.s ando(B) = o(B + p) for all B € B([0, c0)),
(3) the i.s.r.m.{M(B)} induced by{X,} is periodic with periodp in the sense that

M(B) 2 M(B +p) for all B € BY .,

Using Proposition 2.8 and (2.11), proof of Proposition Sleasy and omitted.

Let us recall some classes of distributions defined in [14t @ € M} and
b € (0,1). A probability measurg: on RY is said to be &, Q Yecomposabléf
7i(z) = 7i(b2 2)p(z) with somep € ID(R?). The class of all such probability measures
is denoted byLo(b, Q). In the terminology of [19], the clas&o(b, cI) with ¢ > O is
the class of semi-selfdecomposable distributions witmdpa.
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Theorem 5.2. Let {X,: ¢+ > 0} be a natural semi-&vy process in law o’
with period p . Suppose that it has finite log-momehat is

(5.2) E log |X,| < oc.

Then for any Q € M}, the stochastic integrajfooo e*2dX, is definable and its dis-
tribution p belongs toLo(e~?, Q). Moreover for any a € (0, 00),

(5.3) / sup | logps (e —*2 2)|o(ds) < oo
0 |z|<a
and
(5.4) 0g7() = | logpi(e ¢ 2olds)
0

where ({p,}, o) is the periodic canonical factoring ofX,: r > 0}.

In particular, whenQ =c/ withc > 0, the stochastic integraf,” e~/ dX; is
definable and has a semi-selfdecomposable distributiom sgane” , if condition (5.2)
is satisfied.

The case without finite log-moment will be treated in Theores.

Remark. In a forthcoming paper jointly written with M. Maejima, it ilv be
proved that, for anyu € Lo(e™”, Q), there exists a natural semi-Lévy process in law
{X,} with finite log-moment such thaf ([,;~ e¢™*2dX,) = p.

Proof of Theorem 5.2 uses the following lemma.

Lemma 5.3. Let {X,:r > 0} be a semi-Bvy process in law o’ with period
p. Lety, be the levy measure ok, and lét be the unique measure A, co) x R?
satisfying (2.7). Then there are a measure* on RY and measures, x € R?, on
[0, c0) satisfying the following conditions
(1) v*({0}) =0 and [, (1A |x[H)r*(dx) < oo,
(2) for any x € R9, o* is a periodic measure with periogp  and*((0, p]) =
o:([0. p]) = 1,
(3) for any B € Bjp,o), 0;(B) is measurable in,
(4) for any nonnegative functiorf(s, x) measurable in(s, x),

(5.5) /[O,oo)XRd f(s, x)v(d(s, x)) = /]Rd v*(dx) om0 f(s,x)oi(ds) .

If (v*, of) and (v**, o¥*) both satisfy these conditionthen v* = v** and o} = o}*
for v*-a.e.x.
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When {X,} in the lemma has a factorind 4, }, o), then

(5.6) /000 o(ds) /]R” f(s, x)vP(dx) = /[o.oo)le' f(s, x)v(d(s, x))

for all nonnegative measurable functighs, £ ). ffs, & ) .4(s) 1z(x), then (5.6)
holds by (2.10) and (2.7). From this (5.6) follows in gener@omparing (5.5)
and (5.6), we see thaf«/}, o) and ¢*, {o:}) are dual in a sense.

Proof of Lemma 5.3. We havé({t} x R?) = 0 for all + > 0. Fix a posi-
tive integer N . Apply the conditional distribution theorem the probability measure
m(C) = a [(1 A |x[>)v(d(s, x)) on [0, Np] x RY, wherea is a normalizing constant.
Then we get a measurg’ on R? and measures* on [0, Np] such thatv*({0}) = 0,
Jra A |x[Hv*(dx) = (Na)~%, o7([0, Np]) = N, o}(B) is measurable inc  for each
B € B([0, Np]) and

[ e Pids. = [ @nkbran [ e
[0,Np] x R4 R4 [0,Np]
for all nonnegative measurablg s, & ). Sineg., = v, + vy, we can show that
/V*(dx) o (du) :/ v*(dx) o*(du) for B € B(RY).
B (p,pts] B (0,s]

Henceo:((p, p +s]) = o5((0, s]) for v*-a.e.x . By right-continuity ins , the excep-
tional set ofx can be chosen to be independent of . Thus we camsek satis-
fying property (2). By the uniqueness in the conditionaltritisition theoremy* does
not depend oV and; can be extended to a periodic measure om{d. O

Proof of Theorem 5.2. Let{p;}, o) be the periodic canonical factoring of
{X,}. Let us prove (5.3). First notice that

|ge(z, X)| < Co|xP(L+[x[))7 with C. = (jz+2z]) v (4 +]z]) .
Then,
N _s0’ 1 —s0’ —5
[logps(e ™9 2)| < SrAd)e Oz + |zl 0y
R R
z R{[ 1+|€75Qx|2 s o R{[ N s il
where r, &) = ce*%x) — c(x). Since the estimate (2.16) remains true ¢f

is replaced byQ’ and sinceos is periodic, [;°[e—*? z[?o(ds) < constz[?> and
I le=52'z|o(ds) < constz]. Note that trA? and |7| are o-essentially bounded
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(Proposition 2.8). Further, we will prove that

5.7 Ry leCx® oy
(5.7) : o(ds) R(’WVS(X)<OO’

(5.8) /o o(ds) /Rd le x| |rs(x)| VP (dx) < oo .

Write f(€) = £€2/(1+£?). Then, by (5.5), (5.6), and (2.16), the iterated integna(5.7)
is

S/ ”*(dx)/ flese™ ¥ [x|)oy(ds) = a, say.
R4 0

Notice that, by (2) of Lemma 5.3,

1 np
/ Flese™|x))o*(ds) < flcae™|x]) < = / Flese™|x) ds.
(np,(n+1)p] p

(n—1)p

Hence,

a< 1/ V*(dx)/ Sflcze ™ |x|)ds = 1 log(1 +c3e®|x|?)v* (dx) ,
P JRrd —p chp R4

which is finite by (1) of Lemma 5.3 and by log" |x|v*(dx) = [log" |x|v,(dx).

Note that the condition (5.2) is equivalent to the condittbat [ log" |x|v,(dx) < oo

by [19], Theorem 25.3 and Proposition 25.4. Thus we get (R7of of (5.8) is sim-

ilar, since the iterated integral in (5.8) is

e x| |x]?
re (L+]eCxP) (1 +]x[?)

< const / o(ds) vP(dx)
0

and since (1 €)/(1+¢?) < 2 for € > 0. This finishes a proof of (5.3).
Note thate=*¢ is M -integrable by Proposition 4.5. Let < t,. Then

12 2
E exp [i <z, / e sQ dxsﬂ = exp/ log ps(e—*2 z)o(ds) — 1
11 11

ast, t, — oo, by using (4.7) and (5.3). Hencfg e~*2dX; is convergent in probabil-
ity asr — oo by the remark in Step 2 of the proof of Theorem 3.2 (ii).
Let us prove thap = £ (f,~ e *?dX,) is in Lo(e”, Q). Let

P
/J“(P) = E (/ eisQ dXs) .
0

Then uy) € ID. Since [f e *CdX; and [“ e *?dX; are independent and the
latter has the same law as*?¢ [[“ e *?dX, by property (5.1), we gefi(z) =
Tip)(@)i(e=2'z). That is, u is in Lo(e™7, Q). O
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Theorem 5.4. Let {X,: ¢ > 0} be a natural semi-&vy process in law orR?
with period p . Assume that

(5.9) E log |X,| = .

Then for any Q € M?, fo°° e2dX, is not definable. Moreoverfor any sequence
ty, — 00, L (fé e 9 dXS) does not converge to any probability measure.

Proof. Fix Q@ and a sequenaog — oo. Denote L (fo’ eQ dXJ) = u®. Sup-

pose thatu® — (> for some probability measurg(>). Then ;> € ID, since
p™ € ID. Let v® and v(>) be the Lévy measures i and u(>), respectively.
Then, by [19] Theorem 8.7,

(5.10) / FE(dx) — / ) dx)

for all bounded continuous functionf  vanishing on a neighbod of 0. We have,
by (2.16), (5.5), and (5.6),

1y
/ v"(dx) = / o(ds) / L{je—sox|>130(dx) > / L pe—czru|>1y P(d(s, X))
|x|>1 0 [0,1,] X RY

= v*(dx) 1o is oty Oy (dS) 2/
/R(, 0] {lxl>cq e’}

[x|>c,

v (dx) | 1{s<c;1|og54\x\}0x (ds),

(0,mp

wherem is an integer such thatp <1, < (m +1)p. The inner integral is

m—1 m—1
=2 / T IRILACOED BE NN
j=0 7 ©0.p] j=0

which is bounded from below by ¢{p) logca|x| — 1) Am. Since [ log" |x|v*(dx) =
Jlog" |x|v,(dx) = oo by (5.9), it follows thatﬁx|>1V('1)(dx) — oo. This contra-
dicts (5.10). [l
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