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Introduction

In 1976, P.A. Loeb [10] constructed a compactification of anf@nic spaceX
(see also [11]). This new compactification is deeply corggtatith Choquet theory.
When X has the Green function we can construct the Martin cotifigation X¥ , but
Loeb’s compactification is different frorx™ . Afterwards, ihet joint-works [1], [2],
J. Bliedtner and P.A. Loeb deepened the simplicial conaigar of Loeb’s compactifi-
cation, and extended their theory in more extensive framewwluding the notion of
sturdy harmonic functions.

As for the compactification of harmonic spaces, extendirgy ittea of Loeb, we
construct for an arbitrary metrizable and resolutive coctifieation X* a compactifi-
cation X that enables simplicial considerations. In the case wheegyebounded har-
monic function is obtained by PWB method, is just Loeb’s compactification. Exam-
ples in what follows will reveal the relation betweéh and the Choquet simplex.

0. Notations and Assumptions

X : aP-harmonic space of Constantinescu-Cornea with a countzde.

A a normalized reference measure, iles M*(X) = {the set of positive Borel mea-
sures onX}, A(X) = 1, the smallest absorbing set containing the supgok) of A
is X.

X* :a metrizable and resolutive compactification, i.e., eveoptinuous functionf
on A*=X*\ X has the PWB solutiort X"

X%¥: the harmonic measure df* at x € X, i.e,, H}‘*(x) = [ fdx;.

w*: the dilation of \, i.e., u* = [ xidA.

I'*: the harmonic boundary ok™, i.e., the closure of [[J, . (support ofx;)].

Hy:={u € H (X); [ud) <1}.

We note thatH; is a Choquet simplex ([9]).

For Q C C(X), the Q -compactificationk? ofX is the compactificatioh of X
where every function ofQ is extended continuously Xoand the set of extensions
separates points ok X \ X ([4]).

We assume:
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(1) 1€ H(X),
(2) the Doob convergence axiom ([5]).

1. General Theory

Proposition 1.1. x; is absolutely continuous with respect 6 for everyx € X.
Thereforedx/dp* has a Borel representativi(x, z) = k* (z).

Proof. Fix A € B(A*) = {the o-field of Borel subsets ofA*} with ©*(A) = 0.
By MCT ([3, Theorem 2.3]),

1 (A) = / [ / 1 dxg:} dA\(x) =0,

which implies
HE (x) = / 1adx*=0  for \-a.e.x.
Thus we have
SO\ € {x € X; H (x) =0},
and since the latter set is absorbing
H¥ (x) :/1A dx: =0,
i.e., xi(A) =0 for everyx € X. ]

Proposition 1.2. k* € L*>=(u*) for everyx € X, and thusdy}/du* has
a bounded Borel representative.

Proof. First we remark that fof € B(A*), f € L(u*) implies f € L(x}) for

everyx € X. In fact
Jistaw =[] [1n1ax]axe <

implies S (\) is included in the closure ofx € X; Hl’ﬁ(x) < +oo}, which is ab-
sorbing ([5, Proposition 6.1.4]). Therefor¢| is x:-integrable for everyr in a dense
subset ofX , and we conclude thgt| is resolutive, andH}‘*(x) is a linear functional
on LY(u*) for everyx € X.

Next we shall show that this functional is bounded, ilé;" (x)| < ¢ ['|f|du*
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for every f € LY(i*). By a version of Harnack’s inequality ([5, Proposition 6]}
<< [Hf@a=e [/ IfIdX;“} e =c [1]d

Thus, there existe, € L>*(u*) N B(A*) such thatH;‘*(x) = [ f ¢xdp*. This implies
ox = k¥ p*-a.e. O

Now we define

q(x,y)= /k" k¥ dp*,

X = xlab. )ixex}
We remarkg &,y )= ¢,x ) :H,j§*(x) € HB(X) for everyy € X.
Proposition 1.3. X is a metrizable and resolutive compactification Jof

Proof. The resolutivity ofX is derived as in [4, Satz 9.3]. To see the metrizabil-
ity, we take a countable dense subget} of X and construct thed -compactification
X2 = x{at0)} which is metrizable. We assekt?’ ~ X. In fact, {q(x, y); y € X} is
locally uniformly bounded. For a compact subgét Xf , theristexa constantvy
satisfying

sup{g(x,y); x € K} < ag /q(x, y)dA(x) = ag /ky dp* = ag /dx; =agVy € X.

Therefore{q(x, y); y € X} is equicontinuous ([5, Theorem 11.1.1]). Now ferc X
andz € A2 = X2\ X, let {x/} C {x,} with x' — x and {y,} € X with y, — z
in X2'. Then {q(x, y,)} is a Cauchy sequence. For in the inequality

lg(x, ym) — q(x, ym')|
<lg(x, ym) — q(xy, ym)| + [ Cxss ym) — q ey )| + [ ey Yir) — g (x, yir)|,

the first and third terms of the right hand side become ampitsanall whenn is suf-
ficiently large, and the second term is small for fixed when aridare sufi-
ciently large. Thus lim.. g(x, y,) exists for everyx € X, which means thag x(y )
is extended toX?" continuously for everyx € X and the extensions separate points
of A2, O

We denote by X, z") =" {") %:(x) the continuous extension af x(y ) o€
A =X\ X. Obviously we haveH;{(x) = q(x, y).
The following proposition is clear.
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Proposition 1.4. The mappingl’ : Tz = ¢; is a continuous injection oh to HS.
We define
Ap = {2 € A; §: is minimal harmonic,/c}g d\ = 1}.

Then, T (A1) C extH} (the set of extreme points G#2).
Now we have a result from the simplicial aspect of the theory.

Theorem 1.1. If T C Ay, then X is a semi-regular compactificatiori.e., H}’? is
extended toX continuously for everyf € C(A).

Proof. X = x{FIxiFEC@NUIHETEC@A) ig semiregular ([7, p. 890]). Let be
the canonical mapping of to X, i.e., 7 is a surjection andr(x) = x for everyx € X.
We assert thatr is the bijection. If this is not the case, then for somec” A there
existz1, 72 € A (= X \ X) such thatz; # z2 and 7(z1) = 7(Z2) = Zo. Further we
may find {y®}, {y}?} ¢ X and f € C(A) satisfying y® — z; in X and y¥ — z;
in X (i =1, 2), and lim_., H;((yﬁl)) #1lim; o H}A‘(yj.z)). If necessary, taking subse-
quences, we may assumgo — v; vaguely ( =1, 2).;; € M*(A), (A \T) =0
(i =1, 2) andV]_ ?f V2.

Gz(x) = Jim g(x, yi) = lim H () = Jim / § X = / §*dv, = / §* d.

Ay

Similarly gz,(x) = le q* dv,, which implies that, and v, are the canonical reprezen-
tation measures of;, € H;. SinceH; is the Choquet simplex; = v, thus we have
the contradiction. O

Corollary 1. If T C A; thenT = A; = reg(X), wherereg(X) denotes the set
of all regular points ofX.

Proof. FixZo € A1 and {y;} C X such thaty; — %o in X andy,, — v vaguely.
Then

B = [ @@= [ 3:0de )
Al A1
which means =z, i.e., 7o € reg(X). ThusT C A; C reg(X) =T. O
We are going to investigate the relation betwe¥h and X. To this purpose, we

define theQ -compactificatio = X{Flxi FECX}U{ax1)ix€X} and denote by 3, z )
the continuous extention aof x(y )to€ A=X\X.
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X is a refinement ofx* and X, i.e., there exists the canonical mapping
(resp.m of X onto X* (resp. X), which is a continuous surjection, and(x) = x
(resp.7(x) = x) for everyx € X.

Theorem 1.2. The following assertions are equivalent
) Z—g:isa (contmuou}; injection of A to H3.
i) X is homeomorphic toX.
iii) X is a refinement ofy*.

Proof. i)= ii): letting {y;} C X with y; — % € A is X, if there exist two subse-
quences{y;} C {y;}, {/} € {y;} and two pointsz"€ 7~ *(2), £’ € 7~(2) such that
yi—2Z"in X, yi —Z"in X, then lim ., q(x, ¥;) =4, ") and lim;— q(x, y}) =
G(x,Z"). On the other hand lim.« q(x,y}) = lim;_q(x,y!) = 4(x,2). Hence
G» = Gz» and# = z" by the assumption, which meansis the bijection ofX onto X.

i) = iii) is tr|V|aI and ii) = i) is a consequence of Proposition 1.4.

To complete the proof, it remains to show i} ii). Let {y;} C X, y; — Z in X
and letr be the canonical mapping of to X*. Sincey; — w(z) in X, the functions
in {Fl|x; F € C(X* )}U{q(x y); x € X} are extended continuously % and separate
points of A, which |mpl|esX X. ]

Remarks. 1. If T'* is a singleton therX is the one-point compactification.
2. Let{y;} C X, y; —ze€ A" in X*; then

[Hzeﬁ;yjeﬁin)?} =2 [HZGZ;yj—ﬁin)N(.

Here we have a questionys = g(x, %), Vx € X, Vz e T?”
This is solved affirmatively in the following two cases:

1. dx!/du* has a continuous representativer, { ),

2. every bounded harmonic function is a Dirichlet solutionXxi*.

The second case will be treated in the next section. For tis¢ ¢ase, since
q(x,y) = HX(y) = HX (y) = Hk‘ow*(y) we haveg® =k* o 7* fi-a.e. onI'. From
the continuity ofk* andg®™ k* o 7* = ¢* onT. In the same wayg o 7 = §* onT.
Further,q &,y ) =HX (y) € {HX"; f € C(A*)} impliesT ~ I'* ([7, Proposition 3.5]).
For every f € C(A),

dxx ~

[Fav= i =#E = [1Forlan= [17om S
=/[}o%]éxdﬁ=/[fo7‘r][‘qxo%]dﬁ=/f@‘dﬂ,

so we havedy, = §*dji on . Here we have usedy,/dji = k* o 7* = G, and this is
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easily derived from the following argument: fgf € C(Z) there exists anf € B(A*)
such thatf|r- € C(T'*), f = fox™ onT. Then

[Fat =i =uk =1 W= [ rac= [ rear
= [tromorldn= [ Fikt ol

which impliesdy; = [k* o 7*]dfi = G*dji on T.
If we setW ¢) =#[(7*)"%(z)] on I'*, ¥ is a continuous surjection df* to T.
In this case,

k(x,z) =G (x, (") H2) = ¢ (x, 7(7) " H2)]) =g (x, ¥(z)) Vx€ X, Vzel™,

2. The case whereHB(X) C {H}"; f is resolutive}

In what follows, we consider the case where every boundethdwic function is
a Dirichlet solution.

We recall the Loeb compactificatiok”  ([11]). L&t  be the Wiekempact-
ification, x¥ be the harmonic measure and” = [ x¥ dA(x). Thendx? /du" has
a continuous representativg (¢) on A" =x" \ X. We define

) = [ Q@@ ©
and the Loeb compactificatiokz X1 x€X} |t js known thatX’ is a metrizable

and resolutive compactification amtly C reg(X%). For everyu € HB(X) there exists
the canonical representation measuyesuch that

u(x) = /AL h(x, ) v (), vu (AL \ Af) =0.

Theorem 2.1. X = X*L.

Proof. Letr" be the canonical mapping "%  t%&*. By MCT
(1) /fdu* :/f onau¥  forevery fe Ll(u).

For everyp € C(A"Y) there existsf,, € B(A*), which is bounded, andljfw = Hf:

by the hypothesis of this sectiomljfw = Hf; = H;i,oww implies ¢ = f,or" dx¥-a.e.
for everyx € X. A={C € AY; p(C) # f,[m(Q)]} € B(AY) and " (A) = 0. Thus,

(2) o=foom"” du¥-ae.
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Since [ o(Q)w () dp™ () = [(Qdx¥ () = ijw(x) = H}i*(x) = [ fedxi =
J fok*dp*, by (1) and (2),[ fok*dp* = [[f, o m"][k* o "] dp" and

/ AW (O du™(Q) = / Fok dy* = / Lfy o 7"k 0 7] dp®
- / AR 0 T"I(Q) du™(©).

which implies

W =k*onm” uV-ae.
and
he) = [ Q@ Qdn" (@ = [ o o x ¥ an®
= /kx kK dp” =q(x, y).
Thereforex? =x{h)ixex} = x{at.y)ixex} = § O

The following corollary is clear.
Corollary 2.

A1 C regX).
Now we can resolve the second question.

Corollary 3.
=4, z)i YxeXVzel,
Proof. Letting7" be the canonical mapping of"  t&,
HX (y) = /w" dxy = /wx W dp¥ = h(x,y) =q(x.y) = HX() = HE o ().
Thus,w® =G* o #% on I'". Now for f € C(A)
[Faran= [(7oa"Uat o i 1an" = [(7oiwran” = [For¥ax

= Y0 = Hi W= [ Fag.
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which impliesdy,(2) = (x, 2)djuz) for every7 €T andx € X. O
Corollary 4. 1 is the canonical representation measurelofTherefore
fi(A) = i(Ay) = 1
Proof. The canonical representation measuref 1 is characterized by

[ Fdr= [tror1an”

([11]), which is equal to

/ ( / [} o#"] dxff) d(x) = / HE o (x) dA(x) = / HE (x)dA(x) = / Fdp. O

_Remark 1. Foru € HB(X) there is}”u € B(K), which is bounded, and x( ) =
H?X(x) = [ §*dv,. Thusv, = f, fi. On the other hand,

va(A) = / udp" VA € B(A).
(FW)=1(A)

We sayT (A1) coversHB ).

3. The case whereX* is of Martin type

In this section we treat the case whexé is of Martin type [8]. We recall that
(X*, k(x, z), AT, 1*) is of Martin type if
1) X* is a metrizable and resolutive compactificationJof
2) k(x,z) € C(X x A*) andk, is positive harmonic for everye A*,
3) A} C {z € A*; k. is minimal harmonic, [ k. d\ = 1}, where X is a normalized
reference measure.

p= [aaw. w\ s =0
4) for everyu € HB(X) there exists a resolutivg, € B(A*) such that
u(x) = H}i*(x) = /k(x, 2) fu(2)du*(z) Vx € X.
When X has the Green functio@ x,(y ) such that
i)  G(x,y) = Gy(x) is non-negative and lower semi-continuous Bnx X and finite

continuous ifx # vy,
i) G, is a potential and harmonic oX \ {y},



Q-COMPACTIFICATION OF HARMONIC SPACES 939

i) for every potentialp onX there exists € M*(X) such that
P = [Gwaxe)  wrex.

V) G*A(y) = [ G(x, y)d\(x) is positive and continuous,
we set

_G(x.y)
G*A(y)

K(x,y)

and call x¥ =x{K&»):x€X} the Martin compactification.

We note thatx” and¢’ are of Martin type.

Though the following theorem is known in a general theoryy.(d8, Theo-
rem 8.3]), we shall give a direct proof.

Theorem 3.1. If for distinct pointsz, 7z’ of T'*, k, # k., then there exists
a homeomorphisnw  df* to I' such that

k(x,z) =q(x,¥(z)) VxeXVzel".

Proof. Recall the consideration at the end of the first sect®incedx?/du*
has a continuous repesentativer,{ ), there exists a consnsatjection¥ ofl™*
to T such that¥ £ ) =r[(z*)"1(z)] and k (x,z) =4 &, ¥ ¢ )). From the assumption of
the theorem¥ is injective and is a homeomorphisnTdfto T. [l

Corollary 5. [ k(x, z)d\(x) < 1 for everyz € I'*. ThereforeTz =k, is a con-
tinuous injection ofl"™* to H;.

Proof. [gq(x,y)d\(x) = [[[k(x,2)dx;1dNx) = [k(x,2)du*(z) = [dx;
HY (x) = 1 [q(x,2)d\x) < liminf; [q(x,y;)d\(x) = 1 for some{y;} C
yj —zin X.

O>

The next theorem is an immediate consequence of Theoremndl. Tlaeorem 3.1.
However, as an application, it has some importance, so we #tairectly.

Theorem 3.2. If T'* C {z € A*; k, is minimal harmoni¢ [ k.(x)d\(x) < 1}
then X is a semi-regular compactification arid = A; = reg(X).

Remark 2. In the definition of the compactification of Martin type,vife replace
A7 by A} NT* thenT (A7) coversHB ).
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4. Examples

4.1. In what follows, we denote by+ the sheaf of continuous solutions of
the Laplace equation.

ExavpLE 1 (standard example). Let & € C(the complex plane); @ |x| <1},
a harmonic sheaf b&f and A = ¢,, with 0 < |xo| < 1. We takeX* as the topo-
logical closure ofX . ThenA* = C U {0}, whereC ={x € C;|x| = 1} and
k(x, z) = P,(x)/P;(x0) where P, ) is the Poisson kernel, i.e.,

11- |x|?
27 |x —z[?

P (x) =

andT'* =C
In the compactificationx, it is clear thatA = A*, I' =I'*, A1 =T # A and

A k(x,z) forz=zeC
g(x,z) = .
u(x) for z =0,

whereu € HB(X). In this caseT ,(Asl) coversHB ()

ExampLe 2. LetX ={x € C; 0 < b < |x| < a}, let the harmonic sheaf b
and X = g,, with xo € X. We identify the circle|z| = a as one point; and |z| = b
aszp. ThenT* = A* ={z;, z»} and

k(x Z) _ hl(x)/hl(xo) for z = 71
’ ho(x)/hao(x0) for z = zo,

whereh(x) = (log|x|— Iogb)/(loga logb) andhz(x) = (Ioga log |x|)/(|Oga logb).

In the compact|f|cat|onX we see thathA = T = reg(X) ~ A* but A; = 0 and
G(x,2) =k(x, z). In this caseT &) covers the condcy gz, +c2z,; c1> 0, ¢ > 0} C
HB(X).

ExampLe 3. Let X ={x € C; |x| < 1}; let the harmonic sheaf b&(/h, A =
and X* be the topological closure oX , which is homeomorphic to thartvt com-
pactification X . We consider three caseshof
[l h= P, ThenA* = C, I'* = {7} andk (, z0) = 1. HenceX is the one-point
compactification and therefor& =T = {Zo}, wherezp corresponds tao and A=A;
q(x,z0) = 1.

[i] h=(1/2)(P, + P;,), Wherez; =e'% (j =1, 2) and 0< 6; < #; < 2. Then
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A*=C, T* ={z1, z2} and

_ | Py(x)/h(x) forz=z
k(x,z) =
P, (x)/h(x) for z =2z5.
X has the boundanA = {1, %2} U {Z; 61 < 0 < 65}, whereZ; corresponds to;
(j=1,2) andzj to ¢ ? and somee’?" with 0/ € C\ [01 < 0 < 03). T = Ay = {31, 25}
and

ar o K(x, Z)) forz=z; (j=1 2)
q(x,z) = o
t1(2) k(x, z1) + 12(2) k(x, z2) for 2 =27y

wheret; €) = [z — z;]?(|z — za| 72 + |z — 22| 72)] 7 with z = €".
ii] » = (1 /n) Z;zl P, (n > 3), wherez; are distinct. Them* = C, I'* =
{z1, -+, 2}, k(x,2) = P, (x)/h(x) for z=z; (1< j <n),andA =C, T = Ay ~T*,

2 A):{k(x,zj) for =2, (1< j<n)
’ > = ti@k(x, zj) forz 77,

wherer; €) = [z — z;[* Y, [z — z;/7?] 7" and z corresponds to "
In these cased Z(l) coversHB )

ExavpLE 4 (Cornea-Loeb [6]). LetX =Hx € C; |x| < 1}, {z,} be a countable
dense subset of \ {1} and A =¢g. We put

Vo = sup{ 7”(()) <x< 1} ,

where p ) = minflog(1/|x|), 1}. It is easily checked that & 4, < +oco, therefore
we may finde, > 0 such that} 2 o, v, < +oo and > 2, a, = 1. We seth £ ) =
Y o2 an P, (x) and consider the harmonic shedf/h. Letting X* be the Martin com-
pactification of X with the harmonic she&f/h, we haveA* = A} =T* =C ~ AM
(the usual Martin boundary) Further it is known thatz]reg(X ) SO reg(* ) cre.
By Theorem 3.2, we hav& is semi- regular and” = A; = reg(X) We havel =TI'*
and thatX is a refinement ofx*.

ExampLE 5. Let X be a bounded domain iR® with Lebesgue’s spine at 0 and
a harmonic sheat and A = ¢,, with xo € X. We suppose that every boundary point
is regular except 0. We take the Martin compactificatiof ~ Xds Then A* = A} =
' but regX*) C I'*. In the same way as the above examﬁleis semi-regular and
[ = Ay =reg(X) ~ T'*. Howeverl' C A and X is a refinement ofX*.
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4.2. In this section we conseder the dist {x € C; |x| < 1} with the har-
monic sheafH and \ = eo. Letting k (x, z) = 2t P,(x) = (1 — |x|?)/(|x — z|?) we form

q(x,y) = /k(x, 2) k(y, 2)dp”(2) (du*(Z) =dp*(e'’) = % d9> :

Let us consider the following three cases:
[1°] X5 Qo = {q(0, y)}. (¢(0,y)=1)
X< is the one point compactification of
[2°] X945 01 ={q(x1,y); 0 < x1 < 1}.
A% = {75, 0< 0 <}, wheree'? ande='? are identified agy: H}‘Ql(x) is equal
to the usual Dirichlet solution off  such thgte'() = f(e'’) = FGo). dx«(Z) =
[P(x, e %)+ P(x,e ') db, dji(Ze) = (1/7)d6 andk(x, Zg) = 7 [P(x, €' *)+ P(x, e~ %)]
thus

) = [ R 20 k50 i) = S laC) + g )]

wherey is the conjugate complex number of . Hencg2()" = X2+ and the Dirichlet
solutions inX2: are the usual Dirichlet solutions such that ( ¥=).(
[3°] X2 0 = {q(x1, y), q(x2. y)}. argx; # argx, (mod 7).
X9 ~ XL~ XM,
For Q C {q(x,y); x € X}, X2 is one of the above type {1 [2°] and [3°].

4.3. The heat equation

ExampLE 6. We consider the heat equation of one space dimension in the
Euclidean space:

0%u _ Ou

9e " or
where we denote by =(7) a point inR x R.

In the first place, we shall treat a very simple case wheére {(¢7r); 0 < € < 1,

0 < 7 < 1}, a reference measure is the restriction of the two dimensional Lebesgue
measure toX , and(* is the topological closure oX iR? We putO = (Q 0),
A=(10),B =(Q1) andC = (1 1). In this case, the Martin compactifa X
is obtained by identifying the closed segmeBt(] ]Xf with one pointJ . The cor-
responding Martin kernek x(z ) is continuous amd x,{ ) = 0, wherec X,
z € AM = XM\ X. It follows from the Green's formula that the harmonic measu
Xiatx = ¢, 1) € X is carried byAX = A*N (R x (—o0, 7)) and is absolutely
continuous with respect to the length elementAof, on each edge, the density func-
tion x* is continuous. Since:, is proportional to the Martin kernek, , we can write
Xi = K(x,z)p*, wherep* = [ xidA(x). A kernelq &, y) =[ K(x,2)K(y,z)dp*(z) =
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| K* dx; on X x X has a continuous extensigf(x,z) to X x X*, because every
boundary point inA*\(BC) is regular,K* is continious there and limg ¢ K*(z) = 0.
Here (BC) is the open edge frold © . ife A*\ (BC), theng*(x,z) = K(x, z)
and lim._, g*(x, z) = 0 for anyz’ € A*\((BC)U{z}). On the other hand, if € (BC),
then lim._.. ¢*(x,2z) = lim,_.. K(y,2z’) > 0 for 2’ € A*\ [BC], which shows that
q*(x,-) separate a point ilA* \ (BC) from that in BC ). Finally, we showg*(x, )
separate points inBC ). We take two points &, () € (BC) arbitrary ¢ =1, 2). If
q*(v,z1) = q*(y, z2) for everyy € X, thenK €1, 7') = K(z2, 7') for anyz’ € A*\[BC],
whereK ¢;,z') =limy_,, K(y,z’). For 0<s < 1, we put

us(x)=/A*ndx3§(n, 0= nK(x, (n0))du (1),

Ay

which can be considered as a function on (0x1R. Since

w6 D= M€ = [ K(ED. 0.0) di o),

Ay

and since lim_1us(&, 1) = £,we haveuy {1, 1) = u,($2, 1) and& = &. Therefore we
find

A =[0A] U(OB)U(AC)U(BC)U{B =C}.
Next we insert a slit inX . Puttinge = (0/2), F = (1/4,1/2) and G =
(1/2, 1/2), we consider two space¥; = X \ [EF] and X, = X \ [FG]. As a matter

of convenience, we distinguish the upper sjAsi; from the lower sideA; of the slits
(j =1, 2). Using a similar argument to that above, we can Wfﬂ ﬁpd

XY =[0A]U(AC)U(OE")U{F}UA]U(EB)U{J}U X,
where A; shrinks to one point corresponding o,
X1=[0A]U(AC)U(OE"]UA] UFUAJU[E*B)U(BC)U{B=C}U Xy,

where E~, E* denote the lower and upper side Bf , respectively ﬁhdorresponds
to the irregularity of F .

XM =[0A]U(AC)U(OB)U{JYUA;UFGU Xa,

where FG corresponds to the convex combination of the Martin kernef aand that
at G, and

X2 =[0A] U(AC)U(OB)U(BC)U{B=C}UA, UASUFUG U X,.
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