AN EXTENSION OF GLAESER INEQUALITY AND ITS APPLICATIONS

Tatsuo NISHITANI and Sergio SPAGNOLO

(Received April 26, 2002)

1. Introduction

Let us consider the $m \times m$ first order system, with one space variable,

$$
\begin{equation*}
L u \equiv D_{t} u+A(t, x) D_{x} u=f(t, x), \quad(t, x) \in \mathbf{R} \times \mathbf{R} \tag{1.1}
\end{equation*}
$$

where

$$
A(t, x)=\left(\begin{array}{ccc}
a_{11}(t, x) & \cdots & a_{1 m}(t, x) \\
\vdots & & \vdots \\
a_{m 1}(t, x) & \cdots & a_{m m}(t, x)
\end{array}\right) .
$$

If $A(t, x)$ is Hermitian, it is well known that the Cauchy problem for L is C^{∞} well posed. On the other hand if $A(t, x)$ is triangular, say upper triangular, that is $a_{i j}(t, x)=0$ for $i<j$ and $a_{i i}(t, x)$ are real valued, then it is clear that the Cauchy problem is C^{∞} well posed. In [1], D'Ancona and Spagnolo introduced an interesting class of systems, they called pseudosymmetric hyperbolic systems, which includes both symmetric and triangular systems. Recall that the matrix $A(t, x)$ is called pseudosymmetric if the following conditions are fulfilled for all choices of the indices i, $j, j_{1}, \ldots, j_{\nu} \in\{1, \ldots, m\}:$

$$
\begin{aligned}
a_{i j} \cdot a_{j i} & \geq 0, \\
a_{j_{1} j_{2}} \cdot a_{j_{2} j_{3}} \cdots a_{j_{\nu} j_{1}} & =\overline{a_{j_{1} j_{\nu}}} \cdots \overline{a_{j_{3} j_{2}}} \cdot \overline{a_{j_{2} j_{1}}} .
\end{aligned}
$$

It is quite natural to ask if the Cauchy problem for pseudosymmetric systems is well posed in some function spaces. As far as C^{∞} well posedness is concerned, few results are known, mainly for the case of analytic coefficients $a_{i j}(t, x)$ (see [1], [4]).

In this note we are interested in the case of C^{∞} coefficients, and, more precisely, to the 2×2 systems of the form

$$
D_{t} u+A(x) D_{x} u=f(t, x), \quad \text { with } \quad A(x)=\left(\begin{array}{cc}
d(x) & a(x) \tag{1.2}\\
b(x) & -d(x)
\end{array}\right),
$$

where $a(x), b(x)$ are real valued functions on \mathbf{R} and

$$
D_{t}=\frac{\partial}{\partial t}, \quad D_{x}=\frac{\partial}{\partial x} .
$$

Such a system is pseudosymmetric if and only if

$$
\begin{equation*}
a(x) b(x) \geq 0 \tag{1.3}
\end{equation*}
$$

When $A(x)$ is real analytic, it was proved in [5] that the Cauchy problem for (1.2) is C^{∞} well posed if and only if $A(x)$ is hyperbolic, that is

$$
d(x)^{2}+a(x) b(x) \geq 0
$$

To go further, let us assume that $d(x)=0$, and that the coefficients $a(x), b(x)$ are of class C^{2}. If $u={ }^{t}(v, w)$ verifies the system $L u=0$, then v satisfies the scalar equation

$$
\begin{equation*}
D_{t}^{2} v-D_{x}\left[a(x) b(x) D_{x} v\right]+a^{\prime}(x) b(x) D_{x} v=0 \tag{1.4}
\end{equation*}
$$

where $a^{\prime}(x)$ denotes the derivative of $a(x)$. To get an apriori estimate for u, a natural question arises: can we estimate the function $a^{\prime}(x) b(x)$ by constant times $\sqrt{a(x) b(x)}$, if (1.3) is verified? Actually this is the case, and we give two proofs in $\S 2$ and $\S 3$. This result implies the solvability of the Cauchy problem for (1.4) (Theorem 4.1 in $\S 4$).

Note the simplest version of Glaeser inequality (cf. Lemma 3.3 in §3) says that

$$
\left|f^{\prime}(x)\right| \leq \sqrt{2 M} \sqrt{f(x)}
$$

whenever $f(x) \geq 0$ and $f^{\prime \prime}(x) \leq M$ on \mathbf{R}. Thus, taking $f=a b$, we can estimate the sum $a^{\prime} b+a b^{\prime}$, but not the single summands.

In $\S 5$ we consider the Cauchy problem for any system of type (1.2)-(1.3), with indefinitely differentiable coefficients and data, and we derive an apriori estimate which leads to the C^{∞} well posedness (Theorem 5.1 in $\S 5$). We also add to (1.2) a zero order term, and we find a sufficient Levi type condition on this term.

2. An extension of the Glaeser inequality

In this section we prove
Theorem 2.1. Let $f, g \in C^{2}(\mathbf{R})$. Assume that $f^{(j)}(x), g^{(j)}(x), j=0,1,2$, are bounded on \mathbf{R}, and

$$
f(x) g(x) \geq 0, \quad \forall x \in \mathbf{R}
$$

Then we have

$$
\begin{equation*}
\left|f(x) g^{\prime}(x)\right|, \quad\left|f^{\prime}(x) g(x)\right| \leq M \sqrt{f(x) g(x)}, \quad \forall x \in \mathbf{R} \tag{2.1}
\end{equation*}
$$

for some constant M depending on $\sup \left\{\left|f^{(j)}(x)\right|+\left|g^{(j)}(x)\right|, \quad x \in \mathbf{R}, \quad j=0,1,2\right\}$.
Proof. Let us set

$$
\Lambda=\sup _{x \in \mathbf{R}}\left|(f g)^{\prime \prime}(x)\right| .
$$

If $\Lambda=0$, then we have $f g \equiv C$ (a constant) on \mathbf{R}. If $C \neq 0$ the assertion (2.1) is trivial. On the other hand, if $f g \equiv 0$, at each point x where $f(x) \neq 0$ (resp. $g(x) \neq 0$) we have $g(x)=0$ (resp. $f(x)=0$), hence also $g^{\prime}(x)=0$ (resp. $f^{\prime}(x)=0$) since $f^{\prime} g+f g^{\prime}=0$. This shows that $f(x) g^{\prime}(x)=f^{\prime}(x) g(x)=0$. Then (2.1) holds.

Thus, we may assume $\Lambda \neq 0$. We set

$$
\delta^{-1}=\sqrt{\frac{\Lambda}{2}} .
$$

We first assume that f, g have compact support, say $f(x)=g(x)=0$ for $|x| \geq r$. We start with

Lemma 2.2. Let $|x|<r$ be such that $f(x) g(x) \neq 0$. Then, in the interval

$$
(x-\delta \sqrt{f(x) g(x)}, x+\delta \sqrt{f(x) g(x)})
$$

we have $f(\xi) g(\xi)>0$.
Proof. Since $\Omega=\{\xi:|\xi|<r, f(\xi) g(\xi) \neq 0\}$ is an open set, we can express

$$
\Omega=\bigcup_{\nu=1}^{\infty} I_{\nu}, \quad I_{\nu}=\left(a_{\nu}, b_{\nu}\right)
$$

where I_{ν} are open intervals which are disjoint each other. Taking into account that $f g \geq 0$ in a neighborhood of a_{ν} and b_{ν}, we have

$$
(f g)\left(a_{\nu}\right)=(f g)\left(b_{\nu}\right)=0, \quad(f g)^{\prime}\left(a_{\nu}\right)=(f g)^{\prime}\left(b_{\nu}\right)=0 .
$$

Therefore, assuming that $x \in I_{\nu}$, we can write

$$
(f g)(x)=\int_{a_{\nu}}^{x} d t \int_{a_{\nu}}^{t}(f g)^{\prime \prime}(s) d s
$$

and hence we get

$$
|(f g)(x)| \leq \frac{\Lambda\left(x-a_{\nu}\right)^{2}}{2}
$$

From this it follows that

$$
x-a_{\nu} \geq \delta \sqrt{f(x) g(x)}
$$

The same argument shows that

$$
b_{\nu}-x \geq \delta \sqrt{f(x) g(x)}
$$

Thus we conclude that

$$
(x-\delta \sqrt{f(x) g(x)}, x+\delta \sqrt{f(x) g(x)}) \subset I_{\nu}
$$

This proves the assertion, since $f(\xi) g(\xi)$ does not change sign in I_{ν}.

Proof of Theorem 2.1. Let $x \in \mathbf{R}$. If $f(x) g(x)=0$, (2.1) holds as we observed above. Thus, we assume that $f(x) g(x) \neq 0$.

From Lemma 2.2, we may assume that we have either

$$
f(x+s \sqrt{f(x) g(x)}) \geq 0 \quad \text { for } \quad|s| \leq \delta
$$

or

$$
f(x+s \sqrt{f(x) g(x)}) \leq 0 \quad \text { for } \quad|s| \leq \delta
$$

We treat the first case. By the Taylor expansion at $s=0$, we have

$$
\begin{aligned}
0 & \leq f(x \pm \delta \sqrt{f(x) g(x)}) \\
& =f(x) \pm \delta f^{\prime}(x) \sqrt{f(x) g(x)}+\frac{1}{2} \delta^{2} f^{\prime \prime}\left(x \pm \theta^{ \pm} \sqrt{f(x) g(x)}\right) f(x) g(x) \\
& \leq f(x) \pm \delta f^{\prime}(x) \sqrt{f(x) g(x)}+\frac{1}{2} \delta^{2} M_{2} f(x) g(x)
\end{aligned}
$$

where $0<\theta^{ \pm}<1$ and $M_{2}=\sup _{\mathbf{R}}\left|f^{\prime \prime}\right|$. This proves

$$
\begin{equation*}
\mp f^{\prime}(x) \sqrt{f(x) g(x)} \leq \delta^{-1} f(x)+\frac{1}{2} \delta M_{2} f(x) g(x) \tag{2.2}
\end{equation*}
$$

Multiplying (2.2) by $\sqrt{g(x) / f(x)}$ we get

$$
\left|f^{\prime}(x) g(x)\right| \leq \delta^{-1} \sqrt{f(x) g(x)}+\frac{1}{2} \delta M_{2} \sup _{\mathbf{R}}|g| \cdot \sqrt{f(x) g(x)}
$$

The same argument, exchanging $g(x)$ and $f(x)$, proves

$$
\left|f(x) g^{\prime}(x)\right| \leq \delta^{-1} \sqrt{f(x) g(x)}+\frac{1}{2} \delta M_{2} \sup _{\mathbf{R}}|g| \cdot \sqrt{f(x) g(x)}
$$

and hence the result.
If f, g are not compactly supported, for a fixed $x_{0} \in \mathbf{R}$ we apply the above result to the functions χf and χg, where $\chi(x)$ is a cut-off function ≥ 0 such that $\chi \equiv 1$ on $\left\{\left|x-x_{0}\right| \leq 1\right\}, \chi \equiv 0$ on $\left\{\left|x-x_{0}\right| \geq 2\right\}$. Thus, (2.1) holds in the interval $\left[x_{0}-1, x_{0}+1\right]$ with a constant M independent of x_{0}, hence it holds in the whole \mathbf{R}.

3. A refinement of the inequality

In this section we prove Theorem 2.1 under less regular assumptions on $g(x)$. For a subset $S \subseteq \mathbf{R}$ and a function $\varphi(x)$ on \mathbf{R}, we define

$$
\Lambda(\varphi, S)=\sup _{S}|\varphi(x)| .
$$

Theorem 3.1. Let $f \in C^{2}(\mathbf{R})$ and $g \in C^{1}(\mathbf{R})$ be such that

$$
f(x) g(x) \geq 0, \quad \forall x \in \mathbf{R}
$$

Therefore, for every bounded $S \subset \mathbf{R}$ and every $r>0$, we have

$$
\begin{equation*}
\left|f^{\prime}(x) g(x)\right| \leq M(S, r) \sqrt{f(x) g(x)}, \quad \forall x \in S \tag{3.1}
\end{equation*}
$$

with
(3.2) $M(S, r)=C\left[\left(r^{-1} \Lambda\left(f, S_{r}\right)+\Lambda\left(f^{\prime}, S_{r}\right)+r \Lambda\left(f^{\prime \prime}, S_{r}\right)\right) \cdot\left(r^{-1} \Lambda\left(g, S_{r}\right)+\Lambda\left(g^{\prime}, S_{r}\right)\right)\right]^{1 / 2}$
where $S_{r}=\{x: \operatorname{dist}(x, S) \leq r\}$ and C denotes some universal constant.
Remark. If the functions $f^{(j)}(x), j=0,1,2$, and $g^{(i)}(x), i=0,1$, are bounded on the whole \mathbf{R}, then (3.1)-(3.2) imply

$$
\left|f^{\prime}(x) g(x)\right| \leq M \sqrt{f(x) g(x)}, \quad \forall x \in \mathbf{R}
$$

with

$$
M=C\left[\left(\Lambda(f, \mathbf{R})+\Lambda\left(f^{\prime}, \mathbf{R}\right)+\Lambda\left(f^{\prime \prime}, \mathbf{R}\right)\right) \cdot\left(\Lambda(g, \mathbf{R})+\Lambda\left(g^{\prime}, \mathbf{R}\right)\right)\right]^{1 / 2}
$$

Theorem 3.1 will be proved as a consequence of the following
Lemma 3.2. i) Given an open interval $I=(a, b)$, let $f \in C^{2}(\bar{I}), g \in C^{1}(\bar{I})$, with

$$
f(a)=f(b)=g(a)=g(b)=0 .
$$

Assume that

$$
\begin{equation*}
f(x) \geq 0 \quad \text { on } I \tag{3.3}
\end{equation*}
$$

and, for some positive constants M_{j}, N_{1},

$$
\begin{equation*}
\left|f^{\prime}(x)\right| \leq M_{1}, \quad f^{\prime \prime}(x) \leq M_{2}, \quad\left|g^{\prime}(x)\right| \leq N_{1}, \quad \forall x \in I \tag{3.4}
\end{equation*}
$$

Therefore, we have

$$
\begin{equation*}
\left|f^{\prime}(x) g(x)\right| \leq 2 \sqrt{\left(8 M_{1}+(b-a) M_{2}\right) N_{1}} \cdot \sqrt{f(x)|g(x)|}, \quad \forall x \in I \tag{3.5}
\end{equation*}
$$

ii) The same conclusion holds true if we replace the assumption (3.3) by

$$
f(x) g(x) \geq 0, \quad \forall x \in I
$$

and (3.4) by

$$
\left|f^{\prime}(x)\right| \leq M_{1}, \quad\left|f^{\prime \prime}(x)\right| \leq M_{2}, \quad\left|g^{\prime}(x)\right| \leq N_{1}, \quad \forall x \in I
$$

Proof of Lemma 3.2. We first derive part (ii) from (i). Consider the set

$$
\Omega=\{x \in I: \text { there is a nbd. of } x \text { where } f \text { does not change sign }\}
$$

In other words, $x \in I \backslash \Omega$ if and only if there are two sequences of points $\left\{x_{j}^{\prime}\right\},\left\{x_{j}^{\prime \prime}\right\}$, converging to x, for which

$$
\begin{equation*}
f\left(x_{j}^{\prime}\right)>0, \quad f\left(x_{j}^{\prime \prime}\right)<0, \quad j=1,2,3, \ldots \tag{3.6}
\end{equation*}
$$

Clearly, Ω is an open set. Moreover, by (3.6), we see that $f(x)=0$ for all $x \in I \backslash \Omega$. But $f(x) g(x) \geq 0$, hence on $I \backslash \Omega$ we have also $g(x)=0$. Consequently, writing

$$
\Omega=\bigcup_{k=1}^{\infty} I_{k}, \quad I_{k}=\left(a_{k}, b_{k}\right)
$$

we see that $f(x)$ does not change sign on each interval I_{k}, and

$$
f\left(a_{k}\right)=f\left(b_{k}\right)=g\left(a_{k}\right)=g\left(b_{k}\right)=0
$$

Considering $-f(x)$ instead of $f(x)$ we may assume that $f \geq 0$ on the interval I_{k}; hence we can apply part (i) on this interval.

In order to prove the part (i) of Lemma 3.2, we need three auxiliary lemmas. The first lemma is a version of the Glaeser inequality, where less regularity of the function is required: it is assumed only to be a C^{1} function with absolutely continuous
first derivative. The second and the third lemmas provide some comparisons of a given function with the reference function $(x-a)(b-x)$, on the interval $\{a<x<b\}$.

Lemma 3.3. For every $\psi \in W_{\text {loc }}^{2,1}(\mathbf{R})$ satisfying

$$
\psi(x) \geq 0, \quad \psi^{\prime \prime}(x) \leq M, \quad \text { a.e. on } \mathbf{R},
$$

we have

$$
\begin{equation*}
\left|\psi^{\prime}(x)\right| \leq \sqrt{2 M} \sqrt{\psi(x)}, \quad \forall x \in \mathbf{R} . \tag{3.7}
\end{equation*}
$$

Proof. We can write

$$
\begin{gathered}
\psi(x+h)-\psi(x)-h \psi^{\prime}(x)=\int_{x}^{x+h}\left(\psi^{\prime}(\xi)-\psi^{\prime}(x)\right) d \xi \\
=\int_{x}^{x+h} \int_{x}^{\xi} \psi^{\prime \prime}(\eta) d \eta d \xi=\int_{x+h}^{x} \int_{\xi}^{x} \psi^{\prime \prime}(\eta) d \eta d \xi .
\end{gathered}
$$

Thus, regardless on the sign of h, we have

$$
0 \leq \psi(x+h) \leq \psi(x)+h \psi^{\prime}(x)+\frac{M h^{2}}{2}, \quad \forall h
$$

and hence (3.7) follows immediately.
Lemma 3.4. Let $I=(a, b)$, and let $\varphi(x) \in C^{1}(I) \cap C^{0}(\bar{I})$ be a function such that

$$
\varphi(a)=\varphi(b)=0, \quad\left|\varphi^{\prime}(x)\right| \leq K<\infty, \quad \forall x \in I .
$$

Then, we have

$$
\begin{equation*}
|\varphi(x)| \leq \frac{2 K}{b-a}(x-a)(b-x), \quad \forall x \in I \tag{3.8}
\end{equation*}
$$

Proof. It is sufficient to remark that:

$$
\begin{array}{ll}
|\varphi(x)|=\left|\int_{a}^{x} \varphi^{\prime}(\xi) d \xi\right| \leq K(x-a), & \frac{1}{b-x} \leq \frac{2}{b-a}, \quad \text { if } \quad x \in\left[a, \frac{a+b}{2}\right] \\
|\varphi(x)|=\left|\int_{x}^{b} \varphi^{\prime}(\xi) d \xi\right| \leq K(b-x), & \frac{1}{x-a} \leq \frac{2}{b-a}, \quad \text { if } \quad x \in\left[\frac{a+b}{2}, b\right]
\end{array}
$$

Lemma 3.5. Let $I=(a, b)$ and $f \in C^{2}(\bar{I})$ be such that $f(a)=f(b)=0$. Assume

$$
\begin{equation*}
f(x) \geq 0, \quad\left|f^{\prime}(x)\right| \leq M_{1}, \quad f^{\prime \prime}(x) \leq M_{2}, \quad \forall x \in I, \tag{3.9}
\end{equation*}
$$

for some positive constants M_{j}. Therefore, putting $d=b-a$, we have

$$
\begin{equation*}
\left|f^{\prime}(x)\right| \leq 2 \sqrt{d} \sqrt{\frac{d}{2} M_{2}+4 M_{1}} \frac{\sqrt{f(x)}}{\sqrt{(x-a)(b-x)}}, \quad \forall x \in I \tag{3.10}
\end{equation*}
$$

Proof. Let $\chi_{I}(x)$ be the characteristic function of $I=[a, b]$. Then, the function

$$
\begin{equation*}
\psi(x)=(x-a)(b-x) f(x) \chi_{I}(x) \tag{3.11}
\end{equation*}
$$

is of class C^{1} on the whole real line, with first derivative

$$
\begin{equation*}
\psi^{\prime}(x)=\left[(x-a)(b-x) f^{\prime}(x)+(a+b-2 x) f(x)\right] \chi_{I}(x) \tag{3.12}
\end{equation*}
$$

Note that $\psi^{\prime}(x)$ is Lipschitz continuous on \mathbf{R}, and its distributional derivative is the L^{∞} function

$$
\psi^{\prime \prime}(x)=\left[(x-a)(b-x) f^{\prime \prime}(x)+2(a+b-2 x) f^{\prime}(x)-2 f(x)\right] \chi_{I}(x)
$$

Observing that $0 \leq(x-a)(b-x) \leq d^{2} / 4$ and $|a+b-2 x| \leq d$, for $x \in I$, we get, by (3.9),

$$
\begin{equation*}
\psi^{\prime \prime}(x) \leq \frac{d^{2}}{4} M_{2}+2 d M_{1}-2 f(x) \chi_{I}(x) \leq d\left(\frac{d}{4} M_{2}+2 M_{1}\right) \quad \text { a.e. on } \mathbf{R} \tag{3.13}
\end{equation*}
$$

Now, we apply Lemma 3.3 to the function (3.11): by (3.7) we get

$$
\left|\psi^{\prime}(x)\right| \leq C_{0} \sqrt{d} \sqrt{\psi(x)}, \quad \forall x \in \mathbf{R}
$$

with

$$
\begin{equation*}
C_{0}=\sqrt{\frac{d}{2} M_{2}+4 M_{1}} \tag{3.14}
\end{equation*}
$$

Recalling (3.12), this yields

$$
\begin{aligned}
(x-a)(b-x)\left|f^{\prime}(x)\right| & \leq C_{0} \sqrt{d} \sqrt{(x-a)(b-x)} \sqrt{f(x)}+|a+b-2 x| f(x) \\
& \leq C_{0} \sqrt{d} \sqrt{(x-a)(b-x)} \sqrt{f(x)}+d f(x)
\end{aligned}
$$

and hence

$$
\begin{equation*}
\left|f^{\prime}(x)\right| \leq \sqrt{d} \sqrt{\frac{f(x)}{(x-a)(b-x)}}\left(C_{0}+\sqrt{\frac{d f(x)}{(x-a)(b-x)}}\right) \tag{3.15}
\end{equation*}
$$

To conclude the proof of Lemma 3.4, let us apply (3.8) with $\varphi(x)=f(x), K=$
M_{1}. Thus, recalling (3.14), we find

$$
\begin{equation*}
C_{0}+\sqrt{\frac{d f(x)}{(x-a)(b-x)}} \leq C_{0}+\sqrt{2 M_{1}} \leq 2 C_{0}, \tag{3.16}
\end{equation*}
$$

so that the desired estimate (3.10) follows from (3.15)-(3.16).

Conclusion of the proof of Lemma 3.2. We apply Lemma 3.4 to the function $g(x)$. By (3.8) with $\varphi=g$ and $K=N_{1}$, together with (3.10), we get

$$
\begin{aligned}
\left|f^{\prime}(x)\right| \sqrt{|g(x)|} & \leq 2 \sqrt{d} \sqrt{\frac{d}{2} M_{2}+4 M_{1}} \frac{\sqrt{f(x)}}{\sqrt{(x-a)(b-x)}} \cdot \sqrt{\frac{2 N_{1}}{d}(x-a)(b-x)} \\
& \leq 2 \sqrt{\left(d M_{2}+8 M_{1}\right) N_{1}} \cdot \sqrt{f(x)},
\end{aligned}
$$

that is, (3.5). This completes the proof of Lemma 3.2.
Conclusion of the proof of Theorem 3.1. If $f(x)$ and $g(x)$ are as in Theorem 3.1, the estimates (3.1)-(3.2) can be derived from Lemma 3.2 in the following way:

Given $x_{0} \in \mathbf{R}$, let $I=\left(x_{0}-r, x_{0}+r\right)$. Take a cut-off function $\chi(x)$, equal to 1 in a neigborhood of x_{0} and vanishing at the endpoints of I, so that $0 \leq \chi(x) \leq 1$, and $\left|\chi^{(j)}(x)\right| \leq C r^{-j}$ for $j=1$, 2. We apply Lemma 3.2, part (ii), to the functions $\widetilde{f}(x)=\chi(x) f(x)$ and $\widetilde{g}(x)=\chi(x) g(x)$. Assume that
$|f(x)| \leq M_{0}, \quad\left|f^{\prime}(x)\right| \leq M_{1}, \quad f^{\prime \prime}(x) \leq M_{2}, \quad|g(x)| \leq N_{0}, \quad\left|g^{\prime}(x)\right| \leq N_{1}, \quad \forall x \in I$, therefore $\widetilde{f}(x)$ and $\widetilde{g}(x)$ fulfil (3.4) with constants

$$
\widetilde{M}_{1}=C\left(\frac{M_{0}}{r}+M_{1}\right), \quad \tilde{M}_{2}=C\left(\frac{M_{0}}{r^{2}}+\frac{2 M_{1}}{r}+M_{0}\right), \quad \widetilde{N}_{1}=C\left(\frac{N_{0}}{r}+N_{1}\right) .
$$

Hence (3.5) gives

$$
\left|f^{\prime}\left(x_{0}\right) g\left(x_{0}\right)\right| \leq 2 \sqrt{10} C\left[\left(\frac{M_{0}}{r}+2 M_{1}+r M_{2}\right) \cdot\left(\frac{N_{0}}{r}+N_{1}\right)\right]^{1 / 2} \sqrt{f\left(x_{0}\right) g\left(x_{0}\right)}
$$

which implies (3.1)-(3.2), by the arbitrariness of x_{0}.

4. An application to the Cauchy problem

In this section we return to the equation (1.4) which motivated us to extend the Glaeser inequality. Let us consider the Cauchy problem

$$
\begin{equation*}
D_{t}^{2} v-D_{x}\left[a(x) b(x) D_{x} v\right]+a^{\prime}(x) b(x) D_{x} v=0 \tag{4.1}
\end{equation*}
$$

$$
\begin{equation*}
v(0, x)=v_{0}(x), \quad D_{t} v(0, x)=v_{1}(x) \tag{4.2}
\end{equation*}
$$

where, for simplicity, we assume that $a(x), b(x)$ are C^{∞} functions with bounded derivatives of all orders on \mathbf{R} and

$$
a(x) b(x) \geq 0 \quad \text { on } \mathbf{R}
$$

We define the energy function

$$
E(t)=\frac{1}{2} \int\left(\left|v_{t}\right|^{2}+a(x) b(x)\left|v_{x}\right|^{2}+|v|^{2}\right) d x
$$

where the integral is extended to \mathbf{R}.
Integrating by parts, we get

$$
E^{\prime}(t)=-\operatorname{Re} \int a^{\prime}(x) b(x) v_{x} \bar{v}_{t} d x+\operatorname{Re} \int v \bar{v}_{t} d x
$$

and hence, using Theorem 3.1, we find the apriori estimate

$$
E^{\prime}(t) \leq C_{1} E(t)
$$

Thus we get

$$
\|v(t)\|_{L^{2}}+\left\|v_{t}(t)\right\|_{L^{2}} \leq C(\tau)\left(\left\|v_{0}\right\|_{H^{1}}+\left\|v_{1}\right\|_{L^{2}}\right), \quad 0 \leq t \leq \tau
$$

To get an estimate of the H^{k} norm of the solution we differentiate (4.1) with respect to x to obtain an equation for $w=D_{x} v$:

$$
\begin{aligned}
D_{t}^{2} w-D_{x}\left[a(x) b(x) D_{x} w\right] & +\left[a^{\prime}(x) b(x)-(a b)^{\prime}(x)\right] D_{x} w \\
+ & {\left[\left(a^{\prime} b\right)^{\prime}(x)-(a b)^{\prime \prime}(x)\right] w=0 }
\end{aligned}
$$

By iterating the same procedure we find the estimates

$$
\|v(t)\|_{H^{k}}+\left\|v_{t}(t)\right\|_{H^{k}} \leq C_{k}(\tau)\left(\left\|v_{0}\right\|_{H^{k+1}}+\left\|v_{1}\right\|_{H^{k}}\right), \quad 0 \leq t \leq \tau
$$

for all k which proves the C^{∞} well-posedness.

Theorem 4.1. Under the assumptions as above, the Cauchy Problem (4.1)-(4.2) is C^{∞} well posed.

5. Further results of well-posedness

Here we consider the more general class of systems

$$
\left\{\begin{array}{l}
L u \equiv\left[D_{t}+A(x) D_{x}+B(x)\right] u=f(t, x), \quad 0 \leq t \leq \tau \tag{5.1}\\
u(0, x)=0
\end{array}\right.
$$

where

$$
A(x)=\left(\begin{array}{cc}
d(x) & a(x) \tag{5.2}\\
b(x) & -d(x)
\end{array}\right), \quad B(x)=\left(\begin{array}{cc}
\delta_{1}(x) & \alpha(x) \\
\beta(x) & \delta_{2}(x)
\end{array}\right)
$$

For the sake of simplicity, we assume that the coefficients of these matrices are C^{∞} functions, with bounded derivatives of all orders on \mathbf{R}. The coefficients of $A(x)$ are real, those of $B(x)$ may be complex. We assume, as always,

$$
\begin{equation*}
a(x) b(x) \geq 0 \tag{5.3}
\end{equation*}
$$

As for the lower order term $B(x)$ we assume that, for some positive constant C,

$$
\begin{equation*}
|a(x) \beta(x)| \leq C \sqrt{a(x) b(x)}, \quad|b(x) \alpha(x)| \leq C \sqrt{a(x) b(x)} \tag{5.4}
\end{equation*}
$$

Theorem 5.1. Under the assumptions (5.3)-(5.4), the Cauchy problem (5.1)(5.2) is well posed in C^{∞}.

Proof. In order to find an apriori estimate for (5.1), we consider $M \circ L$ with an operator M such as

$$
\begin{equation*}
M=D_{t}-A(x) D_{x}+\widetilde{B}(x) \tag{5.5}
\end{equation*}
$$

where $\widetilde{B}(x)$ will be chosen in a suitable way. The matrix $A(x)$ enjoys a very good property: its square is Hermitian; more precisely, we have

$$
\begin{equation*}
A^{2}(x)=h(x) I, \quad \text { with } \quad h(x)=d^{2}(x)+a(x) b(x) \geq 0 \tag{5.6}
\end{equation*}
$$

After some computations, we see that

$$
M \circ L=\left(D_{t}^{2}-A^{2}(x) D_{x}^{2}\right)+K(x) D_{x}+T_{1}(x) D_{t}+T_{0}(x)
$$

with $T_{1}=B+\widetilde{B}, T_{0}=\widetilde{B} B-A B_{x}$, and

$$
\begin{equation*}
K(x)=\widetilde{B} A-A A_{x}-A B \tag{5.7}
\end{equation*}
$$

Thus, each smooth solution $u(t, x)$ to (5.1) solves also the second order system

$$
\begin{equation*}
\left[D_{t}^{2}-h(x) D_{x}^{2}+K(x) D_{x}+T_{1}(x) D_{t}+T_{0}(x)\right] u=g \equiv M f \tag{5.8}
\end{equation*}
$$

The natural energy for such a system is given by

$$
E(t, u)=\frac{1}{2} \int\left(\left|u_{t}\right|^{2}+h(x)\left|D_{x} u\right|^{2}+|u|^{2}\right) d x
$$

hence, if we multiply each term of (5.8) by $\overline{D_{t} u}$, we need an estimate like:

$$
\begin{equation*}
\int\left|\left(K(x) D_{x} u, D_{t} u\right)\right| d x \leq C \int \sqrt{h(x)}\left|D_{x} u\right|\left|D_{t} u\right| d x \leq C E(t, u) \tag{5.9}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\|K(x)\| \leq C \sqrt{h(x)} \tag{5.10}
\end{equation*}
$$

In view of (5.10), let us choose the matrix $\widetilde{B}(x)$ in (5.5) of the form

$$
\widetilde{B}(x)=-A_{x}(x)+X(x), \quad \text { with } \quad X=\left(\begin{array}{cc}
\varphi(x) & 0 \tag{5.11}\\
0 & \psi(x)
\end{array}\right)
$$

so that, by (5.7),

$$
K(x)=-\left(A A_{x}+A_{x} A\right)+(X A-A B) .
$$

Now, the matrix $A A_{x}+A_{x} A=\left(A^{2}\right)_{x}=h^{\prime}(x) I$ has a norm which can be estimated by $C \sqrt{h(x)}$, by the (classical) Glaeser inequality. Thus, we must choose the functions $\varphi(x), \psi(x)$ in (5.11) in such a way that

$$
\begin{equation*}
\|(X A-A B)(x)\| \leq C \sqrt{h(x)} \tag{5.12}
\end{equation*}
$$

We compute:

$$
X A-A B=\left(\begin{array}{cc}
d\left(\varphi-\delta_{1}\right)-a \beta & a\left(\varphi-\delta_{2}\right)-d \alpha \\
b\left(\psi-\delta_{1}\right)+d \beta & -d\left(\psi-\delta_{2}\right)-b \alpha
\end{array}\right)
$$

Hence, the choice

$$
\varphi(x)=\delta_{2}(x), \quad \psi(x)=\delta_{1}(x)
$$

produces

$$
X A-A B=d(x) T(x)-\left(\begin{array}{cc}
a(x) \beta(x) & 0 \\
0 & b(x) \alpha(x)
\end{array}\right)
$$

for some (bounded) matrix $T(x)$. By (5.3) and (5.6), we know that $|d(x)| \leq \sqrt{h(x)}$, while, by (5.4), $a(x) \beta(x)$ and $b(x) \alpha(x)$ are estimated by $\sqrt{a(x) b(x)}$. In conclusion we get (5.12), hence also (5.10) and (5.9).

We are now in the position to prove an energy estimate for the solutions to (5.8),

$$
E^{\prime}(t, u) \leq C\left(E(t, u)+\|g(t)\|_{L^{2}}^{2}\right), \quad 0 \leq t \leq \tau
$$

whence, by (5.1),

$$
\|u(t)\|_{L^{2}}+\left\|D_{t} u(t)\right\|_{L^{2}} \leq C \int_{0}^{\tau}\|g(s)\|_{L^{2}} d s
$$

Note that the terms $T_{1}(x) D_{t} u$ and $T_{0}(x) u$ do not give any trouble.
To get an estimate of the H^{1} norm of the solution, we differentiate each term of (5.8) with respect to x, thus obtaining an equation in the unknown $v=D_{x} u$:

$$
\begin{array}{r}
D_{t}^{2} v-h(x) D_{x}^{2} v+\left(K(x)-h^{\prime}(x) I\right) D_{x} v+T_{1}(x) D_{t} v+\widetilde{T}_{0}(x) v \\
=D_{x} g-T_{1}^{\prime}(x) D_{t} u+T_{2}(x) u .
\end{array}
$$

By iterating this procedure, and going back to (5.1), we find the apriori estimates

$$
\|u(t)\|_{H^{k}}+\left\|D_{t} u(t)\right\|_{H^{k}} \leq C \int_{0}^{\tau}\|g(s)\|_{H^{k}} d s \leq C^{\prime} \int_{0}^{\tau}\|f(s)\|_{H^{k+1}} d s
$$

for all integers k, which ensure the well-posedness in C^{∞}.

References

[1] P. D'Ancona and S. Spagnolo: On pseudosymmetric hyperbolic systems, Ann. Scu. Norm. Sup. Pisa 25 (1997), 397-417.
[2] G. Glaeser: Racine carrée d'une fonction différentiable, Ann. Inst. Fourier 13 (1963), 203-210.
[3] L. Hörmander: The Analysis of Linear Partial Differential Operators, III, Springer, 1985.
[4] T. Nishitani and S. Spagnolo: On pseudosymmetric systems with one space variable, Ann. Scu. Norm. Sup. Pisa 30 (2001), 661-679; Errata to "On pseudosymmetric systems with one space variable", ibid. 1 (2002), 245.
[5] T. Nishitani: Hyperbolicity of two by two systems with two independent variables, Comm. Part. Diff. Equat. 23 (1998), 1061-1110.

Tatsuo Nishitani

Department of Mathematics
Osaka University
Machikaneyama 1-16, Toyonaka Osaka
Japan
Sergio Spagnolo
Dipartimento di Matematica
Università di Pisa
Via F. Buonarroti 2, 56127
Italy

