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1. Introduction

Let us consider the × first order system, with one space variable,

(1.1) ≡ + ( ) = ( ) ( ) ∈ R× R

where

( ) =




11( ) · · · 1 ( )
...

...

1( ) · · · ( )




If ( ) is Hermitian, it is well known that the Cauchy problem for is ∞

well posed. On the other hand if ( ) is triangular, say upper triangular, that is
( ) = 0 for < and ( ) are real valued, then it is clear that the Cauchy

problem is ∞ well posed. In [1], D’Ancona and Spagnolo introduced an interest-
ing class of systems, they calledpseudosymmetric hyperbolicsystems, which includes
both symmetric and triangular systems. Recall that the matrix ( ) is called pseu-
dosymmetric if the following conditions are fulfilled for all choices of the indices ,
, 1 . . . ν ∈ {1 . . . }:

· ≥ 0

1 2 · 2 3 · · · ν 1 = 1 ν · · · 3 2 · 2 1

It is quite natural to ask if the Cauchy problem for pseudosymmetric systems is well
posed in some function spaces. As far as∞ well posedness is concerned, few results
are known, mainly for the case of analytic coefficients ( ) (see [1], [4]).

In this note we are interested in the case of∞ coefficients, and, more precisely,
to the 2× 2 systems of the form

(1.2) + ( ) = ( ) with ( ) =

(
( ) ( )
( ) − ( )

)
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where ( ), ( ) are real valued functions onR and

=
∂

∂
=
∂

∂

Such a system is pseudosymmetric if and only if

(1.3) ( ) ( )≥ 0

When ( ) is real analytic, it was proved in [5] that the Cauchy problem for (1.2) is
∞ well posed if and only if ( ) is hyperbolic, that is

( )2 + ( ) ( ) ≥ 0

To go further, let us assume that ( ) = 0, and that the coefficients ( ), ( ) are of
class 2. If = ( ) verifies the system = 0, then satisfies the scalar equation

(1.4) 2 − [ ( ) ( ) ] + ′( ) ( ) = 0

where ′( ) denotes the derivative of ( ). To get an apriori estimate for , a natural
question arises: can we estimate the function′( ) ( ) by constant times

√
( ) ( ),

if (1.3) is verified? Actually this is the case, and we give twoproofs in §2 and §3.
This result implies the solvability of the Cauchy problem for (1.4) (Theorem 4.1
in §4).

Note the simplest version of Glaeser inequality (cf. Lemma 3.3 in §3) says that

| ′( )| ≤
√

2
√

( )

whenever ( )≥ 0 and ′′( ) ≤ on R. Thus, taking = , we can estimate the
sum ′ + ′, but not the single summands.

In §5 we consider the Cauchy problem for any system of type (1.2)–(1.3), with in-
definitely differentiable coefficients and data, and we derive an apriori estimate which
leads to the ∞ well posedness (Theorem 5.1 in§5). We also add to (1.2) a zero or-
der term, and we find a sufficient Levi type condition on this term.

2. An extension of the Glaeser inequality

In this section we prove

Theorem 2.1. Let , ∈ 2(R). Assume that ( )( ), ( )( ), = 0, 1, 2, are
bounded onR, and

( ) ( ) ≥ 0 ∀ ∈ R

Then we have

(2.1) | ( ) ′( )| | ′( ) ( )| ≤
√

( ) ( ) ∀ ∈ R
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for some constant depending onsup{| ( )( )| + | ( )( )| ∈ R = 0 1 2}.

Proof. Let us set

= sup
∈R
|( )′′( )|

If = 0, then we have ≡ (a constant) onR. If 6= 0 the assertion (2.1) is
trivial. On the other hand, if ≡ 0, at each point where ( )6= 0 (resp. ( )6= 0)
we have ( ) = 0 (resp. ( ) = 0), hence also′( ) = 0 (resp. ′( ) = 0) since
′ + ′ = 0. This shows that ( )′( ) = ′( ) ( ) = 0. Then (2.1) holds.

Thus, we may assume 6= 0. We set

δ−1 =

√

2

We first assume that , have compact support, say ( ) = ( ) = 0 for| | ≥ .
We start with

Lemma 2.2. Let | | < be such that ( ) ( ) 6= 0. Then, in the interval

(
− δ
√

( ) ( ) + δ
√

( ) ( )
)

we have (ξ) (ξ) > 0.

Proof. Since ={ξ : |ξ| < (ξ) (ξ) 6= 0} is an open set, we can express

=
∞⋃

ν=1

ν ν = ( ν ν )

where ν are open intervals which are disjoint each other. Taking into account that
≥ 0 in a neighborhood of ν and ν , we have

( )( ν) = ( )( ν) = 0 ( )′( ν) = ( )′( ν) = 0

Therefore, assuming that∈ ν , we can write

( )( ) =
∫

ν

∫

ν

( )′′( )

and hence we get

|( )( )| ≤ ( − ν )2

2
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From this it follows that

− ν ≥ δ
√

( ) ( )

The same argument shows that

ν − ≥ δ
√

( ) ( )

Thus we conclude that
(
− δ
√

( ) ( ) + δ
√

( ) ( )
)
⊂ ν

This proves the assertion, since (ξ) (ξ) does not change sign inν .

Proof of Theorem 2.1. Let ∈ R. If ( ) ( ) = 0, (2.1) holds as we observed
above. Thus, we assume that ( ) ( )6= 0.

From Lemma 2.2, we may assume that we have either

(
+
√

( ) ( )
)
≥ 0 for | | ≤ δ

or
(

+
√

( ) ( )
)
≤ 0 for | | ≤ δ

We treat the first case. By the Taylor expansion at = 0, we have

0 ≤
(
± δ
√

( ) ( )
)

= ( )± δ ′( )
√

( ) ( ) +
1
2
δ2 ′′

(
± θ±

√
( ) ( )

)
( ) ( )

≤ ( )± δ ′( )
√

( ) ( ) +
1
2
δ2

2 ( ) ( )

where 0< θ± < 1 and 2 = supR | ′′|. This proves

(2.2) ∓ ′( )
√

( ) ( ) ≤ δ−1 ( ) +
1
2
δ 2 ( ) ( )

Multiplying (2.2) by
√

( )/ ( ) we get

| ′( ) ( )| ≤ δ−1
√

( ) ( ) +
1
2
δ 2 sup

R
| | ·

√
( ) ( )

The same argument, exchanging ( ) and ( ), proves

| ( ) ′( )| ≤ δ−1
√

( ) ( ) +
1
2
δ 2 sup

R
| | ·

√
( ) ( )
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and hence the result.
If , are not compactly supported, for a fixed0 ∈ R we apply the above result

to the functionsχ andχ , whereχ( ) is a cut-off function≥ 0 such thatχ ≡ 1 on
{| − 0| ≤ 1}, χ ≡ 0 on {| − 0| ≥ 2}. Thus, (2.1) holds in the interval [0−1 0+1]
with a constant independent of0, hence it holds in the wholeR.

3. A refinement of the inequality

In this section we prove Theorem 2.1 under less regular assumptions on ( ). For
a subset ⊆ R and a functionϕ( ) on R, we define

(ϕ ) = sup|ϕ( )|

Theorem 3.1. Let ∈ 2(R) and ∈ 1(R) be such that

( ) ( ) ≥ 0 ∀ ∈ R

Therefore, for every bounded ⊂ R and every > 0, we have

(3.1) | ′( ) ( )| ≤ ( )
√

( ) ( ) ∀ ∈

with

(3.2) ( ) =
[(

−1 ( )+ ( ′ )+ ( ′′ )
)
·
(

−1 ( )+ ( ′ )
)]1/2

where = { : dist( )≤ } and denotes some universal constant.

REMARK. If the functions ( )( ), = 0, 1, 2, and ( )( ), = 0, 1, are bounded
on the wholeR, then (3.1)–(3.2) imply

| ′( ) ( )| ≤
√

( ) ( ) ∀ ∈ R

with

=
[(

( R) + ( ′ R) + ( ′′ R)
)
·
(

( R) + ( ′ R)
)]1/2

Theorem 3.1 will be proved as a consequence of the following

Lemma 3.2. i) Given an open interval = ( ), let ∈ 2( )̄, ∈ 1( )̄,
with

( ) = ( ) = ( ) = ( ) = 0
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Assume that

(3.3) ( )≥ 0 on

and, for some positive constants , 1,

(3.4) | ′( )| ≤ 1
′′( ) ≤ 2 | ′( )| ≤ 1 ∀ ∈

Therefore, we have

(3.5) | ′( ) ( )| ≤ 2
√

(8 1 + ( − ) 2) 1 ·
√

( )| ( )| ∀ ∈

ii) The same conclusion holds true if we replace the assumption(3.3) by

( ) ( ) ≥ 0 ∀ ∈

and (3.4) by

| ′( )| ≤ 1 | ′′( )| ≤ 2 | ′( )| ≤ 1 ∀ ∈

Proof of Lemma 3.2. We first derive part (ii) from (i). Consider the set

=
{
∈ : there is a nbd. of where does not change sign

}

In other words, ∈ \ if and only if there are two sequences of points{ ′ }, { ′′},
converging to , for which

(3.6) ( ′ ) > 0 ( ′′) < 0 = 1 2 3 . . .

Clearly, is an open set. Moreover, by (3.6), we see that ( ) = 0 for all ∈ \ .
But ( ) ( )≥ 0, hence on \ we have also ( ) = 0. Consequently, writing

=
∞⋃

=1

= ( )

we see that ( ) does not change sign on each interval , and

( ) = ( ) = ( ) = ( ) = 0

Considering− ( ) instead of ( ) we may assume that ≥ 0 on the interval ;
hence we can apply part (i) on this interval.

In order to prove the part (i) of Lemma 3.2, we need three auxiliary lemmas. The
first lemma is a version of the Glaeser inequality, where lessregularity of the func-
tion is required: it is assumed only to be a1 function with absolutely continuous
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first derivative. The second and the third lemmas provide some comparisons of a given
function with the reference function (− )( − ), on the interval{ < < }.

Lemma 3.3. For everyψ ∈ 2 1
loc (R) satisfying

ψ( ) ≥ 0 ψ′′( ) ≤ a.e. onR

we have

(3.7) |ψ′( )| ≤
√

2
√
ψ( ) ∀ ∈ R

Proof. We can write

ψ( + )− ψ( )− ψ′( ) =
∫ + (

ψ′(ξ)− ψ′( )
)
ξ

=
∫ + ∫ ξ

ψ′′(η) η ξ =
∫

+

∫

ξ

ψ′′(η) η ξ

Thus, regardless on the sign of , we have

0≤ ψ( + ) ≤ ψ( ) + ψ′( ) +
2

2
∀

and hence (3.7) follows immediately.

Lemma 3.4. Let = ( ), and letϕ( ) ∈ 1( )∩ 0( )̄ be a function such that

ϕ( ) = ϕ( ) = 0 |ϕ′( )| ≤ <∞ ∀ ∈

Then, we have

(3.8) |ϕ( )| ≤ 2
− ( − )( − ) ∀ ∈

Proof. It is sufficient to remark that:

|ϕ( )| =
∣∣∣
∫

ϕ′(ξ) ξ
∣∣∣ ≤ ( − )

1
− ≤ 2

− if ∈
[

+
2

]

|ϕ( )| =
∣∣∣
∫

ϕ′(ξ) ξ
∣∣∣ ≤ ( − )

1
− ≤ 2

− if ∈
[

+
2

]

Lemma 3.5. Let = ( ) and ∈ 2( )̄ be such that ( ) = ( ) = 0. Assume

(3.9) ( )≥ 0 | ′( )| ≤ 1
′′( ) ≤ 2 ∀ ∈
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for some positive constants . Therefore, putting = − , we have

(3.10) | ′( )| ≤ 2
√ √

2 2 + 4 1

√
( )√

( − )( − )
∀ ∈

Proof. Letχ ( ) be the characteristic function of = [ ]. Then, the function

(3.11) ψ( ) = ( − )( − ) ( )χ ( )

is of class 1 on the whole real line, with first derivative

(3.12) ψ′( ) =
[
( − )( − ) ′( ) + ( + − 2 ) ( )

]
χ ( )

Note thatψ′( ) is Lipschitz continuous onR, and its distributional derivative is the
∞ function

ψ′′( ) =
[
( − )( − ) ′′( ) + 2( + − 2 ) ′( )− 2 ( )

]
χ ( )

Observing that 0≤ ( − )( − ) ≤ 2/4 and | + − 2 | ≤ , for ∈ , we get,
by (3.9),

(3.13) ψ′′( ) ≤
2

4 2 + 2 1 − 2 ( )χ ( ) ≤
(

4 2 + 2 1

)
a.e. onR

Now, we apply Lemma 3.3 to the function (3.11): by (3.7) we get

|ψ′( )| ≤ 0

√ √
ψ( ) ∀ ∈ R

with

(3.14) 0 =

√

2 2 + 4 1

Recalling (3.12), this yields

( − )( − )| ′( )| ≤ 0

√ √
( − )( − )

√
( ) + | + − 2 | ( )

≤ 0

√ √
( − )( − )

√
( ) + ( )

and hence

(3.15) | ′( )| ≤
√

√
( )

( − )( − )

(
0 +

√
( )

( − )( − )

)

To conclude the proof of Lemma 3.4, let us apply (3.8) withϕ( ) = ( ), =
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1. Thus, recalling (3.14), we find

(3.16) 0 +

√
( )

( − )( − )
≤ 0 +

√
2 1 ≤ 2 0

so that the desired estimate (3.10) follows from (3.15)–(3.16).

Conclusion of the proof of Lemma 3.2. We apply Lemma 3.4 to thefunction
( ). By (3.8) with ϕ = and = 1, together with (3.10), we get

| ′( )|
√
| ( )| ≤ 2

√ √

2 2 + 4 1

√
( )√

( − )( − )
·
√

2 1 ( − )( − )

≤ 2
√(

2 + 8 1
)

1 ·
√

( )

that is, (3.5). This completes the proof of Lemma 3.2.

Conclusion of the proof of Theorem 3.1. If ( ) and ( ) are as in Theo-
rem 3.1, the estimates (3.1)–(3.2) can be derived from Lemma3.2 in the following
way:

Given 0 ∈ R, let = ( 0 − 0 + ). Take a cut-off functionχ( ), equal to 1
in a neigborhood of 0 and vanishing at the endpoints of , so that 0≤ χ( ) ≤ 1,
and |χ( )( )| ≤ − for = 1, 2. We apply Lemma 3.2, part (ii), to the functions
˜( ) = χ( ) ( ) and ˜( ) = χ( ) ( ). Assume that

| ( )| ≤ 0 | ′( )| ≤ 1
′′( ) ≤ 2 | ( )| ≤ 0 | ′( )| ≤ 1 ∀ ∈

therefore˜( ) and ˜( ) fulfil (3.4) with constants

˜ 1 =

(
0 + 1

)
˜ 2 =

(
0

2
+

2 1 + 0

)
˜1 =

(
0 + 1

)

Hence (3.5) gives

| ′( 0) ( 0)| ≤ 2
√

10

[(
0 + 2 1 + 2

)
·
(

0 + 1

)]1/2√
( 0) ( 0)

which implies (3.1)–(3.2), by the arbitrariness of0.

4. An application to the Cauchy problem

In this section we return to the equation (1.4) which motivated us to extend the
Glaeser inequality. Let us consider the Cauchy problem

2 − [ ( ) ( ) ] + ′( ) ( ) = 0(4.1)
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(0 ) = 0( ) (0 ) = 1( )(4.2)

where, for simplicity, we assume that ( ), ( ) are∞ functions with bounded
derivatives of all orders onR and

( ) ( ) ≥ 0 on R

We define the energy function

( ) =
1
2

∫ (
| |2 + ( ) ( )| |2 + | |2

)

where the integral is extended toR.
Integrating by parts, we get

′( ) = −Re
∫

′( ) ( ) ¯ + Re
∫

¯

and hence, using Theorem 3.1, we find the apriori estimate

′( ) ≤ 1 ( )

Thus we get

‖ ( )‖ 2 + ‖ ( )‖ 2 ≤ (τ )
(
‖ 0‖ 1 + ‖ 1‖ 2

)
0≤ ≤ τ

To get an estimate of the norm of the solution we differentiate (4.1) with respect
to to obtain an equation for = :

2 − [ ( ) ( ) ] +
[

′( ) ( ) − ( )′( )
]

+
[
( ′ )′( )− ( )′′( )

]
= 0

By iterating the same procedure we find the estimates

‖ ( )‖ + ‖ ( )‖ ≤ (τ )
(
‖ 0‖ +1 + ‖ 1‖

)
0≤ ≤ τ

for all which proves the ∞ well-posedness.

Theorem 4.1. Under the assumptions as above, the Cauchy Problem(4.1)–(4.2)
is ∞ well posed.

5. Further results of well-posedness

Here we consider the more general class of systems

(5.1)

{ ≡ [ + ( ) + ( )] = ( ) 0 ≤ ≤ τ
(0 ) = 0



AN EXTENSION OF GLAESER INEQUALITY 155

where

(5.2) ( ) =

(
( ) ( )
( ) − ( )

)
( ) =

(
δ1( ) α( )
β( ) δ2( )

)

For the sake of simplicity, we assume that the coefficients ofthese matrices are ∞

functions, with bounded derivatives of all orders onR. The coefficients of ( ) are
real, those of ( ) may be complex. We assume, as always,

(5.3) ( ) ( )≥ 0

As for the lower order term ( ) we assume that, for some positive constant ,

(5.4) | ( )β( )| ≤
√

( ) ( ) | ( )α( )| ≤
√

( ) ( )

Theorem 5.1. Under the assumptions(5.3)–(5.4), the Cauchy problem(5.1)–
(5.2) is well posed in ∞.

Proof. In order to find an apriori estimate for (5.1), we consider ◦ with an
operator such as

(5.5) = − ( ) + ˜( )

where ˜( ) will be chosen in a suitable way. The matrix ( ) enjoys a verygood
property: its square is Hermitian; more precisely, we have

(5.6) 2( ) = ( ) with ( ) = 2( ) + ( ) ( ) ≥ 0

After some computations, we see that

◦ =
( 2 − 2( ) 2) + ( ) + 1( ) + 0( )

with 1 = + ˜ , 0 = ˜ − , and

(5.7) ( ) = ˜ − −

Thus, each smooth solution ( ) to (5.1) solves also the secondorder system

(5.8)
[

2 − ( ) 2 + ( ) + 1( ) + 0( )
]

= ≡

The natural energy for such a system is given by

( ) =
1
2

∫ (
| |2 + ( )| |2 + | |2

)
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hence, if we multiply each term of (5.8) by , we need an estimate like:

(5.9)
∫
|( ( ) )| ≤

∫ √
( ) | || | ≤ ( )

i.e.

(5.10) ‖ ( )‖ ≤
√

( )

In view of (5.10), let us choose the matrix̃( ) in (5.5) of the form

(5.11) ˜( ) = − ( ) + ( ) with =

(
ϕ( ) 0

0 ψ( )

)

so that, by (5.7),

( ) = −( + ) + ( − )

Now, the matrix + = ( 2) = ′( ) has a norm which can be estimated
by

√
( ), by the (classical) Glaeser inequality. Thus, we must choose the functions

ϕ( ), ψ( ) in (5.11) in such a way that

(5.12) ‖( − )( )‖ ≤
√

( )

We compute:

− =

(
(ϕ− δ1)− β (ϕ− δ2)− α

(ψ − δ1) + β − (ψ − δ2)− α

)

Hence, the choice

ϕ( ) = δ2( ) ψ( ) = δ1( )

produces

− = ( ) ( )−
(

( )β( ) 0
0 ( )α( )

)

for some (bounded) matrix ( ). By (5.3) and (5.6), we know that| ( )| ≤ √ ( ),
while, by (5.4), ( )β( ) and ( )α( ) are estimated by

√
( ) ( ). In conclusion we

get (5.12), hence also (5.10) and (5.9).
We are now in the position to prove an energy estimate for the solutions to (5.8),

′( ) ≤
(

( ) + ‖ ( )‖2
2

)
0≤ ≤ τ
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whence, by (5.1),

‖ ( )‖ 2 + ‖ ( )‖ 2 ≤
∫ τ

0
‖ ( )‖ 2

Note that the terms 1( ) and 0( ) do not give any trouble.
To get an estimate of the 1 norm of the solution, we differentiate each term

of (5.8) with respect to , thus obtaining an equation in the unknown = :

2 − ( ) 2 +
(

( )− ′( )
)

+ 1( ) + 0̃( )

= − ′
1( ) + 2( )

By iterating this procedure, and going back to (5.1), we find the apriori estimates

‖ ( )‖ + ‖ ( )‖ ≤
∫ τ

0
‖ ( )‖ ≤ ′

∫ τ

0
‖ ( )‖ +1

for all integers , which ensure the well-posedness in∞.
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Università di Pisa
Via F. Buonarroti 2, 56127
Italy


