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1. Introduction

Let be the unit disc of the complex plane and be the normalizedarea mea-
sure on . Littlewood and Paley [6] proved the following theorem.

Theorem (Littlewood-Paley). Let 2 ≤ < ∞. If ∈ (∂ ) and if is
the Poisson integral of , then

∫
|∇ ( )| (1− | |2) −1 ( ) ≤

∫ 2π

0
| ( θ)| θ

2π

where is a constant independent of and .

In relation with this theorem, the following problem has been extensively studied
(see [3], [4], [5], [6], [7], [10], [11] and references therein): Let be a domain inR .
Given , and a differential monomial∂ of order , find (locally finite) positive
Borel measures µ and ν such that the inequality

(∫
|∂ | µ

)1/

≤
(∫

∂

| | ν

)1/

(1.1)

holds for all harmonic on . In the case whereν is given by the Lebesgue mea-
sure on the boundary, complete characterizations have beenknown either on the ball
or on the upper half-space. The case 2≤ = <∞ was solved by Shirokov [10, 11]
on the disc and the case 0< < < ∞ is solved by Luecking [5] on the upper
half-space. All those characterizations are given in termsof Carleson type criterion.
For other cases where 0< = < 2 or 0< < < ∞, characterizations are given
in terms of the so-called “tent” spaces ([5]) or “balayées”conditions ([3]) on the up-
per half-space. In [3] Gu actually studied the case whereν is given by an -weight,
but only for = 0.

More recently, on the unit ball ofC with an -weight given on the boundary,
Kang and Koo [7] considered holomorphic functions and theirordinary, normal and
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complex tangential derivatives of all orders. In this paper, we continue investigating
the problem in that direction for harmonic functions on the ball. Here, we confine our-
selves to the cases 2≤ = <∞ and 1< < <∞.

Fix an integer ≥ 2 and let = be the unit ball ofR . In this paper we
take = , consider various derivatives of all orders, and characterize locally finite
positive Borel measuresµ which satisfies (1.1) for all harmonic functions, in case
ν is given by an -weight. To state our results, let us introducesome notations.

For ζ ∈ ∂ and δ > 0, define balls δ(ζ) and their “tents”̂δ(ζ) by

(1.2)
δ(ζ) = {η ∈ ∂ : |ζ − η| < δ}
̂
δ(ζ) = { ∈ : |ζ − | < δ}

Also, let D denote the radial derivative of and letT α denote tangential deriva-
tives of (see Section 2 ). For an -weightω on ∂ (simply ω ∈ ), we write

(ω) for the harmonic Hardy space with weightω. For simplicity we let

ω( ) =
∫
ω σ

for a Borel set ⊂ ∂ . Here, σ denotes the surface area measure on∂ .
The following is our main result. As expected, weighted inequalities are character-

ized by weighted Carleson type conditions of measures underconsideration. Here, we
use the conventional multi-index notation.

Main Theorem. Assume2 ≤ = < ∞ or 1 < < < ∞. Let ω ∈ and
α be a multi-index with|α| = ≥ 1. Then, for a locally finite positive Borel measure
µ on , the following are equivalent.

(1) µ
[̂
δ(ζ)

]
≤ ω

[
δ(ζ)

] /
δ for all ζ ∈ ∂ and δ > 0.

(2) ||D || (µ) ≤ || || (ω) for all ∈ (ω).

(3)
∑

|β|= ||T β || (µ) ≤ || || (ω) for all ∈ (ω).

(4) ||∂α || (µ) ≤ || || (ω) for all ∈ (ω).

As mentioned above, the case = 0 (on the upper half-space) is contained in [3].
On the other hand, our results extend those of [7] concerningholomorphic functions.
Proofs are divided into two cases. See Section 3 for 2≤ = <∞ and Section 4 for
1< < <∞. In Section 5, we prove the “little oh” version of our main theorem.

NOTATION. Throughout the paper we use the same letter (often with subscripts)
for various constants which may depend on given measures andsome parameters such
as , , and , but it will always be independent of particular functions, balls or
points, etc. Also, we use the abbreviated notation. if there exists an inessential
positive constant such that ≤ . Thus, ≈ means . and . .
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2. Preliminaries

For a given multi-indexα = (α1 . . . α ) with eachα a nonnegative integer, we
use notations|α| = α1+ · · ·+α , α! = α1! · · ·α !, α = α1

1 · · · α and∂α = ∂α1
1 · · ·∂α

where∂ denotes the differentiation with respect to -th variable.
For a function ∈ 1( ), we let D denote the radial derivative of . More

explicitly, we let

D ( ) =
∑

=1

∂ ( ) ( ∈ )

Note that if is harmonic, then so isD .
Since there is no smooth nonvanishing tangential vector field on ∂ for > 2, we

define tangential derivatives by means of a family of tangential vector fields generating
all the tangent vectors. We define tangential derivativesT of ∈ 1( ) by

T ( ) = ( ∂ − ∂ ) ( ) ( ∈ )

for 1 ≤ < ≤ . As in the case of radial derivatives, tangential derivatives
of harmonic functions are again harmonic. Given a nontrivial multi-index α, we abuse
the notationT α = T α1

1 1
· · · T α for any choice of 1 . . . and 1 . . . .

By the mean value property of harmonic functions and Cauchy’s estimates, we
have the following lemma. See [1, Chapter 8] for a proof. Hereand in what follows,

denotes the Lebesgue measure onR .

Proposition 2.1. Let 1 ≤ < ∞ and α be a multi-index. Suppose is har-
monic on a domain inR . Then, we have

|∂α ( )| ≤
( ∂ ) + |α|

∫
| | ( ∈ )

where ( ∂ ) denotes the distance from to∂ . The constant depends only on
and α.

Let 1< <∞ andω be a weight function on∂ . We sayω ∈ if ω satisfies
the condition of Muckenhoupt (see [9]), that is, there exists a constant such that

ω( )

(∫
ω−1/( −1) σ

) −1

< | |

for all = δ(ζ). Here, | | = σ( ). Note that -weights are doubling measures by
Hölder’s inequality. Namely, to eachω ∈ there corresponds a “doubling” constant

ω such that

ω
[

2δ(ζ)
]
≤ ωω

[
δ(ζ)

]
(2.1)
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for any δ > 0 andζ ∈ ∂ .
For ω ∈ , let (ω) = (ω σ). The weighted harmonic Hardy space (ω) is

then the space of all harmonic functions on for whichN ∈ (ω) and define
|| || (ω) = ||N || (ω). Here,N denotes the nontangential maximal function of
defined by

N (ζ) = sup
∈ (ζ)

| ( )| ζ ∈ ∂

where (ζ) is the nontangential approach region

(ζ) = { ∈ : | − ζ| < 2(1− | |)}

By the local Fatou theorem every ∈ (ω) has nontangential limit, which we again
denote by , at almost all boundary points. Note that∈ (ω) for ∈ (ω), be-
cause| | ≤ N on ∂ . It is well known that|| || (ω) ≈ || || (ω) (see Lemma 3.1
below). Also, note that (ω) ⊂ 1(σ) for ω ∈ . Thus, for each ∈ (ω),
the Poisson integral of its boundary function is well defined. Moreover, it is not hard
to see that each ∈ (ω) is recovered by the Poisson integral of∈ (ω).

3. The Case 2≤ p = q ∞

This section is devoted to the proof of the main theorem for the case 2≤ =
<∞. The proof will be completed in the following order:

(1) =⇒ (4) (1) =⇒ (2) + (3)

(2) =⇒ (1) (3) =⇒ (1) (4) =⇒ (1)

Our proof of (1) =⇒ (4) depends on the weighted inequalities for the nontan-
gential operator and the so-called area integral operator.For ∈ , put

( ) = 1− | |

For a function harmonic on , the area integral functionS is then defined by

S (ζ) =

(∫

(ζ)
|∇ |2 2−

)1/2

for ζ ∈ ∂ . For the operatorsS andN , the weighted inequalities below with respect
to -weights are well known. In fact, the first inequality below is proved on the up-
per half-space in [12, Theorem 2 of Chapter VI], and one may use a similar argu-
ment to obtain the same on the ball. On the other hand, since -weights are precisely
those ones with respect to which the standard Hardy-Littlewood maximal operator sat-
isfies weighted inequalities, the second inequality below is a consequence of the fact
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that the nontangential maximal operator is dominated by theHardy-Littlewood maxi-
mal operator (see [8, Theorem 3] or [1, Theorem 6.23]).

Lemma 3.1. For 1< <∞ and ω ∈ , the inequalities

||S || (ω) ≤ || || (ω) ||N || (ω) ≤ || || (ω)

hold for functions ∈ (ω).

We also need relations between various balls. For∈ , let ( ) be the ball
centered at with radius ( )/4. Note ( )≈ ( ) for ∈ ( ) or ∈ ( ).

Lemma 3.2. Let ∈ and ∈ ( ). Put = | |η whereη ∈ ∂ . Then the fol-
lowing hold.
(1) ( )⊂ ̂2 ( )(η).
(2) ∈ (ζ) for any ζ ∈ ( )(η).

Proof. For ∈ ( ), we have

| ( )− ( )| ≤ | − | < ( )
4

and thus ( )< 2 ( ). It follows that, for ∈ ( ),

|η − | ≤ |η − | + | − | < ( ) +
( )
2

< 2 ( )

This shows the first part of the lemma. Next, assumeζ ∈ ( )(η). Then

|ζ − | ≤ |ζ − η| + |η − | = |ζ − η| + (1− | |) < 2 ( )

and therefore ∈ (ζ).

Proof of (1) =⇒ (4). Assume (1) holds. Let ∈ (ω). First, note that we
have by Proposition 2.1

|∂α ( )| . ( )− + −
∫

( )
|∇ | ( ∈ )(3.1)

Also, for any ∈ , we have by assumption and doubling property

(3.2) µ
[
̂2 ( )(η)

]
. ω

[
2 ( )(η)

]
( ) . ω ω

[
( )(η)

]
( )

where =| |η, η ∈ ∂ .
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Now, integrate both sides of (3.1) against the measureµ, interchange the order
of integrations using Lemma 3.2, and then apply (3.2). What we have is

∫
|∂α ( )| µ( ) .

∫
( )− + −

∫

( )
|∇ ( )| µ( )

.

∫
|∇ ( )| ( )− − + µ

[
̂2 ( )

(

| |

)]

. ω

∫
|∇ ( )| ( )− + ω

[
( )

(

| |

)]

Here and elsewhere, = ( ). Thus, interchanging the order of integrations once
more, we have

∫
|∂α ( )| µ( ) .

∫
|∇ ( )| ( )− +

∫

( )( /| |)
ω(ζ) σ(ζ)

.

∫

∂

∫

(ζ)
|∇ ( )| ( )− + ω(ζ) σ(ζ)(3.3)

where the second inequality holds by Lemma 3.2. Note that

∫

(ζ)
|∇ | − + ≤

(
sup
∈ (ζ)

( )|∇ ( )|
) −2 ∫

(ζ)
|∇ |2 − +2

. |N (ζ)| −2|S (ζ)|2

for all ζ ∈ ∂ . The second inequality of the above holds by Proposition 2.1. Inserting
the above into (3.3) and then applying Hölder’s inequality, we finally have

∫
|∂α | µ .

∫

∂

|N | −2|S |2ω σ

.

(∫

∂

|N | ω σ

)1−2/ (∫

∂

|S | ω σ

)2/

.

∫

∂

| | ω σ

Here, the last inequality follows from Lemma 3.1. This completes the proof.

Proof of (1) =⇒ (2)+(3). Assume (1) holds. Then, for each nonnegative integer
≤ , we have

µ
[̂
δ(ζ)

]
. ω

[
δ(ζ)

]
δ
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for all ζ ∈ ∂ and δ > 0. Thus, since we already have (1)=⇒ (4), the above yields

∑

|α|≤

∫
|∂α | µ .

∫

∂

| | ω σ

for all ∈ (ω), which trivially implies (2) and (3). The proof is complete.

Before proceeding to the proofs of other implications, we first introduce some no-
tations. Letϕ be the Newtonian potential. i.e.,

(3.4) ϕ( ) =

{
log | | for = 2

| |− +2 for > 2

By induction one may verify that, to each multi-indexγ 6= 0, there corresponds a (har-
monic) homogeneous polynomialγ of degree|γ| such that

∂γϕ( ) = γ( )| |−( +2|γ|−2)(3.5)

Now, for δ > 0 andζ, η ∈ ∂ , defineϕδ ζ η by

ϕδ ζ η( ) = ϕ( − ζ − δη)

Note that we have by (3.5) and homogeneity ofγ

|∂γϕδ ζ η( )| ≤ || γ || ∞(σ)

| − ζ − δη| +|γ|−2
(3.6)

We will use these functions as test functions in the proofs ofall other remaining im-
plications. We first prove some properties of those functions. For simplicity we write

δ(ζ) = δ and ̂δ(ζ) = ̂δ. Recall that ω is the “doubling” constant ofω ∈ intro-
duced in (2.1). In what followsζ · η denotes the euclidean inner product onR .

Lemma 3.3. Let ω ∈ and γ be a multi-index such that ω ≤ 2|γ|. Then,
there exists a constant γ such that

∫

∂

|∂γϕδ ζ η | ω σ ≤ γ
ω( δ)

(δζ · η) ( +|γ|−2)

for all 0< δ < 1 and ζ, η ∈ ∂ with ζ · η > 0.

Proof. Assumeδ < 1 and ζ, η ∈ ∂ with ζ · η > 0. Let = |γ|. Note√
1 + 2δζ · η < |ζ + δη| < 2. Thus, forξ ∈ ∂ , we have

|ξ − ζ − δη| ≥ |ζ + δη| − 1 & δζ · η
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and thus, by (3.6),

|∂γϕδ ζ η(ξ)| . || γ || ∞(σ)

(δζ · η) + −2
ξ ∈ ∂(3.7)

For ξ /∈ 2 δ, ≥ 1, we have

|ξ − ζ − δη| ≥ |ξ − ζ| − δ ≥ 2 δ − δ & 2 δ

and thus, by (3.6),

|∂γϕδ ζ η(ξ)| . || γ || ∞(σ)

(2 δ) + −2
ξ ∈ 2 +1δ \ 2 δ(3.8)

for all ≥ 1. Also, since ω < 2 , we have by doubling property

ω( 2 +1δ) ≤ +1
ω ω( δ) ≤ 2 ( +1)ω( δ)

for each ≥ 0. Thus, it follows from (3.7) and (3.8) that

∫

∂

|∂γϕδ ζ η| ω σ =
∫

2δ

|∂γϕδ ζ η| ω σ +
∞∑

=1

∫

2 +1δ
\ 2 δ

|∂γϕδ ζ η| ω σ

. || γ || ∞(σ)
2 ω( δ)

(δζ · η) ( + −2)

∞∑

=0

2− [ ( + −2)− ]

= γ
ω( δ)

(δζ · η) ( + −2)

as desired. The proof is complete.

For ξ ∈ ∂ , let ξ denote the differentiation in the direction ofξ.

Lemma 3.4. For each positive integer there exists a constant 6= 0 such
that

ξ ϕ( ) = | | + −2

[
1 +

(
1−

∣∣∣∣ξ · | |

∣∣∣∣
)]

for all ξ ∈ ∂ and 6= 0 such thatξ · < 0. The constant involved in
(
1−|ξ · /| ||

)

depends only on and .

Proof. Let be a positive integer. Letξ ∈ ∂ , 6= 0 and assumeξ · < 0. Put
η = /| |. A simple calculation yields

ξ(| |− ) = − ξ ·
| | +2 ξ

[
(ξ · )

]
= (ξ · ) −1



WEIGHTED INEQUALITIES 953

for integers ≥ 0. Thus, by induction, one can show that there are coefficients =
( ) such that

ξ ϕ( ) =
∑

0≤ ≤ /2

(ξ · ) −2

| | −2+2 −2

= (−1) | |−( + −2)
∑

0≤ ≤ /2

|ξ · η| −2

Note
∑

= ξ ϕ(ξ) which is a nonzero (by a direct calculation) constant depending
only on and . Thus, letting =

∑ 6= 0, we have

∑

0≤ ≤ /2

|ξ · η| −2 =
[
1 +

(
1− |ξ · η|

)]

where the constant involved in (1−|ξ ·η|) is easily seen to depend only on and .
The proof is complete.

Proof of (2) =⇒ (1). Assume (2) holds. First, fix a large positive integer
such that ω < 2 . Let ζ ∈ ∂ . For 0< δ < 1, put δ = D ϕδ whereϕδ = ϕδ ζ ζ .
Then δ is harmonic on . We have by assumption and Lemma 3.3

∫
|D δ| µ .

∫

∂

| δ| ω σ .
ω( δ)

δ ( + −2)
(3.9)

Now, consider ∈ ̂ǫδ where ǫ < 1/2 is a small positive number to be chosen
in a moment. Note that

/| | δ( ) = | |−
∑

|γ|=

!
γ!

γ∂γ δ( )

Also, note

D δ( ) =
∑

|γ|=

!
γ!

γ∂γ δ( ) + δ( )

for some differential operator of order (−1) with smooth coefficients. Therefore,
we have

D δ( ) = | | /| | δ( ) + δ( )(3.10)

We first estimate the first term of the right side of (3.10). Put= − ζ − δζ and
ξ = /| | ∈ ǫδ. Then,δ(1− ǫ) < | | < δ(1 + ǫ) and thus| | ≈ δ. Therefore we have

ξ · = (ξ − ζ) · (ξ − δζ)− δ < δ(2ǫ− 1)< 0
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and
∣∣∣∣ξ · | |

∣∣∣∣ & 1− 2ǫ

Note Dξϕδ( ) = ξϕ( − ζ − δζ) for any integer ≥ 1. Hence, by Lemma 3.4, we
have

ξ δ( ) = +
ξ ϕ( − ζ − δζ) = 1

δ + + −2

[
1 + (ǫ)

]

Recall that 1 6= 0 is a constant depending only on and + and the same is true
for the constant involved in (ǫ). Next, for the second term of the right side of (3.10),
it is straightforward to see from (3.6) that

| δ( )| . δ−( + + −3)(3.11)

Since | | ≈ 1, combining these estimates, we have by (3.10)

|D δ( )| ≈ 1 + (ǫ) + (δ)
δ + + −2

so that we can fixǫ and δ0 sufficiently small such that

|D δ( )| ≈ 1
δ + + −2

∈ ̂ǫδ δ ≤ δ0(3.12)

which is a uniform estimate independent ofζ and δ. Thus, forδ ≤ δ0, we obtain from
(3.12) and (3.9)

µ(̂ǫδ)
δ ( + + −2) ≈

∫b
ǫδ

|D δ| µ .
ω( δ)

δ ( + −2)

so that

µ(̂ǫδ) . δ ω( δ) . δ ω( ǫδ)

where the second inequality holds by doubling property. Consequently, forδ ≤ ǫδ0, we
have

µ(̂δ) . δ ω( δ)(3.13)

and this estimate is independent ofζ. Note that the above argument shows that
µ̂( ǫδ0) < ∞ for all ζ ∈ ∂ . Since µ is locally finite, it follows that µ is a finite
measure. Thus, forδ > ǫδ0, we also have (3.13) by doubling property. This completes
the proof.
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Proof of (3) =⇒ (1). Assume (3) holds. As above, fix a large positive integer
such that ω < 2 . Let ζ ∈ ∂ and chooseξ ∈ ∂ such thatζ · ξ = 0. Let

η = ǫζ +
√

1− ǫ2 ξ where ǫ < 1/2 is a small positive number to be chosen later. For
0< δ < 1, this time we let δ = ξ ϕδ whereϕδ = ϕδ ζ η. Then δ is harmonic on .
Sinceζ · η = ǫ, we have by assumption and Lemma 3.3

∫
|D δ| µ .

∫

∂

| δ| ω σ .
ω( δ)

(ǫδ) ( + −2)
(3.14)

Consider ∈ ̂ǫδ and put = − ζ − δη. Then,δ(1− ǫ) < | | < δ(1 + ǫ) and thus
| | ≈ δ. Sinceη · ξ =

√
1− ǫ2 > 1− ǫ, we have

ξ · = ( − ζ) · ξ − δη · ξ < δ(2ǫ− 1)< 0

and
∣∣∣∣ξ · | |

∣∣∣∣ & 1− 2ǫ

Therefore, by Lemma 3.4, we have

ξ δ( ) = +
ξ ϕ( − ζ − δη) = 1

δ + + −2

[
1 + (ǫ)

]
(3.15)

where 1 6= 0 is a constant depending only on and + and the same is true
for the constant involved in (ǫ). Now, sinceζ · ξ = 0, we can find coefficients =

(ζ ξ) such that

ξ δ(ζ) = δ(ζ) =
∑

T

Moreover, as in the proof of Proposition 5.2 of [2], we may findthose coefficients
in such a way that supζ ξ | (ζ ξ)| <∞. Let

( ξ) =
∑

<

−
∑

>

for each . Put = (1 . . . ). Then, we have

δ( ) =
(∑

( ξ)∂
)

δ( )

=
∑

|β|=

!
β!

β( ξ)∂β δ( ) + δ( )

= ξ δ( ) +
∑

|β|=

!
β!

[
β( ξ)− ξβ

]
∂β δ( ) + δ( )
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where is a differential operator of order (− 1) with smooth coefficients. Note
(ζ ξ) = ξ. Thus, since ’s are uniformly bounded, we have

| ( ξ)− ξ| ≤ 2| − ζ| < 2ǫδ ∈ ̂ǫδ

for some constant 2 depending only on . Also, by (3.6) we have

∑

|β|=
|∂β δ( )| ≤ 3

δ + + −2
∈ ̂ǫδ

where 3 is a constant depending only on and + . Thus, for∈ ̂ǫδ, we have

δ( ) = ξ δ( ) +
(ǫδ)

δ + + −2
+ δ( )

Therefore, by (3.15) and (3.11), we can fixǫ > 0 andδ0 > 0 such that

| δ( )| ≈ 1
δ + + −2 ∈ ̂ǫδ δ ≤ δ0(3.16)

Now, for the rest of the proof, one may proceed as in the proof of (2) =⇒ (1) by
using (3.14) and (3.16). The proof is complete.

Proof of (4) =⇒ (1). Assume (4) holds. By compactness of∂ , it suffices to
give local estimates. So, fixη ∈ ∂ and assumeζ ∈ ∂ , ζ · η > 1/2. Sinceϕ is
harmonic and not a polynomial, we can chooseβ = β(η) such that∂α∂βϕ(−η) 6= 0
and ω < 2|β|. Let = |β|. For 0 < δ < 1, put δ = ∂β ϕδ whereϕδ = ϕδ ζ η

δ = ∂β ϕδ ζ η. Then δ is harmonic on . Sinceζ · η > 1/2, we have by assumption
and Lemma 3.3

∫
|∂γ δ| µ .

∫

∂

| δ| ω σ ≤ 1
ω( δ)

δ ( + −2)(3.17)

where 1 = 1( η) is a constant independent ofζ and δ.
Consider ∈ ̂ǫδ where ǫ = ǫ(η) < 1/2 is a small positive constant to be chosen

in a moment. Put = (− ζ)/δ and γ = α + β. Then, by (3.5), we have

∂α δ( ) = ∂γϕ(δ − δη) = δ−( + + −2) γ( − η)
| − η| +2 +2 −2

(3.18)

Note γ( −η) = γ(−η)+ (| |) and | | < ǫ. Also, γ(−η) 6= 0, because∂γϕ(−η) 6= 0.
Thus,

γ( − η) = γ(−η)[1 + (ǫ)] ∈ ̂ǫδ
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Here, the constant involved in (ǫ) is independent ofζ and δ. Note | −η| ≈ 1. Thus,
by (3.18), we may fixǫ sufficiently small such that

|∂α δ( )| ≈ 1
δ + + −2

∈ ̂ǫδ δ < 1(3.19)

and this estimate is independent ofζ and δ.
Now, using (3.17), (3.19) and imitating the argument of (2)=⇒ (1), we obtain

µ(̂δ) ≤ ηδ ω( δ) ∈ ̂δ δ > 0

which is an estimate independent ofζ and δ. The proof is complete.

4. The case 1 p q ∞

In this section we give a proof of the main theorem for the case1< < <∞.
Except for the implication (1)=⇒ (4), the arguments of other implications of the pre-
vious section are easily modified and thus details are left tothe readers. For the im-
plication (1) =⇒ (4), we make use of the idea of [7].

Lemma 4.1. For > 1 and ω ∈ , let τ be a measure on defined by

τ ( ) = ( )− ω

[
( )

(

| |

)]

Then, we have

τ
[̂
δ(ζ)

]
≤ ω

[
δ(ζ)

]
(4.1)

for all ζ ∈ ∂ and δ > 0.

The analogue of the above lemma is proved in [7, Lemma 2.3] on the unit ball of
the complex -space. Their idea is to use reverse Hölder’s inequality for -weights.
More precisely, to eachω ∈ there corresponds a constant> 1 such that

(
1
| |

∫
ω σ

)1/

.
1
| |

∫
ω σ(4.2)

holds for all = δ(ζ) and 0< ≤ .

Proof. Let δ(ζ) be given. First, assume 1< ≤ where is chosen so
that (4.2) holds forω. Then, by integrating in polar coordinates, we have

τ [̂δ(ζ)] .

∫ δ

0

−
∫

δ (ζ)
ω[ (η)] σ(η)(4.3)
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Note that, forη ∈ δ(ζ) and 0< < δ, we have (η) ⊂ 2δ(ζ). Thus, letting| | =
| (ξ)| for any ξ ∈ ∂ , we have by Hölder’s inequality, reverse Hölder’s inequality
and doubling property

∫

δ (ζ)
ω[ (η)] σ(η) ≤ | | −1

∫

2δ(ζ)

∫

(η)
ω(ξ) σ(ξ) σ(η)

≤ | |
∫

2δ(ζ)
ω σ

. | | | 2δ|1− ω[ 2δ(ζ)]

. | | | δ|1− ω[ δ(ζ)]

Now, inserting this estimate into (4.3), we obtain (4.1).
Next, assume > . Note that we have by doubling property

ω
[

( )( /| |)
]

ω
[
δ(ζ)

] ≤ ω [ 2δ(ζ)]

ω
[
δ(ζ)

] . 1 ∈ ̂δ(ζ)

so that

ω [ δ(ζ)]
− τ

[̂
δ(ζ)

]
=
∫b

δ (ζ)

(
ω
[

( )( /| |)
]

ω
[
δ(ζ)

]
)

( )−

. ω [ δ(ζ)]
− τ

[̂
δ(ζ)

]

Thus, (4.1) follows from the previous case. The proof is complete.

The following is a special case of [3, Theorem 5.2]. In fact, Gu [3] worked on
the half-space and a straightforward modification gives thesame on the ball.

Lemma 4.2. Let 1 < ≤ < ∞. Assumeω ∈ and τ is a locally finite
positive Borel measure on . Then,

τ
[̂
δ(ζ)

]
≤ ω

[
δ(ζ)

] /
for all ζ ∈ ∂ and δ > 0

if and only if

|| || (τ ) ≤ || || (ω) for all ∈ (ω)

Now, we give the proof of (1)=⇒ (4). Assume (1) holds. Let ∈ (ω). One
may proceed as in the case =≥ 2 to obtain the following estimates:

∫
|∂α ( )| µ( ) .

∫
( )− −

∫

( )
| ( )| µ( )
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.

∫
| ( )| ( )− − µ

[
̂2 ( )

(

| |

)]

.

∫
| ( )| τ ( )

where τ = τ / is the measure defined as in Lemma 4.1. Therefore, we conclude(4)
by Lemma 4.1 and Lemma 4.2.

5. Compactness

Recall that a linear operator from a Banach space into another is called com-
pact if maps bounded sets onto relatively compact sets. In the following we let
µ̂δ = µ̂δ denote the function defined by

µ̂δ(ζ) =
µ
[̂
δ(ζ)

]

ω
[
δ(ζ)

] /
δ

ζ ∈ ∂ δ > 0

and let

T =
∑

|β|=
|T β |

Theorem 5.1. Assume2 ≤ = < ∞ or 1 < < < ∞. Let ω ∈ and α
be a multi-index of order ≥ 1. Then, for a locally finite positive Borel measureµ
on , the following are equivalent.
(1) µ̂δ(ζ) = (1) uniformly in ζ ∈ ∂ as δ → 0.
(2) D : (ω)→ (µ) is compact.
(3) T : (ω)→ (µ) is compact.
(4) ∂α : (ω)→ (µ) is compact.

Proof of (1) =⇒ (4). Assume (1) holds. For 0< < 1, let be the ball
centered at the origin with radius andX be the characteristic function of . Define

: (ω)→ (µ) by =X ∂α . First, we show that each is compact. Let
be a given bounded set in (ω) and fix ∈ . Then, for each ∈ , we have

( ) =
∫

∂

( ζ) (ζ) σ(ζ)

where is the Poisson kernel for . Hence, by Hölder’s inequality, we have

| ( )| ≤
∫

∂

( ζ)| (ζ)| σ(ζ)

≤ 1
(1− | |) −1

∫

∂

| |ω−1 · ω σ
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.
|| || (ω)||ω−1|| ′ (ω)

(1− | |) −1

where ′ is conjugate index of . Noteω−1 ∈ ′

(ω), becauseω ∈ . Thus is
locally uniformly bounded and thus is a normal family. Therefore, there is a sequence
{ } in which converges uniformly on every compact subset of . Let= lim .
Now, since∂α → ∂α uniformly on , we have → X ∂α in (µ). Hence,

: (ω)→ (µ) is compact.
For the case < , one may follow the argument (using Lemma 4.1) in the pre-

vious section to obtain

∫

\
|∂α | µ .


 sup
δ.1−
ζ∈∂

µ̂δ(ζ)



(∫

∂

| | ω σ

) /

for functions ∈ (ω). Also, one may follow the arguments of (3.1), (3.2) and (3.3)
to see the same for the case =≥ 2. Hence, in either case, we have

|| − ∂α|| .


 sup
δ.1−
ζ∈∂

µ̂δ(ζ)




1/

→ 0 as → 1

so that∂α is compact, as desired. This completes the proof.

Now, the implication (1)=⇒ (2) + (3) easily follows from (1)=⇒ (4).

Proof of (2) =⇒ (1). Assume (2) holds. Letζ ∈ ∂ . We continue using the no-
tations defined in the proof of (2)=⇒ (1) of Section 3. Forδ > 0, let

δ = δ + −2ω( δ)−1/
δ

Note || δ|| (ω) . 1 by Lemma 3.3. First, we show that

∫
|D δ| µ→ 0 as δ → 0(5.1)

Suppose not. Then there exists a sequenceδ → 0 such that

inf
∫
|D δ | µ > 0

Since δ ’s are bounded in (ω), by using the compactness ofD , we may assume
D δ → in (µ) for some ∈ (µ). Note || || (µ) > 0. On the other hand,
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since δ ’s are locally uniformly bounded by (3.6) and

ω(∂ ) ≤ 2 (log2 δ
−1+2)ω( δ) = 22 δ− ω( δ)

by doubling property, we see thatδ converges to 0 uniformly on every compact sub-
set of , and so isD δ . It follows that = 0 in (µ), which is a contradiction.
Thus, (5.1) holds.

Now, we have by (3.12)

|D δ( )| ≈ δ− ω( δ)− / ∈ ̂ǫδ δ ≤ δ0

and thus

µ(̂ǫδ) . δ ω( δ) /

∫
|D δ| µ

for all δ sufficiently small. Thus, we have by doubling property

µ̂ǫδ(ζ) .

(
ω( δ)
ω( ǫδ)

) / ∫
|D δ| µ .

∫
|D δ| µ

and this is an estimate independent ofζ and δ small. Thus, we conclude (1) by (5.1).
The proof is complete.

Proofs of the implications (3)=⇒ (1) and (4) =⇒ (1) are also easy modifica-
tions of corresponding ones in the previous section.
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