CARLESON TYPE CONDITIONS AND WEIGHTED INEQUALITIES FOR HARMONIC FUNCTIONS

Boo Rim CHOE, Hyungwoon KOO, and Heungsu YI

(Received March 5, 2001)

1. Introduction

Let D be the unit disc of the complex plane and $d A$ be the normalized area measure on D. Littlewood and Paley [6] proved the following theorem.

Theorem (Littlewood-Paley). Let $2 \leq p<\infty$. If $f \in L^{p}(\partial D)$ and if F is the Poisson integral of f, then

$$
\int_{D}|\nabla F(z)|^{p}\left(1-|z|^{2}\right)^{p-1} d A(z) \leq C^{p} \int_{0}^{2 \pi}\left|f\left(e^{i \theta}\right)\right|^{p} \frac{d \theta}{2 \pi}
$$

where C is a constant independent of f and p.
In relation with this theorem, the following problem has been extensively studied (see [3], [4], [5], [6], [7], [10], [11] and references therein): Let Ω be a domain in \mathbf{R}^{n}. Given p, q and a differential monomial ∂^{m} of order m, find (locally finite) positive Borel measures $d \mu$ and $d \nu$ such that the inequality

$$
\begin{equation*}
\left(\int_{\Omega}\left|\partial^{m} f\right|^{q} d \mu\right)^{1 / q} \leq C\left(\int_{\partial \Omega}|f|^{p} d \nu\right)^{1 / p} \tag{1.1}
\end{equation*}
$$

holds for all f harmonic on $\bar{\Omega}$. In the case where $d \nu$ is given by the Lebesgue measure on the boundary, complete characterizations have been known either on the ball or on the upper half-space. The case $2 \leq p=q<\infty$ was solved by Shirokov [10, 11] on the disc and the case $0<p<q<\infty$ is solved by Luecking [5] on the upper half-space. All those characterizations are given in terms of Carleson type criterion. For other cases where $0<p=q<2$ or $0<q<p<\infty$, characterizations are given in terms of the so-called "tent" spaces ([5]) or "balayées" conditions ([3]) on the upper half-space. In [3] Gu actually studied the case where $d \nu$ is given by an A_{p}-weight, but only for $m=0$.

More recently, on the unit ball of \mathbf{C}^{n} with an A_{p}-weight given on the boundary, Kang and Koo [7] considered holomorphic functions and their ordinary, normal and

[^0]complex tangential derivatives of all orders. In this paper, we continue investigating the problem in that direction for harmonic functions on the ball. Here, we confine ourselves to the cases $2 \leq p=q<\infty$ and $1<p<q<\infty$.

Fix an integer $n \geq 2$ and let $B=B_{n}$ be the unit ball of \mathbf{R}^{n}. In this paper we take $\Omega=B$, consider various derivatives of all orders, and characterize locally finite positive Borel measures $d \mu$ which satisfies (1.1) for all harmonic functions, in case $d \nu$ is given by an A_{p}-weight. To state our results, let us introduce some notations. For $\zeta \in \partial B$ and $\delta>0$, define balls $S_{\delta}(\zeta)$ and their "tents" $\widehat{S}_{\delta}(\zeta)$ by

$$
\begin{align*}
& S_{\delta}(\zeta)=\{\eta \in \partial B:|\zeta-\eta|<\delta\}, \\
& \widehat{S}_{\delta}(\zeta)=\{z \in B:|\zeta-z|<\delta\} . \tag{1.2}
\end{align*}
$$

Also, let $\mathcal{D} f$ denote the radial derivative of f and let $\mathcal{T}^{\alpha} f$ denote tangential derivatives of f (see Section 2). For an A_{p}-weight ω on ∂B (simply $\omega \in A_{p}$), we write $h^{p}(\omega)$ for the harmonic Hardy space with weight ω. For simplicity we let

$$
\omega(S)=\int_{S} \omega d \sigma
$$

for a Borel set $S \subset \partial B$. Here, $d \sigma$ denotes the surface area measure on ∂B.
The following is our main result. As expected, weighted inequalities are characterized by weighted Carleson type conditions of measures under consideration. Here, we use the conventional multi-index notation.

Main Theorem. Assume $2 \leq p=q<\infty$ or $1<p<q<\infty$. Let $\omega \in A_{p}$ and α be a multi-index with $|\alpha|=m \geq 1$. Then, for a locally finite positive Borel measure $d \mu$ on B, the following are equivalent.
(1) $\mu\left[\widehat{S}_{\delta}(\zeta)\right] \leq C \omega\left[S_{\delta}(\zeta)\right]^{q / p} \delta^{m q} \quad$ for all $\zeta \in \partial B$ and $\delta>0$.
(2) $\left\|\mathcal{D}^{m} f\right\|_{L^{q}(\mu)} \leq C\|f\|_{h^{p}(\omega)} \quad$ for all $f \in h^{p}(\omega)$.
(3) $\sum_{|\beta|=m}\left\|\mathcal{T}^{\beta} f\right\|_{L^{q}(\mu)} \leq C\|f\|_{h^{p}(\omega)} \quad$ for all $f \in h^{p}(\omega)$.
(4) $\left\|\partial^{\alpha} f\right\|_{L^{q}(\mu)} \leq C\|f\|_{h^{p}(\omega)} \quad$ for all $f \in h^{p}(\omega)$.

As mentioned above, the case $m=0$ (on the upper half-space) is contained in [3]. On the other hand, our results extend those of [7] concerning holomorphic functions. Proofs are divided into two cases. See Section 3 for $2 \leq p=q<\infty$ and Section 4 for $1<p<q<\infty$. In Section 5, we prove the "little oh" version of our main theorem.

Notation. Throughout the paper we use the same letter C (often with subscripts) for various constants which may depend on given measures and some parameters such as n, p, q and m, but it will always be independent of particular functions, balls or points, etc. Also, we use the abbreviated notation $A \lesssim B$ if there exists an inessential positive constant C such that $A \leq C B$. Thus, $A \approx B$ means $A \lesssim B$ and $B \lesssim A$.

2. Preliminaries

For a given multi-index $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ with each α_{j} a nonnegative integer, we use notations $|\alpha|=\alpha_{1}+\cdots+\alpha_{n}, \alpha!=\alpha_{1}!\cdots \alpha_{n}!, x^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$ and $\partial^{\alpha}=\partial_{1}^{\alpha_{1}} \cdots \partial_{n}^{\alpha_{n}}$ where ∂_{j} denotes the differentiation with respect to j-th variable.

For a function $f \in C^{1}(B)$, we let $\mathcal{D} f$ denote the radial derivative of f. More explicitly, we let

$$
\mathcal{D} f(x)=\sum_{j=1}^{n} x_{j} \partial_{j} f(x) \quad(x \in B) .
$$

Note that if f is harmonic, then so is $\mathcal{D} f$.
Since there is no smooth nonvanishing tangential vector field on ∂B for $n>2$, we define tangential derivatives by means of a family of tangential vector fields generating all the tangent vectors. We define tangential derivatives $\mathcal{T}_{i j} f$ of $f \in C^{1}(B)$ by

$$
\mathcal{T}_{i j} f(x)=\left(x_{i} \partial_{j}-x_{j} \partial_{i}\right) f(x) \quad(x \in B)
$$

for $1 \leq i<j \leq n$. As in the case of radial derivatives, tangential derivatives of harmonic functions are again harmonic. Given a nontrivial multi-index α, we abuse the notation $\mathcal{T}^{\alpha}=\mathcal{T}_{i_{1} j_{1}}^{\alpha_{1}} \cdots \mathcal{T}_{i_{n} j_{n}}^{\alpha_{n}}$ for any choice of i_{1}, \ldots, i_{n} and j_{1}, \ldots, j_{n}.

By the mean value property of harmonic functions and Cauchy's estimates, we have the following lemma. See [1, Chapter 8] for a proof. Here and in what follows, $d V$ denotes the Lebesgue measure on \mathbf{R}^{n}.

Proposition 2.1. Let $1 \leq p<\infty$ and α be a multi-index. Suppose f is harmonic on a domain Ω in \mathbf{R}^{n}. Then, we have

$$
\left|\partial^{\alpha} f(x)\right|^{p} \leq \frac{C^{p}}{d(x, \partial \Omega)^{n+p|\alpha|}} \int_{\Omega}|f|^{p} d V \quad(x \in \Omega)
$$

where $d(x, \partial \Omega)$ denotes the distance from x to ∂D. The constant C depends only on n and α.

Let $1<p<\infty$ and ω be a weight function on ∂B. We say $\omega \in A_{p}$ if ω satisfies the A_{p} condition of Muckenhoupt (see [9]), that is, there exists a constant C such that

$$
\omega(S)\left(\int_{S} \omega^{-1 /(p-1)} d \sigma\right)^{p-1}<C|S|^{p}
$$

for all $S=S_{\delta}(\zeta)$. Here, $|S|=\sigma(S)$. Note that A_{p}-weights are doubling measures by Hölder's inequality. Namely, to each $\omega \in A_{p}$ there corresponds a "doubling" constant C_{ω} such that

$$
\begin{equation*}
\omega\left[S_{2 \delta}(\zeta)\right] \leq C_{\omega} \omega\left[S_{\delta}(\zeta)\right] \tag{2.1}
\end{equation*}
$$

for any $\delta>0$ and $\zeta \in \partial B$.
For $\omega \in A_{p}$, let $L^{p}(\omega)=L^{p}(\omega d \sigma)$. The weighted harmonic Hardy space $h^{p}(\omega)$ is then the space of all harmonic functions f on B for which $\mathcal{N} f \in L^{p}(\omega)$ and define $\|f\|_{h^{p}(\omega)}=\|\mathcal{N} f\|_{L^{p}(\omega)}$. Here, $\mathcal{N} f$ denotes the nontangential maximal function of f defined by

$$
\mathcal{N} f(\zeta)=\sup _{x \in \Gamma(\zeta)}|f(x)|, \quad \zeta \in \partial B
$$

where $\Gamma(\zeta)$ is the nontangential approach region

$$
\Gamma(\zeta)=\{x \in B:|x-\zeta|<2(1-|x|)\} .
$$

By the local Fatou theorem every $f \in h^{p}(\omega)$ has nontangential limit, which we again denote by f, at almost all boundary points. Note that $f \in L^{p}(\omega)$ for $f \in h^{p}(\omega)$, because $|f| \leq \mathcal{N} f$ on ∂B. It is well known that $\|f\|_{h^{p}(\omega)} \approx\|f\|_{L^{p}(\omega)}$ (see Lemma 3.1 below). Also, note that $L^{p}(\omega) \subset L^{1}(\sigma)$ for $\omega \in A_{p}$. Thus, for each $f \in h^{p}(\omega)$, the Poisson integral of its boundary function is well defined. Moreover, it is not hard to see that each $f \in h^{p}(\omega)$ is recovered by the Poisson integral of $f \in L^{p}(\omega)$.

3. The Case $\mathbf{2} \leq \boldsymbol{p}=\boldsymbol{q}<\infty$

This section is devoted to the proof of the main theorem for the case $2 \leq p=$ $q<\infty$. The proof will be completed in the following order:

$$
\begin{aligned}
& (1) \Longrightarrow(4), \quad(1) \Longrightarrow(2)+(3) \\
& (2) \Longrightarrow(1), \quad(3) \Longrightarrow(1), \quad(4) \Longrightarrow(1)
\end{aligned}
$$

Our proof of $(1) \Longrightarrow$ (4) depends on the weighted inequalities for the nontangential operator and the so-called area integral operator. For $x \in B$, put

$$
r(x)=1-|x| .
$$

For a function f harmonic on B, the area integral function $\mathcal{S} f$ is then defined by

$$
\mathcal{S} f(\zeta)=\left(\int_{\Gamma(\zeta)}|\nabla f|^{2} r^{2-n} d V\right)^{1 / 2}
$$

for $\zeta \in \partial B$. For the operators \mathcal{S} and \mathcal{N}, the weighted inequalities below with respect to A_{p}-weights are well known. In fact, the first inequality below is proved on the upper half-space in [12, Theorem 2 of Chapter VI], and one may use a similar argument to obtain the same on the ball. On the other hand, since A_{p}-weights are precisely those ones with respect to which the standard Hardy-Littlewood maximal operator satisfies weighted inequalities, the second inequality below is a consequence of the fact
that the nontangential maximal operator is dominated by the Hardy-Littlewood maximal operator (see [8, Theorem 3] or [1, Theorem 6.23]).

Lemma 3.1. For $1<p<\infty$ and $\omega \in A_{p}$, the inequalities

$$
\|\mathcal{S} f\|_{L^{p}(\omega)} \leq C\|f\|_{L^{p}(\omega)}, \quad\|\mathcal{N} f\|_{L^{p}(\omega)} \leq C\|f\|_{L^{p}(\omega)}
$$

hold for functions $f \in h^{p}(\omega)$.
We also need relations between various balls. For $x \in B$, let $B(x)$ be the ball centered at x with radius $r(x) / 4$. Note $r(x) \approx r(y)$ for $y \in B(x)$ or $x \in B(y)$.

Lemma 3.2. Let $x \in B$ and $y \in B(x)$. Put $y=|y| \eta$ where $\eta \in \partial B$. Then the following hold.
(1) $B(x) \subset \widehat{S}_{2 r(y)}(\eta)$.
(2) $y \in \Gamma(\zeta)$ for any $\zeta \in S_{r(y)}(\eta)$.

Proof. For $y \in B(x)$, we have

$$
|r(x)-r(y)| \leq|x-y|<\frac{r(x)}{4}
$$

and thus $r(x)<2 r(y)$. It follows that, for $z \in B(x)$,

$$
|\eta-z| \leq|\eta-y|+|y-z|<r(y)+\frac{r(x)}{2}<2 r(y)
$$

This shows the first part of the lemma. Next, assume $\zeta \in S_{r(y)}(\eta)$. Then

$$
|\zeta-y| \leq|\zeta-\eta|+|\eta-y|=|\zeta-\eta|+(1-|y|)<2 r(y)
$$

and therefore $y \in \Gamma(\zeta)$.
Proof of (1) \Longrightarrow (4). Assume (1) holds. Let $f \in h^{p}(\omega)$. First, note that we have by Proposition 2.1

$$
\begin{equation*}
\left|\partial^{\alpha} f(x)\right|^{p} \lesssim r(x)^{-p m+p-n} \int_{B(x)}|\nabla f|^{p} d V \quad(x \in B) \tag{3.1}
\end{equation*}
$$

Also, for any $y \in B$, we have by assumption and doubling property

$$
\begin{equation*}
\mu\left[\widehat{S}_{2 r(y)}(\eta)\right] \lesssim \omega\left[S_{2 r(y)}(\eta)\right] r(y)^{m p} \lesssim C_{\omega} \omega\left[S_{r(y)}(\eta)\right] r(y)^{m p} \tag{3.2}
\end{equation*}
$$

where $y=|y| \eta, \eta \in \partial B$.

Now, integrate both sides of (3.1) against the measure $d \mu$, interchange the order of integrations using Lemma 3.2, and then apply (3.2). What we have is

$$
\begin{aligned}
\int_{B}\left|\partial^{\alpha} f(x)\right|^{p} d \mu(x) & \lesssim \int_{B} r(x)^{-m p+p-n} \int_{B(x)}|\nabla f(y)|^{p} d y d \mu(x) \\
& \lesssim \int_{B}|\nabla f(y)|^{p} r(y)^{-m p-n+p} \mu\left[\widehat{S}_{2 r(y)}\left(\frac{y}{|y|}\right)\right] d y \\
& \lesssim C_{\omega} \int_{B}|\nabla f(y)|^{p} r(y)^{-n+p} \omega\left[S_{r(y)}\left(\frac{y}{|y|}\right)\right] d y
\end{aligned}
$$

Here and elsewhere, $d y=d V(y)$. Thus, interchanging the order of integrations once more, we have

$$
\begin{align*}
\int_{B}\left|\partial^{\alpha} f(x)\right|^{p} d \mu(x) & \lesssim \int_{B}|\nabla f(y)|^{p} r(y)^{-n+p} \int_{S_{r(y)}(y /|y|)} \omega(\zeta) d \sigma(\zeta) d y \\
& \lesssim \int_{\partial B} \int_{\Gamma(\zeta)}|\nabla f(y)|^{p} r(y)^{-n+p} d y \omega(\zeta) d \sigma(\zeta) \tag{3.3}
\end{align*}
$$

where the second inequality holds by Lemma 3.2. Note that

$$
\begin{aligned}
\int_{\Gamma(\zeta)}|\nabla f|^{p} r^{-n+p} d V & \leq\left(\sup _{y \in \Gamma(\zeta)} r(y)|\nabla f(y)|\right)^{p-2} \int_{\Gamma(\zeta)}|\nabla f|^{2} r^{-n+2} d V \\
& \lesssim|\mathcal{N} f(\zeta)|^{p-2}|\mathcal{S} f(\zeta)|^{2}
\end{aligned}
$$

for all $\zeta \in \partial B$. The second inequality of the above holds by Proposition 2.1. Inserting the above into (3.3) and then applying Hölder's inequality, we finally have

$$
\begin{aligned}
\int_{B}\left|\partial^{\alpha} f\right|^{p} d \mu & \lesssim \int_{\partial B}|\mathcal{N} f|^{p-2}|\mathcal{S} f|^{2} \omega d \sigma \\
& \lesssim\left(\int_{\partial B}|\mathcal{N} f|^{p} \omega d \sigma\right)^{1-2 / p}\left(\int_{\partial B}|\mathcal{S} f|^{p} \omega d \sigma\right)^{2 / p} \\
& \lesssim \int_{\partial B}|f|^{p} \omega d \sigma
\end{aligned}
$$

Here, the last inequality follows from Lemma 3.1. This completes the proof.
Proof of (1) $\Longrightarrow(2)+(3)$. Assume (1) holds. Then, for each nonnegative integer $k \leq m$, we have

$$
\mu\left[\widehat{S}_{\delta}(\zeta)\right] \lesssim \omega\left[S_{\delta}(\zeta)\right] \delta^{k p}
$$

for all $\zeta \in \partial B$ and $\delta>0$. Thus, since we already have (1) \Longrightarrow (4), the above yields

$$
\sum_{|\alpha| \leq m} \int_{B}\left|\partial^{\alpha} f\right|^{p} d \mu \lesssim \int_{\partial B}|f|^{p} \omega d \sigma
$$

for all $f \in h^{p}(\omega)$, which trivially implies (2) and (3). The proof is complete.
Before proceeding to the proofs of other implications, we first introduce some notations. Let φ be the Newtonian potential. i.e.,

$$
\varphi(x)= \begin{cases}\log |x| & \text { for } n=2 \tag{3.4}\\ |x|^{-n+2} & \text { for } n>2\end{cases}
$$

By induction one may verify that, to each multi-index $\gamma \neq 0$, there corresponds a (harmonic) homogeneous polynomial g_{γ} of degree $|\gamma|$ such that

$$
\begin{equation*}
\partial^{\gamma} \varphi(x)=g_{\gamma}(x)|x|^{-(n+2|\gamma|-2)} \tag{3.5}
\end{equation*}
$$

Now, for $\delta>0$ and $\zeta, \eta \in \partial B$, define $\varphi_{\delta, \zeta, \eta}$ by

$$
\varphi_{\delta, \zeta, \eta}(x)=\varphi(x-\zeta-\delta \eta)
$$

Note that we have by (3.5) and homogeneity of g_{γ}

$$
\begin{equation*}
\left|\partial^{\gamma} \varphi_{\delta, \zeta, \eta}(x)\right| \leq \frac{\left\|g_{\gamma}\right\|_{L^{\infty}(\sigma)}}{|x-\zeta-\delta \eta|^{n+|\gamma|-2}} \tag{3.6}
\end{equation*}
$$

We will use these functions as test functions in the proofs of all other remaining implications. We first prove some properties of those functions. For simplicity we write $S_{\delta}(\zeta)=S_{\delta}$ and $\widehat{S}_{\delta}(\zeta)=\widehat{S}_{\delta}$. Recall that C_{ω} is the "doubling" constant of $\omega \in A_{p}$ introduced in (2.1). In what follows $\zeta \cdot \eta$ denotes the euclidean inner product on \mathbf{R}^{n}.

Lemma 3.3. Let $\omega \in A_{p}$ and γ be a multi-index such that $C_{\omega} \leq 2^{|\gamma|}$. Then, there exists a constant $C_{p, \gamma}$ such that

$$
\int_{\partial B}\left|\partial^{\gamma} \varphi_{\delta, \zeta, \eta}\right|^{p} \omega d \sigma \leq C_{p, \gamma} \frac{\omega\left(S_{\delta}\right)}{(\delta \zeta \cdot \eta)^{p(n+|\gamma|-2)}}
$$

for all $0<\delta<1$ and $\zeta, \eta \in \partial B$ with $\zeta \cdot \eta>0$.
Proof. Assume $\delta<1$ and $\zeta, \eta \in \partial B$ with $\zeta \cdot \eta>0$. Let $N=|\gamma|$. Note $\sqrt{1+2 \delta \zeta \cdot \eta}<|\zeta+\delta \eta|<2$. Thus, for $\xi \in \partial B$, we have

$$
|\xi-\zeta-\delta \eta| \geq|\zeta+\delta \eta|-1 \gtrsim \delta \zeta \cdot \eta
$$

and thus, by (3.6),

$$
\begin{equation*}
\left|\partial^{\gamma} \varphi_{\delta, \zeta, \eta}(\xi)\right| \lesssim \frac{\left\|g_{\gamma}\right\|_{L^{\infty}(\sigma)}}{(\delta \zeta \cdot \eta)^{n+N-2}}, \quad \xi \in \partial B \tag{3.7}
\end{equation*}
$$

For $\xi \notin S_{2^{k} \delta}, k \geq 1$, we have

$$
|\xi-\zeta-\delta \eta| \geq|\xi-\zeta|-\delta \geq 2^{k} \delta-\delta \gtrsim 2^{k} \delta
$$

and thus, by (3.6),

$$
\begin{equation*}
\left|\partial^{\gamma} \varphi_{\delta, \zeta, \eta}(\xi)\right| \lesssim \frac{\left\|g_{\gamma}\right\|_{L^{\infty}(\sigma)}}{\left(2^{k} \delta\right)^{n+N-2}}, \quad \xi \in S_{2^{k+1} \delta} \backslash S_{2^{k} \delta} \tag{3.8}
\end{equation*}
$$

for all $k \geq 1$. Also, since $C_{\omega}<2^{N}$, we have by doubling property

$$
\omega\left(S_{2^{k+1} \delta}\right) \leq C_{\omega}^{k+1} \omega\left(S_{\delta}\right) \leq 2^{N(k+1)} \omega\left(S_{\delta}\right)
$$

for each $k \geq 0$. Thus, it follows from (3.7) and (3.8) that

$$
\begin{aligned}
\int_{\partial B}\left|\partial^{\gamma} \varphi_{\delta, \zeta, \eta}\right|^{p} \omega d \sigma & =\int_{S_{2 \delta}}\left|\partial^{\gamma} \varphi_{\delta, \zeta, \eta}\right|^{p} \omega d \sigma+\sum_{k=1}^{\infty} \int_{S_{2^{k+1} \delta} \backslash S_{2^{k} \delta}}\left|\partial^{\gamma} \varphi_{\delta, \zeta, \eta}\right|^{p} \omega d \sigma \\
& \lesssim\left\|g_{\gamma}\right\|_{L^{\infty}(\sigma)} \frac{2^{N} \omega\left(S_{\delta}\right)}{(\delta \zeta \cdot \eta)^{p(n+N-2)}} \sum_{k=0}^{\infty} 2^{-k[p(n+N-2)-N]} \\
& =C_{p, \gamma} \frac{\omega\left(S_{\delta}\right)}{(\delta \zeta \cdot \eta)^{p(n+N-2)}}
\end{aligned}
$$

as desired. The proof is complete.
For $\xi \in \partial B$, let D_{ξ} denote the differentiation in the direction of ξ.
Lemma 3.4. For each positive integer m there exists a constant $C_{m} \neq 0$ such that

$$
D_{\xi}^{m} \varphi(x)=\frac{C_{m}}{|x|^{n+m-2}}\left[1+O\left(1-\left|\xi \cdot \frac{x}{|x|}\right|\right)\right]
$$

for all $\xi \in \partial B$ and $x \neq 0$ such that $\xi \cdot x<0$. The constant involved in $O(1-|\xi \cdot x /|x||)$ depends only on n and m.

Proof. Let m be a positive integer. Let $\xi \in \partial B, x \neq 0$ and assume $\xi \cdot x<0$. Put $\eta=x /|x|$. A simple calculation yields

$$
D_{\xi}\left(|x|^{-k}\right)=-k \frac{\xi \cdot x}{|x|^{k+2}}, \quad D_{\xi}\left[(\xi \cdot x)^{k}\right]=k(\xi \cdot x)^{k-1}
$$

for integers $k \geq 0$. Thus, by induction, one can show that there are coefficients $c_{j}=$ $c_{j}(m)$ such that

$$
\begin{aligned}
D_{\xi}^{m} \varphi(x) & =\sum_{0 \leq j \leq m / 2} c_{j} \frac{(\xi \cdot x)^{m-2 j}}{|x|^{n-2+2 m-2 j}} \\
& =(-1)^{m}|x|^{-(n+m-2)} \sum_{0 \leq j \leq m / 2} c_{j}|\xi \cdot \eta|^{m-2 j} .
\end{aligned}
$$

Note $\sum c_{j}=D_{\xi}^{m} \varphi(\xi)$ which is a nonzero (by a direct calculation) constant depending only on n and m. Thus, letting $C_{m}=\sum c_{i} \neq 0$, we have

$$
\sum_{0 \leq j \leq m / 2} c_{j}|\xi \cdot \eta|^{m-2 j}=C_{m}[1+O(1-|\xi \cdot \eta|)]
$$

where the constant involved in $O(1-|\xi \cdot \eta|)$ is easily seen to depend only on n and m. The proof is complete.

Proof of (2) \Longrightarrow (1). Assume (2) holds. First, fix a large positive integer N such that $C_{\omega}<2^{N}$. Let $\zeta \in \partial B$. For $0<\delta<1$, put $f_{\delta}=\mathcal{D}^{N} \varphi_{\delta}$ where $\varphi_{\delta}=\varphi_{\delta, \zeta, \zeta}$. Then f_{δ} is harmonic on \bar{B}. We have by assumption and Lemma 3.3

$$
\begin{equation*}
\int_{B}\left|\mathcal{D}^{m} f_{\delta}\right|^{p} d \mu \lesssim \int_{\partial B}\left|f_{\delta}\right|^{p} \omega d \sigma \lesssim \frac{\omega\left(S_{\delta}\right)}{\delta^{p(n+N-2)}} . \tag{3.9}
\end{equation*}
$$

Now, consider $y \in \widehat{S}_{\epsilon \delta}$ where $\epsilon<1 / 2$ is a small positive number to be chosen in a moment. Note that

$$
D_{y /|y|}^{m} f_{\delta}(y)=|y|^{-m} \sum_{|\gamma|=m} \frac{m!}{\gamma!} y^{\gamma} \partial^{\gamma} f_{\delta}(y) .
$$

Also, note

$$
\mathcal{D}^{m} f_{\delta}(y)=\sum_{|\gamma|=m} \frac{m!}{\gamma!} y^{\gamma} \partial^{\gamma} f_{\delta}(y)+E_{m} f_{\delta}(y)
$$

for some differential operator E_{m} of order $(m-1)$ with smooth coefficients. Therefore, we have

$$
\begin{equation*}
\mathcal{D}^{m} f_{\delta}(y)=|y|^{m} D_{y /|y|}^{m} f_{\delta}(y)+E_{m} f_{\delta}(y) . \tag{3.10}
\end{equation*}
$$

We first estimate the first term of the right side of (3.10). Put $z=y-\zeta-\delta \zeta$ and $\xi=y /|y| \in S_{\epsilon \delta}$. Then, $\delta(1-\epsilon)<|z|<\delta(1+\epsilon)$ and thus $|z| \approx \delta$. Therefore we have

$$
\xi \cdot z=(\xi-\zeta) \cdot(\xi-\delta \zeta)-\delta<\delta(2 \epsilon-1)<0
$$

and

$$
\left|\xi \cdot \frac{z}{|z|}\right| \gtrsim 1-2 \epsilon
$$

Note $\mathcal{D}_{\xi}^{k} \varphi_{\delta}(y)=D_{\xi}^{k} \varphi(y-\zeta-\delta \zeta)$ for any integer $k \geq 1$. Hence, by Lemma 3.4, we have

$$
D_{\xi}^{m} f_{\delta}(y)=D_{\xi}^{N+m} \varphi(y-\zeta-\delta \zeta)=\frac{C_{1}}{\delta^{n+N+m-2}}[1+O(\epsilon)]
$$

Recall that $C_{1} \neq 0$ is a constant depending only on n and $m+N$ and the same is true for the constant involved in $O(\epsilon)$. Next, for the second term of the right side of (3.10), it is straightforward to see from (3.6) that

$$
\begin{equation*}
\left|E_{m} f_{\delta}(y)\right| \lesssim \delta^{-(n+N+m-3)} \tag{3.11}
\end{equation*}
$$

Since $|y| \approx 1$, combining these estimates, we have by (3.10)

$$
\left|\mathcal{D}^{m} f_{\delta}(y)\right| \approx \frac{1+O(\epsilon)+O(\delta)}{\delta^{n+N+m-2}}
$$

so that we can fix ϵ and δ_{0} sufficiently small such that

$$
\begin{equation*}
\left|\mathcal{D}^{m} f_{\delta}(y)\right| \approx \frac{1}{\delta^{n+N+m-2}}, \quad y \in \widehat{S}_{\epsilon \delta}, \quad \delta \leq \delta_{0} \tag{3.12}
\end{equation*}
$$

which is a uniform estimate independent of ζ and δ. Thus, for $\delta \leq \delta_{0}$, we obtain from (3.12) and (3.9)

$$
\frac{\mu\left(\widehat{S}_{\epsilon \delta}\right)}{\delta^{p(n+N+m-2)}} \approx \int_{\widehat{S}_{\epsilon \delta}}\left|\mathcal{D}^{m} f_{\delta}\right|^{p} d \mu \lesssim \frac{\omega\left(S_{\delta}\right)}{\delta^{p(n+N-2)}}
$$

so that

$$
\mu\left(\widehat{S}_{\epsilon \delta}\right) \lesssim \delta^{m p} \omega\left(S_{\delta}\right) \lesssim \delta^{m p} \omega\left(S_{\epsilon \delta}\right)
$$

where the second inequality holds by doubling property. Consequently, for $\delta \leq \epsilon \delta_{0}$, we have

$$
\begin{equation*}
\mu\left(\widehat{S}_{\delta}\right) \lesssim \delta^{m p} \omega\left(S_{\delta}\right) \tag{3.13}
\end{equation*}
$$

and this estimate is independent of ζ. Note that the above argument shows that $\widehat{\mu\left(S_{\epsilon \delta_{0}}\right)}{ }^{2}$ for all $\zeta \in \partial B$. Since $d \mu$ is locally finite, it follows that $d \mu$ is a finite measure. Thus, for $\delta>\epsilon \delta_{0}$, we also have (3.13) by doubling property. This completes the proof.

Proof of (3) \Longrightarrow (1). Assume (3) holds. As above, fix a large positive integer N such that $C_{\omega}<2^{N}$. Let $\zeta \in \partial B$ and choose $\xi \in \partial B$ such that $\zeta \cdot \xi=0$. Let $\eta=\epsilon \zeta+\sqrt{1-\epsilon^{2}} \xi$ where $\epsilon<1 / 2$ is a small positive number to be chosen later. For $0<\delta<1$, this time we let $f_{\delta}=D_{\xi}^{N} \varphi_{\delta}$ where $\varphi_{\delta}=\varphi_{\delta, \zeta, \eta}$. Then f_{δ} is harmonic on \bar{B}. Since $\zeta \cdot \eta=\epsilon$, we have by assumption and Lemma 3.3

$$
\begin{equation*}
\int_{B}\left|\mathcal{D}^{m} f_{\delta}\right|^{p} d \mu \lesssim \int_{\partial B}\left|f_{\delta}\right|^{p} \omega d \sigma \lesssim \frac{\omega\left(S_{\delta}\right)}{(\epsilon \delta)^{p(n+N-2)}} . \tag{3.14}
\end{equation*}
$$

Consider $y \in \widehat{S}_{\epsilon \delta}$ and put $z=y-\zeta-\delta \eta$. Then, $\delta(1-\epsilon)<|z|<\delta(1+\epsilon)$ and thus $|z| \approx \delta$. Since $\eta \cdot \xi=\sqrt{1-\epsilon^{2}}>1-\epsilon$, we have

$$
\xi \cdot z=(y-\zeta) \cdot \xi-\delta \eta \cdot \xi<\delta(2 \epsilon-1)<0
$$

and

$$
\left|\xi \cdot \frac{z}{|z|}\right| \gtrsim 1-2 \epsilon .
$$

Therefore, by Lemma 3.4, we have

$$
\begin{equation*}
D_{\xi}^{m} f_{\delta}(y)=D_{\xi}^{N+m} \varphi(y-\zeta-\delta \eta)=\frac{C_{1}}{\delta^{n+N+m-2}}[1+O(\epsilon)] \tag{3.15}
\end{equation*}
$$

where $C_{1} \neq 0$ is a constant depending only on n and $m+N$ and the same is true for the constant involved in $O(\epsilon)$. Now, since $\zeta \cdot \xi=0$, we can find coefficients $c_{i j}=$ $c_{i j}(\zeta, \xi)$ such that

$$
D_{\xi} f_{\delta}(\zeta)=T f_{\delta}(\zeta), \quad T=\sum c_{i j} \mathcal{T}_{i j} .
$$

Moreover, as in the proof of Proposition 5.2 of [2], we may find those coefficients in such a way that $\sup _{\zeta, \xi}\left|c_{i j}(\zeta, \xi)\right|<\infty$. Let

$$
a_{j}(x, \xi)=\sum_{i<j} c_{i j} x_{i}-\sum_{i>j} c_{j i} x_{i}
$$

for each j. Put $a=\left(a_{1}, \ldots, a_{n}\right)$. Then, we have

$$
\begin{aligned}
T^{m} f_{\delta}(y) & =\left(\sum a_{j}(y, \xi) \partial_{j}\right)^{m} f_{\delta}(y) \\
& =\sum_{|\beta|=m} \frac{m!}{\beta!} a^{\beta}(y, \xi) \partial^{\beta} f_{\delta}(y)+E_{m} f_{\delta}(y) \\
& =D_{\xi}^{m} f_{\delta}(y)+\sum_{|\beta|=m} \frac{m!}{\beta!}\left[a^{\beta}(y, \xi)-\xi^{\beta}\right] \partial^{\beta} f_{\delta}(y)+E_{m} f_{\delta}(y)
\end{aligned}
$$

where E_{m} is a differential operator of order $(m-1)$ with smooth coefficients. Note $a(\zeta, \xi)=\xi$. Thus, since $c_{i j}$'s are uniformly bounded, we have

$$
|a(y, \xi)-\xi| \leq C_{2}|y-\zeta|<C_{2} \epsilon \delta, \quad y \in \widehat{S}_{\epsilon \delta}
$$

for some constant C_{2} depending only on n. Also, by (3.6) we have

$$
\sum_{|\beta|=m}\left|\partial^{\beta} f_{\delta}(y)\right| \leq \frac{C_{3}}{\delta^{n+N+m-2}}, \quad y \in \widehat{S}_{\epsilon \delta}
$$

where C_{3} is a constant depending only on n and $m+N$. Thus, for $y \in \widehat{S}_{\epsilon \delta}$, we have

$$
T^{m} f_{\delta}(y)=D_{\xi}^{m} f_{\delta}(y)+\frac{O(\epsilon \delta)}{\delta^{n+N+m-2}}+E_{m} f_{\delta}(y)
$$

Therefore, by (3.15) and (3.11), we can fix $\epsilon>0$ and $\delta_{0}>0$ such that

$$
\begin{equation*}
\left|T^{m} f_{\delta}(y)\right| \approx \frac{1}{\delta^{n+N+m-2}}, \quad y \in \widehat{S}_{\epsilon \delta}, \quad \delta \leq \delta_{0} \tag{3.16}
\end{equation*}
$$

Now, for the rest of the proof, one may proceed as in the proof of $(2) \Longrightarrow$ (1) by using (3.14) and (3.16). The proof is complete.

Proof of (4) \Longrightarrow (1). Assume (4) holds. By compactness of $\partial \boldsymbol{B}$, it suffices to give local estimates. So, fix $\eta \in \partial B$ and assume $\zeta \in \partial B, \zeta \cdot \eta>1 / 2$. Since φ is harmonic and not a polynomial, we can choose $\beta=\beta(\eta)$ such that $\partial^{\alpha} \partial^{\beta} \varphi(-\eta) \neq 0$ and $C_{\omega}<2^{|\beta|}$. Let $N=|\beta|$. For $0<\delta<1$, put $f_{\delta}=\partial^{\beta} \varphi_{\delta}$ where $\varphi_{\delta}=\varphi_{\delta, \zeta, \eta}$ $f_{\delta}=\partial^{\beta} \varphi_{\delta, \zeta, \eta}$. Then f_{δ} is harmonic on \bar{B}. Since $\zeta \cdot \eta>1 / 2$, we have by assumption and Lemma 3.3

$$
\begin{equation*}
\int_{B}\left|\partial^{\gamma} f_{\delta}\right|^{p} d \mu \lesssim \int_{\partial B}\left|f_{\delta}\right|^{p} \omega d \sigma \leq C_{1} \frac{\omega\left(S_{\delta}\right)}{\delta^{p(n+N-2)}} \tag{3.17}
\end{equation*}
$$

where $C_{1}=C_{1}(p, \eta)$ is a constant independent of ζ and δ.
Consider $y \in \widehat{S}_{\epsilon \delta}$ where $\epsilon=\epsilon(\eta)<1 / 2$ is a small positive constant to be chosen in a moment. Put $z=(y-\zeta) / \delta$ and $\gamma=\alpha+\beta$. Then, by (3.5), we have

$$
\begin{equation*}
\partial^{\alpha} f_{\delta}(y)=\partial^{\gamma} \varphi(\delta z-\delta \eta)=\delta^{-(n+N+m-2)} \frac{g_{\gamma}(z-\eta)}{|z-\eta|^{n+2 N+2 m-2}} \tag{3.18}
\end{equation*}
$$

Note $g_{\gamma}(z-\eta)=g_{\gamma}(-\eta)+O(|z|)$ and $|z|<\epsilon$. Also, $g_{\gamma}(-\eta) \neq 0$, because $\partial^{\gamma} \varphi(-\eta) \neq 0$. Thus,

$$
g_{\gamma}(z-\eta)=g_{\gamma}(-\eta)[1+O(\epsilon)], \quad y \in \widehat{S}_{\epsilon \delta}
$$

Here, the constant involved in $O(\epsilon)$ is independent of ζ and δ. Note $|z-\eta| \approx 1$. Thus, by (3.18), we may fix ϵ sufficiently small such that

$$
\begin{equation*}
\left|\partial^{\alpha} f_{\delta}(y)\right| \approx \frac{1}{\delta^{n+N+m-2}} \quad y \in \widehat{S}_{\epsilon \delta}, \quad \delta<1 \tag{3.19}
\end{equation*}
$$

and this estimate is independent of ζ and δ.
Now, using (3.17), (3.19) and imitating the argument of $(2) \Longrightarrow$ (1), we obtain

$$
\mu\left(\widehat{S}_{\delta}\right) \leq C_{\eta} \delta^{m p} \omega\left(S_{\delta}\right), \quad y \in \widehat{S}_{\delta}, \quad \delta>0
$$

which is an estimate independent of ζ and δ. The proof is complete.

4. The case $1<p<q<\infty$

In this section we give a proof of the main theorem for the case $1<p<q<\infty$. Except for the implication $(1) \Longrightarrow(4)$, the arguments of other implications of the previous section are easily modified and thus details are left to the readers. For the implication $(1) \Longrightarrow$ (4), we make use of the idea of [7].

Lemma 4.1. For $a>1$ and $\omega \in A_{p}$, let $d \tau_{a}$ be a measure on B defined by

$$
d \tau_{a}(y)=r(y)^{-n} \omega\left[S_{r(y)}\left(\frac{y}{|y|}\right)\right]^{a} d y .
$$

Then, we have

$$
\begin{equation*}
\tau_{a}\left[\widehat{S}_{\delta}(\zeta)\right] \leq C \omega\left[S_{\delta}(\zeta)\right]^{a} \tag{4.1}
\end{equation*}
$$

for all $\zeta \in \partial B$ and $\delta>0$.
The analogue of the above lemma is proved in [7, Lemma 2.3] on the unit ball of the complex n-space. Their idea is to use reverse Hölder's inequality for A_{p}-weights. More precisely, to each $\omega \in A_{p}$ there corresponds a constant $b>1$ such that

$$
\begin{equation*}
\left(\frac{1}{|S|} \int_{S} \omega^{a} d \sigma\right)^{1 / a} \lesssim \frac{1}{|S|} \int_{S} \omega d \sigma \tag{4.2}
\end{equation*}
$$

holds for all $S=S_{\delta}(\zeta)$ and $0<a \leq b$.
Proof. Let $S_{\delta}(\zeta)$ be given. First, assume $1<a \leq b$ where b is chosen so that (4.2) holds for ω. Then, by integrating in polar coordinates, we have

$$
\begin{equation*}
\tau_{a}\left[\widehat{S}_{\delta}(\zeta)\right] \lesssim \int_{0}^{\delta} t^{-n} \int_{S_{\delta}(\zeta)} \omega\left[S_{t}(\eta)\right]^{a} d \sigma(\eta) d t \tag{4.3}
\end{equation*}
$$

Note that, for $\eta \in S_{\delta}(\zeta)$ and $0<t<\delta$, we have $S_{t}(\eta) \subset S_{2 \delta}(\zeta)$. Thus, letting $\left|S_{t}\right|=$ $\left|S_{t}(\xi)\right|$ for any $\xi \in \partial B$, we have by Hölder's inequality, reverse Hölder's inequality and doubling property

$$
\begin{aligned}
\int_{S_{\delta}(\zeta)} \omega\left[S_{t}(\eta)\right]^{a} d \sigma(\eta) & \leq\left|S_{t}\right|^{a-1} \int_{S_{2 \delta}(\zeta)} \int_{S_{t}(\eta)} \omega(\xi)^{a} d \sigma(\xi) d \sigma(\eta) \\
& \leq\left|S_{t}\right|^{a} \int_{S_{2 \delta}(\zeta)} \omega^{a} d \sigma \\
& \lesssim\left|S_{t}\right|^{a}\left|S_{2 \delta}\right|^{1-a} \omega\left[S_{2 \delta}(\zeta)\right]^{a} \\
& \lesssim\left|S_{t}\right|^{a}\left|S_{\delta}\right|^{1-a} \omega\left[S_{\delta}(\zeta)\right]^{a} .
\end{aligned}
$$

Now, inserting this estimate into (4.3), we obtain (4.1).
Next, assume $a>b$. Note that we have by doubling property

$$
\frac{\omega\left[S_{r(y)}(y /|y|)\right]}{\omega\left[S_{\delta}(\zeta)\right]} \leq \frac{\omega\left[S_{2 \delta}(\zeta)\right]}{\omega\left[S_{\delta}(\zeta)\right]} \lesssim 1, \quad y \in \widehat{S}_{\delta(\zeta)}
$$

so that

$$
\begin{aligned}
\omega\left[S_{\delta}(\zeta)\right]^{-a} \tau_{a}\left[\widehat{S}_{\delta}(\zeta)\right] & =\int_{\widehat{S}_{\delta}(\zeta)}\left(\frac{\omega\left[S_{r(y)}(y /|y|)\right]}{\omega\left[S_{\delta}(\zeta)\right]}\right)^{a} r(y)^{-n} d y \\
& \lesssim \omega\left[S_{\delta}(\zeta)\right]^{-b} \tau_{b}\left[\widehat{S}_{\delta}(\zeta)\right]
\end{aligned}
$$

Thus, (4.1) follows from the previous case. The proof is complete.
The following is a special case of [3, Theorem 5.2]. In fact, Gu [3] worked on the half-space and a straightforward modification gives the same on the ball.

Lemma 4.2. Let $1<p \leq q<\infty$. Assume $\omega \in A_{p}$ and $d \tau$ is a locally finite positive Borel measure on B. Then,

$$
\tau\left[\widehat{S}_{\delta}(\zeta)\right] \leq C \omega\left[S_{\delta}(\zeta)\right]^{q / p} \quad \text { for all } \quad \zeta \in \partial B \quad \text { and } \quad \delta>0
$$

if and only if

$$
\|f\|_{L^{q}(\tau)} \leq C\|f\|_{L^{p}(\omega)} \quad \text { for all } \quad f \in h^{p}(\omega)
$$

Now, we give the proof of (1) \Longrightarrow (4). Assume (1) holds. Let $f \in h^{p}(\omega)$. One may proceed as in the case $p=q \geq 2$ to obtain the following estimates:

$$
\int_{B}\left|\partial^{\alpha} f(x)\right|^{q} d \mu(x) \lesssim \int_{B} r(x)^{-m q-n} \int_{B(x)}|f(y)|^{q} d y d \mu(x)
$$

$$
\begin{aligned}
& \lesssim \int_{B}|f(y)|^{q} r(y)^{-m q-n} \mu\left[\widehat{S}_{2 r(y)}\left(\frac{y}{|y|}\right)\right] d y \\
& \lesssim \int_{B}|f(y)|^{q} d \tau(y)
\end{aligned}
$$

where $d \tau=d \tau_{q / p}$ is the measure defined as in Lemma 4.1. Therefore, we conclude (4) by Lemma 4.1 and Lemma 4.2.

5. Compactness

Recall that a linear operator Λ from a Banach space into another is called compact if Λ maps bounded sets onto relatively compact sets. In the following we let $\widehat{\mu}_{\delta}=\widehat{\mu}_{\delta, m, p, q}$ denote the function defined by

$$
\widehat{\mu}_{\delta}(\zeta)=\frac{\mu\left[\widehat{S}_{\delta}(\zeta)\right]}{\omega\left[S_{\delta}(\zeta)\right]^{q / p} \delta^{m p}}, \quad \zeta \in \partial B, \quad \delta>0
$$

and let

$$
\mathcal{T}^{m}=\sum_{|\beta|=m}\left|\mathcal{T}^{\beta}\right| .
$$

Theorem 5.1. Assume $2 \leq p=q<\infty$ or $1<p<q<\infty$. Let $\omega \in A_{p}$ and α be a multi-index of order $m \geq 1$. Then, for a locally finite positive Borel measure $d \mu$ on B, the following are equivalent.
(1) $\widehat{\mu}_{\delta}(\zeta)=o(1) \quad$ uniformly in $\zeta \in \partial B$ as $\delta \rightarrow 0$.
(2) $\mathcal{D}^{m}: h^{p}(\omega) \rightarrow L^{q}(\mu)$ is compact.
(3) $\mathcal{T}^{m}: h^{p}(\omega) \rightarrow L^{q}(\mu)$ is compact.
(4) $\partial^{\alpha}: h^{p}(\omega) \rightarrow L^{q}(\mu)$ is compact.

Proof of (1) \Longrightarrow (4). Assume (1) holds. For $0<t<1$, let B_{t} be the ball centered at the origin with radius t and \mathcal{X}_{t} be the characteristic function of B_{t}. Define $\Lambda_{t}: h^{p}(\omega) \rightarrow L^{q}(\mu)$ by $\Lambda_{t} f=\mathcal{X}_{t} \partial^{\alpha} f$. First, we show that each Λ_{t} is compact. Let U be a given bounded set in $h^{p}(\omega)$ and fix $f \in U$. Then, for each $x \in B$, we have

$$
f(x)=\int_{\partial B} P(x, \zeta) f(\zeta) d \sigma(\zeta)
$$

where P is the Poisson kernel for B. Hence, by Hölder's inequality, we have

$$
\begin{aligned}
|f(x)| & \leq \int_{\partial B} P(x, \zeta)|f(\zeta)| d \sigma(\zeta) \\
& \leq \frac{1}{(1-|x|)^{n-1}} \int_{\partial B}|f| \omega^{-1} \cdot \omega d \sigma
\end{aligned}
$$

$$
\lesssim \frac{\|f\|_{h^{p}(\omega)}\left\|\omega^{-1}\right\|_{L^{p^{\prime}}(\omega)}}{(1-|x|)^{n-1}}
$$

where p^{\prime} is conjugate index of p. Note $\omega^{-1} \in L^{p^{\prime}}(\omega)$, because $\omega \in A_{p}$. Thus U is locally uniformly bounded and thus is a normal family. Therefore, there is a sequence $\left\{f_{j}\right\}$ in U which converges uniformly on every compact subset of B. Let $f=\lim f_{j}$. Now, since $\partial^{\alpha} f_{j} \rightarrow \partial^{\alpha} f$ uniformly on B_{t}, we have $\Lambda_{t} f_{j} \rightarrow \mathcal{X}_{t} \partial^{\alpha} f$ in $L^{q}(\mu)$. Hence, $\Lambda_{t}: h^{p}(\omega) \rightarrow L^{q}(\mu)$ is compact.

For the case $p<q$, one may follow the argument (using Lemma 4.1) in the previous section to obtain

$$
\int_{B \backslash B_{t}}\left|\partial^{\alpha} f\right|^{q} d \mu \lesssim\left(\sup _{\substack{\delta \lesssim 1-t \\ \tilde{\zeta} \partial \partial B}} \widehat{\mu}_{\delta}(\zeta)\right)\left(\int_{\partial B}|f|^{p} \omega d \sigma\right)^{q / p}
$$

for functions $f \in h^{p}(\omega)$. Also, one may follow the arguments of (3.1), (3.2) and (3.3) to see the same for the case $p=q \geq 2$. Hence, in either case, we have

$$
\left\|\Lambda_{t}-\partial^{\alpha}\right\| \lesssim\left(\sup _{\substack{\delta<1-t \\ \zeta \in \partial B}} \widehat{\mu}_{\delta}(\zeta)\right)^{1 / q} \rightarrow 0 \quad \text { as } \quad t \rightarrow 1
$$

so that ∂^{α} is compact, as desired. This completes the proof.

Now, the implication $(1) \Longrightarrow(2)+(3)$ easily follows from $(1) \Longrightarrow$ (4).
Proof of $(2) \Longrightarrow$ (1). Assume (2) holds. Let $\zeta \in \partial B$. We continue using the notations defined in the proof of $(2) \Longrightarrow(1)$ of Section 3. For $\delta>0$, let

$$
h_{\delta}=\delta^{n+N-2} \omega\left(S_{\delta}\right)^{-1 / p} f_{\delta}
$$

Note $\left\|h_{\delta}\right\|_{h^{p}(\omega)} \lesssim 1$ by Lemma 3.3. First, we show that

$$
\begin{equation*}
\int_{B}\left|\mathcal{D}^{m} h_{\delta}\right|^{q} d \mu \rightarrow 0 \quad \text { as } \quad \delta \rightarrow 0 \tag{5.1}
\end{equation*}
$$

Suppose not. Then there exists a sequence $\delta_{j} \rightarrow 0$ such that

$$
\inf _{j} \int_{B}\left|\mathcal{D}^{m} h_{\delta_{j}}\right|^{q} d \mu>0
$$

Since h_{δ} 's are bounded in $h^{p}(\omega)$, by using the compactness of \mathcal{D}^{m}, we may assume $\mathcal{D}^{m} h_{\delta_{j}} \rightarrow h$ in $L^{q}(\mu)$ for some $h \in L^{q}(\mu)$. Note $\|h\|_{L^{q}(\mu)}>0$. On the other hand,
since f_{δ} 's are locally uniformly bounded by (3.6) and

$$
\omega(\partial B) \leq 2^{N\left(\log _{2} \delta^{-1}+2\right)} \omega\left(S_{\delta}\right)=2^{2 N} \delta^{-N} \omega\left(S_{\delta}\right)
$$

by doubling property, we see that $h_{\delta_{j}}$ converges to 0 uniformly on every compact subset of B, and so is $\mathcal{D}^{m} h_{\delta_{j}}$. It follows that $h=0$ in $L^{q}(\mu)$, which is a contradiction. Thus, (5.1) holds.

Now, we have by (3.12)

$$
\left|\mathcal{D}^{m} h_{\delta}(y)\right|^{q} \approx \delta^{-m q} \omega\left(S_{\delta}\right)^{-q / p}, \quad y \in \widehat{S}_{\epsilon \delta}, \quad \delta \leq \delta_{0}
$$

and thus

$$
\mu\left(\widehat{S}_{\epsilon \delta}\right) \lesssim \delta^{m q} \omega\left(S_{\delta}\right)^{q / p} \int_{B}\left|\mathcal{D}^{m} h_{\delta}\right|^{q} d \mu
$$

for all δ sufficiently small. Thus, we have by doubling property

$$
\widehat{\mu}_{\epsilon \delta}(\zeta) \lesssim\left(\frac{\omega\left(S_{\delta}\right)}{\omega\left(S_{\epsilon \delta}\right)}\right)^{q / p} \int_{B}\left|\mathcal{D}^{m} h_{\delta}\right|^{q} d \mu \lesssim \int_{B}\left|\mathcal{D}^{m} h_{\delta}\right|^{q} d \mu
$$

and this is an estimate independent of ζ and δ small. Thus, we conclude (1) by (5.1). The proof is complete.

Proofs of the implications $(3) \Longrightarrow(1)$ and $(4) \Longrightarrow(1)$ are also easy modifications of corresponding ones in the previous section.

References

[1] S. Axler, P. Bourdon and W. Ramey: Harmonic function theory, Springer-Verlag, New York, 1992.
[2] B.R. Choe, H. Koo and H. Yi: Derivatives of harmonic Bergman and Bloch functions on the ball, J. Math. Analysis and Applications, 260 (2001), 100-123.
[3] D. Gu: Two-weighted norm inequality and Carleson measure in weighted Hardy spaces, Canad. J. Math. 44 (1992), 1206-1219.
[4] D. Girela, M. Lorenta and M. Sarrion: Embedding derivatives of weighted Hardy spaces into Lebesgue spaces, Math. Proc. Camb. Phil. Soc. 116 (1994), 151-166.
[5] D. Luecking: Embedding derivatives of Hardy spaces into Lebesgue spaces, Proc. London. Math. Soc. 63 (1991), 595-619.
[6] J. Littlewood and R. Paley: Theorems on Fourier series and power series. II, Proc. London. Math. Soc. 42 (1936), 52-89.
[7] H. Kang and H. Koo: Two-weighted inequalities for the derivatives of holomorphic functions and Carleson measures on the unit ball, Nagoya Math. J. 158 (2000), 107-131.
[8] E.M. Stein: Boundary Behavior of Holomorphic Functions of Several Complex variables, Princeton University Press, Princeton, NJ, 1972.
[9] E.M. Stein: Harmonic analysis, Princeton University Press, Princeton, NJ, 1993.
[10] N.A. Shirokov: Some generalizations of the Littlewood-Paley theorem, Zap. Nauch. Sem. LOMI 39 (1974), 162-175; J. Soviet Mat. 8 (1977), 119-129.
[11] N.A. Shirokov: Some embedding theorems for spaces of harmonic functions, Zap. Nauch. Sem. LOMI 56 (1976), 191-194; J. Soviet Mat. 14 (1980), 119-129.
[12] J.-O. Strömberg and A. Torchinsky: Weighted Hardy Spaces, Lecture Notes in Math. 1381, Springer-Verlag, 1989.

Boo Rim Choe
Department of Mathematics
Korea University
Seoul 136-701, Korea
e-mail: choebr@math.korea.ac.kr
Hyungwoon Koo
Department of Mathematics
Korea University
Seoul 136-701, Korea
e-mail: koohw@math.korea.ac.kr
HeungSu Yi
Department of Mathematics
Research Institute of Basic Sciences
Kwangwoon University
Seoul 139-701, Korea
e-mail: hsyi@math.kwangwoon.ac.kr

[^0]: This research is supported by the Korea Research Foundation Grant(KRF-2000-DP0014).

