
Ikegami, T. and Nishio, M.
Osaka J. Math.
39 (2002), 931–944

Q-COMPACTIFICATION OF HARMONIC SPACES
AND THE CHOQUET SIMPLEX

TERUO IKEGAMI and MASAHARU NISHIO

(Received January 30, 2001)

Introduction

In 1976, P.A. Loeb [10] constructed a compactification of a harmonic space
(see also [11]). This new compactification is deeply connected with Choquet theory.
When has the Green function we can construct the Martin compactification , but
Loeb’s compactification is different from . Afterwards, in the joint-works [1], [2],
J. Bliedtner and P.A. Loeb deepened the simplicial consideration of Loeb’s compactifi-
cation, and extended their theory in more extensive framework including the notion of
sturdy harmonic functions.

As for the compactification of harmonic spaces, extending the idea of Loeb, we
construct for an arbitrary metrizable and resolutive compactification ∗ a compactifi-
cation ̂ that enables simplicial considerations. In the case where every bounded har-
monic function is obtained by PWB method,̂ is just Loeb’s compactification. Exam-
ples in what follows will reveal the relation between̂ and the Choquet simplex.

0. Notations and Assumptions

: a P-harmonic space of Constantinescu-Cornea with a countablebase.
λ : a normalized reference measure, i.e.,λ ∈ +( ) = {the set of positive Borel mea-
sures on }, λ( ) = 1, the smallest absorbing set containing the support (λ) of λ
is .

∗ : a metrizable and resolutive compactification, i.e., everycontinuous function
on ∗ = ∗ \ has the PWB solution

∗

.

χ∗: the harmonic measure of ∗ at ∈ , i.e.,
∗

( ) =
∫

χ∗.
µ∗: the dilation ofλ, i.e., µ∗ =

∫
χ∗ λ.

∗: the harmonic boundary of ∗, i.e., the closure of [
⋃

∈ (support ofχ∗) ].
Hλ1 : = { ∈ +( );

∫
λ ≤ 1}.

We note thatHλ1 is a Choquet simplex ([9]).
For ⊂ C( ), the -compactification of is the compactification of

where every function of is extended continuously toand the set of extensions
separates points of := \ ([4]).

We assume:
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(1) 1∈ ( ),
(2) the Doob convergence axiom ([5]).

1. General Theory

Proposition 1.1. χ∗ is absolutely continuous with respect toµ∗ for every ∈ .
Therefore χ∗/ µ∗ has a Borel representative( ) = ( ).

Proof. Fix ∈ B( ∗) = {the σ-field of Borel subsets of ∗} with µ∗( ) = 0.
By MCT ([3, Theorem 2.3]),

µ∗( ) =
∫ [∫

1 χ∗
]
λ( ) = 0

which implies

∗

1 ( ) =
∫

1 χ∗ = 0 for λ-a.e.

Thus we have

(λ) ⊂ { ∈ ;
∗

1 ( ) = 0}

and since the latter set is absorbing

∗

1 ( ) =
∫

1 χ∗ ≡ 0

i.e., χ∗( ) = 0 for every ∈ .

Proposition 1.2. ∈ ∞(µ∗) for every ∈ , and thus χ∗/ µ∗ has
a bounded Borel representative.

Proof. First we remark that for ∈ B( ∗), ∈ 1(µ∗) implies ∈ 1(χ∗) for
every ∈ . In fact

∫
| | µ∗ =

∫ [∫
| | χ∗

]
λ( ) <∞

implies (λ) is included in the closure of{ ∈ ;
∗

| | ( ) < +∞}, which is ab-
sorbing ([5, Proposition 6.1.4]). Therefore| | is χ∗-integrable for every in a dense
subset of , and we conclude that| | is resolutive, and

∗

( ) is a linear functional
on 1(µ∗) for every ∈ .

Next we shall show that this functional is bounded, i.e.,| ∗

( )| ≤
∫
| | µ∗
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for every ∈ 1(µ∗). By a version of Harnack’s inequality ([5, Proposition 6.1.5])

| ∗

( )| ≤ ∗

| | ( ) ≤
∫

∗

| | ( ) λ =
∫ [∫

| | χ∗
]
λ( ) =

∫
| | µ∗

Thus, there existsϕ ∈ ∞(µ∗)∩ B( ∗) such that
∗

( ) =
∫

ϕ µ∗. This implies
ϕ = µ∗-a.e.

Now we define

( ) =
∫

µ∗

̂ = { ( · ); ∈ }

We remark ( ) = ( ) =
∗

( ) ∈ ( ) for every ∈ .

Proposition 1.3. ̂ is a metrizable and resolutive compactification of .

Proof. The resolutivity of̂ is derived as in [4, Satz 9.3]. To see the metrizabil-
ity, we take a countable dense subset{ } of and construct the -compactification

′

= { ( )}, which is metrizable. We assert
′ ≃ ̂ . In fact, { ( ); ∈ } is

locally uniformly bounded. For a compact subset of , there exists a constantα
satisfying

sup{ ( ); ∈ } ≤ α
∫

( ) λ( ) = α
∫

µ∗ = α
∫

χ∗ = α ∀ ∈

Therefore{ ( ); ∈ } is equicontinuous ([5, Theorem 11.1.1]). Now for∈
and ∈ ′

=
′ \ , let { ′ } ⊂ { } with ′ → and { } ⊂ with →

in
′

. Then{ ( )} is a Cauchy sequence. For in the inequality

| ( )− ( ′ )|
≤| ( )− ( ′ )| + | ( ′ )− ( ′

′ )| + | ( ′
′ )− ( ′ )|

the first and third terms of the right hand side become arbitrary small when is suf-
ficiently large, and the second term is small for fixed when and′ are sufi-
ciently large. Thus lim→∞ ( ) exists for every ∈ , which means that ( )
is extended to

′

continuously for every ∈ and the extensions separate points
of

′

.

We denote by ˆ ( ˆ) = ˆ (ˆ) = ˆ̂( ) the continuous extension of ( ) to ∈̂
̂ = ̂ \ . Obviously we have b̂ ( ) = ( ).

The following proposition is clear.
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Proposition 1.4. The mapping : ˆ = ˆ ˆ is a continuous injection of̂ to Hλ1 .

We define

̂ 1 =

{
ˆ ∈ ̂ ; ˆ ˆ is minimal harmonic,

∫
ˆ ˆ λ = 1

}

Then, (̂ 1) ⊂ ext.Hλ1 (the set of extreme points ofHλ1 ).
Now we have a result from the simplicial aspect of the theory.

Theorem 1.1. If ̂ ⊂ ̂ 1, then ̂ is a semi-regular compactification, i.e., b̂ is

extended tô continuously for everŷ ∈ C(̂ ).

Proof. = {b| ; b∈C(b)}∪{ b̂
; ˆ∈C(b)} is semi-regular ([7, p. 890]). Letπ be

the canonical mapping of to ̂ , i.e., π is a surjection andπ( ) = for every ∈ .
We assert thatπ is the bijection. If this is not the case, then for some ˆ0 ∈ ̂ there
exist 1, 2 ∈ (= \ ) such that 1 6= 2 and π( 1) = π( 2) = ˆ0. Further we
may find { (1)}, { (2)} ⊂ and ˆ ∈ C(̂ ) satisfying ( ) → in and ( ) → ˆ

in ̂ ( = 1, 2), and lim→∞
b̂( (1)) 6= lim →∞

b̂( (2)). If necessary, taking subse-

quences, we may assumêχ ( ) → ν vaguely ( = 1, 2).ν ∈ +(̂ ), ν (̂ \ ̂) = 0

( = 1 2) andν1 6= ν2.

ˆ ˆ0( ) = lim
→∞

( (1)) = lim
→∞

b̂
( (1)) = lim

→∞

∫
ˆ χ̂ (1) =

∫
ˆ ν1 =

∫b1

ˆ ν1

Similarly ˆˆ0( ) =
∫b1

ˆ ν2, which implies thatν1 and ν2 are the canonical reprezen-

tation measures of ˆˆ0 ∈ Hλ1 . SinceHλ1 is the Choquet simplexν1 = ν2, thus we have
the contradiction.

Corollary 1. If ̂ ⊂ ̂ 1 then ̂ = ̂ 1 = reg(̂ ), where reg(̂) denotes the set
of all regular points of̂ .

Proof. Fix 0̂ ∈ ̂ 1 and { } ⊂ such that → ˆ0 in ̂ and χ̂ → ν vaguely.
Then

ˆ ˆ0( ) =
∫b1

ˆ ˆ( ) ν(ˆ) =
∫b1

ˆ ˆ( ) εˆ0(ˆ)

which meansν = εˆ0, i.e., 0̂ ∈ reg(̂ ). Thus ̂ ⊂ ̂ 1 ⊂ reg(̂ ) = ̂

We are going to investigate the relation between∗ and ̂ . To this purpose, we
define the -compactificatioñ = { | ; ∈C( ∗)}∪{ ( ); ∈ } and denote by ˜ ( ˜)
the continuous extention of ( ) to ∈̃ ˜ = ˜ \ .
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˜ is a refinement of ∗ and ̂ , i.e., there exists the canonical mappingπ∗

(resp. π̂ of ˜ onto ∗ (resp. ̂ ), which is a continuous surjection, andπ∗( ) =
(resp.π̂( ) = ) for every ∈ .

Theorem 1.2. The following assertions are equivalent:
i) ˜ 7→ ˜ ˜ is a (continuous) injection of ˜ to Hλ1 .
ii) ˜ is homeomorphic tô .
iii) ̂ is a refinement of ∗.

Proof. i)⇒ ii): letting { } ⊂ with → ˆ ∈ ̂ is ̂ , if there exist two subse-
quences{ ′} ⊂ { }, { ′′} ⊂ { } and two points ′̃ ∈ π̂−1(ˆ), ˜′′ ∈ π̂−1(ˆ) such that
′ → ˜′ in ˜ , ′′ → ˜′′ in ˜ , then lim →∞ ( ′ ) = ˜ ( ˜′) and lim →∞ ( ′′) =

˜ ( ˜′′). On the other hand lim→∞ ( ′ ) = lim →∞ ( ′′) = ˆ ( ˆ). Hence,

˜ ˜′ = ˜ ˜′′ and ′̃ = ˜′′ by the assumption, which means ˆπ is the bijection of˜ onto ̂ .
ii) ⇒ iii) is trivial and ii) ⇒ i) is a consequence of Proposition 1.4.
To complete the proof, it remains to show iii)⇒ ii). Let { } ⊂ , → ˆ in ̂

and letπ be the canonical mapping of̂ to ∗. Since → π(ˆ) in ∗, the functions
in { | ; ∈ C( ∗)} ∪ { ( ); ∈ } are extended continuously tô and separate
points of ̂ , which implies ̂ ≃ ˜ .

REMARKS. 1. If ∗ is a singleton then̂ is the one-point compactification.
2. Let { } ⊂ , → ∈ ∗ in ∗; then

[
∃ˆ ∈ ̂ ; → ˆ in ̂

]
⇄

[
∃˜ ∈ ˜ ; → ˜ in ˜

]

Here we have a question: “χ̂ = ˆ( ˆ) µ̂ ∀ ∈ ∀ˆ ∈ ̂?”
This is solved affirmatively in the following two cases:

1. χ∗/ µ∗ has a continuous representative ( ),
2. every bounded harmonic function is a Dirichlet solution in ∗.

The second case will be treated in the next section. For the first case, since
( ) = ẽ ( ) =

∗

( ) = e
◦π∗ ( ), we have ˜ = ◦ π∗ µ̃-a.e. on˜. From

the continuity of and ˜ , ◦ π∗ = ˜ on ˜. In the same way, ˆ◦ π̂ = ˜ on ˜.
Further, ( ) =

∗

( ) ∈ { ∗

; ∈ C( ∗)} implies ˜ ≃ ∗ ([7, Proposition 3.5]).

For every ˆ ∈ C(̂ ),

∫
ˆ χ̂ =

b̂
( ) =

ê
◦π̂( ) =

∫
[ ˆ ◦ π̂] χ̃ =

∫
[ ˆ ◦ π̂]

χ̃

µ̃
µ̃

=
∫

[ ˆ ◦ π̂] ˜ µ̃ =
∫

[ ˆ ◦ π̂] [ ˆ ◦ π̂] µ̃ =
∫

ˆ ˆ µ̂

so we have χ̂ = ˆ µ̂ on ̂. Here we have used ˜χ / µ̃ = ◦ π∗ = ˜ , and this is
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easily derived from the following argument: for̃ ∈ C(˜ ) there exists an ∈ B( ∗)
such that | ∗ ∈ C( ∗), ˜ = ◦ π∗ on ˜. Then

∫
˜ χ̃ =

ẽ
( ) =

e
◦π∗ ( ) =

∗

( ) =
∫

χ∗ =
∫

µ∗

=
∫

[ ◦ π∗] [ ◦ π∗] µ̃ =
∫

˜ [ ◦ π∗] µ̃

which implies χ̃ = [ ◦ π∗] µ̃ = ˜ µ̃ on ˜.
If we set ( ) = π̂[(π∗)−1( )] on ∗, is a continuous surjection of ∗ to ̂.

In this case,

( ) = ˜
(

(π∗)−1( )
)

= ˆ
(

π̂[(π∗)−1( )]
)

= ˆ
(

( )
)
∀ ∈ ∀ ∈ ∗

2. The case whereHB(X) ⊂ {HX∗

f ; f is resolutive}

In what follows, we consider the case where every bounded harmonic function is
a Dirichlet solution.

We recall the Loeb compactification ([11]). Let be the Wienercompact-
ification, χ be the harmonic measure andµ =

∫
χ λ( ). Then χ / µ has

a continuous representativeω (ζ) on = \ . We define

( ) =
∫
ω (ζ)ω (ζ) µ (ζ)

and the Loeb compactification ={ ( ); ∈ }. It is known that is a metrizable
and resolutive compactification and1 ⊂ reg( ). For every ∈ ( ) there exists
the canonical representation measureν such that

( ) =
∫

1

( ·) ν (·) ν ( \ 1 ) = 0

Theorem 2.1. ̂ = .

Proof. Letπ be the canonical mapping of to∗. By MCT

(1)
∫

µ∗ =
∫

◦ π µ for every ∈ 1(µ∗)

For everyϕ ∈ C( ) there exists ϕ ∈ B( ∗), which is bounded, and ϕ =
∗

ϕ

by the hypothesis of this section.ϕ =
∗

ϕ
=

ϕ◦π implies ϕ = ϕ◦π χ -a.e.

for every ∈ . = {ζ ∈ ; ϕ(ζ) 6= ϕ[π (ζ)]} ∈ B( ) andµ ( ) = 0. Thus,

(2) ϕ = ϕ ◦ π µ -a.e.
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Since
∫
ϕ(ζ)ω (ζ) µ (ζ) =

∫
ϕ(ζ) χ (ζ) = ϕ ( ) =

∗

ϕ
( ) =

∫
ϕ χ∗ =∫

ϕ µ∗ by (1) and (2),
∫

ϕ µ∗ =
∫

[ ϕ ◦ π ][ ◦ π ] µ and

∫
ϕ(ζ)ω (ζ) µ (ζ) =

∫
ϕ µ∗ =

∫
[ ϕ ◦ π ][ ◦ π ] µ

=
∫
ϕ(ζ) [ ◦ π ](ζ) µ (ζ)

which implies

ω = ◦ π µ -a.e.

and

( ) =
∫
ω (ζ)ω (ζ) µ (ζ) =

∫
[ ◦ π ][ ◦ π ] µ

=
∫

µ∗ = ( )

Therefore = { ( ); ∈ } = { ( ); ∈ } = ̂

The following corollary is clear.

Corollary 2.

̂ 1 ⊂ reg(̂ )

Now we can resolve the second question.

Corollary 3.

χ̂ = ˆ ( )µ̂ ∀ ∈ ∀ ∈ ̂

Proof. Letting π̂ be the canonical mapping of tô,

ω ( ) =
∫
ω χ =

∫
ω ω µ = ( ) = ( ) =

b̂
( ) = ˆ ◦π̂ ( )

Thus,ω = ˆ ◦ π̂ on . Now for ˆ ∈ C(̂ )

∫
ˆ ˆ µ̂ =

∫
[ ˆ ◦ π̂ ][ ˆ ◦ π̂ ] µ =

∫
[ ˆ ◦ π̂ ] ω µ =

∫
ˆ ◦ π̂ χ

= ˆ ◦π̂ ( ) =
b̂

( ) =
∫

ˆ χ̂
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which implies χ̂ (ˆ) = ˆ ( ˆ) µ̂(ˆ) for every ˆ∈ ̂ and ∈ .

Corollary 4. µ̂ is the canonical representation measure of1. Therefore

µ̂(̂ ) = µ̂(̂ 1) = 1

Proof. The canonical representation measureσ of 1 is characterized by

∫
ˆ σ =

∫
[ ˆ ◦ π̂ ] µ

([11]), which is equal to

∫ (∫
[ ˆ ◦ π̂ ] χ

)
λ( ) =

∫
ˆ ◦π̂ ( ) λ( ) =

∫ b̂
( ) λ( ) =

∫
ˆ µ̂

REMARK 1. For ∈ ( ) there is ˆ ∈ B(̂ ), which is bounded, and ( ) =b̂ ( ) =
∫

ˆ ν Thus ν = ˆ µ̂. On the other hand,

ν ( ) =
∫

(π̂ )−1( )
µ ∀ ∈ B(̂ )

We say (̂ 1) covers ( ).

3. The case whereX∗ is of Martin type

In this section we treat the case where∗ is of Martin type [8]. We recall that
( ∗ ( ) ∗

1 µ∗) is of Martin type if
1) ∗ is a metrizable and resolutive compactification of ,
2) ( ) ∈ C( × ∗) and is positive harmonic for every∈ ∗

3) ∗
1 ⊂ { ∈ ∗; is minimal harmonic,

∫
λ = 1} whereλ is a normalized

reference measure.

µ∗ =
∫
χ∗ λ( ) µ∗( ∗ \ ∗

1) = 0

4) for every ∈ ( ) there exists a resolutive ∈ B( ∗) such that

( ) =
∗

( ) =
∫

( ) ( ) µ∗( ) ∀ ∈

When has the Green function ( ) such that
i) ( ) = ( ) is non-negative and lower semi-continuous on× and finite
continuous if 6=
ii) is a potential and harmonic on \ { }
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iii) for every potential on there existsν ∈ +( ) such that

( ) =
∫

( ) λ( ) ∀ ∈

iv) ∗λ( ) =
∫

( ) λ( ) is positive and continuous,
we set

( ) =
( )
∗λ( )

and call = { ( ); ∈ } the Martin compactification.
We note that and are of Martin type.
Though the following theorem is known in a general theory (e.g. [8, Theo-

rem 8.3]), we shall give a direct proof.

Theorem 3.1. If for distinct points , ′ of ∗, 6= ′ , then there exists
a homeomorphism of ∗ to ̂ such that

( ) = ˆ ( ( )) ∀ ∈ ∀ ∈ ∗

Proof. Recall the consideration at the end of the first section. Since χ∗/ µ∗

has a continuous repesentative ( ), there exists a continuous surjection of ∗

to ̂ such that ( ) = ˆπ[(π∗)−1( )] and ( ) = ˆ ( ( )). From the assumption of
the theorem, is injective and is a homeomorphism of∗ to ̂.

Corollary 5.
∫

( ) λ( ) ≤ 1 for every ∈ ∗ Therefore = is a con-
tinuous injection of ∗ to Hλ1 .

Proof.
∫

( ) λ( ) =
∫

[
∫

( ) χ∗] λ( ) =
∫

( ) µ∗( ) =
∫

χ∗ =
∗

1 ( ) = 1
∫

ˆ ( ˆ) λ( ) ≤ lim inf
∫

( ) λ( ) = 1 for some{ } ⊂ ,
→ ˆ in ̂ .

The next theorem is an immediate consequence of Theorem 1.1 and Theorem 3.1.
However, as an application, it has some importance, so we state it directly.

Theorem 3.2. If ∗ ⊂ { ∈ ∗; is minimal harmonic,
∫

( ) λ( ) ≤ 1}
then ̂ is a semi-regular compactification and̂ = ̂1 = reg(̂ )

REMARK 2. In the definition of the compactification of Martin type, ifwe replace
∗
1 by ∗

1 ∩ ∗ then ( ∗
1) covers ( ).
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4. Examples

4.1. In what follows, we denote byH the sheaf of continuous solutions of
the Laplace equation.

EXAMPLE 1 (standard example). Let ={ ∈ C(the complex plane); 0< | |<1}
a harmonic sheaf beH and λ = ε 0 with 0 < | 0| < 1 We take ∗ as the topo-
logical closure of . Then ∗ = ∪ {0}, where = { ∈ C; | | = 1} and
( ) = ( )/ ( 0) where ( ) is the Poisson kernel, i.e.,

( ) =
1

2π
1− | |2
| − |2

and ∗ =
In the compactification̂ , it is clear that̂ = ∗, ̂ = ∗, ̂ 1 = ̂ 6= ̂ and

ˆ ( ˆ) =

{
( ) for ˆ = ∈
( ) for ˆ = 0

where ∈ ( ) In this case (̂ 1) covers ( )

EXAMPLE 2. Let = { ∈ C; 0 < < | | < }; let the harmonic sheaf beH
and λ = ε 0 with 0 ∈ . We identify the circle| | = as one point 1 and | | =
as 2. Then ∗ = ∗ = { 1 2} and

( ) =

{
1( )/ 1( 0) for = 1

2( )/ 2( 0) for = 2

where 1( ) = (log | |− log )/(log − log ) and 2( ) = (log − log | |)/(log − log ).
In the compactification̂ , we see that̂ = ̂ = reg(̂ ) ≃ ∗ but ̂ 1 = ∅ and

ˆ( ˆ) = ( ) In this case (̂ 1) covers the cone{ 1 ˆ ˆ1 + 2 ˆ ˆ2; 1 > 0 2 > 0} (

( )

EXAMPLE 3. Let = { ∈ C; | | < 1}; let the harmonic sheaf beH/ , λ = ε0

and ∗ be the topological closure of , which is homeomorphic to the Martin com-
pactification . We consider three cases of .
[i] = 0 Then ∗ = ∗ = { 0} and ( 0) ≡ 1 Hence ̂ is the one-point
compactification and thereforê = ̂ = {ˆ0} where 0̂ corresponds to0 and ̂ = ̂ 1

ˆ ( ˆ0) ≡ 1.
[ii] = (1/2) ( 1 + 2), where = θ ( = 1, 2) and 0≤ θ1 < θ2 < 2π Then



-COMPACTIFICATION OF HARMONIC SPACES 941

∗ = ∗ = { 1 2} and

( ) =

{
1( )/ ( ) for = 1

2( )/ ( ) for = 2

̂ has the boundarŷ = {ˆ1 ˆ2} ∪ {ˆθ; θ1 < θ < θ2} where ˆ corresponds to
( = 1 2) and θ̂ to θ and some θ′ with θ′ ∈ \ [θ1 < θ < θ2]. ̂ = ̂1 = {ˆ1 ˆ2}
and

ˆ( ˆ) =

{
( ) for ˆ = ˆ ( = 1 2)

1(ˆ) ( 1) + 2(ˆ) ( 2) for ˆ = ˆθ

where (ˆ) = [| − |2 (| − 1|−2 + | − 2|−2)]−1 with = θ.
[iii] = (1 / )

∑
=1 ( ≥ 3), where are distinct. Then ∗ = ∗ =

{ 1 · · · }, ( ) = ( )/ ( ) for = (1≤ ≤ ), and ̂ = , ̂ = ̂ 1 ≃ ∗,

ˆ ( ˆ) =

{
( ) for ˆ = ˆ (1≤ ≤ )
∑

=1 (ˆ) ( ) for ˆ 6= ˆ

where (ˆ) = [| − |2∑ =1 | − |−2]−1 and corresponds to ˆ.

In these cases (̂1) covers ( )

EXAMPLE 4 (Cornea-Loeb [6]). Let ={ ∈ C; | | < 1} { } be a countable
dense subset of \ {1} andλ = ε0. We put

γ = sup

{
( )

( )
; 0≤ < 1

}

where ( ) = min{log(1/| |) 1}. It is easily checked that 0< γ < +∞, therefore
we may findα > 0 such that

∑∞
=1α γ < +∞ and

∑∞
=1α = 1. We set ( ) =∑∞

=1α ( ) and consider the harmonic sheafH/ . Letting ∗ be the Martin com-
pactification of with the harmonic sheafH/ , we have ∗ = ∗

1 = ∗ = ≃
(the usual Martin boundary). Further it is known that 16∈ reg( ∗) so reg( ∗) ( ∗

By Theorem 3.2, we havê is semi-regular and̂ = ̂ 1 = reg(̂ ) We havê = ∗

and that̂ is a refinement of ∗.

EXAMPLE 5. Let be a bounded domain inR3 with Lebesgue’s spine at 0 and
a harmonic sheafH and λ = ε 0 with 0 ∈ . We suppose that every boundary point
is regular except 0. We take the Martin compactification as∗. Then ∗ = ∗

1 =
∗ but reg( ∗) ( ∗. In the same way as the above examplê is semi-regular and
̂ = ̂ 1 = reg(̂ ) ≃ ∗. However̂ ( ̂ and ̂ is a refinement of ∗.
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4.2. In this section we conseder the disc ={ ∈ C; | | < 1} with the har-
monic sheafH and λ = ε0. Letting ( ) = 2π ( ) = (1− | |2)/(| − |2) we form

( ) =
∫

( ) ( ) µ∗( )

(
µ∗( ) = µ∗( θ

)
=

1
2π

θ

)

Let us consider the following three cases:
[1◦] 0 ; 0 = { (0 )}. ( (0 )≡ 1)

0 is the one point compactification of .
[2◦] 1 ; 1 = { ( 1 ); 0< 1 < 1}.

1 = {ˇθ; 0 ≤ θ ≤ π}, where θ and − θ are identified as θ̌.
1

ˇ ( ) is equal

to the usual Dirichlet solution of such that (θ) = ( − θ) = ˇ (ˇθ). χ̌ (ˇθ) =
[ ( θ) + ( − θ)] θ µ̌(ˇθ) = (1/π) θ and ˇ( ˇθ) = π [ ( θ) + ( − θ)]
thus

ˇ ( ) =
∫

ˇ( ˇθ) ˇ( ˇθ) µ̌(ˇθ) =
1
2

[ ( ) + ( )]

where is the conjugate complex number of . Hence (1)∧ = 1 and the Dirichlet
solutions in 1 are the usual Dirichlet solutions such that ( ) = ().
[3◦] 2 ; 2 = { ( 1 ) ( 2 )} arg 1 6≡ arg 2 (mod π).

2 ≃ ≃
For ⊂ { ( ); ∈ }, is one of the above type [1◦], [2◦] and [3◦].

4.3. The heat equation

EXAMPLE 6. We consider the heat equation of one space dimension in the
Euclidean space:

∂2

∂ξ2
=
∂

∂τ

where we denote by = (ξ τ ) a point in R ×R.
In the first place, we shall treat a very simple case where ={(ξ τ ); 0< ξ < 1

0< τ < 1}, a reference measureλ is the restriction of the two dimensional Lebesgue
measure to , and ∗ is the topological closure of inR2. We put = (0 0),

= (1 0), = (0 1) and = (1 1). In this case, the Martin compactification
is obtained by identifying the closed segment [ ] of∗ with one point . The cor-
responding Martin kernel ( ) is continuous and ( ) = 0, where∈ ,
∈ := \ . It follows from the Green’s formula that the harmonic measure

χ∗ at = (ξ τ ) ∈ is carried by ∗
τ := ∗ ∩ (R × (−∞ τ )) and is absolutely

continuous with respect to the length element of∗; on each edge, the density func-
tion κ is continuous. Sinceκ is proportional to the Martin kernel , we can write
χ∗ = ( )µ∗, whereµ∗ =

∫
χ∗ λ( ). A kernel ( ) =

∫
( ) ( ) µ∗( ) =
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∫
χ∗ on × has a continuous extension∗( ) to × ∗, because every

boundary point in ∗\( ) is regular, is continious there and lim→ ( ) = 0.
Here ( ) is the open edge from to . If∈ ∗ \ ( ), then ∗( ) = ( )
and lim → ′

∗( ) = 0 for any ′ ∈ ∗\(( )∪{ }). On the other hand, if ∈ ( ),
then lim → ′

∗( ) = lim → ( ′) > 0 for ′ ∈ ∗ \ [ ], which shows that
∗( · ) separate a point in ∗ \ ( ) from that in ( ). Finally, we show ∗( · )

separate points in ( ). We take two points = (ξ 1) ∈ ( ) arbitrary ( = 1, 2). If
∗( 1) = ∗( 2) for every ∈ , then ( 1

′) = ( 2
′) for any ′ ∈ ∗\[ ],

where ( ′) = lim → ( ′). For 0< < 1, we put

( ) =
∫

∗

η χ∗(η ) =
∫

∗

η
(

(η )
)
µ∗(η )

which can be considered as a function on (0 1)×R. Since

(ξ 1) = lim
τ→1

(ξ τ ) =
∫

∗

η
(
(ξ 1) (η )

)
µ∗(η )

and since lim→1 (ξ 1) = ξ we have (ξ1 1) = (ξ2 1) and ξ1 = ξ2 Therefore we
find

̂ = [ ] ∪ ( ) ∪ ( ) ∪ ( ) ∪ { = }

Next we insert a slit in . Putting = (0 1/2), = (1/4 1/2) and =
(1/2 1/2), we consider two spaces1 = \ [ ] and 2 = \ [ ]. As a matter
of convenience, we distinguish the upper side+ from the lower side − of the slits

( = 1, 2). Using a similar argument to that above, we can find and̂ :

1 = [ ] ∪ ( ) ∪ ( −) ∪ { } ∪ +
1 ∪ ( ) ∪ { } ∪ 1

where −
1 shrinks to one point corresponding to ,

̂1 = [ ] ∪ ( ) ∪ ( −] ∪ −
1 ∪ ̂ ∪ +

1 ∪ [ + ) ∪ ( ) ∪ { = } ∪ 1

where −, + denote the lower and upper side of , respectively and̂ corresponds
to the irregularity of .

2 = [ ] ∪ ( ) ∪ ( ) ∪ { } ∪ +
2 ∪ ∪ 2

where corresponds to the convex combination of the Martin kernel at and that
at , and

̂2 = [ ] ∪ ( ) ∪ ( ) ∪ ( ) ∪ { = } ∪ −
2 ∪ +

2 ∪ ̂ ∪ ̂ ∪ 2
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