CONSTRUCTION OF AFFINE PLANE CURVES WITH ONE PLACE AT INFINITY

Mitsushi FUJIMOTO and Masakazu SUZUKi

(Received January 12, 2001)

1. Introduction

Let C be an irreducible algebraic curve in complex affine plane \mathbf{C}^{2}. We say that C has one place at infinity, if the closure of C intersects with the ∞-line in \mathbf{P}^{2} at only one point P and C is locally irreducible at that point P.

The problem of finding the canonical models of curves with one place at infinity under the polynomial transformations of the coordinates of \mathbf{C}^{2} has been studied by many mathematicians since Suzuki [17] and Abhyankar-Moh [2] proved independently that the canonical model of C is a line when C is non-singular and simply connected. Zaidenberg-Lin [19] proved that C has the canonical model of type $y^{q}=x^{p}$, where p and q are coprime integers >1, when C is singular and simply connected. A'CampoOka [5] studied the case of genus $g \leq 3$ as an application of a resolution tower of toric modifications. For the case $g \leq 4$ Neumann [12] studied from the viewpoint of the link at infinity, and Miyanishi [9] studied from the algebrico-geometric viewpoint. Nakazawa-Oka [11] gave the classifications of all the canonical models for the case $g \leq 7$ using the result of A'Campo-Oka, and gave the classifications for the case $g \leq 16$ without proof. Jaworski [8] studied normal forms of irreducible germs of functions of two variables with given Puiseux pairs. Oka [14, 15] gave the normal form of plane curves which are locally irreducible at the origin and with a given sequence of weight vectors corresponding to the Tschirnhausen-good resolution tower, and showed that the moduli space of such curves is of the form $\left(\mathbf{C}^{*}\right)^{a} \times \mathbf{C}^{b}$. Furthermore, Oka translated this result to the case of affine curves with one place at infinity.

Also, Abhyankar-Moh [1, 3, 4] investigated properties of δ-sequences which are sequences of pole orders of approximate roots of C. This result is called AbhyankarMoh's semigroup theorem. Sathaye-Stenerson [16] proved that if a sequence S of natural numbers satisfies Abhyankar-Moh's condition then there exists a curve with one place at infinity of the δ-sequence S. Suzuki [18] made it clear the relationship between the δ-sequence and the dual graph of the minimal resolution of the singularity of the curve C at infinity, and gave an algebrico-geometric proof of semigroup theorem and its inverse theorem due to Sathaye-Stenerson.

In this paper, we develop Suzuki's result and give an algebrico-geometric proof of Oka's result (Theorem 7 and Corollary 1). We shall also give an algorithm to compute
the normal form and the moduli space of the curve with one place at infinity from a given δ-sequence ${ }^{1}$.

Our construction method of normal forms is different from [8, 14, 15] in the following respects. First, this method uses δ-sequences generating semigroups of affine plane curves with one place at infinity. Second, this method directly generates defining polynomials at the origin of curves with one place at infinity.

2. Preparations

In this section, we introduce some definitions and facts which is needed to describe our theorem.

Let C be a curve with one place at infinity defined by a polynomial equation $f(x, y)=0$ in the complex affine plane \mathbf{C}^{2}. Assume that $\operatorname{deg}_{x} f=m, \operatorname{deg}_{y} f=n$ and $d=\operatorname{gcd}(m, n)$. By the consideration of the Newton boundary, we can get

$$
f(x, y)=\left(u x^{p}+v y^{q}\right)^{d}+\sum_{q \alpha+p \beta<p q d} c_{\alpha \beta} x^{\alpha} y^{\beta},
$$

where $u, v \in \mathbf{C}^{*}, m=p d$ and $n=q d$. By a finitely many times of the coordinate transformations of the form

$$
\left\{\begin{array}{l}
x_{1}=x \\
y_{1}=y+c x^{p}
\end{array}\right.
$$

and the exchange of the coordinates x and y, we can reduce the polynomial f into one of the following two types:
(A) $m=1, n=0$
(B) $m=p d, n=q d, \operatorname{gcd}(p, q)=1, p>q>1$.

A curve of type (A) is a line. We call the curve of type (B) non-linearlizable. In this paper, we shall consider only the curves of the type (B) from now on. The closure \bar{C} of C in the projective plane \mathbf{P}^{2} passes through the intersection point O of the ∞-line A and the line $x=0$ by the assumption $p>q$.

Let us denote by E_{0} the (-1)-curve appeared by the blowing-up of the point O, and continue to denote the proper transform of A by the same character A. Let a be the natural number satisfying $a q<p<(a+1) q$. If $a=1$, then the proper transform of \bar{C} is tangent to A, or else is tangent to E_{0}.

[^0]

In case $a>1$, after further $a-1$ times of the blowing-ups of the point at infinity of the curve C, the proper transform of \bar{C} is tangent to the (-1)-curve E_{1} obtained by the last blowing-up. (In case $a=1$, we set $E_{1}=A$.)

Thus we get a compactification of \mathbf{C}^{2} with the boundary curve of which the dual graph is of the following form:

By $a-1$ times of the blowing-downs of the (-1)-curve on the right hand side from A of the above dual graph, we get the following dual graph:

Let ($M_{1}, E_{0} \cup E_{1}$) be the compactification of \mathbf{C}^{2} thus obtained.
The intersection point of E_{0} and E_{1} is the indetermination point of f. Now, we blow up from the surface M_{1} the indetermination points of f successively, until the indetermination points of f disappear. Let M_{f} be the surface thus obtained. We denote the proper transform in M_{f} of E_{0} (resp. E_{1}) by the same character E_{0} (resp. E_{1}). Let $E_{i}(2 \leq i \leq R)$ be the proper transform in M_{f} of the (-1)-curve obtained by the ($i-1$)-th blowing-up. Furthermore, we set $E_{f}=E_{0} \cup E_{1} \cup \cdots \cup E_{R}$.

The following theorem about the compactification $\left(M_{f}, E_{f}\right)$ of \mathbf{C}^{2} is very important for the classification problem of the curves with one place at infinity.

Theorem 1 ([18]). (i) The dual graph $\Gamma\left(E_{f}\right)$ of E_{f} has the following form:

(ii) f is non-constant only on E_{R} and has the pole on $E_{f}-E_{R}$.
(iii) The degree of f on E_{R} is 1 .
(iv) E_{R} is the unique (-1)-curve in E_{f}.

Note. There is a small gap in the proof of (i) described in [18]. Let Z (resp. P, S) be the union of the components of E_{f} on which $f=0$ (resp. $f=\infty, f=$ nonconstant). Let T be the union of the other components of E_{f}. From the proof of (i) described in [18], we know that Z and P are both connected and $S=E_{R}$. Here, since f is non-zero constant on T, T does not intersect Z and P. If $T \neq \emptyset$, then T intersects only S. But since $S\left(=E_{R}\right)$ is the last (-1)-curve on M_{f}, the relations of intersection among Z, P, S and T is one of the following two types:
$\begin{array}{ll}\text { (I) } P-S-Z & \text { (II) } P-S-T \text {. }\end{array}$
If $Z \neq \emptyset$, then we get the contradiction as it is described in [18]. The similar argument applies to the case of $T \neq \emptyset$. Thus we get $Z=\emptyset$ and $T=\emptyset$. As a consequence, $\Gamma\left(E_{f}\right)$ has the above form.

In $\Gamma\left(E_{f}\right)$, let $i_{1}, i_{2}, \ldots, i_{h}$ (resp. $\left.j_{0}, j_{1}, \ldots, j_{h}\right)$ be the indices of the branch vertices (resp. the terminal vertices) from the left hand side, where $j_{0}=0$ and $j_{1}=1$. Let M_{C} be the surface obtained by the blowing-down of $E_{R}, E_{R-1}, \ldots, E_{i_{h}+1}$ from M_{f}. For $i\left(0 \leq i \leq i_{h}\right)$, we shall continue to denote by E_{i} the proper transform of E_{i} in M_{C}. Further, we set $E_{C}=E_{0} \cup E_{1} \cup \cdots \cup E_{i_{h}}$. We shall call the pair $\left(M_{C}, E_{C}\right)$ the compactification of \mathbf{C}^{2} obtained by the minimal resolution of the singularity of C at infinity. We set $L_{k}=\bigcup_{i_{k-1}<i \leq i_{k}} E_{i}$ for each $k(1 \leq k \leq h)$ like the following figure, where $i_{0}=-1$.

Definition 1 (δ-sequence). Let $\delta_{k}(0 \leq k \leq h)$ be the order of the pole of f on $E_{j_{k}}$. We shall call the sequence $\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{h}\right\}$ the δ-sequence of C (or of f).

We have the following fact since $\operatorname{deg}_{x} f=m$ and $\operatorname{deg}_{y} f=n$.
Fact 1. $\delta_{0}=n, \delta_{1}=m$.
Definition $2\left((p, q)\right.$-sequence). Now, we assume that the weights of L_{k} is of the following form:

We define the natural numbers $p_{k}, a_{k}, q_{k}, b_{k}$ satisfying

$$
\begin{aligned}
& \quad\left(p_{k}, a_{k}\right)=1,\left(q_{k}, b_{k}\right)=1,0<a_{k}<p_{k}, 0<b_{k}<q_{k}, \\
& \frac{p_{k}}{a_{k}}=m_{1}-\frac{1}{m_{2}-\frac{1}{m_{3}-\ddots \sigma_{2}-\frac{1}{m_{r}}}} \text { and } \frac{q_{k}}{b_{k}}=n_{1}-\frac{1}{n_{2}-\frac{1}{n_{3}-\ddots}} .
\end{aligned}
$$

We shall call the sequence $\left\{\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right), \ldots,\left(p_{h}, q_{h}\right)\right\}$ the (p, q)-sequence of C (or of f).

We shall assume that $f(x, y)$ is monic in y. We define approximate roots by Abhyankar's definition.

Definition 3 (approximate roots). Let $f(x, y)$ be the defining polynomial, monic in y, of a curve with one place at infinity. Let $\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{h}\right\}$ be the δ-sequence of f. We set $n=\operatorname{deg}_{y} f, d_{k}=\operatorname{gcd}\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{k-1}\right\}$ and $n_{k}=n / d_{k}(1 \leq k \leq h+1)$. Then, for each $k(1 \leq k \leq h+1)$, a pair of polynomials ($\left.g_{k}(x, y), \psi_{k}(x, y)\right)$ satisfying the following conditions is uniquely determined:
(i) g_{k} is monic in y and $\operatorname{deg}_{y} g_{k}=n_{k}$,
(ii) $\operatorname{deg}_{y} \psi_{k}<n-n_{k}$,
(iii) $f=g_{k}^{d_{k}}+\psi_{k}$.

We call this g_{k} the k-th approximate root of f.

We can easily get the following fact from the definition of approximate roots.

Fact 2. We have

$$
g_{1}=y+\sum_{j=0}^{\lfloor p / q\rfloor} c_{k} x^{k}, \quad g_{h+1}=f
$$

where $c_{k} \in \mathbf{C}, p=\operatorname{deg}_{x} f / d, q=\operatorname{deg}_{y} f / d, d=\operatorname{gcd}\left\{\operatorname{deg}_{x} f, \operatorname{deg}_{y} f\right\}$ and $\lfloor p / q\rfloor$ is the maximal integer l such that $l \leq p / q$.

Definition 4 (g-sequence). The sequence of polynomials $g_{0}:=x, g_{1}, \ldots, g_{h+1}$ is called the g-sequence of f.

Here, we denote by C_{k} the curve defined by $g_{k}(x, y)=0$ in \mathbf{C}^{2}. The following theorem about C_{k} plays a vital role in the main theorem.

Theorem 2. For each $k(0 \leq k \leq h), C_{k}$ is also with one place at infinity. Further, its closure \bar{C}_{k} in M_{C} intersects transversely $E_{j_{k}}$, and does not intersect other irreducible components of E_{C}.

Suzuki [18] gave the algebrico-geometric proof of this theorem. We get the following theorem as a corollary of the above theorem.

Theorem 3. For each $k(0 \leq k \leq h), g_{k}$ has the pole of order δ_{k} on $E_{i_{h}}$.
The following lemma about approximate roots will be used in Theorem 6 .
Lemma 1. Let f be the defining polynomial, monic in y, of a curve with one place at infinity. Let $\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{h}\right\}$ be the δ-sequence of f, and $g_{0}, g_{1}, \ldots, g_{h}, g_{h+1}$ be the g-sequence of f. Then, $g_{k}(0 \leq k \leq h-1)$ is also the k-th approximate root of g_{j} for any j with $k<j<h+1$.

Proof. For example, see Proposition 2.2 in [5].

3. Intersection matrix and successive blow-up

Let M be a non-singular projective algebraic surface over complex number field, and E be an algebraic curve on M. We shall assume that $E_{1}, E_{2}, \ldots, E_{s}$ are irreducible components of E, and denote by I_{E} the intersection matrix $\left(\left(E_{i} \cdot E_{j}\right)\right)_{i, j=1, \ldots, s}$ of E. The following lemma about the intersection matrix is well-known by Mumford.

Lemma 2. E is an exceptional set if and only if I_{E} is negative definite.

Let E_{1}^{\prime} be the (-1)-curve appeared by blowing-up at a point P_{0} on a surface M, and let P_{1} be a point on E_{1}^{\prime}. For $i(\geq 1)$, let E_{i+1}^{\prime} be the (-1)-curve appeared by blowing-up at a point P_{i}, and let P_{i+1} be the point on E_{i+1}^{\prime}. We get $\left\{P_{i}\right\}_{i=0, \ldots, r}$ and $\left\{E_{i}^{\prime}\right\}_{i=1, \ldots, r}$ by the above finite operations. In this paper we call this finite sequence of blowing-ups a successive blow-up from P_{0}. Let M^{\prime} be the surface obtained by a successive blow-up from P_{0}. For $i(1 \leq i \leq r)$, we shall continue to denote by E_{i}^{\prime} the proper transform of E_{i}^{\prime} in M^{\prime}. Further, we set $E^{\prime}=\bigcup_{i=1}^{r} E_{i}^{\prime}$ and $\Delta_{E^{\prime}}=\operatorname{det}\left(-I_{E^{\prime}}\right)$. We have the following fact since $\Delta_{E^{\prime}}$ is invariant under the successive blow-up.

Fact 3. $\Delta_{E^{\prime}}=1$.
The following lemma is Lemma 1 in [18]. Here, we describe it because it is used many times in the next section.

Lemma 3. Let $E_{1}, E_{2}, \ldots, E_{r}, E_{r+1}$ be the irreducible components of E and assume that the dual graph $\Gamma(E)$ is of the following linear type:

Assume further that there exists a holomorphic function f on a neighborhood U of $\bigcup_{i=1}^{r} E_{i}$ such that the zero divisor (f) of f on U is written in the following form:

$$
\sum_{i=1}^{r} m_{i} E_{i}+m_{r+1} E_{r+1} \cap U
$$

Let $\left(p_{i}, p_{i+1}\right)$ be the coprime integers defined by the following continued fraction:

$$
\frac{p_{i+1}}{p_{i}}=n_{i}-\frac{1}{n_{i-1}-\ddots-\frac{1}{n_{1}}}(1 \leq i \leq r)
$$

Then, $m_{i}=m_{1} p_{i}(1 \leq i \leq r+1)$.
Now, consider a pair of natural numbers (p, q) with $\operatorname{gcd}(p, q)=1, p>q>0$. We can easily show that there exists a unique pair of natural numbers (a, b) with $p q-$ $a q-b p=1,0<a<p, 0<b<q$.

We consider the following continued fractions for the above mentioned p, q, a, b :

$$
\frac{p}{a}=m_{1}-\frac{1}{m_{2}-\frac{1}{m_{3}-\cdot \ddots-\frac{1}{m_{r}}}}, \quad \frac{q}{b}=n_{1}-\frac{1}{n_{2}-\frac{1}{n_{3}-\cdot \ddots}-\frac{1}{n_{s}}},
$$

where $m_{i} \geq 2$ and $n_{j} \geq 2$.
Let (x, y) be the local coordinate for the neighborhood of a point P on M which has P as the origin. Then,

Lemma 4. we can construct a exceptional curve with the following weights by a successive blow-up from P.

Proof. We consider the curve C defined by $x^{p}+y^{q}=0$. The resolution graph at origin of C is as follows:

Let I_{E} be the intersection matrix of the exceptional curve E corresponding to the above dual graph. Here, we set

$$
\frac{p^{\prime}}{a^{\prime}}=m_{1}^{\prime}-\frac{1}{m_{2}^{\prime}-\cdot{ }_{-}-\frac{1}{m_{u}^{\prime}}}, \quad \frac{q^{\prime}}{b^{\prime}}=n_{1}^{\prime}-\frac{1}{n_{2}^{\prime}-\ddots}
$$

We get $\operatorname{det}\left(-I_{E}\right)=p^{\prime} q^{\prime}-a^{\prime} q^{\prime}-b^{\prime} p^{\prime}$. On the other hand, E is the exceptional curve obtained by a successive blow-up from origin. Therefore, we get $\operatorname{det}\left(-I_{E}\right)=1$ by Fact 3 . Thus $p^{\prime} q^{\prime}-a^{\prime} q^{\prime}-b^{\prime} p^{\prime}=1$.

As the above dual graph, let $E_{i}(1 \leq i \leq u), E_{T}, E_{j}^{\prime}(1 \leq j \leq v)$ be the irreducible components of E. We denote by $\mu_{i}(1 \leq i \leq u)$ the zero order of the function x on E_{i} and by μ_{T} the zero order of the function x on E_{T}. Also, we denote by $\nu_{j}(1 \leq j \leq v)$ the zero order of the function y on E_{j}^{\prime} and by ν_{T} the zero order of the function y on E_{T}. Since $q=\mu_{T}$ and $\mu_{u}=1$, we get $q^{\prime}=\mu_{T} / \mu_{u}=q$ by Lemma 3. As the same way, we get $p=p^{\prime}$. Thus $p q-a^{\prime} q-b^{\prime} p=1$. Further, it must be $a=a^{\prime}, b=b^{\prime}$, since $0<a^{\prime}<p$ and $0<b^{\prime}<q$. Therefore, we get $v=r, m_{i}^{\prime}=m_{i}(1 \leq i \leq r), u=s$,
$n_{j}^{\prime}=n_{j}(1 \leq j \leq s)$ by the uniqueness of the expansion into continued fraction. As a result, the assertion was proved.

4. Construction of a curve with one place at infinity

We set $\mathbf{N}=\{n \in \mathbf{Z} \mid n \geq 0\}$ and $\mathbf{C}^{*}=\mathbf{C} \backslash\{0\}$. The following theorem about δ-sequence and (p, q)-sequence is called Abhyankar-Moh's Semigroup Theorem.

Theorem 4 (Abhyankar-Moh). Let C be a non-linearlizable affine plane curve with one place at infinity. Let $\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{h}\right\}$ be the δ-sequence of C and $\left\{\left(p_{1}, q_{1}\right), \ldots,\left(p_{h}, q_{h}\right)\right\}$ be the (p, q)-sequence of C. We set $d_{k}=\operatorname{gcd}\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{k-1}\right\}$ $(1 \leq k \leq h+1)$. We have then,
(i) $\quad q_{k}=d_{k} / d_{k+1}, d_{h+1}=1(1 \leq k \leq h)$,
(ii) $d_{k+1} p_{k}=\left\{\begin{array}{ll}\delta_{1} & (k=1) \\ q_{k-1} \delta_{k-1}-\delta_{k} & (2 \leq k \leq h)\end{array}\right.$,
(iii) $q_{k} \delta_{k} \in \mathbf{N} \delta_{0}+\mathbf{N} \delta_{1}+\cdots+\mathbf{N} \delta_{k-1}(1 \leq k \leq h)$.

The following theorem gives the converse of the above theorem.

Theorem 5 (Sathaye-Stenerson [16]). Let $\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{h}\right\}(h \geq 1)$ be the sequence of $h+1$ natural numbers. We set $d_{k}=\operatorname{gcd}\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{k-1}\right\}(1 \leq k \leq h+1)$ and $q_{k}=d_{k} / d_{k+1}(1 \leq k \leq h)$. Furthermore, suppose that the following conditions are satisfied:
(1) $\delta_{0}<\delta_{1}$,
(2) $q_{k} \geq 2(1 \leq k \leq h)$,
(3) $d_{h+1}=1$,
(4) $\delta_{k}<q_{k-1} \delta_{k-1}(2 \leq k \leq h)$,
(5) $q_{k} \delta_{k} \in \mathbf{N} \delta_{0}+\mathbf{N} \delta_{1}+\cdots+\mathbf{N} \delta_{k-1}(1 \leq k \leq h)$.

Then, there exists a curve with one place at infinity of the δ-sequence $\left\{\delta_{0}, \delta_{1}, \ldots\right.$, $\left.\delta_{h}\right\}$.

Suzuki [18] gave an algebrico-geometric proof of the above two theorem by the consideration of the resolution graph at infinity.

Definition 5 (Abhyankar-Moh's condition). We shall call the conditions (1)-(5) concerning $\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{h}\right\}$ in Theorem 5 Abhyankar-Moh's condition.

Theorem 6. Let $\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{h}\right\}(h \geq 1)$ be the sequence of $h+1$ natural numbers satisfying Abhyankar-Moh's condition. Set $d_{k}=\operatorname{gcd}\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{k-1}\right\}(1 \leq k \leq$ $h+1)$ and $q_{k}=d_{k} / d_{k+1}(1 \leq k \leq h)$. Then,
(i) the defining polynomial f, monic in y, of a curve with one place at infinity of
the δ-sequence $\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{h}\right\}$ has the following form using the approximate roots $g_{0}, g_{1}, \ldots, g_{h}$ of f :

$$
f=g_{h}^{q_{h}}+a_{\bar{\alpha}_{0} \bar{\alpha}_{1} \cdots \bar{\alpha}_{h-1}} g_{0}^{\bar{\alpha}_{0}} g_{1}^{\bar{\alpha}_{1}} \cdots g_{h-1}^{\bar{\alpha}_{h-1}}+\sum_{\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{h}\right) \in \Lambda} c_{\alpha_{0} \alpha_{1} \cdots \alpha_{h}} g_{0}^{\alpha_{0}} g_{1}^{\alpha_{1}} \cdots g_{h}^{\alpha_{h}}
$$

where $a_{\bar{\alpha}_{0} \bar{\alpha}_{1} \cdots \bar{\alpha}_{h-1}} \in \mathbf{C}^{*}, c_{\alpha_{0} \alpha_{1} \cdots \alpha_{h}} \in \mathbf{C},\left(\bar{\alpha}_{0}, \bar{\alpha}_{1}, \ldots, \bar{\alpha}_{h-1}\right)$ is the sequence of h nonnegative integers satisfying

$$
\sum_{i=0}^{h-1} \bar{\alpha}_{i} \delta_{i}=q_{h} \delta_{h}, \bar{\alpha}_{i}<q_{i}(0<i<h)
$$

and

$$
\Lambda=\left\{\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{h}\right) \in \mathbf{N}^{h+1} \mid \alpha_{i}<q_{i}(0<i<h), \alpha_{h}<q_{h}-1, \sum_{i=0}^{h} \alpha_{i} \delta_{i}<q_{h} \delta_{h}\right\} .
$$

(ii) Conversely, let g_{h} be the defining polynomial, monic in y, of a curve with one place at infinity of the δ-sequence $\left\{\delta_{0} / q_{h}, \delta_{1} / q_{h}, \ldots, \delta_{h-1} / q_{h}\right\}$, and $g_{0}, g_{1}, \ldots, g_{h-1}$ be the approximate roots of g_{h}. For any non-zero complex number $a_{\bar{\alpha}_{0} \bar{\alpha}_{1} \cdots \bar{\alpha}_{h-1}}$ corresponding to the sequence of h non-negative integers $\left(\bar{\alpha}_{0}, \bar{\alpha}_{1}, \ldots, \bar{\alpha}_{h-1}\right)$ satisfying

$$
\sum_{i=0}^{h-1} \bar{\alpha}_{i} \delta_{i}=q_{h} \delta_{h}, \quad \bar{\alpha}_{i}<q_{i}(0<i<h)
$$

and any complex numbers $c_{\alpha_{0} \alpha_{1} \cdots \alpha_{h}}$ corresponding to the sequences of $h+1$ nonnegative integers $\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{h}\right)$ satisfying

$$
\sum_{i=0}^{h} \alpha_{i} \delta_{i}<q_{h} \delta_{h}, \quad \alpha_{i}<q_{i}(0<i<h), \quad \alpha_{h}<q_{h}-1
$$

we consider

$$
f=g_{h}^{q_{h}}+a_{\bar{\alpha}_{0} \bar{\alpha}_{1} \cdots \bar{\alpha}_{h-1}} g_{0}^{\bar{\alpha}_{0}} g_{1}^{\bar{\alpha}_{1}} \cdots g_{h-1}^{\bar{\alpha}_{h-1}}+\sum_{\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{h}\right) \in \Lambda} c_{\alpha_{0} \alpha_{1} \cdots \alpha_{h}} g_{0}^{\alpha_{0}} g_{1}^{\alpha_{1}} \cdots g_{h}^{\alpha_{h}}
$$

where

$$
\Lambda=\left\{\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{h}\right) \in \mathbf{N}^{h+1} \mid \alpha_{i}<q_{i}(0<i<h), \alpha_{h}<q_{h}-1, \sum_{i=0}^{h} \alpha_{i} \delta_{i}<q_{h} \delta_{h}\right\} .
$$

Then, the curve defined by $f=0$ is a curve with one place at infinity of the δ-sequence $\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{h}\right\}$, and has the approximate roots $g_{0}, g_{1}, \ldots, g_{h}$.

Proof of Theorem 6. We shall prove (i). By the procedure described in the proof of Proposition 10 in [18], using the approximate roots $g_{0}, g_{1}, \ldots, g_{h}$ of f and the set of $h+1$ non-negative integers $\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{h}\right)$ with $\max \left\{\sum_{i=0}^{h} \alpha_{i} \delta_{i}\right\}=q_{h} \delta_{h}$, we can write f as follows:

$$
f=\sum_{\alpha_{i}<q_{i}(1 \leq i \leq h)} c_{\alpha_{0} \alpha_{1} \cdots \alpha_{h}} g_{0}^{\alpha_{0}} g_{1}^{\alpha_{1}} \cdots g_{h}^{\alpha_{h}}+g_{h}^{q_{h}}, \quad c_{\alpha_{0} \alpha_{1} \cdots \alpha_{h}} \in \mathbf{C} .
$$

Here, we suppose $f=g_{h}^{q_{h}}+g_{h}^{q_{h}-1}$. We have $\operatorname{deg}_{y} g_{h}^{q_{h}-1}=n_{h}\left(q_{h}-1\right)=\operatorname{deg}_{y} f-n_{h}=$ $n-n_{h}$. But this is a contradiction, since g_{h} is h-th approximate root of f. Thus we get $\alpha_{h}<q_{h}-1$. By Theorem 4(iii) and the uniqueness of $\left\{\alpha_{i}\right\}_{i=0, \ldots, h}$ (e.g., Lemma 7 in [18]), we have $\left\{\bar{\alpha}_{i}\right\}_{i=0, \ldots, h-1}$ with $\sum_{i=0}^{h-1} \bar{\alpha}_{i} \delta_{i}=q_{h} \delta_{h}$. As a result, (i) was proved.

We shall prove (ii).
CASE $h=1$. Set $\delta_{0}=q$ and $\delta_{1}=p$. We can write f as follows:

$$
f=y^{q}+a x^{p}+\sum_{q \alpha+p \beta<p q} c_{\alpha \beta} x^{\alpha} y^{\beta}, \quad a \in \mathbf{C}^{*}, \quad c_{\alpha \beta} \in \mathbf{C} .
$$

The curve defined by $f=0$ has one place at infinity of the δ-sequence $\{q, p\}$ by the consideration of Newton boundary.

CASE $h \geq 2$. Set $\delta_{i} / q_{h}=\tilde{\delta}_{i}(0 \leq i \leq h-1)$. We denote by C_{k} the curve defined by $g_{k}=0$ for each k with $0 \leq k \leq h$. Further, we shall denote by (\tilde{M}, \tilde{E}) the compactification of \mathbf{C}^{2} obtained by the minimal resolution of C_{h} at infinity. Let \tilde{C}_{k} be the proper transform of C_{k} on \tilde{M} and \tilde{E}_{i} be the irreducible components of \tilde{E}. (The way of numbering about indices is same as Section 2.) By Theorem 2, \tilde{C}_{k} has one place at infinity and intersects transversely $\tilde{E}_{j_{k}}(0 \leq k \leq h-1)$.

Let Q be the intersection point of \tilde{C}_{h} and $\tilde{E}_{i_{h-1}}$. Set $p_{h}=q_{h-1} \delta_{h-1}-\delta_{h} .\left(p_{h}>0\right.$ since Abhyankar-Moh's condition (4).) We have $\operatorname{gcd}\left(p_{h}, q_{h}\right)=1$ from $\operatorname{gcd}\left(q_{h}, \delta_{h}\right)=$ $d_{h+1}=1$ and get a unique pair of natural numbers $\left(a_{h}, b_{h}\right)$ with $p_{h} q_{h}-a_{h} q_{h}-b_{h} p_{h}=$ $1,0<a_{h}<p_{h}, 0<b_{h}<q_{h}$. We define $\left\{m_{i}\right\}_{i=1, \ldots, r},\left\{n_{j}\right\}_{j=1, \ldots, s}$ using the following expansion into continued fractions by $p_{h}, a_{h}, q_{h}, b_{h}$:

$$
\frac{p_{h}}{a_{h}}=m_{1}-\frac{1}{m_{2}-\frac{1}{m_{3}-\ddots-\frac{1}{m_{r}}}}, \quad \frac{q_{h}}{b_{h}}=n_{1}-\frac{1}{n_{2}-\frac{1}{n_{3}-\ddots-\frac{1}{n_{s}}}} .
$$

By Lemma 4, we can obtain the following branch L_{h} such that C_{h} intersects transversely $E_{j_{h}}$ using the successive blow-up from Q :

Let M be the surface thus obtained, E be the total transform of \tilde{E} on M. We denote by $E_{i}\left(\right.$ resp. $\left.\bar{C}_{k}\right)$ the proper transform of $\tilde{E}_{i}\left(\right.$ resp. $\left.\tilde{C}_{k}\right)$.

Set $d_{k}=\operatorname{gcd}\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{k-1}\right\}(1 \leq k \leq h+1)$ and $q_{k}=d_{k} / d_{k+1}(1 \leq k \leq h)$. By Theorem 3, g_{k} has the pole of order $\tilde{\delta}_{k}$ on $E_{i_{h-1}}$ for each $k(0 \leq k \leq h-1)$. Thus g_{k} has the pole of order $\tilde{\delta}_{k}$ on $E_{j_{h}}$ and of order $q_{h} \tilde{\delta}_{k}\left(=\delta_{k}\right)$ on $E_{i_{h}}$. On the other hand, g_{h} has the pole of order δ_{h} on $E_{i_{h}}$. In fact, we can write g_{h} on a neighborhood of Q as follows:

$$
g_{h}=\frac{v}{u^{q_{h-1} \tilde{\delta}_{h-1}}} \times(\text { non-const }) .
$$

Hence g_{h} has the pole of order $q_{h}\left(q_{h-1} \tilde{\delta}_{h-1}\right)-p_{h}$ on $E_{i_{h}}$. This value is equal to δ_{h} by the assumption of p_{h}.

Now, we consider the curve C defined by $f=0$. Set $\phi=f-g_{h}^{q_{h}}$ and $\Phi=\phi / g_{h}^{q_{h}}$. Since the both of $g_{h}^{q_{h}}$ and ϕ has the pole of order $q_{h} \delta_{h}$ on $E_{i_{h}}, \Phi$ is non-constant or constant $(\neq 0)$ on $E_{i_{h}}$.

Let $A($ resp. $B)$ be the closure of the connected component of $E-E_{i_{h}}$ which contains $E_{0}\left(\right.$ resp. $E_{j_{h}}$). Let $P_{g_{h}}$ be the pole divisor of g_{h} on M, and D be its restriction to A. Here, let F_{1} be the irreducible component of A intersecting $E_{i_{h}}$. Since g_{h} has the pole of order δ_{h} on $E_{i_{h}}$, we have $\left(D \cdot F_{1}\right)<0$. Also, since $\left(D \cdot E_{i}\right)=0$ for any E_{i} with $E_{i} \neq F_{1}$, using Proposition 2 in [6], the intersection matrix of A is negative definite. Thus it follows that A is exceptional set. Φ is holomorphic on A since $A \cap \bar{C}_{h}=\emptyset$. On the other hand,

$$
\begin{aligned}
\operatorname{deg}_{y} g_{0}^{\alpha_{0}} & g_{1}^{\alpha_{1}} \cdots g_{h}^{\alpha_{h}} \\
& =\sum_{i=0}^{h} \alpha_{i} n_{i}=\sum_{i=1}^{h} \alpha_{i} n_{i} \\
& =\alpha_{1}+\alpha_{2} q_{1}+\alpha_{3} q_{2} q_{1}+\cdots+\alpha_{h} q_{h-1} \cdots q_{1} \\
& <\left(q_{1}-1\right)+\left(q_{2}-1\right) q_{1}+\left(q_{3}-1\right) q_{2} q_{1}+\cdots+\left(q_{h}-1\right) q_{h-1} \cdots q_{1} \\
& =q_{h} q_{h-1} \cdots q_{1}-1 \\
& <q_{h} q_{h-1} \cdots q_{1}=q_{h} n_{h}=\operatorname{deg}_{y} g_{h}^{q_{h}} .
\end{aligned}
$$

Therefore, we get $\operatorname{deg}_{y} \phi<\operatorname{deg}_{y} g_{h}^{q_{h}}$. Hence, $\Phi=0$ on E_{0}. Further, $\Phi=0$ on A, since A is compact. As a result, it must be that Φ is non-constant on $E_{i_{h}}$.

Let P_{Φ} be the pole divisor of Φ on M. We denote by $B_{1}, B_{2}, \ldots, B_{s}$ the irreducible components of B in order from the component intersecting $E_{i_{h}}$. Since Φ has the pole on B_{1} and \bar{C}_{h}, the support of P_{Φ} is $B \cup \bar{C}_{h}$ and we can write $P_{\Phi}=$
$q_{h} \bar{C}_{h}+\sum_{i=1}^{s} \mu_{i} B_{i}\left(\mu_{i}>0\right) . \mathrm{By}$

$$
n_{s}-\frac{1}{n_{s-1}-\cdot{ }_{-\frac{1}{n_{1}}}^{b^{\prime}}}=\frac{q_{h}}{b^{\prime}}
$$

and Lemma 3, we get $\mu_{1} q_{h}=q_{h}$, where μ_{1} is the pole order of Φ on B_{1}. Hence, $\mu_{1}=1$. This implies that Φ is a rational function of degree 1 on $E_{i_{h}}$. Therefore, the curve defined by $\Phi=-1$ intersects transversely $E_{i_{h}}$ at only one point. Since the curve $\Phi=-1$ coincides with \bar{C}, we get

$$
\left(\bar{C} \cdot E_{i}\right)=\left\{\begin{array}{ll}
1 & \left(i=i_{h}\right) \\
0 & \left(i \neq i_{h}\right)
\end{array} .\right.
$$

As a result, C has one place at infinity.
We have $f=g_{h}^{q_{h}}$ on A, since $\Phi=0$ on A. Hence, f has the pole of the same order as $g_{h}^{q_{h}}$ on each irreducible component of A. In particular, f has the pole of or$\operatorname{der} q_{h} \tilde{\delta}_{k}=\delta_{k}$ on each $E_{i_{k}}(0 \leq k \leq h-1)$. Since Φ is non-constant on $E_{i_{h}}$, f has the pole of the same order as $g_{h}^{q_{h}}$ on $E_{i_{h}}$. Since the value of its pole order is $q_{h} \delta_{h}$, using Lemma 3, it follows that f has the pole of order δ_{h} on $E_{j_{h}}$. Consequently, $\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{h}\right\}$ is the δ-sequence of f.

Finally, we show that $g_{0}, g_{1}, \ldots, g_{h}$ are the approximate roots of f. By

$$
\begin{aligned}
\operatorname{deg}_{y} & g_{0}^{\alpha_{0}} g_{1}^{\alpha_{1}} \cdots g_{h}^{\alpha_{h}} \\
& =n_{0} \alpha_{0}+n_{1} \alpha_{1}+\cdots+n_{h} \alpha_{h} \\
& \leq n_{1}\left(q_{1}-1\right)+n_{2}\left(q_{2}-1\right)+\cdots+n_{h-1}\left(q_{h-1}-1\right)+n_{h}\left(q_{h}-2\right) \\
& =-n_{1}+n_{h} q_{h}-n_{h}<n-n_{h}
\end{aligned}
$$

g_{h} is h-th approximate root of f. Therefore, by Lemma $1, g_{0}, g_{1}, \ldots, g_{h}$ are the approximate roots of f.

The following theorem is the main theorem in this paper, and is obtained by using Theorem 6 inductively.

Theorem 7. Let $\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{h}\right\}(h \geq 1)$ be a sequence of natural numbers satisfying Abhyankar-Moh's condition (see Definition 5). Set $d_{k}=\operatorname{gcd}\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{k-1}\right\}$ $(1 \leq k \leq h+1)$ and $q_{k}=d_{k} / d_{k+1}(1 \leq k \leq h)$.
(1) We define $g_{k}(0 \leq k \leq h+1)$ as follows:

$$
\left\{\begin{aligned}
g_{0}= & x \\
g_{1}= & y+\sum_{j=0}^{\lfloor p / q\rfloor} c_{j} x^{j}, \quad c_{j} \in \mathbf{C}, p=\frac{\delta_{1}}{d_{2}}, q=\frac{\delta_{0}}{d_{2}} \\
g_{i+1}= & g_{i}^{q_{i}}+a_{\bar{\alpha}_{0} \bar{\alpha}_{1} \cdots \bar{\alpha}_{i-1}} g_{0}^{\bar{\alpha}_{0}} g_{1}^{\bar{\alpha}_{1}} \cdots g_{i-1}^{\bar{\alpha}_{i-1}} \\
& +\sum^{\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{i}\right) \in \Lambda_{i}} c_{\alpha_{0} \alpha_{1} \cdots \alpha_{i}} g_{0}^{\alpha_{0}} g_{1}^{\alpha_{1}} \cdots g_{i}^{\alpha_{i}} \\
& a_{\bar{\alpha}_{0} \bar{\alpha}_{1} \cdots \bar{\alpha}_{i-1}} \in \mathbf{C}^{*}, c_{\alpha_{0} \alpha_{1} \cdots \alpha_{i}} \in \mathbf{C} \quad(1 \leq i \leq h)
\end{aligned}\right.
$$

where $\left(\bar{\alpha}_{0}, \bar{\alpha}_{1}, \ldots, \bar{\alpha}_{i-1}\right)$ is the sequence of i non-negative integers satisfying

$$
\sum_{j=0}^{i-1} \bar{\alpha}_{j} \delta_{j}=q_{i} \delta_{i}, \bar{\alpha}_{j}<q_{j}(0<j<i)
$$

and

$$
\Lambda_{i}=\left\{\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{i}\right) \in \mathbf{N}^{i+1} \mid \alpha_{j}<q_{j}(0<j<i), \alpha_{i}<q_{i}-1, \sum_{j=0}^{i} \alpha_{j} \delta_{j}<q_{i} \delta_{i}\right\}
$$

Then, $g_{0}, g_{1}, \ldots, g_{h}$ are approximate roots of $f\left(=g_{h+1}\right)$, and f is the defining polynomial, monic in y, of a curve with one place at infinity of the δ-sequence $\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{h}\right\}$.
(2) The defining polynomial f, monic in y, of a curve with one place at infinity of the δ-sequence $\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{h}\right\}$ is obtained by the procedure of (1), and the values of parameters $\left\{a_{\bar{\alpha}_{0} \bar{\alpha}_{1} \cdots \bar{\alpha}_{i-1}}\right\}_{1 \leq i \leq h}$ and $\left\{c_{\alpha_{0} \alpha_{1} \cdots \alpha_{i}}\right\}_{0 \leq i \leq h}$ are uniquely determined for f.

The above theorem gives normal forms of defining polynomials of curves with one place at infinity and the method of construction of their defining polynomials.

Corollary 1. Let $\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{h}\right\}(h \geq 1)$ be a sequence of natural numbers satisfying Abhyankar-Moh's condition. The moduli space of the curve C with one place at infinity of the δ-sequence $\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{h}\right\}$ is isomorphic to

$$
\left(\mathbf{C}^{*}\right)^{h} \times \mathbf{C}^{b}
$$

where b is the total number of parameters $\left\{c_{\alpha_{0} \alpha_{1} \cdots \alpha_{i}}\right\}_{0 \leq i \leq h}$ appeared in the defining polynomial, monic in y, of C obtained in Theorem 7.

Proof. We consider the defining polynomial f, monic in y, of the curve C with one place at infinity of the δ-sequence $\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{h}\right\}$. We denote by a the number
of non-zero parameters in f and by b the number of others. By Theorem 7, the moduli space of C is $\left(\mathbf{C}^{*}\right)^{a} \times \mathbf{C}^{b} . f$ has $h+2$ polynomials $g_{0}, g_{1}, \ldots, g_{h+1}$. Here, both of g_{0} and g_{1} do not have non-zero parameter. Also, $g_{i+1}(1 \leq i \leq h)$ has exactly one non-zero parameter because the sequence of $i+1$ non-negative integers ($\alpha_{0}, \alpha_{1}, \ldots, \alpha_{i}$) with $\sum_{j=0}^{i} \alpha_{j} \tilde{\delta}_{j}=q_{i} \tilde{\delta}_{i}$ is determined uniquely. As a result, we get $a=h$.

By the above results, we can easily get an algorithm generating the defining polynomial and computing the moduli space from a δ-sequence. We will introduce them in the next section.

5. Algorithms

Using Theorem 7, the following algorithm generating the defining polynomial of the curve with one place at infinity from a δ-sequence is obtained.

```
Algorithm 1: generating polynomial
Input: \(\delta\)-sequence \(\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{h}\right\}\)
\(\delta\)-sequence \(\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{h}\right\}\)
\(D \leftarrow\left[\delta_{h}, \delta_{h-1}, \ldots, \delta_{0}\right]\)
\(d_{k} \leftarrow \operatorname{gcd}\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{k-1}\right\}(1 \leq k \leq h+1)\)
\(Q \leftarrow\left[q_{h}, \ldots, q_{1}\right]\) where \(q_{k}=d_{k} / d_{k+1}(1 \leq k \leq h)\)
\(D L \leftarrow \operatorname{cons}(D,[])\)
\(Q L \leftarrow \operatorname{cons}(Q,[])\)
\(m \leftarrow h+1\)
while \(m \neq 2\) do
    \(T \leftarrow \operatorname{reverse}(c d r(D))\)
    \(D \leftarrow[]\)
    while \(T \neq[\) ] do
        \(D \leftarrow \operatorname{cons}(\operatorname{car}(T) / \operatorname{car}(Q), D)\)
        \(T \leftarrow c d r(T)\)
    end
    \(D L \leftarrow \operatorname{cons}(D, D L)\)
    \(Q \leftarrow c d r(Q)\)
    \(Q L \leftarrow \operatorname{cons}(Q, Q L)\)
    \(m \leftarrow \operatorname{length}(D)\)
end
\(A L \leftarrow[x]\)
\(D \leftarrow \operatorname{car}(D L)\)
\(l \leftarrow\lfloor\operatorname{car}(D) / \operatorname{car}(\operatorname{cdr}(D))\rfloor\)
\(g_{1} \leftarrow y+\sum_{j=0}^{l} c_{j} x^{j}\)
```

Output: the defining polynomial $f(x, y)$ of the curve with one place at infinity of the

```
\(A L \leftarrow \operatorname{cons}\left(g_{1}, A L\right)\)
while \(D L \neq[\) ] do
    \(D \leftarrow \operatorname{car}(D L)\)
    \(Q \leftarrow \operatorname{car}(Q L)\)
    \(q_{0} \leftarrow\lfloor\operatorname{car}(Q) \times \operatorname{car}(D) / \operatorname{car}(\) reverse \((D))\rfloor+1\)
    \(L \leftarrow \operatorname{append}\left(Q,\left[q_{0}\right]\right)\)
    \(k \leftarrow \operatorname{length}(D)-1\), i.e., \(D=\left[\bar{\delta}_{k}, \ldots, \bar{\delta}_{0}\right], L=\left[q_{k}, \ldots, q_{0}\right]\).
    \(\left(\bar{\alpha}_{0}, \bar{\alpha}_{1}, \ldots, \bar{\alpha}_{k-1}\right) \leftarrow\) the sequence of non-negative integers with
        \(\sum_{i=0}^{k-1} \bar{\alpha}_{i} \bar{\delta}_{i}=\bar{\delta}_{k} q_{k}, \bar{\alpha}_{i}<q_{i}(0 \leq i \leq k-1), \bar{\delta}_{i} \in D\) and \(q_{i} \in L\)
    \(\left\{\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{k}\right)\right\} \leftarrow\) the set of sequences of non-negative integers with
        \(\sum_{i=0}^{k} \alpha_{i} \bar{\delta}_{i}<\bar{\delta}_{k} q_{k}, \alpha_{i}<q_{i}(0 \leq i<k), \alpha_{k}<q_{k}-1, \bar{\delta}_{i} \in D\) and \(q_{i} \in L\)
    \(g_{k+1} \leftarrow g_{k}^{q_{k}}+a_{\bar{\alpha}_{0}, \bar{\alpha}_{1}, \ldots, \bar{\alpha}_{k-1}} \prod_{i=0}^{k-1} g_{i}^{\bar{\alpha}_{i}}+\sum c_{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{k}} \prod_{i=0}^{k} g_{i}^{\alpha_{i}}\)
    \(A L \leftarrow \operatorname{cons}\left(g_{k+1}, A L\right)\)
    \(D L \leftarrow c d r(D L)\)
    \(Q L \leftarrow c d r(Q L)\)
end
return \(\operatorname{car}(A L)\)
```


Supplementation:

- $[\ldots]:=$ A list. (This is a data structure with ordered elements.)
- $\lfloor p\rfloor:=$ The maximal integer n such that $n \leq p$.
- $\operatorname{car}(L):=$ The first element of a given non-null list L.
- $\operatorname{cdr}(L):=$ The list obtained by removing the first element of a given non-null list L.
- $\operatorname{cons}(A, L):=$ The list obtained by adding an element A to the top of a given list L.
- $\operatorname{reverse}(L):=$ The reversed list of a given list L.
- $\operatorname{append}\left(L_{1}, L_{2}\right):=$ The list obtained by adding all elements in a list L_{2} according to the order as it is to the last element in a list L_{1}.
- length $(L):=$ The number of elements of a given list L.
- $a_{*, *, \ldots, *}$ is a parameter in \mathbf{C}^{*}.
- $c_{*, *, \ldots, *}$ is a parameter in \mathbf{C}.

The moduli space of f is obtained by counting the numbers of $\left\{a_{*, *, \ldots, *}\right\}$ and $\left\{c_{*, *, \ldots, *}\right\}$ in f which the above algorithm outputted. But we can compute the moduli space from a δ-sequence without generating the defining polynomial. The following algorithm directly compute the moduli space from a δ-sequence.

Algorithm 2: computation of moduli space
Input: δ-sequence $\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{h}\right\}$
Output: $[M, N]$ (This means the moduli space $\left(\mathbf{C}^{*}\right)^{M} \times \mathbf{C}^{N}$.)
$D \leftarrow\left[\delta_{h}, \delta_{h-1}, \ldots, \delta_{0}\right]$

```
\(d_{k} \leftarrow \operatorname{gcd}\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{k-1}\right\}(1 \leq k \leq h+1)\)
\(Q \leftarrow\left[q_{h}, \ldots, q_{1}\right]\) where \(q_{k}=d_{k} / d_{k+1}(1 \leq k \leq h)\)
\(Q \leftarrow \operatorname{cons}(1, Q)\)
\(M \leftarrow h\)
\(N \leftarrow 0\)
```

while true do
$k \leftarrow \operatorname{length}(D)-1$, i.e., $D=\left[\bar{\delta}_{k}, \ldots, \bar{\delta}_{0}\right]$
$D \leftarrow\left[\bar{\delta}_{k} / \operatorname{car}(Q), \bar{\delta}_{k-1} / \operatorname{car}(Q), \ldots, \bar{\delta}_{0} / \operatorname{car}(Q)\right]$
$Q \leftarrow c d r(Q)$
$q_{0} \leftarrow\lfloor\operatorname{car}(Q) \times \operatorname{car}(D) / \operatorname{car}(\operatorname{reverse}(D))\rfloor+1$
$L \leftarrow \operatorname{append}\left(Q,\left[q_{0}\right]\right)$, i.e., $L=\left[q_{k}, \ldots, q_{0}\right]$
$n \leftarrow$ the number of $\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{k}\right)$ with $\sum_{i=0}^{k} \alpha_{i} \bar{\delta}_{i}<\operatorname{car}(Q) \times \operatorname{car}(D)$,
$\alpha_{i}<q_{i}(0 \leq i \leq k-1), \alpha_{k}<q_{k}-1, \bar{\delta}_{i} \in D$ and $q_{i} \in L$
$N \leftarrow N+n$
if length $(D)=2$ then break
$D \leftarrow c d r(D)$
end
$N \leftarrow N+\lfloor p / q\rfloor+1$
return $[M, N]$

6. Polynomial curve

6.1. Abhyankar's question. In this section, we will introduce Abhyankar's question.

Definition 6 (planar semigroup). Let $\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{h}\right\}(h \geq 1)$ be a sequence of natural numbers satisfying Abhyankar-Moh's condition. A semigroup generated by $\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{h}\right\}$ is said to be a planar semigroup.

Definition 7 (polynomial curve). Let C be an algebraic curve defined by $f(x, y)=0$, where $f(x, y)$ is an irreducible polynomial in $\mathbf{C}[x, y]$. We call C a polynomial curve, if C has a parametrisation $x=x(t), y=y(t)$, where $x(t)$ and $y(t)$ are polynomials in $\mathbf{C}[t]$.

Abhyankar's Question. Let Ω be a planar semigroup. Is there a polynomial curve with δ-sequence generating Ω ?

This question is still open. Moh [10] showed that there is no polynomial curve with δ-sequence $\{6,8,3\}$. But there is a polynomial curve $(x, y)=\left(t^{3}, t^{8}\right)$ with δ-sequence $\{3,8\}$ which generates the same semigroup as above. SathayeStenerson [16] proved that the semigroup generated by $\{6,22,17\}$ has no other δ-sequence generating the same semigroup, and proposed the following conjecture for
this question.

Sathaye-Stenerson's Conjecture. There is no polynomial curve having the δ-sequence $\{6,22,17\}$.

By Algorithm 1, the defining polynomial of the curve with one place at infinity of the δ-sequence $\{6,22,17\}$ as follows:

$$
\begin{aligned}
f= & \left(g_{2}^{2}+a_{2,1} x^{2} g_{1}\right)+c_{5,0,0} x^{5}+c_{4,0,0} x^{4}+c_{3,0,0} x^{3}+c_{2,0,0} x^{2} \\
& +c_{1,1,0} x g_{1}+c_{1,0,0} x+c_{0,1,0} g_{1}+c_{0,0,0}
\end{aligned}
$$

where

$$
\begin{aligned}
g_{1}= & y+c_{3} x^{3}+c_{2} x^{2}+c_{1} x+c_{0}, \\
g_{2}= & \left(g_{1}^{3}+a_{11} x^{11}\right)+c_{10,0} x^{10}+c_{9,0} x^{9}+c_{8,0} x^{8}+\left(c_{7,1} g_{1}+c_{7,0}\right) x^{7} \\
& +\left(c_{6,1} g_{1}+c_{6,0}\right) x^{6}+\left(c_{5,1} g_{1}+c_{5,0}\right) x^{5}+\left(c_{4,1} g_{1}+c_{4,0}\right) x^{4} \\
& +\left(c_{3,1} g_{1}+c_{3,0}\right) x^{3}+\left(c_{2,1} g_{1}+c_{2,0}\right) x^{2}+\left(c_{1,1} g_{1}+c_{1,0}\right) x+c_{0,1} g_{1}+c_{0,0} .
\end{aligned}
$$

This result gives us a new approach to investigate the curve with one place at infinity of the δ-sequence $\{6,22,17\}$ using a computer algebra system.
6.2. Computation of moduli space. Suzuki gave an algorithm generating the list of δ-sequences of curves with one place at infinity, and implemented on a computer. From the list of δ-sequences obtained by Suzuki, we could get normal forms and moduli spaces of curves with one place at infinity of genus ≤ 100 by using the algorithm introduced in previous section. As a result, we could verify the result of Nakazawa-Oka [11].

The following is the list of moduli spaces of curves with one place at infinity for the cases genus ≤ 30.

Example 1. The case

$$
[7,[4,6,11],[2,15]]
$$

means that the moduli space of the curve with one place at infinity of genus 7 and the δ-sequence $\{4,6,11\}$ is isomorphic to $\left(\mathbf{C}^{*}\right)^{2} \times \mathbf{C}^{15}$.

$[1,[2,3],[1,5]]$,	$[5,[2,11],[1,17]]$,	$[7,[3,8],[1,17]]$,
$[2,[2,5],[1,8]]$,	$[5,[4,6,7],[2,11]]$,	$[7,[4,6,11],[2,15]]$,
$[3,[2,7],[1,11]]$,	$[6,[2,13],[1,20]]$,	$[7,[6,9,5],[2,12]]$,
$[3,[3,4],[1,9]]$,	$[6,[3,7],[1,15]]$,	$[7,[10,15,2],[2,9]]$,
$[3,[4,6,3],[2,7]]$,	$[6,[4,6,9],[2,13]]$,	$[7,[6,15,7],[2,13]]$,
$[4,[2,9],[1,14]]$,	$[6,[6,9,4],[2,10]]$,	$[7,[6,8,3],[2,10]]$,
$[4,[3,5],[1,11]]$,	$[4,[4,10,5],[2,11]]$,	

$[8,[2,17],[1,26]]$, [8, [4,10, 9], [2,15]], $[9,[2,19],[1,29]]$, [9, [3, 10], [1, 21]], $[9,[4,7],[1,19]]$, $[9,[6,9,7],[2,15]]$, $[9,[10,15,3],[2,11]]$, $[9,[4,10,11],[2,17]]$, $[9,[6,15,4],[2,12]]$, $[9,[4,14,7],[2,15]]$, $[9,[6,8,7],[2,13]]$, $[9,[6,10,3],[2,12]]$, $[9,[8,12,6,7],[3,11]]$, $[10,[2,21],[1,32]]$, $[10,[3,11],[1,23]]$, $[10,[5,6],[1,20]]$, $[10,[6,9,8],[2,17]]$, $[10,[8,12,5],[2,14]]$, $[10,[14,21,2],[2,11]]$, $[10,[4,10,13],[2,19]]$, $[10,[6,15,5],[2,13]]$, $[10,[4,14,9],[2,17]]$, $[10,[6,21,2],[2,13]]$, $[10,[6,8,9],[2,15]]$, $[10,[6,10,5],[2,13]]$, $[10,[8,12,6,9],[3,13]]$, $[10,[8,12,10,5],[3,11]]$, $[11,[2,23],[1,35]]$, [11, [10, 15, 4], [2,14]], $[11,[4,10,15],[2,21]]$, [11, $[4,14,11],[2,19]]$, [11, [6, 8, 11], [2,17]], $[11,[8,12,6,11],[3,15]]$, [12, $[2,25],[1,38]]$, $[12,[3,13],[1,27]]$, $[12,[4,9],[1,24]]$, $[12,[5,7],[1,23]]$, $[12,[6,9,10],[2,20]]$, $[12,[4,10,17],[2,23]]$, $[12,[6,15,7],[2,16]]$, $[12,[10,25,2],[2,12]]$, $[12,[4,14,13],[2,21]]$, $[12,[6,21,4],[2,15]]$, [12, [4, 18, 9], [2, 19]], $[12,[6,8,13],[2,19]]$, $[12,[9,12,4],[2,12]]$, [12, [6, 10, 9], [2,16]], $[12,[12,18,9,4],[3,10]]$, $[12,[8,12,10,9],[3,14]]$, $[12,[12,18,4,9],[3,12]]$, $[13,[2,27],[1,41]]$, $[13,[3,14],[1,29]]$, $[13,[6,9,11],[2,22]]$, [13, [8, 12, 7], [2, 19]], $[13,[14,21,3],[2,14]]$, $[13,[18,27,2],[2,13]]$, [13, [4, 10, 19], [2, 25]], $[13,[6,15,8],[2,18]]$, [13, $[4,14,15],[2,23]]$, $[13,[4,18,11],[2,21]]$, $[13,[6,27,2],[2,16]]$, $[13,[6,8,15],[2,21]]$, $[13,[6,10,11],[2,18]]$, $[13,[6,14,3],[2,16]]$, $[13,[8,12,10,11],[3,16]]$, $[13,[8,12,14,7],[3,14]]$, $[13,[12,18,4,11],[3,14]]$,
$[13,[18,27,6,2],[3,9]]$, $[14,[2,29],[1,44]]$, $[14,[5,8],[1,26]]$, $[14,[8,20,5],[2,15]]$, $[14,[4,14,17],[2,25]]$, $[14,[4,18,13],[2,23]]$, $[14,[6,8,17],[2,23]]$, $[14,[6,10,13],[2,20]]$, $[14,[8,10,5],[2,16]]$, $[14,[8,12,10,13],[3,18]]$, $[14,[8,20,10,5],[3,13]]$, $[15,[2,31],[1,47]]$, $[15,[3,16],[1,33]]$, $[15,[4,11],[1,29]]$, $[15,[6,7],[1,27]]$, $[15,[6,9,13],[2,25]]$, $[15,[10,15,6],[2,19]]$, $[15,[16,24,3],[2,15]]$, $[15,[6,15,10],[2,21]]$, $[15,[4,14,19],[2,27]]$, $[15,[6,21,7],[2,18]]$, $[15,[4,18,15],[2,25]]$, $[15,[6,27,4],[2,18]]$, $[15,[4,22,11],[2,23]]$, $[15,[6,8,19],[2,25]]$, $[15,[9,12,7],[2,16]]$, $[15,[12,16,3],[2,12]]$, $[15,[6,10,15],[2,22]]$, $[15,[6,14,7],[2,18]]$, $[15,[6,16,3],[2,18]]$, $[15,[12,18,9,7],[3,14]]$, $[15,[16,24,12,3],[3,10]]$, $[15,[8,12,10,15],[3,20]]$, $[15,[12,18,15,4],[3,11]]$, $[15,[8,12,14,11],[3,17]]$, $[15,[18,27,6,4],[3,11]]$, $[15,[16,24,6,3],[3,11]]$, $[15,[12,16,6,3],[3,11]]$, $[15,[16,24,12,6,3],[4,9]]$, $[16,[2,33],[1,50]]$, $[16,[3,17],[1,35]]$, $[16,[5,9],[1,29]]$, $[16,[6,9,14],[2,27]]$, $[16,[8,12,9],[2,23]]$, $[16,[12,18,5],[2,19]]$, $[16,[14,21,4],[2,17]]$, $[16,[22,33,2],[2,15]]$, $[16,[6,15,11],[2,23]]$, $[16,[10,25,4],[2,15]]$, $[16,[4,14,21],[2,29]]$, $[16,[6,21,8],[2,19]]$, $[16,[4,18,17],[2,27]]$, $[16,[4,22,13],[2,25]]$, $[16,[6,33,2],[2,19]]$, $[16,[6,8,21],[2,27]]$, $[16,[9,12,8],[2,17]]$, $[16,[6,10,17],[2,24]]$, $[16,[9,15,5],[2,15]]$, $[16,[6,14,9],[2,19]]$, $[16,[8,10,9],[2,18]]$, $[16,[12,18,9,8],[3,15]]$, $[16,[8,12,10,17],[3,22]]$, $[16,[12,18,15,5],[3,12]]$, $[16,[8,12,14,13],[3,19]]$, $[16,[8,12,18,9],[3,17]]$, $[16,[12,18,10,5],[3,13]]$, $[16,[12,18,8,9],[3,14]]$,
$[16,[8,20,10,9],[3,15]]$, [17, [2,35], [1,53]],
$[17,[10,15,7],[2,22]]$,
[17, [8, 20, 7], [2,19]], $[17,[14,35,2],[2,14]]$, $[17,[4,14,23],[2,31]]$, $[17,[10,35,2],[2,15]]$, $[17,[4,18,19],[2,29]]$, $[17,[4,22,15],[2,27]]$, $[17,[6,8,23],[2,29]]$, [17, [6, 10, 19], [2, 26]], $[17,[8,12,10,19],[3,24]]$, $[17,[8,12,14,15],[3,21]]$, $[17,[8,20,14,7],[3,15]]$, $[18,[2,37],[1,56]]$, $[18,[3,19],[1,39]]$, $[18,[4,13],[1,34]]$, $[18,[6,9,16],[2,30]]$, $[18,[6,15,13],[2,26]]$, $[18,[4,14,25],[2,33]]$, $[18,[6,21,10],[2,22]]$, $[18,[4,18,21],[2,31]]$, $[18,[4,22,17],[2,29]]$, $[18,[6,33,4],[2,21]]$, $[18,[4,26,13],[2,27]]$, $[18,[9,12,10],[2,20]]$, $[18,[6,10,21],[2,28]]$, $[18,[6,14,13],[2,22]]$, $[18,[6,16,9],[2,21]]$, $[18,[8,10,13],[2,21]]$, $[18,[12,18,9,10],[3,18]]$, $[18,[8,12,14,17],[3,23]]$, $[18,[12,18,21,4],[3,13]]$, $[18,[8,12,18,13],[3,20]]$, $[18,[12,18,10,9],[3,15]]$, $[18,[12,18,8,13],[3,17]]$, $[18,[16,24,6,9],[3,14]]$, $[18,[8,20,10,13],[3,18]]$, $[18,[12,16,6,9],[3,14]]$, $[18,[16,24,12,6,9],[4,12]]$, [19, $[2,39],[1,59]]$, [19, [3,20], [1, 41]],
$[19,[6,9,17],[2,32]]$, [19, [8, 12, 11], [2, 28]], $[19,[10,15,8],[2,25]]$, $[19,[14,21,5],[2,21]]$, $[19,[20,30,3],[2,18]]$, $[19,[26,39,2],[2,17]]$, [19, [6, 15, 14], [2, 28]], $[19,[4,14,27],[2,35]]$, $[19,[6,21,11],[2,24]]$, $[19,[4,18,23],[2,33]]$, $[19,[6,27,8],[2,21]]$, $[19,[4,22,19],[2,31]]$, $[19,[4,26,15],[2,29]]$, [19, [6, 39,2], [2,22]], $[19,[9,12,11],[2,22]]$, $[19,[15,20,3],[2,13]]$, $[19,[6,10,23],[2,30]]$, $[19,[9,15,8],[2,18]]$, $[19,[12,20,3],[2,14]]$, $[19,[6,14,15],[2,24]]$, $[19,[6,16,11],[2,22]]$, [19, [6, 20, 3], [2,22]], $[19,[8,10,15],[2,23]]$, $[19,[12,18,9,11],[3,20]]$, $[19,[20,30,15,3],[3,11]]$,
$[19,[12,18,15,8],[3,16]]$, $[19,[8,12,14,19],[3,25]]$, $[19,[8,12,18,15],[3,22]]$, $[19,[8,12,22,11],[3,20]]$, $[19,[18,27,6,8],[3,14]]$, [19, [12,18,10,11], [3,17]], $[19,[12,18,8,15],[3,19]]$, $[19,[16,24,6,11],[3,15]]$, $[19,[20,30,6,3],[3,12]]$, $[19,[8,20,10,15],[3,20]]$, $[19,[8,20,14,11],[3,18]]$, $[19,[12,16,6,11],[3,15]]$, $[19,[12,20,6,3],[3,13]]$, [19, [16,24,12,6,11], [4,13]], $[20,[2,41],[1,62]]$, $[20,[5,11],[1,35]]$, $[20,[8,20,9],[2,23]]$, $[20,[10,25,6],[2,19]]$, $[20,[4,18,25],[2,35]]$, $[20,[4,22,21],[2,33]]$, $[20,[4,26,17],[2,31]]$, $[20,[6,10,25],[2,32]]$, $[20,[6,14,17],[2,26]]$, $[20,[8,10,17],[2,25]]$, $[20,[8,12,14,21],[3,27]]$, $[20,[8,12,18,17],[3,24]]$, $[20,[12,18,8,17],[3,21]]$, $[20,[8,20,10,17],[3,22]]$, $[20,[8,20,18,9],[3,18]]$, [21, [2, 43], [1, 65]], $[21,[3,22],[1,45]]$, [21, $[4,15],[1,39]]$, $[21,[7,8],[1,35]]$, [21, $[10,15,9],[2,28]]$, $[21,[12,18,7],[2,25]]$, $[21,[18,27,4],[2,21]]$, [21, [22,33,3], [2, 19]], $[21,[6,15,16],[2,31]]$, [21, $[6,21,13],[2,27]]$, $[21,[8,28,7],[2,20]]$, $[21,[10,35,4],[2,18]]$, [21, [4, 18, 27], [2, 37]], $[21,[6,27,10],[2,24]]$, [21, [4, 22,23], [2,35]], $[21,[4,26,19],[2,33]]$, $[21,[6,39,4],[2,24]]$, $[21,[4,30,15],[2,31]]$, $[21,[9,12,13],[2,25]]$, [21, $[12,16,7],[2,18]]$, $[21,[15,20,4],[2,15]]$, $[21,[6,10,27],[2,34]]$, [21, $[9,15,10],[2,21]]$, $[21,[6,14,19],[2,28]]$, $[21,[6,16,15],[2,25]]$, $[21,[6,22,3],[2,24]]$, $[21,[8,10,19],[2,27]]$, $[21,[12,15,4],[2,16]]$, $[21,[8,14,7],[2,21]]$, $[21,[12,18,9,13],[3,23]]$, $[21,[16,24,12,7],[3,16]]$, $[21,[20,30,15,4],[3,13]]$, $[21,[12,18,15,10],[3,19]]$, $[21,[8,12,14,23],[3,29]]$, $[21,[12,18,21,7],[3,16]]$, $[21,[8,12,18,19],[3,26]]$, $[21,[12,18,27,4],[3,15]]$, $[21,[8,12,22,15],[3,23]]$,
$[21,[18,27,6,10],[3,17]]$, $[21,[12,18,10,15],[3,20]]$, $[21,[12,18,8,19],[3,23]]$, $[21,[18,27,12,4],[3,12]]$, $[21,[12,18,14,7],[3,17]]$, $[21,[16,24,6,15],[3,18]]$, $[21,[20,30,4,15],[3,17]]$, $[21,[8,20,10,19],[3,24]]$, $[21,[12,30,15,4],[3,13]]$, $[21,[8,20,14,15],[3,21]]$, $[21,[8,28,14,7],[3,17]]$, $[21,[12,16,14,7],[3,15]]$, $[21,[16,24,12,14,7],[4,13]]$, $[22,[2,45],[1,68]]$, $[22,[3,23],[1,47]]$, $[22,[5,12],[1,38]]$, [22, [8, 12, 13], [2, 32]], $[22,[14,21,6],[2,25]]$, $[22,[16,24,5],[2,23]]$, $[22,[30,45,2],[2,19]]$, $[22,[6,15,17],[2,33]]$, [22, [10, 25, 7], [2, 22]], $[22,[12,30,5],[2,19]]$, $[22,[18,45,2],[2,16]]$, $[22,[6,21,14],[2,29]]$, $[22,[4,18,29],[2,39]]$, $[22,[6,27,11],[2,25]]$, $[22,[10,45,2],[2,18]]$, $[22,[4,22,25],[2,37]]$, $[22,[6,33,8],[2,24]]$, $[22,[4,26,21],[2,35]]$, $[22,[4,30,17],[2,33]]$, $[22,[6,45,2],[2,25]]$, [22, [9, 12, 14], [2, 27]], $[22,[6,10,29],[2,36]]$, $[22,[9,15,11],[2,22]]$, [22, [12, 20,5], [2,16]], $[22,[6,14,21],[2,30]]$, [22, $[6,16,17],[2,27]]$, $[22,[6,20,9],[2,24]]$, $[22,[8,10,21],[2,29]]$, $[22,[12,15,5],[2,17]]$, $[22,[10,12,5],[2,21]]$, [22, [12,18,9,14], [3,25]], $[22,[12,18,15,11],[3,20]]$, $[22,[16,24,20,5],[3,13]]$, $[22,[8,12,14,25],[3,31]]$, $[22,[12,18,21,8],[3,17]]$, $[22,[8,12,18,21],[3,28]]$, $[22,[8,12,22,17],[3,25]]$, $[22,[18,27,6,11],[3,18]]$, $[22,[30,45,10,2],[3,11]]$, $[22,[12,18,10,17],[3,22]]$, $[22,[12,18,8,21],[3,25]]$, $[22,[12,18,14,9],[3,18]]$, $[22,[16,24,6,17],[3,20]]$, $[22,[16,24,10,5],[3,15]]$, $[22,[20,30,6,9],[3,14]]$, $[22,[20,30,4,17],[3,19]]$, $[22,[30,45,6,2],[3,11]]$, $[22,[12,30,15,5],[3,14]]$, $[22,[8,20,14,17],[3,23]]$, $[22,[8,20,18,13],[3,21]]$, $[22,[12,30,10,5],[3,14]]$, $[22,[18,45,6,2],[3,12]]$, $[22,[12,20,10,5],[3,14]]$, $[22,[12,20,6,9],[3,15]]$,
$[22,[16,24,20,10,5],[4,12]]$, [23, [2, 47], [1, 71]],
$[23,[8,20,11],[2,28]]$, [23, [14, 35, 4], [2, 18]], $[23,[4,18,31],[2,41]]$, $[23,[4,22,27],[2,39]]$, $[23,[4,26,23],[2,37]]$, $[23,[4,30,19],[2,35]]$, $[23,[6,14,23],[2,32]]$, $[23,[6,16,19],[2,29]]$, $[23,[8,10,23],[2,31]]$, [23, [8,14,11], [2,23]], $[23,[8,12,14,27],[3,33]]$, $[23,[8,12,18,23],[3,30]]$, $[23,[8,12,22,19],[3,27]]$, $[23,[12,18,10,19],[3,24]]$, $[23,[12,18,8,23],[3,27]]$, $[23,[16,24,6,19],[3,22]]$, $[23,[20,30,4,19],[3,21]]$, $[23,[8,20,14,19],[3,25]]$, $[23,[8,20,22,11],[3,21]]$, $[23,[8,28,14,11],[3,19]]$, $[24,[2,49],[1,74]]$, [24, [3,25], [1,51]], [24, [4, 17], [1, 44]], $[24,[5,13],[1,41]]$,
$[24,[7,9],[1,39]]$, $[24,[6,15,19],[2,36]]$, $[24,[10,25,8],[2,24]]$, $[24,[6,21,16],[2,32]]$, $[24,[8,28,9],[2,24]]$, $[24,[14,49,2],[2,17]]$, $[24,[4,18,33],[2,43]]$, [24, [6,27,13], [2,28]], $[24,[4,22,29],[2,41]]$, $[24,[6,33,10],[2,26]]$, $[24,[4,26,25],[2,39]]$, $[24,[4,30,21],[2,37]]$, $[24,[6,45,4],[2,27]]$, $[24,[4,34,17],[2,35]]$, $[24,[9,12,16],[2,30]]$, $[24,[12,16,9],[2,22]]$, $[24,[9,15,13],[2,25]]$, $[24,[15,25,3],[2,15]]$, $[24,[6,14,25],[2,34]]$, $[24,[9,21,7],[2,20]]$, $[24,[6,16,21],[2,31]]$, $[24,[6,20,13],[2,27]]$, [24, [6, 22, 9], [2,26]], [24, [8,10,25], [2,33]], $[24,[12,18,9,16],[3,28]]$, $[24,[16,24,12,9],[3,20]]$, $[24,[12,18,15,13],[3,23]]$, $[24,[12,18,21,10],[3,19]]$, $[24,[8,12,18,25],[3,32]]$, $[24,[8,12,22,21],[3,29]]$, $[24,[12,18,33,4],[3,17]]$, $[24,[18,27,6,13],[3,21]]$, $[24,[12,18,10,21],[3,26]]$, $[24,[12,18,14,13],[3,20]]$, $[24,[12,18,16,9],[3,20]]$, $[24,[16,24,6,21],[3,24]]$, $[24,[20,30,6,13],[3,17]]$, $[24,[30,45,6,4],[3,13]]$, $[24,[8,20,14,21],[3,27]]$, $[24,[12,30,21,4],[3,15]]$, [24, [8, 20, 18, 17], [3,24]],
$[24,[18,45,6,4],[3,14]]$, $[24,[8,28,18,9],[3,20]]$, $[24,[12,16,14,13],[3,18]]$, $[24,[12,16,18,9],[3,18]]$, $[24,[16,24,12,18,9],[4,16]]$ $[24,[16,24,12,14,13],[4,16]],[26,[4,34,21],[2,39]]$, $[25,[2,51],[1,77]]$, $[25,[3,26],[1,53]]$, $[25,[6,11],[1,41]]$, $[25,[8,12,15],[2,37]]$, $[25,[10,15,11],[2,33]]$, $[25,[18,27,5],[2,25]]$, $[25,[26,39,3],[2,22]]$, $[25,[34,51,2],[2,21]]$, $[25,[6,15,20],[2,38]]$, $[25,[6,21,17],[2,34]]$, $[25,[10,35,6],[2,21]]$, $[25,[4,18,35],[2,45]]$, $[25,[6,27,14],[2,30]]$, $[25,[4,22,31],[2,43]]$, $[25,[6,33,11],[2,27]]$, $[25,[4,26,27],[2,41]]$, $[25,[6,39,8],[2,27]]$, $[25,[4,30,23],[2,39]]$, $[25,[4,34,19],[2,37]]$, $[25,[6,51,2],[2,28]]$, $[25,[9,12,17],[2,32]]$, $[25,[15,20,6],[2,18]]$, [25, [9,15,14], [2,27]], $[25,[6,14,27],[2,36]]$, $[25,[6,16,23],[2,33]]$, $[25,[6,20,15],[2,28]]$, $[25,[6,22,11],[2,27]]$, $[25,[6,26,3],[2,28]]$, $[25,[8,10,27],[2,35]]$, $[25,[12,15,8],[2,20]]$, $[25,[8,14,15],[2,26]]$, $[25,[10,12,11],[2,24]]$, $[25,[12,18,9,17],[3,30]]$, $[25,[20,30,15,6],[3,16]]$, $[25,[12,18,15,14],[3,25]]$, $[25,[12,18,21,11],[3,21]]$, $[25,[8,12,18,27],[3,34]]$, $[25,[12,18,27,8],[3,18]]$, $[25,[8,12,22,23],[3,31]]$, $[25,[18,27,6,14],[3,23]]$, $[25,[12,18,10,23],[3,28]]$, $[25,[18,27,15,5],[3,14]]$, $[25,[18,27,12,8],[3,15]]$, $[25,[12,18,14,15],[3,22]]$, $[25,[16,24,6,23],[3,26]]$, $[25,[20,30,6,15],[3,18]]$, $[25,[12,30,15,8],[3,17]]$, $[25,[8,20,14,23],[3,29]]$, $[25,[8,20,18,19],[3,26]]$, $[25,[8,20,22,15],[3,24]]$, $[25,[12,30,10,11],[3,17]]$, $[25,[12,30,8,15],[3,19]]$, $[25,[8,28,14,15],[3,22]]$, $[25,[12,16,14,15],[3,20]]$, $[25,[12,20,10,11],[3,17]]$, $[25,[16,24,12,14,15],[4,18]]$, $[26,[2,53],[1,80]]$, $[26,[5,14],[1,44]]$, $[26,[22,33,4],[2,24]]$, $[26,[8,20,13],[2,32]]$, $[26,[10,25,9],[2,27]]$,
, $[26,[4,30,25],[2,41]]$
$[26,[14,35,5],[2,21]]$, $[26,[10,45,4],[2,21]]$, $[26,[4,22,33],[2,45]]$, $[26,[4,26,29],[2,43]]$, $[26,[6,14,29],[2,38]]$, $[26,[6,16,25],[2,35]]$, $[26,[8,10,29],[2,37]]$, $[26,[10,14,5],[2,24]]$, $[26,[20,30,25,4],[3,13]]$, $[26,[8,12,18,29],[3,36]]$, $[26,[8,12,22,25],[3,33]]$, $[26,[30,45,10,4],[3,14]]$, $[26,[12,18,10,25],[3,30]]$, $[26,[16,24,10,13],[3,19]]$, $[26,[8,20,14,25],[3,31]]$, $[26,[8,20,18,21],[3,28]]$, $[26,[8,20,26,13],[3,24]]$, $[26,[8,28,18,13],[3,22]]$, $[26,[16,24,20,10,13],[4,16]]$, [27, [2,55], [1, 83]], $[27,[3,28],[1,57]]$, [27, [4,19], [1,49]], $[27,[7,10],[1,43]]$, $[27,[10,15,12],[2,36]]$, $[27,[28,42,3],[2,23]]$, $[27,[6,15,22],[2,41]]$, $[27,[12,30,7],[2,24]]$, $[27,[22,55,2],[2,18]]$, $[27,[6,21,19],[2,37]]$, $[27,[8,28,11],[2,28]]$, $[27,[10,35,7],[2,23]]$, $[27,[6,27,16],[2,33]]$, $[27,[4,22,35],[2,47]]$, $[27,[6,33,13],[2,30]]$, $[27,[10,55,2],[2,21]]$, $[27,[4,26,31],[2,45]]$, $[27,[6,39,10],[2,29]]$, $[27,[4,30,27],[2,43]]$, $[27,[4,34,23],[2,41]]$, $[27,[6,51,4],[2,30]]$, $[27,[4,38,19],[2,39]]$, [27, [9,12,19], [2,35]], $[27,[12,16,11],[2,26]]$, $[27,[15,20,7],[2,20]]$, $[27,[21,28,3],[2,15]]$, $[27,[9,15,16],[2,30]]$, $[27,[6,14,31],[2,40]]$, $[27,[9,21,10],[2,23]]$, $[27,[12,28,3],[2,18]]$, $[27,[6,16,27],[2,37]]$, $[27,[6,20,19],[2,31]]$, $[27,[6,22,15],[2,30]]$, $[27,[6,28,3],[2,30]]$, $[27,[8,10,31],[2,39]]$, $[27,[12,15,10],[2,22]]$, $[27,[8,14,19],[2,29]]$, [27, [10, 12, 15], [2,26]], $[27,[10,14,7],[2,25]]$, $[27,[16,24,12,11],[3,24]]$, $[27,[20,30,15,7],[3,18]]$, $[27,[28,42,21,3],[3,13]]$, $[27,[12,18,15,16],[3,28]]$, $[27,[12,18,21,13],[3,24]]$, $[27,[8,12,18,31],[3,38]]$, $[27,[12,18,27,10],[3,21]]$,
$[27,[8,12,22,27],[3,35]]$, $[27,[18,27,6,16],[3,26]]$, $[27,[12,18,10,27],[3,32]]$, $[27,[18,27,12,10],[3,18]]$, $[27,[12,18,14,19],[3,25]]$, $[27,[12,18,16,15],[3,23]]$, $[27,[16,24,10,15],[3,20]]$, $[27,[20,30,6,19],[3,21]]$, $[27,[28,42,6,3],[3,15]]$, $[27,[12,30,15,10],[3,19]]$, $[27,[8,20,14,27],[3,33]]$, $[27,[12,30,21,7],[3,17]]$, $[27,[8,20,18,23],[3,30]]$, $[27,[12,30,27,4],[3,17]]$, $[27,[8,20,22,19],[3,27]]$, $[27,[12,30,10,15],[3,19]]$, $[27,[12,30,14,7],[3,18]]$, $[27,[12,30,8,19],[3,22]]$, $[27,[8,28,14,19],[3,25]]$, $[27,[8,28,22,11],[3,22]]$, ,$[27,[12,16,14,19],[3,23]]$, [27, [12, 16, 22,11], [3,20]], $[27,[12,16,18,15],[3,21]]$, [27, [12, 20, 10, 15], [3,19]], $[27,[12,28,6,3],[3,17]]$, $[27,[16,24,12,18,15],[4,19]]$, $[27,[16,24,12,14,19],[4,21]]$, $[27,[16,24,12,22,11],[4,18]]$, $[27,[16,24,20,10,15],[4,17]]$, $[28,[2,57],[1,86]]$, $[28,[3,29],[1,59]]$, $[28,[8,9],[1,44]]$, $[28,[8,12,17],[2,41]]$, $[28,[14,21,8],[2,32]]$, $[28,[38,57,2],[2,23]]$, $[28,[6,15,23],[2,43]]$, $[28,[6,21,20],[2,39]]$, $[28,[6,27,17],[2,35]]$, $[28,[8,36,9],[2,26]]$, $[28,[4,22,37],[2,49]]$, $[28,[6,33,14],[2,31]]$, $[28,[4,26,33],[2,47]]$, $[28,[4,30,29],[2,45]]$, [28, [6, 45, 8], [2, 30]] $[28,[4,34,25],[2,43]]$, $[28,[4,38,21],[2,41]]$, [28, [6,57,2], [2,31]], $[28,[9,12,20],[2,37]]$, $[28,[9,15,17],[2,32]]$, $[28,[12,20,9],[2,22]]$, $[28,[6,14,33],[2,42]]$, $[28,[6,16,29],[2,39]]$, $[28,[9,24,8],[2,22]]$, $[28,[6,20,21],[2,33]]$, $[28,[6,22,17],[2,31]]$, $[28,[6,26,9],[2,30]]$, $[28,[8,10,33],[2,41]]$, $[28,[8,14,21],[2,31]]$, $[28,[8,18,9],[2,27]]$, $[28,[10,12,17],[2,28]]$, $[28,[12,18,15,17],[3,30]]$, $[28,[16,24,20,9],[3,20]]$, $[28,[12,18,21,14],[3,25]]$, $[28,[8,12,18,33],[3,40]]$, $[28,[8,12,22,29],[3,37]]$, $[28,[12,18,33,8],[3,20]]$, [28, [18, 27, 6, 17], [3, 28]],
$[28,[24,36,8,9],[3,19]]$, $[28,[12,18,10,29],[3,34]]$, $[28,[12,18,14,21],[3,27]]$, $[28,[12,18,16,17],[3,25]]$, $[28,[12,18,20,9],[3,22]]$, $[28,[24,36,9,8],[3,15]]$, $[28,[16,24,10,17],[3,22]]$, $[28,[20,30,6,21],[3,23]]$, $[28,[30,45,6,8],[3,16]]$, $[28,[12,30,21,8],[3,18]]$, $[28,[8,20,18,25],[3,32]]$, $[28,[8,20,22,21],[3,29]]$, $[28,[8,20,26,17],[3,27]]$, $[28,[12,30,10,17],[3,21]]$, $[28,[18,45,6,8],[3,17]]$, $[28,[12,30,8,21],[3,24]]$, $[28,[8,28,14,21],[3,27]]$, $[28,[8,28,18,17],[3,25]]$, $[28,[8,36,18,9],[3,22]]$, $[28,[18,24,9,8],[3,15]]$, $[28,[12,16,14,21],[3,25]]$, $[28,[12,16,18,17],[3,23]]$, $[28,[18,24,8,9],[3,15]]$, [28, [12,20,10,17], [3,21]], $[28,[12,20,18,9],[3,18]]$, $[28,[24,36,18,9,8],[4,13]]$, $[28,[16,24,12,18,17],[4,21]]$, $[28,[16,24,12,14,21],[4,23]]$, $[28,[24,36,18,8,9],[4,13]]$, $[28,[16,24,20,10,17],[4,19]]$ $[28,[16,24,20,18,9],[4,16]]$, [28, [24, 36, 8, 18, 9], [4,15]], $[29,[2,59],[1,89]]$,
[29, [10, 15, 13], [2, 39]], $[29,[16,24,7],[2,32]]$, $[29,[8,20,15],[2,37]]$, $[29,[14,35,6],[2,24]]$, $[29,[10,35,8],[2,25]]$, $[29,[4,22,39],[2,51]]$, $[29,[4,26,35],[2,49]]$, $[29,[4,30,31],[2,47]]$, [29, [4, 34, 27], [2,45]], $[29,[4,38,23],[2,43]]$, $[29,[15,20,8],[2,23]]$, $[29,[6,14,35],[2,44]]$, $[29,[6,16,31],[2,41]]$,
$[29,[6,20,23],[2,35]]$,
$[29,[8,10,35],[2,43]]$, $[29,[8,14,23],[2,33]]$, $[29,[20,30,15,8],[3,21]]$, $[29,[16,24,28,7],[3,17]]$, $[29,[8,12,18,35],[3,42]]$, $[29,[8,12,22,31],[3,39]]$, $[29,[12,18,14,23],[3,29]]$,
$[29,[16,24,14,7],[3,20]]$, $[29,[20,30,6,23],[3,25]]$, $[29,[20,30,8,15],[3,20]]$, $[29,[8,20,18,27],[3,34]]$, $[29,[8,20,22,23],[3,31]]$, $[29,[8,20,30,15],[3,27]]$, $[29,[12,30,8,23],[3,26]]$, $[29,[8,28,14,23],[3,29]]$, $[29,[8,28,22,15],[3,25]]$, $[29,[12,16,14,23],[3,27]]$, $[29,[16,24,12,14,23],[4,25]]$ $[29,[16,24,28,14,7],[4,15]]$,
$[30,[2,61],[1,92]]$, $[30,[3,31],[1,63]]$, $[30,[4,21],[1,54]]$, $[30,[5,16],[1,50]]$, $[30,[6,13],[1,48]]$, $[30,[7,11],[1,47]]$, [30, [6, 15, 25], [2, 46]], $[30,[10,25,11],[2,32]]$, $[30,[16,40,5],[2,22]]$, [30, [18, 45, 4], [2, 21]], $[30,[6,21,22],[2,42]]$, [30, $[8,28,13],[2,32]]$, $[30,[14,49,4],[2,21]]$, $[30,[6,27,19],[2,38]]$, $[30,[10,45,6],[2,24]]$, $[30,[4,22,41],[2,53]]$, $[30,[6,33,16],[2,34]]$, $[30,[4,26,37],[2,51]]$, $[30,[6,39,13],[2,32]]$, [30, [4, 30, 33], [2, 49]], $[30,[6,45,10],[2,32]]$, $[30,[4,34,29],[2,47]]$, $[30,[4,38,25],[2,45]]$, $[30,[6,57,4],[2,33]]$, $[30,[4,42,21],[2,43]]$, $[30,[9,12,22],[2,40]]$, $[30,[12,16,13],[2,30]]$, $[30,[21,28,4],[2,17]]$, $[30,[9,15,19],[2,35]]$, $[30,[15,25,6],[2,19]]$, $[30,[6,14,37],[2,46]]$, $[30,[9,21,13],[2,26]]$, $[30,[6,16,33],[2,43]]$, $[30,[6,20,25],[2,37]]$, $[30,[6,22,21],[2,34]]$, $[30,[6,26,13],[2,32]]$, $[30,[6,28,9],[2,32]]$, [30, [8, 10, 37], [2, 45]], $[30,[12,15,13],[2,25]]$, $[30,[16,20,5],[2,18]]$, $[30,[8,14,25],[2,35]]$, [30, [12,21,4], [2,21]],
$[30,[8,18,13],[2,29]]$, $[30,[10,12,21],[2,31]]$, $[30,[10,16,5],[2,27]]$, $[30,[16,24,12,13],[3,28]]$, $[30,[28,42,21,4],[3,15]]$, $[30,[12,18,15,19],[3,33]]$, $[30,[20,30,25,6],[3,16]]$, $[30,[12,18,21,16],[3,28]]$, $[30,[12,18,27,13],[3,24]]$, $[30,[8,12,22,33],[3,41]]$, $[30,[12,18,33,10],[3,22]]$, $[30,[30,45,10,6],[3,17]]$, $[30,[18,27,15,10],[3,19]]$, $[30,[18,27,12,13],[3,21]]$, $[30,[12,18,14,25],[3,31]]$, $[30,[12,18,16,21],[3,28]]$, $[30,[12,18,22,9],[3,24]]$, $[30,[16,24,10,21],[3,25]]$, $[30,[20,30,6,25],[3,27]]$, $[30,[30,45,6,10],[3,18]]$, $[30,[28,42,6,9],[3,17]]$, $[30,[28,42,4,21],[3,22]]$, $[30,[12,30,15,13],[3,22]]$, $[30,[16,40,20,5],[3,15]]$, $[30,[12,30,21,10],[3,19]]$, $[30,[8,20,18,29],[3,36]]$, $[30,[8,20,22,25],[3,33]]$, $[30,[12,30,33,4],[3,19]]$, $[30,[8,20,26,21],[3,30]]$, $[30,[12,30,10,21],[3,24]]$, $[30,[18,45,6,10],[3,19]]$, $[30,[12,30,14,13],[3,20]]$, $[30,[18,45,12,4],[3,14]]$, $[30,[16,40,10,5],[3,16]]$, $[30,[8,28,14,25],[3,31]]$, $[30,[12,42,21,4],[3,17]]$, $[30,[8,28,18,21],[3,28]]$, $[30,[8,28,26,13],[3,25]]$, $[30,[8,36,18,13],[3,24]]$, $[30,[12,16,14,25],[3,29]]$, $[30,[12,16,22,17],[3,24]]$, $[30,[12,16,18,21],[3,26]]$, $[30,[12,16,26,13],[3,23]]$, $[30,[18,24,8,13],[3,17]]$, $[30,[12,28,6,9],[3,19]]$, $[30,[16,20,10,5],[3,17]]$, $[30,[16,24,12,18,21],[4,24]]$, $[30,[16,24,12,14,25],[4,27]]$, $[30,[16,24,12,22,17],[4,22]]$, $[30,[24,36,18,8,13],[4,15]]$, $[30,[24,36,8,18,13],[4,17]]$, $[30,[16,40,20,10,5],[4,14]]$

References

[1] S.S. Abhyankar and T.T. Moh: Newton-Puiseux expansion and generalized Tschirnhausen transformation I, II, J. Reine Angew. Math. 260 (1973), 47-83; 261 (1973), 29-54.
[2] S.S. Abhyankar and T.T. Moh: Embeddings of the line in the plane, J. Reine Angew. Math. 276 (1975), 148-166.
[3] S.S. Abhyankar: Lectures on expansion techniques in algebraic geometry (Notes by B. Singh), Tata Institute of Fundamental Research Lectures on Mathematics and Physics 57, Tata Institute of Fundamental Research, Bombay, 1977.
[4] S.S. Abhyankar and T.T. Moh: On the semigroup of a meromorphic curve, Proc. Int. Symp. Algebraic Geometry Kyoto 1977, 249-414, Kinokuniya Book-Store Co., Ltd., 1978.
[5] N. A'Campo and M. Oka: Geometry of plane curves via Tschirnhausen resolution tower, Osaka J. Math. 33 (1996), 1003-1033.
[6] M. Artin: On isolated rational singularities of surfaces, Amer. J. Math. 88 (1966), 129-136.
[7] E. Brieskorn and H. Knörrer: Plane Algebraic Curves, Birkhäuser Verlag, Basel-BostonStuttgart, 1986.
[8] P. Jaworski: Normal forms and bases of local rings of irreducible germs of functions of two variables, J. Soviet Math. 50 (1990), 1350-1364.
[9] M. Miyanishi: Minimization of the embeddings of the curves into the affine plane, J. Math. Kyoto Univ. 36 (1996), 311-329.
[10] T.T. Moh: On the Jacobian conjecture and the configurations of roots, J. Reine Angew. Math. 340 (1983), 140-212.
[11] Y. Nakazawa and M. Oka: Smooth plane curves with one place at infinity, J. Math. Soc. Japan, 49 (1997), 663-687.
[12] W.D. Neumann: Complex algebraic curves via their links at infinity, Invent. Math. 98 (1989), 445-489.
[13] M. Noro, T. Shimoyama and T. Takeshima: Asir User's Manual Edition 4.2, FUJITSU LABORATORIES LIMITED, 2000.
[14] M. Oka: Polynomial normal form of a plane curve with a given weight sequence, Chinese Quart. J. Math. 10 (1995), 53-61.
[15] M. Oka: Moduli space of smooth affine curves of a given genus with one place at infinity, Singularities (Oberwolfach, 1996), 409-434, Progr. Math. 162, Birkhäuser Verlag, Basel, 1998.
[16] A. Sathaye and J. Stenerson: Plane polynomial curves, Algebraic Geometry and its Applications (C.L. Bajaj, ed.), 121-142, Springer-Verlag, New York-Berlin-Heidelberg, 1994.
[17] M. Suzuki: Propriétés topologiques des polynômes de deux variables complexes, et automorphismes algébriques de l'espace \mathbf{C}^{2}, J. Math. Soc. Japan, 26 (1974), 241-257.
[18] M. Suzuki: Affine plane curves with one place at infinity, Annales Inst. Fourier, 49 (1999), 375-404.
[19] M.G. Zaidenberg and V.Ya. Lin: An irreducible simply connected algebraic curve in \mathbf{C}^{2} is equivalent to a quasihomogeneous curve, Soviet Math. Dokl. 28 (1983), 200-204.

Mitsushi Fujimoto
Department of Mathematics
Fukuoka University of Education
Munakata, Fukuoka 811-4192, Japan
e-mail: fujimoto@fukuoka-edu.ac.jp
Masakazu Suzuki
Faculty of Mathematics
Kyushu University
36, Fukuoka 812-8581, Japan
e-mail: suzuki@math.kyushu-u.ac.jp

[^0]: ${ }^{1}$ The computer calculation by our algorithm verified the result of Nakazawa-Oka [11].

