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1. Introduction

In this paper, we discuss the Littlewood-Paley inequality.Typical example is
the Brownian motion on the Euclidean space and it leads to thefollowing inequality:
for any > 1 there exist a positive constant such that

(1.1) −1‖∇ ‖ ≤ ‖
√
− ‖ ≤ ‖∇ ‖

√
− , the square root of the minus Laplacian, is called the Cauchyoperator. (1.1) is

equivalent to the -boundedness of the Riesz transformation.
This kind of inequality also holds for the Ornstein-Uhlenbeck process on an ab-

stract Wiener space, which was proved by P.A. Meyer [11] in a probabilistic approach.
In this paper, we attempt to extend this inequality for a diffusion process associ-

ated with a Dirichlet form that admits a square field operator. There have been sev-
eral related works, e.g., Bakry [3, 4], Shigekawa-Yoshida [16]. In these papers, they
assumed that 2 is positive or bounded from below. We replace this boundedness as-
sumption with the exponential integrability of negative part of 2. To handle this case,
we assume that the logarithmic Sobolev inequality holds. Moreover our square field
operator is of the gradient form, i.e., the Dirichlet formE is given as follows;

(1.2) E( ) =
∫

(∇ ∇ )µ( )

We adopt a probabilistic approach which was developed by Meyer and Bakry. We
will show the inequality for the Littlewood-Paley -function. Since the square field
operator is given as a gradient, we consider another semigroup that acts on vector
valued functions and use the semigroup domination to estimate vector valued func-
tions. Using this method, the estimate for vector valued functions can be reduced
to the scalar case. But the unboundedness of2 causes some troubles and so we
could not prove the exact inequality. We only show that the -norm is dominated
by -norm for 1< < (see the precise statement in§2).
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We also discuss the Brownian motion on a Riemannian manifoldwith boundary.
We impose the Neumann boundary condition on the Brownian motion. In this case,
the quantity corresponding to2 is singular (i.e., it is not a function but a smooth
measure). We deal with it by way of an associated additive functional. The additive
functional belongs to the Kato class and we can show the exactinequality (i.e., no
loss of exponent).

The organization of the paper is as follows. We give a formulation and a main re-
sult in §2. We define 2 in our formulation. It is a generalization of Ricci curvature
and is based on a square field operator for vector valued functions. In §3, the max-
imal ergodic inequality for a semigroup with a potential is given. Here the logarith-
mic Sobolev inequality is essential. We give a proof of the main theorem in§5. To
do this, we prepare fundamental inequalities for the Littlewood-Paley -function in§4.
A proof for the Littlewood-Paley inequality is given in§5. Combining this with the in-
tertwining property of semigroups, we can get the main result. The Brownian motion
on a Riemannian manifold with boundary is dealt with in§6.

2. Symmetric diffusion

Let us introduce a diffusion process that we use in the paper.Let be a topo-
logical space. We assume to be Souslinian. Suppose we are given a Borel proba-
bility measureµ on and a Dirichlet formE in 2(µ). We assume that there exists
a Hunt diffusion process ( )∈ associated withE . We denotes the generator and
the semigroup by and{ }, respectively. We assume that 1∈ Dom( ) and 1 = 0
where 1 denotes the function that is identically equal to 1. Hence the diffusion ( ) is
conservative. We also assume that the Dirichlet form satisfies the following defective
logarithmic Sobolev inequality: there existα > 0 andβ ≥ 0 such that

(2.1)
∫

2 log

(

‖ ‖2

)
µ( ) ≤ αE( ) + β( )

Here ( ) denotes the inner product in2.
Further we assume that the square field operator is well-defined. Here :

Dom(E) × Dom(E) → 1(µ) is a continuous bilinear map which is characterized as
follows:

(2.2) 2( ( ) ) =E( )− E( )− E( ) ∀ ∈ E ∩ ∞

A crucial assumption is as follows; there exists a ‘gradientoperator’∇ such that∇
is a closed operator from 2(µ) to 2(µ; ) and it satisfies ( ) = (∇ ∇ ). Here

is a (separable) Hilbert space.2(µ; ) may be possibly the set of all square inte-
grable section of a vector bundle over . But we use2(µ; ) for notational conven-
tion. We need another semigroup{ ˆ } in 2(µ; ). Let { ˆ } be a contraction symmet-
ric semigroup associated with a bilinear form̂E . We also need a square field operator
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for { ˆ } and so we assume that
(A.1) For θ ∈ Dom(ˆ ), it holds that|θ|2 ∈ Dom( 1).
Here 1 is the generator in 1(µ). Under this condition, we define a square field op-
erator ˆ as

(2.3) 2ˆ (θ η) = (θ η) − ( ˆ θ η) − (θ ˆ η)

We assume the following two properties: the positivity and the derivation property.
(A.2) ˆ (θ θ) ≥ 0 for θ ∈ Dom(Ê).
(A.3) For θ, η ∈ Dom(Ê) ∩ ∞ and ∈ Dom(E) ∩ ∞, it holds that

(2.4) 2 ˆ (θ η) = −
(
∇ ∇(θ η)

)
+ ˆ (θ η) + ˆ ( θ η)

Then, by the semigroup domination theorem (see [14]), we have

(2.5) | ˆ θ| ≤ |θ|

Let S ( ) be the space of all self-adjoint operator on that is bounded from
below. Let be a function on taking values inS ( ). Define a bilinear formÊ
by

(2.6) Ê (θ η) = Ê(θ η) +
∫ (

( )θ( ) η( )
)
µ( )

The associated semigroup will be denoted byˆ . We assume the following intertwin-
ing property, which is crucial in the paper.

(2.7) ∇ = ˆ ∇ for ∈ Dom(∇).

plays the role of so called 2.
We take a scalar function such that

(2.8)
(

( )
)
≥ ( )( )

The semigroup generated by− is denoted by{ }. The generator of̂ is ˆ− .
Again by the domination theorem, it holds that

(2.9) | ˆ θ| ≤ |θ|

can be decomposed as =+− − where + = ∨0 and − = (− )∨0. The last
assumption is that
(A.4) − ∈ ∞− =

⋂
≥1 .

For scalar functions, we can define two kinds of norms:‖∇ ‖ and ‖
√

1− ‖ .
It is a fundamental question whether these norms are equivalent or not. For example,
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if the generator is the Ornstein-Uhlenbeck operator on an abstract Wiener space,
then the equivalence of two norms are known as the Meyer equivalence.

Under our conditions, we can get the following result.

Theorem 2.1. For any 1< < <∞, we have

‖∇ ‖ . ‖
√

1− ‖(2.10)

‖
√

1− ‖ . ‖∇ ‖ + ‖ ‖(2.11)

In the above theorem, the notation. stands for ≤ for a positive con-
stant . Further, in (2.10) for example, the constant dependsonly on but is indepen-
dent of . We use this convention in the sequel without mentioning.

To prove the theorem, we use the Littlewood-Paley -function. We introduce it
in §4 and give a proof of the theorem in§5.

3. Maximal ergodic inequality

In this section, we discuss the maximal ergodic inequality.This inequality is
known for a symmetric Markov semigroup (see e.g., Stein [17]). Here we consider
a semigroup with a potential. To show the inequality, we adopt a probabilistic method
due to Rota [13].

We consider an additive functional associated to a smooth signed measureρ
under the Revuz correspondence. We define a Dirichlet form by

(3.1) Eρ( ) = E( ) +
∫

˜ ˜ρ( )

where ˜ denotes the quasi-continuous modification of . The associated semigroup is
denoted by{ ρ}, which is expressed as

(3.2) ρ ( ) =
[

( ) − ]

where denote the expectation under the measure .

Theorem 3.1. Assume that for any ≥ 1, there exist constants , β such that

(3.3) [ − ]1/ ≤ β ∀ ≥ 0 q.e.-

Here “q.e.” means that it holds except for a set of capacity0. Then for any > 1
there exist constantsλ, such that

(3.4)

∥∥∥∥sup
≥0
| −λ ρ |

∥∥∥∥ ≤ ‖ ‖ ∀ ∈
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In particular, if ρ is non-negative(i.e., is non-negative), we can takeλ = 0.

Proof. We note that| ρ | ≤ −ρ− | |, whereρ = ρ +−ρ− is the Hahn decompo-
sition of ρ. Without loss of generality, we may assume thatρ is non-positive.

Set

(3.5) = ρ
− ( ) −

Here θ is the shift operator. We show first that{ } is a martingale under µ :=∫
µ( ). In fact,

µ

[
( ) − | F

]
= µ

[
( − ◦ θ ) − − ◦θ − | F

]

= −
µ

[
( − ◦ θ ) − − ◦θ | F

]

= − [
( − ) − −

]
(Markov property)

= − ρ
− ( )

We note, by the Markov property,

ρ
− ( ) =

[
( − ) − −

]

= µ

[
( − ◦ θ ) − − ◦θ |

]

= µ

[
( 2 − ) − 2 − + |

]

Now, using the reversibility of ( ), i.e., (2 − )0≤ ≤2 has the same law as
( )0≤ ≤2 , we have

ρ
− ( ) = µ

[
( ) − + |

]

Hence

ρ
2( − ) ( ) = ρ

−
ρ
− ( )

= µ

[ ρ
− ( ) − + |

]

= µ

[ − +2 |
]

Noting that we have taken to be non-positive, we have

sup
0≤ ≤

| ρ
2( − ) ( )| ≤ µ

[
sup

0≤ ≤
| | −

∣∣∣∣
]

≤ µ

[
sup

0≤ ≤
| |

∣∣∣∣
]1/

µ

[ − |
]1/

(
1

+
1

= 1

)

On the other hand,

µ

[ − |
]1/

= µ

[ − ( 2 − ) |
]1/

(reversibility)(3.6)
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= µ

[ − ◦θ ) |
]1/

(additivity)

=
[ − ]1/

(Markovian property)

≤ β (∵ (3.3))

Thus we have

sup
0≤ ≤

| ρ
2( − ) ( )| ≤ β

µ

[
sup

0≤ ≤
| |

∣∣∣∣
]1/

Hence, by the Doob inequality

∥∥∥∥ sup
0≤ ≤

| ρ
2( − ) |

∥∥∥∥

≤ β
µ

[
µ

[
sup

0≤ ≤
| |

∣∣∣∣
]]1/

= β
µ

[
sup

0≤ ≤
| |

]1/

≤ ′ β
µ[| | ]1/ (Doob’s inequality)

= ′ β
µ[| ( )| − ]1/

= ′ β
µ

[
µ[| ( )| − | ]

]1/

= ′ β
µ

[
| ( )| µ[ − | ]

]1/

≤ ′ β β
µ[| ( )| ]1/ (∵ (3.6))

= ′ (β +β ) ‖ ‖

Thus we can find constants> 0 and > 0 which are independent of and such
that

∥∥∥∥ sup
0≤ ≤2

| ρ |
∥∥∥∥ ≤ 2 ‖ ‖

We takeλ > . Note that for any integer ,
∥∥∥∥ sup

≤ ≤ +1

−λ | ρ |
∥∥∥∥ ≤ −λ

∥∥∥∥ sup
0≤ ≤ +1

| ρ |
∥∥∥∥

≤ −λ ( +1)‖ ‖

Summing up in ,

∞∑

=0

∥∥∥∥ sup
≤ ≤ +1

−λ | ρ |
∥∥∥∥ ≤

∞∑

=0

−(λ− ) ‖ ‖
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≤ − − −λ ‖ ‖

Clearly this leads us to

∥∥∥∥ sup
0≤ <∞

−λ | ρ |
∥∥∥∥ ≤

∥∥∥∥
∞∑

=0

sup
≤ ≤ +1

−λ | ρ |
∥∥∥∥

≤
∞∑

=0

∥∥∥∥ sup
≤ ≤ +1

−λ | ρ |
∥∥∥∥

≤ − − −λ ‖ ‖

This completes the proof.

The assumption (3.3) is rather strong. We replace it with theassumption (A.4).
In this case, we setρ = . Hence, the associated additive functional is given by

(3.7) =
∫

0
( )

Here we denote the semigroup{ ρ} by { }. Since E satisfies the logarithmic
Sobolev inequality (2.1), we have (see, e.g., [14]),

(3.8) ‖ ‖ ≤ ‖ − ‖α 2/4( −1)
4β /α‖ ‖

This means that there exists a constantγ such that

(3.9) ‖ ‖ → ≤ γ

E.g., setγ = (4β/α) log‖ − ‖α 2/4( −1).
In particular, when = 2,

(3.10) ‖ ‖2 ≤ ‖ − ‖α 4β /α‖ ‖2

In this case, taking = 1, we have

µ[ − ] =
∫

[1 − ]µ( )

= ‖ 1‖1

≤ ‖ 1‖2

≤ ‖ − ‖α 4β /α‖1‖2

≤ ‖ − ‖α 4β /α
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Hence, for anyγ > 0, it holds that

(3.11) µ[ −γ ] ≤ ‖ −γ ‖α 4β /α

Noticing this inequality, we can get the following maximal ergodic inequality.

Theorem 3.2. Take any1 < < < ∞. If we takeλ > 0 to be sufficiently
large, then there exists a constant> 0 such that

(3.12)

∥∥∥∥sup
≥0
| −λ |

∥∥∥∥ ≤ ‖ ‖

Proof. By the same proof as in Theorem 3.1, we have

sup
0≤ ≤

| 2( − ) ( )| ≤ µ

[
sup

0≤ ≤
| | −

∣∣∣∣
]

Hence,

∥∥∥∥ sup
0≤ ≤

| 2( − ) |
∥∥∥∥

≤ µ

[
µ

[
sup

0≤ ≤
| | −

∣∣∣∣
] ]1/

≤ µ

[
sup

0≤ ≤
| | −

]1/

≤ µ

[
sup

0≤ ≤
| | /

]( / )·(1/ )

µ[ − ]( − )/

(
1
/

+
1

= 1

)

≤ µ[| | ]1/
µ[ − ]( − )/ (Doob’s inequality)

= µ[| ( ) − | ]1/
µ[ − ]( − )/

≤ µ[| ( )| / ]( / )·(1/ )
µ[ − ]( − )/

µ[ − ]( − )/

(
1
/

+
1

= 1

)

≤ ‖ ‖ ‖ − ‖( − ) /
α

4β( − ) /α ‖ − ‖( − ) /
α

4β( − ) /α

Thus we can find a constant> 0 which is independent of and such that

∥∥∥∥ sup
0≤ ≤2

| |
∥∥∥∥ ≤ 2 ‖ ‖

The rest is the same as Theorem 3.1. This completes the proof.
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4. Littlewood-Paley G-functions

Let us introduce the Littlewood-Paley -functions. To do this, we recall the sub-
ordination of a semigroup. Setλ = −λ (λ ≥ 0). We takeλ to be large enough.
For any ≥ 0, define a measureµ on [0 ∞) by

(4.1) µ ( ) =
2
√
π

− 2/4 −3/2

In terms of the Laplace transform, this measure is characterized as

∫ ∞

0

−α µ ( ) = −√
α for α > 0

Then the subordination{ λ} of { λ} is defined by

(4.2) λ =
∫ ∞

0

λ µ ( )

The generator of{ λ} in 2(µ) is −
√
λ− .

We recall that{ } is the semigroup with the potential . We setλ+ =
−λ and we also define the subordination of{ } as

(4.3) λ+ =
∫ ∞

0

λ+ µ ( )

The operator norm of{ λ+ } in is estimated as

‖ λ+ ‖ → ≤
∫ ∞

0
‖ λ+ ‖ → µ ( )

≤
∫ ∞

0

−λ +γ µ ( )

= −
√
λ−γ

Here γ is the constant in (3.9). Moreover, by the semigroup domination | ˆ λ+ θ| ≤
λ+ |θ|, we have

(4.4) ‖ ˆ λ+ ‖ → ≤ ‖ λ+ ‖ → ≤ −(λ−γ )

Similarly we have

(4.5) ‖ ˆ λ+ ‖ → ≤ −
√
λ−γ

For any real valued function , define

→( ) = |∂ λ ( )|2(4.6)
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↑( ) = |∇ λ ( )|2(4.7)

( ) = →( ) + ↑( )(4.8)

Here ∂ = ∂/∂ . Then, the Littlewood-Paley -function is defined by

→ ( ) =

{∫ ∞

0

→( )

}1/2

(4.9)

↑ ( ) =

{∫ ∞

0

↑( )

}1/2

(4.10)

( ) =

{∫ ∞

0
( )

}1/2

(4.11)

Moreover, we define the -functions by

→ ( ) =

{∫ ∞

0

→( )

}1/2

(4.12)

↑ ( ) =

{∫ ∞

0

↑( )

}1/2

(4.13)

( ) =

{∫ ∞

0
( )

}1/2

(4.14)

For vector valued functionθ, we define -function and -function, similarly.
That is, e.g.,

ˆ→( ) = |∂ ˆ λ+ θ( )|2(4.15)

ˆ →θ( ) =

{∫ ∞

0
ˆ→( )

}1/2

(4.16)

ˆ →θ( ) =

{∫ ∞

0
ˆ→( )

}1/2

(4.17)

Notice that, in this case, we use the semigroup{ ˆ λ+ } that is the subordination of
{ ˆ λ+ }. ˆ ↑θ, ˆ ↑θ, ˆ θ, and ˆ θ are defined similarly. For example,

ˆ↑( ) = ˆ
(

ˆ λ+ θ ˆ λ+ θ
)
( )

(see (2.3) for the definition of̂ ).
The following proposition is easily obtained by the spectral decomposition:

Proposition 4.1. It holds that

(4.18) ‖ → ‖2 =
1
2
‖ ‖2
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and

(4.19) ‖ ˆ →θ‖2 =
1
2
‖θ‖2

Later we need the interrelationship between and functions and so we first
prepare the following.

Lemma 4.2. We have the following estimate:

| λ+ ( )|2 ≤
{

sup
≥0

2(λ+ )1( )

}
| |2( )(4.20)

| λ+ ( )|2 ≤
{

sup
≥0

2(λ+ )1( )

}
| |2( )(4.21)

Proof. By the Feynman-Kac formula, we have

| λ+ ( )|2 =

∣∣∣∣
[
exp

{
−λ −

∫

0
( )

}
( )

]∣∣∣∣
2

≤
[
exp

{
−2λ − 2

∫

0
( )

}]
[| ( )|2]

= 2(λ+ )1( ) · | |2( )

≤
{

sup
≥0

2(λ+ )1( )

}
· | |2( )

Further we have,

| λ+ ( )|2 =

∣∣∣∣
∫ ∞

0

λ+ ( )λ ( )

∣∣∣∣
2

≤
∫ ∞

0
| λ+ ( )|2λ ( )

≤
∫ ∞

0

{
sup
≥0

2(λ+ )1( )

}
· | |2( )λ ( )

=

{
sup
≥0

2(λ+ )1( )

}
· | |2( )

This completes the proof.

Now we can show the following estimate between -functions and -functions.
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Proposition 4.3. We have that

(4.22) ˆ →θ ≤ 2

{
sup
≥0

2(λ+ )1( )

}1/2

· ˆ →θ

For scalar function, we have

→ ≤ 2 →(4.23)

↑ ≤ 2

{
sup
≥0

2(λ+ )1( )

}1/2

· ↑(4.24)

Proof. We have,

| ˆ λ+ θ( )| ≤
∫ ∞

0
| ˆ λ+ θ( )|µ ( ) ≤

∫ ∞

0

λ+ |θ|( )µ ( ) = λ+ |θ|( )

Using Lemma 4.2, we have

| ˆ λ+ θ( )|2 ≤ { λ+ |θ|( )}2 ≤
{

sup
≥0

2(λ+ )1( )

}
· |θ|2( )

Therefore

ˆ→( 2 ) = |∂ ˆ λ+ θ( )|2
∣∣∣∣

=2

=
∣∣∣
√
λ− ˆ + ˆ λ+

2 θ( )
∣∣∣
2

=
∣∣∣ ˆ λ+

√
λ− ˆ + ˆ λ+ θ( )

∣∣∣
2

≤
{

sup
≥0

2(λ+ )1( )

} ∣∣∣
√
λ− ˆ + ˆ λ+ θ

∣∣∣
2
( )

=

{
sup
≥0

2(λ+ )1( )

}
ˆ→( )

From this,

ˆ →θ( ) =

{∫ ∞

0
ˆ→( )

}1/2

=

{
4
∫ ∞

0
ˆ→( 2 )

}1/2

≤ 2

{∫ ∞

0

{
sup
≥0

2(λ+ )1( )

}
ˆ→( )

}1/2

≤ 2

{
sup
≥0

2(λ+ )1( )

}1/2{∫ ∞

0
ˆ→( )

}1/2
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= 2

{
sup
≥0

2(λ+ )1( )

}1/2
ˆ →θ( )

For the scalar function, it holds that → ≤ 2 → since we have| ( )|2 ≤
| |2( ).

Let us next estimate ↑ .

↑ ( ) =

{∫ ∞

0
|∇ λ ( )|2

}1/2

=

{
4
∫ ∞

0
|∇ λ

2 ( )|2
}1/2

= 2

{∫ ∞

0
| ˆ λ+ ∇ λ ( )|2

}1/2

≤ 2

{∫ ∞

0
{ λ+ |∇ λ ( )|}2

}1/2

≤ 2

{∫ ∞

0

{
sup
≥0

2(λ+ )1( )

}
|∇ λ |2( )

}1/2

= 2

{
sup
≥0

2(λ+ )1( )

}1/2{∫ ∞

0

↑( )

}1/2

= 2

{
sup
≥0

2(λ+ )1( )

}1/2
↑ ( )

Thus we have (4.24). This completes the proof.

In the next section, we use the diffusion process generated by + ∂2. So we will
do some calculation on +∂2.

Lemma 4.4. For any θ, set ˆ ( ) = | ˆ λ+ θ( )| and for ε > 0, ˆ
ε( ) =√

ˆ ( )2 + ε. Then we have

(4.25)
(

+ ∂2
)

ˆ 2 ≥ 2(λ + ) ˆ 2 + 2ˆ

and for 1< ≤ 2, it holds that

(4.26) ( +∂2) ˆ
ε ≥ (λ + ) ˆ 2 ˆ −2

ε + ( − 1) ˆ −2
ε ˆ

where ˆ = ˆ ( ) was defined by

ˆ ( ) = |∂ ˆ λ+ θ( )|2 + ˆ ( ˆ λ+ θ ˆ λ+ θ)( )

For the scalar case, we define ( ) = | λ ( )|, ε( ) =
√

( )2 + ε. Then
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we have

(4.27)
(

+ ∂2) 2 ≥ 2λ 2 + 2

and for 1< ≤ 2,

(4.28)
(

+ ∂2)
ε ≥ λ 2 −2

ε + ( − 1) −2
ε

Proof. We first show (4.25). To show this, we note that (ˆ − λ − + ∂2)×
ˆ λ+ θ( ) = 0. Moreover, using the identity 2̂(θ θ) = |θ|2− 2( ˆ θ θ), it holds that

| ˆ λ+ θ|2 = 2
(

ˆ ˆ λ+ θ ˆ λ+ θ
)

+ 2ˆ
(

ˆ λ+ θ ˆ λ+ θ
)

Hence

( + ∂2) ˆ 2 = ( + ∂2)| ˆ λ+ θ|2

= 2(∂2 ˆ λ+ θ ˆ λ+ θ) + 2(∂ ˆ λ+ θ ∂ ˆ λ+ θ)

+ 2(ˆ ˆ λ+ θ ˆ λ+ θ) + 2ˆ ( ˆ λ+ θ ˆ λ+ θ)

= −2
(
( ˆ − λ− ) ˆ λ+ θ ˆ λ+ θ

)
+ 2|∂ ˆ λ+ θ|2

+ 2(ˆ ˆ λ+ θ ˆ λ+ θ) + 2ˆ ( ˆ λ+ θ ˆ λ+ θ)

≥ 2(λ + )| ˆ λ+ θ|2 + 2ˆ ( )

Secondly we show (4.26). To show this we recall the followingfundamental re-
lationship between and∇: for (ξ1 ξ2 . . . ξ ) ∈ ∞(R ) and 1 2 . . . ∈
Dom( ),

( 1 2 . . . ) =
∑

=1

∂

∂ξ
+
∑

=1

∂2

∂ξ ∂ξ
(∇ ∇ )

(see [5, Lemma 1]). Hence we have, for 1< ≤ 2,

( + ∂2) ˆ
ε = ( + ∂2)( ˆ 2

ε ) /2

=
2

( ˆ 2
ε ) /2−1( + ∂2) ˆ 2

ε

+
2

(

2
− 1

)
( ˆ 2
ε ) /2−2{(∂ ˆ 2

ε )2 + |∇ ˆ 2
ε |2}

=
2

ˆ −2
ε ( + ∂2) ˆ 2

ε +
4

( − 2) ˆ −4
ε {(∂ ˆ 2)2 + |∇ ˆ 2|2}

Let us recall that (see, e.g., [14, (3.11)])

|∇ ˆ 2|2 = |∇( ˆ λ+ θ ˆ λ+ θ)|2 ≤ 4ˆ ( ˆ λ+ θ ˆ λ+ θ)| ˆ λ+ θ|2
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Taking this into account, we have

( + ∂2) ˆ
ε ≥ 2

ˆ −2
ε {2(λ + )| ˆ λ+ θ|2 + 2ˆ}

+
4

( − 2) ˆ −4
ε {4(∂ ˆ λ+ θ ˆ λ+ θ)2 + 4ˆ ( ˆ λ+ θ ˆ λ+ θ)| ˆ λ+ θ|2}

≥
2

ˆ −2
ε {2(λ + )| ˆ λ+ θ|2 + 2ˆ} + ( − 2) ˆ −4

ε
ˆ 2 ˆ

≥ ˆ −2
ε (λ + )| ˆ λ+ θ|2 + ˆ −2

ε ˆ + ( − 2) ˆ −2
ε ˆ

≥ (λ + ) ˆ −2
ε

ˆ 2 + ( − 1) ˆ −2
ε ˆ

The scalar case can be proved similarly. This completes the proof.

5. Equivalence ofLp-norms

In this section, we give estimates of and functions by a probabilistic method
and then show the domination of norms. The original idea is due to P.A. Meyer [9]
but we mainly follow Bakry [4].

Let ( ) be the diffusion process on associated withE as before. We need
an additional 1-dimensional Brownian motion ( )≥0 and we regard as a vertical
space. We write ↑ in place of . Let ( →) be a 1-dimensional Brownian mo-
tion starting at ∈ R with the generator 2/ 2. Note that this Brownian motion is
different from the standard one up to constant. Letτ be the hitting time of ( ) to 0,
i.e.,

τ = inf{ ≥ 0 ; = 0}

We consider the following diffusion ( P( )) on the state space ×R;

(5.1) := ( ) P( ) := ↑ ⊗ →

So the generator of ( ) is +∂2. We denote the integration with respect toP( ) and∫
P( )µ( ) by E( ) and Eµ×δ , respectively.
We use the following identities (see Meyer [9] for the proof): Let η : × R+ →

[0 ∞) be measurable. Then, for> 0,

(5.2) Eµ×δ

[∫ τ

0
η( )

]
=
∫

µ( )
∫ ∞

0
( ∧ )η( )

and

(5.3) Eµ×δ

[∫ τ

0
η( )

∣∣∣∣ τ =

]
=
∫ ∞

0
( ∧ ) η( )

We need an inequality for submartingales. Let ( ) be anon-negativecontinuous
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submartingale with the following Doob-Meyer decomposition;

= +

where ( ) is a continuous martingale and ( ) is a continuous increasing process
with 0 = 0. Then, for ≥ 1, it holds that

(5.4) [ ∞] ≤ [ ∞]

For the proof, see Lenglart-Lépingle-Pratelli [8].
Before going to estimate -function we prepare the following;

Proposition 5.1. For any ≥ 1, we have

(5.5) sup
α≥0
≥0

Eµ×δ

[{∫ τ

0
α −√

α

} ]
<∞

Proof. By the Itô formula, we have

−√
α = −√

α 0 −√α
∫

0

−√
α +

∫

0
α −√

α

Hence
∫ ∧τ

0
α −√

α = −√
α ∧τ − −√

α 0 +

where ( ) is a martingale defined by

=
√
α

∫ ∧τ

0

−√
α

which satisfies

〈 〉 = 2α
∫ ∧τ

0

−2
√
α

Now, by the Burkholder inequality

Eµ×δ

[{∫ τ

0
α −√

α

} ]

≤ Eµ×δ
[( −√

α τ − −√
α 0
) ]

+ Eµ×δ [〈 〉 /2
τ ]

≤ + Eµ×δ

[{∫ τ

0
4α −

√
4α

} /2]
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Thus it is enough to show (5.5) when = 1.

Eµ×δ

[∫ τ

0
α −√

α

]
=
∫ ∞

0
( ∧ )α −√

α ≤
∫ ∞

0
α −√

α = 1

This completes the proof.

-functions are now estimated as follows.

Proposition 5.2. For any 1< < < 2, we have

(5.6) ‖ ˆ θ‖ . ‖θ‖

and

(5.7) ‖θ‖ ′ . ‖ ˆ →θ‖ ′

where ′ and ′ are the conjugate exponent of and, respectively.
For scalar functions, we have

(5.8) ‖ ‖ . ‖ ‖

Proof. Set ˆ ( ) = | ˆ λ+ θ( )| and for ε > 0, ˆ
ε( ) =

√
ˆ ( )2 + ε. Define

(ε) = ˆ
ε( ∧τ ∧τ )

and

= ˆ ( ∧τ ∧τ )

Then

(ε) = (ε) −
∫ ∧τ

0
( + ∂2) ˆ

ε( )

is a martingale.
By Lemma 4.4, we have

( + ∂2) ˆ
ε ≥ (λ + ) ˆ 2 ˆ −2

ε + ( − 1)ˆ ˆ −2
ε(5.9)

≥ − (λ + )− ˆ 2 ˆ −2
ε + ( − 1)ˆ ˆ −2

ε

Hence

(ε) +
∫ τ

0
(λ + )−( ) ˆ

ε( )
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= (ε) +
∫ ∧τ

0
( + ∂2) ˆ

ε( ) +
∫ τ

0
(λ + )−( ) ˆ

ε( )

is a non-negative submartingale. By lettingε→ 0 in (5.9), we have

lim inf
ε→0

( + ∂2) ˆ
ε ≥ − (λ + )− ˆ + ( − 1)ˆ ˆ −2

which implies

(5.10) ˆ≤ 1
( − 1)

lim inf
ε→0

( + ∂2) ˆ
ε · ˆ 2− +

1
− 1 − ˆ 2

Now we can estimatê θ.

‖ ˆ θ‖ =

∥∥∥∥
{∫ ∞

0
ˆ ( )

} /2∥∥∥∥
1

.

∥∥∥∥
{∫ ∞

0

{
lim inf
ε→0

( + ∂2) ˆ
ε + (λ + )− ˆ

}
ˆ 2−

} /2∥∥∥∥
1

.

∥∥∥∥
{

sup
≥0

λ+ |θ|
} (2− )/2{∫ ∞

0

{
lim inf
ε→0

( + ∂2) ˆ
ε + (λ + )− ˆ

} } /2∥∥∥∥
1

≤
∥∥∥∥
{

sup
≥0

λ+ |θ|
} ∥∥∥∥

(2− )/2

1

×
∥∥∥∥
∫ ∞

0

{
lim inf
ε→0

( + ∂2) ˆ
ε + (λ + )− ˆ

} ∥∥∥∥
/2

1

The first factor of the right hand side can be estimated as follows. By Theorem 3.2,
we have

(5.11)

∥∥∥∥
{

sup
≥0

λ+ |θ|
} ∥∥∥∥

(2− )/2

1

≤
∥∥∥∥sup

≥0

λ+ |θ|
∥∥∥∥

(2− )/2

. ‖θ‖ (2− )/2

For the second factor, we have
∥∥∥∥
∫ ∞

0

{
lim inf
ε→0

( + ∂2) ˆ
ε + (λ + )− ˆ

} ∥∥∥∥
1

= lim
→∞

Eµ×δ

[∫ τ

0
lim inf
ε→0

{
( + ∂2) ˆ

ε ( ) + (λ + )−( ) ˆ ( )
} ]

≤ lim
→∞

lim inf
ε→0

Eµ×δ

[∫ τ

0

{
( + ∂2) ˆ

ε ( ) + (λ + )−( ) ˆ ( )
} ]

(∵ the Fatou lemma)

= lim
→∞

lim inf
ε→0

Eµ×δ

[
(ε)
∞ − (ε)

0 +
∫ τ

0
(λ + )−( ) ˆ ( )

]

= lim
→∞

Eµ×δ

[
∞ − 0 +

∫ τ

0
(λ + )−( ) ˆ ( )

]
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≤ lim
→∞

Eµ×δ [|θ( τ )| ] + lim
→∞

Eµ×δ

[∫ τ

0
(λ + )−( ) ˆ ( )

]

= ‖θ‖ +

∥∥∥∥
∫ ∞

0
(λ + )− ˆ

∥∥∥∥
1

The second term can be estimated as follows:
∥∥∥∥
∫ ∞

0
(λ + )− ˆ

∥∥∥∥
1

≤
∫ ∞

0
‖ − ˆ ‖1

≤
∫ ∞

0
‖ −‖ ‖ ˆ ‖ /

(
1
/

+
1

= 1

)

≤ ‖ −‖
∫ ∞

0
‖ ˆ λ+ θ‖

≤ ‖ −‖
∫ ∞

0
‖ ˆ λ+ ‖ → ‖θ‖

≤ ‖ −‖
∫ ∞

0

−
√
λ−γ ‖θ‖ (∵ (4.5))

=
‖ −‖ ‖θ‖
(λ− γ ) 2

Thus we have

‖ ˆ θ‖ . ‖θ‖ (2− )/2
(
‖θ‖ + ‖θ‖

) /2
. ‖θ‖

which shows (5.6).
(5.7) is obtained by the duality argument. In fact, using Proposition 4.1, we have

∫ (
θ( ) η( )

)
µ( ) = 4

∫
µ( )

∫ ∞

0

(
∂ ˆ λ+ θ( ) ∂ ˆ λ+ η( )

)

≤ 4
∫

ˆ →θ( ) ˆ →η( )µ( )

≤ 4‖ ˆ →θ‖ ‖ ˆ →η‖ ′

. ‖θ‖ ‖ ˆ →η‖ ′

Now (5.7) follows easily.
(5.8) for scalar functions can be shown much easily.

When ≥ 2, we estimateˆ and .

Proposition 5.3. For any 2< < , we have

(5.12) ‖ ˆ θ‖ . ‖θ‖
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For scalar functions, we have

(5.13) ‖ ‖ . ‖ ‖

Proof. We setˆ ( ) = | ˆ λ+ θ( )| and define

= ˆ ( ∧τ ∧τ )2

Then,

= −
∫ ∧τ

0
( + ∂2) ˆ 2( )

is a martingale. By Lemma 4.4, we have

(5.14) 2ˆ≤ ( + ∂2) ˆ 2 + 2 − ˆ 2

Then, setting

(5.15) =
∫ ∧τ

0
{( + ∂2) ˆ 2( ) + 2 − ˆ 2( )}

we can see that ( ) is an increasing process and have that

(5.16) +
∫ ∧τ

0
2 − ˆ 2( ) = +

Hence +
∫ ∧τ

0 2 − 2 is a non-negative submartingale and its increasing part ( )
satisfies

(5.17) ≥
∫ ∧τ

0
2ˆ ( )

Therefore, by (5.4), the following inequality hold.

Eµ×δ

[{∫ τ

0
2ˆ ( )

} /2]
≤ Eµ×δ [ /2

∞ ]

. Eµ×δ

[{
∞ +

∫ τ

0
2 − ˆ 2

} /2]

. Eµ×δ [ /2
∞ ] + Eµ×δ

[{∫ τ

0
− ˆ 2

} /2]

= ‖θ‖ + Eµ×δ

[{∫ τ

0
− ˆ 2

} /2]
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The second term can be estimated as follows. We take any< < .

Eµ×δ

[{∫ τ

0
− ˆ 2

} /2]

= Eµ×δ

[{∫ τ

0

−η η
− ˆ 2

} /2]

≤ Eµ×δ

[{∫ τ

0

−η /( −2)

}( −2) /2 {∫ τ

0

η /2 /2
− ˆ

}2 /2 ]

(∵ the Hölder inequality for the exponents/( − 2) and /2)

≤ Eµ×δ

[{∫ τ

0

−η /( −2)

} ( −2) /2 ]1/

Eµ×δ

[∫ τ

0

η /2 /2
− ˆ

] /

(
∵ the Hölder inequality for the exponents and/ where

1
+

1
/

= 1

)

. Eµ×δ

[∫ τ

0

η /2 /2
− ˆ

] /

(∵ Propostion 5.1)

=

{∫
µ( )

∫ ∞

0
( ∧ ) η /2 /2

− ( )| ˆ λ+ θ( )|
} /

To estimate the integral above, we recall that‖ ˆ λ+ θ‖ ≤ −
√
λ−γ ‖θ‖ . Therefore,

∫
µ( )

∫ ∞

0
( ∧ ) η /2 /2

− ( )| ˆ λ+ θ( )|

≤
∫ ∞

0

η /2
∫

/2
− ( )| ˆ λ+ θ( )| µ( )

≤
∫ ∞

0

η /2

{∫
/2

− ( )µ( )

}1/ {∫
| ˆ λ+ θ( )| / µ( )

} /

(
1

+
1
/

= 1

)

.

∫ ∞

0

η /2‖ ˆ λ+ θ( )‖

.

∫ ∞

0

η /2 −
√
λ−γ ‖θ‖

. ‖θ‖ (∵
√
λ− γ > η /2)

Thus we have obtained

(5.18) Eµ×δ

[{∫ τ

0
ˆ ( )

} /2]
. ‖θ‖
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Now we can estimatê θ.

‖ ˆ θ‖ =

∥∥∥∥
{∫ ∞

0
ˆ ( )

} /2∥∥∥∥
1

= lim
→∞

∫
µ( )

{∫ ∞

0
( ∧ ) ˆ ( )

} /2

= lim
→∞

∫
µ( )Eµ×δ

[∫ τ

0
ˆ ( )

∣∣∣∣ τ =

] /2

≤ lim
→∞

∫
µ( )Eµ×δ

[{∫ τ

0
ˆ ( )

} /2 ∣∣∣∣ τ =

]

= lim
→∞

Eµ×δ

[{∫ τ

0
ˆ ( )

} /2]

. ‖θ‖ (∵ (5.18))

The scalar case is easier.

Combining Propositions 4.3, 5.3, we can get

Proposition 5.4. For any 2≤ < <∞, we have

(5.19) ‖ ˆ →θ‖ . ‖θ‖

and

(5.20) ‖θ‖ ′ . ‖ ˆ →θ‖ ′

where ′ and ′ are the conjugate exponents of and, respectively.
For scalar functions, we have

(5.21) ‖ ‖ . ‖ ‖

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. We takeλ to be large enough. Recall that{ λ} is the
subordination of{ λ}. Then, by the intertwining property (2.7), we have

∇ λ = ˆ λ+ ∇

Now take any 1< < <∞. Then we have

‖∇ ‖ . ‖ ˆ →∇ ‖ =

∥∥∥∥
{∫ ∞

0

∣∣∂ ˆ λ+ ∇ ( )
∣∣2

}1/2∥∥∥∥
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=

∥∥∥∥
{∫ ∞

0

∣∣∣∇ λ
√
λ−

∣∣∣
2

}1/2∥∥∥∥

= ‖ ↑√λ− ‖
. ‖
√
λ− ‖

which proves (2.10).
The reversed inequality (2.11) is obtained by the duality argument. This completes

the proof.

6. Riemannian manifold with boundary

In this section, we discuss the reflected Brownian motion on aRiemannian man-
ifold with boundary. Let be a compact Riemannian manifold with boundary∂ .
Let ( ) ∈ be the Brownian motion on with the Neumann boundary condi-
tion. We denote the Riemannian volume by . In this section, the semigroup{ } is
generated by = with the Neumann boundary condition.{ } is a symmetric and
strongly continuous contraction semigroup in2( ). Further { ˆ } is the semigroup
generated by the Hodge-Kodaira Laplacianˆ = − ∗ − ∗ with absolute boundary
condition. The associated bilinear forms with andˆ are denoted byE and Ê . We
can see that the following intertwining property holds for{ } and { ˆ }:

(6.1) ∇ = ˆ ∇

As in §5, we use an additional 1-dimensional Brownian motion ( →) gener-
ated by 2/ 2. Let τ be the hitting time of ( ) to 0, and ( P( )) be the product
diffusion process on the state space× R.

(6.2) := ( ) P( ) := ⊗ →

So the generator of ( ) is +∂2.
We use the notationE ×δ =

∫
P( ) ( ) in the same way as in§5. For any

∈ ∞( ), we have

( )− ( 0 0) = a martingale +
∫

0
( +∂2) ( ) +

∫

0
∇ ( )

Here { } is an additive functional corresponding to the smooth measure σ (σ is
the surface measure of∂ ), is the inner normal vector and∇ denotes the covariant
differentiation. In particular we take 1-formθ with absolute boundary condition and set

( ) = | θ( )|2. Then,

( ∧τ ∧τ )− ( 0 0)
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= +
∫ ∧τ

0
( + ∂2) ( ) +

∫ ∧τ

0
∇ ( )

= +
∫ ∧τ

0
( + ∂2) ( ) +

∫ ∧τ

0
α
(

θ( ) θ( )
)

Here α is the second fundamental form of∂ (see [15] for this identity.)
The quadratic variation of ( ) is given by

〈 〉 = 2
∫ ∧τ

0
|∇ θ( )|2 + |∂ θ( )|2

Hence we can do the same argument as in the previous section. But we have to tackle
the additional term

∫ ∧τ
0 α( θ( ) θ( )) .

Next we see the semigroup domination. We note that for 1-forms θ, η and ∈
∞( ),

−E
(
(θ η)

)
+ Ê( θ η) + Ê(θ η)

= 2
∫

(∇θ ∇η) ( ) + 2
∫

Ric(θ η) ( ) + 2
∫

∂

α(θ η) σ( )(6.3)

where Ric is the Ricci curvature (refer to [15] for this identity.)
We takeγ ≥ 0 andβ ≥ 0 so that Ric(θ θ) ≥ −γ|θ|2 andα(θ θ) ≥ −β|θ|2. Then

α(θ θ)σ ≥ −β|θ|2σ as measures. It is easy to see thatσ is a smooth measure. We
also note that in the interior of , it holds that

(6.4) (θ η)− ( ˆ θ η)− (θ ˆ η) = 2(∇θ ∇η)− 2 Ric(θ η)

By (6.3) and (6.4), the semigroup domination theorem implies (see [14, 15])

(6.5) | ˆ θ| ≤ −γ−βσ|θ|

Here −γ−βσ is the semigroup which has−γ − βσ as a potential. It can be repre-
sented as

(6.6) −γ−βσ ( ) =
[

( ) γ +β ]

We can also show that (− ) satisfies the assumption of Theorem 3.1. To see this,
take any function ∈ ∞( ) such that∇ = 1 on ∂ . Such a function can be con-
structed as follows. Take any local coordinate (1 . . . −1 ) such that∂ = { = 0}
and 7→ ( 1 . . . −1 ) is a geodesic with unit velocity perpendicular to∂ . Then

( 1 . . . −1 ) = satisfies the property above. Global existence of can be ob-
tained by using the partition of unity. Then

( )− ( 0) = +
∫

0
( ) +
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where ( ) is a martingale with 〈 〉 ≤ for a constant > 0. Hence

[ ] =

[
exp

{
( )− ( 0)− −

∫

0
( )

}]

The right hand side is bounded in because , and〈 〉 is bounded (this im-
plies thatσ is a Kato class potential; for Kato class potentials, see Albeverio-Ma [2]).
Therefore, there exist constant > 0 andβ > 0 such that, for q.e.- ,

(6.7) [ ]1/ ≤ β ∀ ≥ 0

Now we can apply Theorem 3.1 toλ−γ−βσ. For simplicity, we introduce the follow-
ing notation:

λ−γ−βσ ( ) = sup
≥0
| λ−γ−βσ ( )|

Whenλ− γ = 0 andβ = 0, we simply denote in place of λ−γ−βσ . Then, if λ
is large enough, we have for any> 1,

(6.8) ‖ λ−γ−βσ ‖ . ‖ ‖

We can also obtain an estimate for the subordination. Let{ λ−γ−βσ} be the subordi-
nation of { λ−γ−βσ}. Then

| λ−γ−βσ | =
∣∣∣∣
∫ ∞

0

λ−γ−βσ µ ( )

∣∣∣∣

≤
∫ ∞

0

−α2

sup
≥0
| λ−α2−γ−βσ |µ ( )

= −α λ−α2−γ−βσ

Thus we have

(6.9) sup
≥0
{ α | λ−γ−βσ |} ≤ λ−α2−γ−βσ

We also note that{ ˆ } is a bounded operator in by virtue of (6.5) and there exist
constants > 0 andγ > 0 so that

(6.10) ‖ ˆ ‖ → ≤ γ

Let { ˆ λ} be the subordination of{ ˆ λ = −λ ˆ }. (6.5) implies| ˆ λθ| ≤ λ−γ−βσ|θ|.
We define ˆ and ˆ in terms of { ˆ λ}. Now we can easily see that Proposition 4.3
holds in this case. We have more. In fact, by virtue of (6.7), we can and do takeλ
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large enough so that sup≥0
λ−γ−βσ1( ) is bounded in q.e.- and thereby we have

(6.11) ˆ →θ . ˆ →θ

Similar estimate holds for ↑ and ↑ .
Lastly we note that, by combining the domination and (6.9),

(6.12) sup
≥0
{ α | ˆ λθ|} ≤ λ−α2−γ−βσ|θ|

Next we extend (5.2) to additive functionals. Take any smooth measureρ and let
be the additive functional associated withρ. Then we have the following identity.

Proposition 6.1. For any non-negative function on × [0 ∞) and on ,
the following identity holds:

E ×δ

[∫ τ

0
( )

]
=
∫

ρ( )
∫ ∞

0
( ∧ ) ( )(6.13)

E ×δ

[
( τ )

∫ τ

0
( )

]
=
∫

ρ( )
∫ ∞

0
( ∧ ) ( ) ( )(6.14)

Proof. Let us first recall the resolvent kernel for the absorbing Brownian motion
on (0 ∞). Here, the generator is2/ 2. For α > 0, set

(6.15) α( ) =





1
2
√
α

(
√
α − −√

α ) −√
α ≤

1
2
√
α

−√
α (

√
α − −√

α ) ≥

Then the resolvent α = (α− /( 2))−1 is given by

(6.16) α ( ) =
∫ ∞

0
α( ) ( )

Moreover we note that limα→0 α( ) = ∧ .
By the Revuz correspondence, (see [6, the equation (5.1.14)]) we have

∫ ∞

0
( ) E ×δ

[∫ τ

0

−α ( )

]

=
∫ ∞

0
α ( )

∫
( )ρ( )

=
∫ ∞

0
( )

∫
ρ( )

∫ ∞

0
α( ) ( ) (∵ α is symmetric)
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Hence we have, for a.e.- ,

E ×δ

[∫ τ

0

−α ( )

]
=
∫

ρ( )
∫ ∞

0
α( ) ( )

But both hands are quasi-continuous in and one point has positive capacity,
the above identity holds for all ≥ 0. By letting α→ 0, we can get (6.13).

To show (6.14), set

=
∫ ∧τ

0
( )

Then is a process of bounded variation. Hence, by the Itô formula,

∧τ
( ∧τ ) = a martingale +

∫ ∧τ

0
( + ∂2) ( ) +

∫ ∧τ

0
( )

= a martingale +
∫ ∧τ

0
( ) ( )

Here we used that∇ = 0 on ∂ because belongs to the domain of
the Neumann Laplacian. By taking expectation and letting→∞, we have

E ×δ

[
τ

( τ )
∫ τ

0
( )

]

= E ×δ

[∫ τ

0
( ) ( )

]

=
∫

ρ( )
∫ ∞

0
( ∧ ) ( ) ( ) (∵ (6.13))

This completes the proof.

Recall that{ λ}, { ˆ λ} are subordinations of{ λ}, { ˆ λ}, respectively and
and functions are defined in terms of{ ˆ λ}. Then we have the following estimate.

Proposition 6.2. For 1< ≤ 2, we have

(6.17) ‖ ˆ θ‖ . ‖θ‖

and

(6.18) ‖θ‖ ′ . ‖ →θ‖ ′

where ′ is the conjugate exponent of .
For scalar functions, we have

(6.19) ‖ ‖ . ‖ ‖
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Proof. We only show the 1-form case. We setˆ ( ) = | ˆ λθ( )| and ˆ
ε =√

ˆ 2 + ε (ε > 0). Define

(ε) = ˆ
ε( ∧τ ∧τ )

and

= ˆ ( ∧τ ∧τ )

Then,

(ε) = (ε) −
∫ ∧τ

0
( + ∂2) ˆ

ε( ) −
∫ ∧τ

0
∇ ˆ

ε( )

is a martingale. Note that

∇ ˆ
ε = ∇ ( ˆ 2 + ε) /2 =

2
( ˆ 2 + ε)( −2)/2α( ˆ λθ ˆ λθ)

Therefore,

E ×δ

[ ∫ τ

0
( + ∂2) ˆ

ε( )

]

= E ×δ [ (ε)
∞ − (ε)

0 ] −
2

E ×δ

[∫ τ

0

ˆ −2
ε α( ˆ λ θ ˆ λ θ)

]

≤ E ×δ [ (ε)
∞ − (ε)

0 ] +
β

2
E ×δ

[∫ τ

0

ˆ −2
ε | ˆ λ θ|2

]

By taking limit, we have

E ×δ

[
lim inf
ε→0

∫ τ

0
( + ∂2) ˆ

ε( )

]

≤ lim inf
ε→0

E ×δ [ (ε)
∞ − (ε)

0 ] +
β

2
lim inf
ε→0

E ×δ

[∫ τ

0

ˆ −2
ε | ˆ λ θ( )|2

]

≤ ‖ ‖ +
β

2
lim inf
ε→0

∫ ∞

0
( ∧ )

∫
ˆ −2
ε | ˆ λθ|2σ( )

≤ ‖ ‖ +
β

2
lim inf
ε→0

∫ ∞

0
( ∧ )

∫
ˆ
ε σ( )

We estimate the second term. We use the interpolation space.Taking ξ = 1−(1/ ), we
introduce the interpolation norm‖ · ‖ξ of ‖ · ‖0 and ‖ · ‖1 . Here‖ · ‖0 is the
norm in ( ) and‖ · ‖1 is the Sobolev norm:

‖ ‖1 =
∫
| | ( ) +

∫
|∇ | ( )
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Then the following inequality holds (see e.g., [1, Chapter VII]):

∫

∂

| | σ( ) . ‖ ‖ξ

Moreover, the general theory of interpolation implies (see[1, LEMMA 7.16])

‖ ‖ξ . ‖ ‖(1−ξ)
0 ‖ ‖ξ1

Thus we have

(6.20)
∫

∂

| | σ( ) . ‖ ‖(1−ξ)
0 ‖ ‖ξ1

On the other hand

|∇ ˆ
ε| =

∣∣∣∇
√

ˆ 2 + ε
∣∣∣ =

1
2

( ˆ 2 + ε)−1/2|∇ ˆ 2| ≤ 1
2

( ˆ 2 + ε)−1/22ˆ |∇ ˆ λθ| ≤ |∇ ˆ λθ|

Using these inequalities, we have

∫ ∞

0
( ∧ )

∫
ˆ
ε σ( ) .

∫ ∞

0
( ∧ )‖ ˆ

ε‖(1−ξ)
0 ‖ ˆ

ε‖ξ1

.

∫ ∞

0
( ∧ ){‖ ˆ

ε‖ + ‖ ˆ
ε‖(1−ξ) ‖∇ ˆ

ε‖ξ }

.

∫ ∞

0
( ∧ ){‖ ˆ

ε‖ + ‖ ˆ
ε‖(1−ξ) ‖∇ ˆ λθ‖ξ }

By taking limit, we have

lim
ε→0

∫ ∞

0
( ∧ )

∫
ˆ
ε σ( )

.

∫ ∞

0
( ∧ ){‖ ˆ ‖ + ‖ ˆ ‖(1−ξ) ‖∇ ˆ λθ‖ξ }

.

∫ ∞

0

−
√
λ−γ ‖θ‖ +

∫ ∞

0

−
√
λ−γ (1−ξ) ‖θ‖(1−ξ) ‖∇ ˆ λθ‖ξ

. ‖θ‖ + ‖θ‖(1−ξ)
∫ ∞

0

−
√
λ−γ (1−ξ)

{∫
|∇ ˆ λθ( )| ( )

}ξ

≤ ‖θ‖ + ‖θ‖(1−ξ)

{∫ ∞

0

−
√
λ−γ (1−ξ) 11/(1−ξ)

}1−ξ

×
{∫ ∞

0

−
√
λ−γ (1−ξ)

∫
|∇ ˆ λθ( )| ( )

}ξ

(
1

1/(1− ξ) +
1

1/ξ
= 1

)
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. ‖θ‖ + ‖θ‖(1−ξ)

{∫
( )

∫ ∞

0

−
√
λ−γ (1−ξ) |∇ ˆ λθ( )|

}ξ

. ‖θ‖ + ‖θ‖(1−ξ)

[∫
( )

{∫ ∞

0

−
√
λ−γ (1−ξ) ν

}1/ν

×
{∫ ∞

0
|∇ ˆ λθ( )| ·2/

} /2]ξ (
1
ν

+
1

2/
= 1

)

. ‖θ‖ + ‖θ‖(1−ξ)

[∫ {∫ ∞

0
|∇ ˆ λθ( )|2

} /2

( )

]ξ

. ‖θ‖ + ‖θ‖(1−ξ) ‖ ˆ ↑θ‖ξ

Further, as in the proof of Proposition 5.2, we can show that

‖ ˆ θ‖ . ‖θ‖ (2− )/2

∥∥∥∥
∫ ∞

0
lim inf
ε→0

( + ∂2) ˆ
ε

∥∥∥∥
/2

In fact, (λ+ )− in the proof of Proposition 5.2 vanishes in this case. Combining these
inequalities, we have

‖ ˆ θ‖ . ‖θ‖ (2− )/2{‖θ‖ · /2 + ‖θ‖(1−ξ) · /2‖ ˆ ↑θ‖ξ · /2}
≤ ‖θ‖ + ‖θ‖(2−ξ ) /2‖ ˆ ↑θ‖ξ 2/2

= ‖θ‖ + ‖θ‖(3− ) /2‖ ˆ ↑θ‖( −1) /2

(
ξ = 1− 1

)

≤ ‖θ‖ +
3−

2
δ−( −1)/(3− )‖θ‖ +

− 1
2

δ‖ ˆ ↑θ‖
(

3−
2

+
− 1
2

= 1

)

. ‖θ‖ + δ−( −1)/(3− )‖θ‖ + δ‖ ˆ θ‖

Sinceδ is arbitrary, we can get

‖ ˆ θ‖ . ‖θ‖

which is (6.17). Now the rest is easy.

When ≥ 2, we estimateˆ θ and .

Proposition 6.3. We further assume that the second fundamental formα is non-
negative definite. Then, for any ≥ 2, we have

(6.21) ‖ ˆ θ‖ . ‖θ‖

For scalar functions, we have

(6.22) ‖ ‖ . ‖ ‖
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Proof. Set ˆ ( ) = | ˆ λθ( )| for 1-form θ and define

= ˆ ( ∧τ ∧τ )2

Then

= 0 + −
∫ ∧τ

0
( + ∂2) ˆ 2( ) −

∫ ∧τ

0
α
(

ˆ λ θ( ) ˆ λ θ( )
)

where ( ) is a martingale with the quadratic variation

〈 〉 = 2
∫ ∧τ

0
{|∇ ˆ 2( )|2 + |∂ ˆ 2( )|2}

By the assumption thatα is non-negative definite, ( ) is a submartingale and the in-
creasing part is given as

:=
∫ ∧τ

0
( + ∂2) ˆ 2( ) +

∫ ∧τ

0
α
(

ˆ λ θ( ) ˆ λ θ( )
)

Now, recalling that (see Lemma 4.4)

( + ∂2) ˆ 2 ≥ 2ˆ

we have

≥
∫ ∧τ

0
2ˆ ( )

By virtue of the submartingale inequality (5.4), we obtain

E ×δ

[{∫ τ

0
2ˆ( )

} /2]
≤ E ×δ [ /2

∞ ]

. E ×δ [ /2
∞ ]

= ‖θ‖

Thus we have

‖ ˆ θ‖ =

∥∥∥∥
{∫ ∞

0
ˆ ( )

} /2∥∥∥∥
1

= lim
→∞

∫
µ( )

{∫ ∞

0
( ∧ ) ˆ ( )

} /2

= lim
→∞

∫
µ( )E ×δ

[ ∫ τ

0
ˆ ( )

∣∣∣∣ τ =

] /2
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≤ lim
→∞

∫
µ( )E ×δ

[{∫ τ

0
ˆ ( )

} /2 ∣∣∣∣ τ =

]

= lim
→∞

E ×δ

[{∫ τ

0
ˆ ( )

} /2]

. ‖θ‖

Scalar case is easier.

By combining Propositions 4.3 and 6.3, we easily obtain the following estimates
for -functions:

Proposition 6.4. Assume thatα is non-negative definite. Then, for any ≥ 2,
we have

(6.23) ‖ ˆ →θ‖ . ‖θ‖

and

(6.24) ‖θ‖ ′ . ‖ ˆ →θ‖ ′

where ′ is the conjugate exponent of .
For scalar functions, we have

(6.25) ‖ ‖ . ‖ ‖

Now the following theorem can be proved in the same way as Theorem 2.1.

Theorem 6.5. For any 1< ≤ 2, it holds that

‖ ‖ + ‖∇ ‖ . ‖
√

1− ‖(6.26)

‖
√

1− ‖ ′ . ‖ ‖ ′ + ‖∇ ‖ ′(6.27)

where ′ is the conjugate exponent of .
If we further assume that the second fundamental formα is non-negative definite,

then the inequalities above hold for≥ 2.
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