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1. Introduction

Let X, , be an oriented surface of gengs > 2) with n (> 0) boundary compo-
nents and denote by, , its mapping class group, that is to say, the group of ori-
entation preserving diffeomorphisms &f,,  which are the idgndn 0%, , modulo
isotopy. For a simple closed curve B,, , we define the Dehn taishga as
indicated in Fig. 1. We denote the isotopy class of Dehn talshga by the same
letter a .

It is known thatM, , is generated by Dehn twists [5], [16]. McCool [19] showed
that M, , is finitely presented. Hatcher and Thurston [7] defined a kingpnnected
complex whose vertices are isotopy classes of “cut systeand’introduced a method
of giving a presentation foM, , by making use of this complex. Harer [8] reduced
the member of the 2-simplices of this complex, and Wajnryb] [Bave a simple
presentation forM, 1 and M, o. Following Wajnryb’s presentation, Gervais [6] gave
a symmetric presentation fok, ,. We set some notations indicating circles B ,
as in Fig. 2. A triple of integersi(j,k & {1,...,2g+n—3}* will be said to begood
when:

v

Dehn twist along a

Fig. 1.
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Fig. 2.

)@k ¢{(xxx)[xe{l,....2¢ +n—2}},
i)y i<j<korj<k<iork<i<j.
Gervais’ symmetric presentation is as follows,

Theorem 1.1([6]). If g >2,n >0, thenM,, is generated by, b, ..., be_1,
ai, ..., azm—2, Ci j, and its defining relations are
(A) “HANDLES': ¢ g+1=coi—12 foralli, 1<i<g-—1,
(B) “BRAIDS": for all x, y among the generatorscy = yx if the associated curves
are disjoint andxyx = yxy if the associated curves intersect transversely in a single
point,
(C) “STARS: c¢;jcjkcki = (ajajarb)® for all good triplesi, j, k, wherec; = 1.

Let G, , denote the group with presentation given by Theorem 1.1.

On the other hand, Harvey [10] introduced a complex of cufeesX, ,, whose
vertices are isotopy classes of essential (neither horimtopa point nor any bound-
ary component) simple closed curves and simplices are thefseertices which are
represented by disjoint and non-isotopic curves. Harersf@wed the higher connec-
tivity of this complex and, by using this complex, proved ts@bility of the coho-
mology group of mapping class groups. McCullough [18] defiree disk complex of
a handle body (an oriented 3-dimensional manifold obtdirftem 3-ball by attach-
ing 1-handles), which is defined from a complex of curves tplaging “curves” with
“meridian disks”. He showed that the disk complex is coritbde. The author [12]
gave a presentation for the mapping class group of a handly by investigating
the action of the mapping class group on this complex. The @firthis paper is to
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give a Gervais’ symmetric presentation o, , with the same method as above, that
is to say, by investigating the action d¥,, on the complex of curves foE,, . We
remark here that our method introduced in this paper doesuset Wajnryb’s sim-
ple presenation. This fact means that we do not need to useshétathurston’s com-
plex to give a presentation fok1, ,. In [21], Wajnryb proved simple connectedness of
Hatcher-Thurston’s complex without using Cerf Theory, aisé this to give his simple
presenatation foM, o and M, ;1. On the other hand, Ivanov [13] gave an elementary
proof of the simple connectivity of Harvey's complex, andttteer [11] gave an ele-
mentary proof of the higher connectivity of this complex.eféfore, our method in-
troduced in this paper is another elementary approach tamidueping class group of
a surface.

Recently, S. Benvenuti (Pisa Univ.) [1] showed a similautgsndependently, us-
ing different “complex of curves”, which includes sepangticurves. We remark that
Matsumoto [17] gave a beautiful presentation for the magppuilass groups of surfaces
in terms of Artin groups.

We set notations and conventions used in this paper. Cotigposif elements of
M, will be written from right to left. We will denote by ~ the imge ofx andy £ )
the conjugateyxy af by . The notatien means “commute with”. For example,
for two elementsy y ofM,,, x & y meansxy =yx . We use braid relations and
handle relations very often. We indicate the place to usea& belation (resp. handle
relation) by an underline together with the lettdrrdid” (resp. “handl€) below it. For
example, ifx ,y ,z1, zo are loops onX,, and it and intersect transversely in
a single point and;; andz, are disjoint, then

braid braid

2. A presentation for My o

Birman and Hilden [4] showed:

Theorem 2.1([4]). M2, admits the presentation
generators 11, T2, 73, T4, Ts,
defining relations
() mrj=mm, if li—j|>2,1<i, j<5
(i) 77 = TamiTier 1 <0 <4,
(III) (7‘17’27’37‘47’5)6 =1,
(V) (Ta72m3TameTaTaTom)? = 1,
(V) TimemsTatéTaTsmi = 1<i <5,

As we defined previouslyG, o is a group with the following presentation:
generatorsas, b, az, b1, 1,2,
defining relations:
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(1) airbay = bab, a>ba, = bayb, abiar = byasby, blcl,Zbl = Cl,2b1C12: every other
pair of generators commutes,
(2) (a1a1ab)® = Ciz-

Let ¢20: G20 — My be an epimorphism defined by, o(a1) = 71, ¥2.0(b) = 72,
Yaolaz) = 7, Y20(b1) = ™ and Yo o(c12) = 75. We want to proveys o is an iso-
morphism. We shall construct an inverse mggo: Moo — Gao. For each genera-
tors of Gy o, we definegs o(r1) = a1, ¢20(m2) = b, ¢p20(73) = az, ¢2,0(r4) = b1, and
¢2.0(15) = c1.2. If the relations (i))—(v) are mapped by, o onto relations inG, o, then
¢2.0 extends to a homomorphism. Then, we can sh@w o ¢20 = lda,, and ¢z is
an epimorphism, henceyj, is an isomorphism. Therefore, in order to proygo is
an isomorphism, it is enough to show that the defining refati@)—(v) are satisfied
in Gg,o.

Relations (i) and (ii) are nothing but the relations (1) 18 0. In G2, the right
hand side of relation (v) ig1basbic1 x1 b u ba 1 hence we need to show

arbazbicix 1D g ba 1= ay,b,az by, cy 2

For short, we denot& & basbicix1d u ba 1 Using the relations (1), we can show
E() =b, E(az) = az, E(b1) = b1, E(c1.2) =c1.2- In order to showE d;) = a1, we have
to give another presentation fa@

Lemma 2.2. (c1oc1ab1)° =aiar.

Proof. We introduce an elemerd abasbic1 abab a ba g ba 10f Mao.
By using the relations (1), we can sSho® a1 = ci12 D(b) = b1, D(az2) = ay,
D(b1) = b, and D ¢12) = a1. We take a conjugation of the relation (2) @y , then
we get the equation we need. O

Lemma 2.3. E =aiaibaia 1[9(?1,2(?1’2 1;2 C_'1,2 (,71’2 b_z.
Proof. By the relations (1), we can show,
crc10bxc1z10 b ¢ 16 1@ =crciabciz 10 b @ 61201b1

braid braid
=cicrabeiribaebe e b

We have shownuiay = (cl,zclzazb;,)3, in Lemma 2.2. Therefore,
aair=crocrabc1e1b ¢ b ¢ 10 1b 1
From this equation,

azbicy 01 D a 2= 10010010 1b101,201,2b1 = araicy oc1,2b1c1 21, 2b1,
braid
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and hence we can show,

E = albazblcl X1 b a ba 1= a1baia 1(,Tg|_, 26_'1, 2[91671’ 2(?1’ ob1baq by the above equation
braid
= a1baiasbacy oc1,2b1c1,2¢1,2b1 = arbaibaibey oc1 2bicy oc1,2b1
braid braid
= a1a1basasbcy oc1 2b1c1 2¢1 2b1. O

We can showE d3) = a; by using the above Lemma and the relations (1).
The relation (iv) is interpreted ag? = 1 in G,o. By Lemma 2.3,

. S S
E* = ajaibajaibcy oc12bic1 2c1, 2b1araibaa ey oc1,2bicy 2c1,2by
braid

= maibaiaibaa ha n bey ocy obicy 201 2b1c1,201 2b1C1 201 2b1.

If we can show §1a1b)* = (c1.2c1 b))% then E2 = (cyoc1 2b 1)*(c1.201.2b2)*. Since we
can show €;.2c1 20 )* = (bic12c1 2)* by the relations (1), we geE? = 1. Therefore it
is enough to show:

Lemma 2.4. (aiaib)* = (c1.2c1 b 9)*

Proof. We denotey = aiaibaiaib, ro = c12c12b1c1x 1 1for short. We can
show,

riasrias = araibaiaba a a ba a1ba, = araibaiaiba xa ba baibar

braid braid
= a1arbaraba baibbaiba, = ararbaiaa bararbbarbay
braid braid braid
= aiaibayaa ba gobbaibars = aya1basaba barbbabar
braid braid
= aiaibasbaibbasbbaiba, = ayarasbaxa bba bba bay
braid braid
= aiaiabaa bba ba barar = ayarasbaxabba xu pajaiar
braid braid braid
= a1a1a2baxibba v ba n1a1 = ararasbasxa bba barbarar
braid braid
= a1ara2ba xaba bararsbaia1 = ararasbaxaa barairasbaaq
braid braid
= (alalazb)3a1a1

and, by the relation (2),6166!1612[7)301611 = C1,2€1 2014 1. Henceriasrias = C1,2C1, 2014 1.
From the last equation, we can shoW§ = riaoricic1 2@ g2. In the same way
as above, but using Lemma 2.2 in place of relation (2), we caowsr; =



800 S. HRoSE
radaracy ¢ 1w piz. If we can showri(az) = r2(az), then we getr? = r2. In fact,

ra(az) = c1,2c1 b 1c 1 x1,2b1(a2) = c10b1c1 2 bicy b 1(az)

braid braid braid
=bic12bic1 D c12(az) = bicrcr b 12 1 fa2)
braid braid

= bicy oc1 b {az) = bi(ararasb)®bi(az) by the relation (2)

= biararasbaa v ba v @ bb (az) = braraiabaa a ba v g pay(b1)
braid braid

= byasarazhaa v ba g bazb(b1) = braraiazha a q parabas(by)
braid braid

= biararazha 1 a ba gibaz(by) = brarasasha za ba ha bas(by)
braid braid

= biaya1a sha aybayarbaiay(br) = biayaibasba bba 1 {by)
braid braid braid

= biaiaibazba bbay(b1) = biararbaxa ba bay(by) = braiaiba xia ba 1 £b1)
braid braid braid

= hiaiaibaxa ba a {b1) = biaraiba xa 1 pas(b1) = biaiaibaa a ba {b1)
braid braid braid
= blala 1ba 1a 1ba jﬂ(b]_) = blala 1ba 1a 1ba ib]_) = blala 1ba 1a 1bb1(a2)
braid braid braid

= bll;lala 1ba 1a 1[7(612) = alalba 10 1[7(612) = rl(az) ]

The relation (iii) is interpreted asa{basbicq)® = 1. If we regardas, b, az, b1,
c1.2 as generators of the 6-string braid group, namelyas an interchange of the 1st
and the 2nd stringh as an interchange of the 2nd and the 3rg) €tind so on, then
(a1bazbicy )® is a full twist. By investigating a figure of a 6-string full ist, or re-
peatedly applying the relations (1), we can show

(albazblcl 2)6 = (albazblcl z)zblazbalcl Zb ua i?(azblcl 2)4‘

By Lemma 2.2,

ara1 = (croc10b )°
=crocrabicixcrabrig 10 b Faxixcibeiriabicic b

braid braid
=axciobicybicioadbcic 18 b = abicibibe i biciciad
braid braid
=apbicibbux 1b ¢ 1061200b1=axbicibbad cibiciada
braid braid

=asbicioba b nociobici b 1= arbicyab a1 bicyab
braid braid braid
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=asbicrabriap b g oiobi=abicrabriababe b
braid braid

=aphiciabc1a b @ ¢ 1bicia= (abic ).
braid

Therefore,

(arhazbic 1 9° = (arbazbic1 )*brashaicy b v ba a1

=aibasbicyabad ¢ 1 b @baicibabaqn,
braid

=aibasbicy aba x 1 bicyrabaicisbiahaa
braid braid

=aiharbicy 1. bap @ baicicibuabaqa
braid

=aihazbicy x 1 7 pb gobibaiciocibabap
braid braid

=aibasbicyx 1 b a ba barbicyx1 b aba g
braid

=aibasbicy x 1D g g paraibicicibabaaq
braid braid

=aibasbicyxc1b a g ba axbicyx1 b aba g
braid

=abazbicyx 1 b a blarbarbicix 1D v ba jay.

We have already shown thaibasbicy x1 b a ba 1= E = a;. Hence, &1bazbicy 9)® =
(aabazbic1x 1D a ba )2 = E2=1.

3. Elementary relations

In this section, we assumg > 3 or g = 2,n > 1. We shall prove some relations
in G,» which are frequently used in the following sections. Thstfone is known as
the “lantern relation”, which is proved in [6, Lemma 3]. So wait the proof here:

Lemma 3.1. For all good triples(i, j, k), one has inG,, the relation

(Li,j,k) 1aici jcjkax = C,',kanCle = c,-,kYanaj,

where X = ba;aib.

The next one is:

Lemma 3.2. If i # 2k, one has inG,, the relation

(Xi2) (1) brasco—1,2bx(ci 21) = bajaxnb(az—1),
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(2) bragkcor—1,2bi(ci,2) = bajazb(ax—1),
(3) braxcox—1,2bi(cox,i) = baaxb(ax+1),

(4) bragkcox—1,2bi(cor,i) = bajaznb(az+1).

Proof. We will prove (1). Other relations are proved in thensaway. We write
X1 = bragco—1.2br, X2 = ba;axyb for short. Then,

X> Xa(ci o) = baxa;bbycor—1 xaxnbi(ci o)
braid
= baya;bbicor—1, xaxci % (bi).

The lantern relationL; 1.z SayScix = GxCa—1.%Ci %—10iax—1X2a2%1X2. There-
fore,

X2 Xi1(ci k) = baxaibbycox—1 xaoancx—1, 2Ci, %—10; Aok —1X 2a21—1X 2(by)
= baxa;bbyc; 2x—1a;az—1baz.a;baz,_1ba;axb(by)
braid
= baxa;bbyc; x—1a;az—1baya;bay_1ba;ax (by)
braid

= baya;bbra;az—1baza;bay,—1ba;axci x—1(b)
braid braid

= baya;bbra; az.—1baza;bayy—1baza; (by)
braid braid

= baya;bbra;az—1baza; az.—1baz.—1ax (br)
braid braid braid

= baxa;bbrazy.—1a;ba;az_1axbayaz._1(bi)
braid braid braid

= baya;bbyaz—1ba;baz_1baxb(by)
braid braid
= baya;bbray _1ba;az_1bazy —1ax (by)
braid
= baxa;bbraz.—1ba;ax _1bazxaz._1(by) = baza;bbrax —1ba;az.—1bax (br)
braid braid
= baya;bbyay1ba;az, 1bby(axn) = bana;bbybyazy 1ba;ax_1b(az)
braid braid

= bayaibay _1bax._1a;b @x) = baya;bbay._1ba;b(az)

~ bad braid
= bay.a;azx.—1a;ba; Qo) = baya;a;axy —1b(ax) = bazaxy_—1ax(b)

braid braid braid braid

= bagyandy—1(b) = bb(ax_1) = az_1. 0
braid
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The third one is known as the “chain relation”:
Lemma 3.3. One has inG,, the relation

{(c2g—2.2¢-1)%a22bg_1}> = a2y _3a2, 1.
Proof. We write

D = cog 22— 1bg_1a24_2ba2_3C24—2 24— 1bg_102g_2DC2_2 241410252

X €2g-22g—1bg—1€2-2241

for short. By using braid relations, we can sh@Wc(2 2,—1) = az—3, D(bg—1) = b,
D(azg—2) = aze—2, D(az—3) = c29—2,2,—1. FOr D (a2,—1),

D(Clzg_l)
= C2g—2,2¢—1bg_1a24_2ba2 _3C2—2 24— 1bg_1a25_2b

X €222 1bg 1024 2C2g_2 2, 1bg_1C25_2 2, 1(a24—1)
braid

= C2g-2,2g—1bg 1024 _2ba2,_3C25_2 2, 1bg_1a2, 2b(az, 1)
braid

= €24-2.20—1bg 1024 2bC2—2 29— 1bg_ 10242025 —3b(a24—1)
braid

= C24—220—1bg 1292 21024 —2bbg_1a24_2a25—3b(a24—1)
braid braid

=bg_1C25-22¢—1bg—1a2¢—2bg—1baA2g 202, 3b(a24—1)
braid

= by 10252201025 —2bg 102, 2ba2— 202, 3b(A241)
braid

= by 10252201025 —2bg—1ba2,—2baz,—3b(aze—1)
braid

= by—1C2—229—1A2¢—2bg_1ba24 2024 _3ba2,—3(A24—1)
braid braid

=bg_1C2-—22¢—1a25—2bg—1ba2,—3a2,2b(aze—1)

= by 102522, 102 2bg 1Dy 1C2g_2 2, 1a2_2by_1(C25-22,-3) DY X2 32, 2(3)

= C2¢—2,29—3-
The star relationEy,_3 5,3 2,2 0f G, , says:

{(a2g—3)%azg—2b}* = cog—3.2—2C24—2,2¢—3
handle

= €2g—2,2—1C2—2 23
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Fig. 3.

We take a conjugation of this equation BY, then we get the equation which we need.
]

4. A presentation for My, 1

In this section, we give a presentation f&l, 1 and show thatMj 1 =~ G, 1. For
this purpose, it is enough to show that all the relations Adp ;1 are satisfied inGo 1
by the same reason as Section 2.

Let p; be a point onX,. We give a presentation fotro(Diff *(X>, p1)) along
the way of [3]. Leta be a surjection frommy(Diff (2, p1)) to mo(Diff *(Z2)) de-
fined by forgetting the poinip;. We define a homomorphismd from 71(Z2, p1) to
mo(Diff (2, p1)) as follows: The homotopy classes of loops indicated in Bigjener-
ate m1(Z2, p1). For a loop! corresponding to one of these generators, we dateg-
ular neighborhoodd of this loop iX,. Since thisA is an annulus, its boundary has
two connected components. With regard to the orientatior/,fove denote byA; the
right hand side of these components, and denoteibyhe left hand side of them. We
define 5 (which is an element ofr1(Z,, p1) corresponding td ) to be equal 0 A,.
For short, we writex; =3(x;) (i =0, 1, 2, 3). For these homomorphisms 53, there
is a short exact sequence:

(S1) 0— m(Ta, p1) — mo(Diff* (T2, p1)) = mo(Diff *(£2)) — 0.

There is a natural surjection fromy(Diff *(X2, 1, rel0, 1)) to

mo(Diff *(X2,1/0%2.1, 0%2,1/0%2.1)) and the latter one is isomorphic to

mo(Diff *(Z2, p1)). Hence there is a surjection from mo(Diff *(X7, 1, rel0%2,1)) = Mo 1
to mo(Diff *(X2, p1)). The kernel of~ is an infinite cyclic groupZ generated by



A CompLEX OF CURVES AND MAPPING CLASS GROUP 805

the Dehn twist along the loopX, 1, which we denote bys 1. Hence, there is a short
exact sequence:

(S2) 0— Z — My 1 — mo(Diff *(Zp, p1)) — 0

In general, if there is a short exact sequence,

¢ ¥

0—L—G—R—0,

and L andR are finitely presented, then a finite presentationGfas given as fol-
lows (see, for example, Chapter 10 of [14]). Let. .., [, be the generators af and,
ri,...,r, be the generators @ . For each<li < m, we denote byj; the image ofl;
under ¢, and for each K j <n, we fix one of the preimages @f by and denote
this 7;. ThenG is generated t& ...l andri, ..., 7, and there are the following
three types of relations fo&

(1) For each i <m, 1< j <n, r”le,-r”fl is an element ofs(L). The equation

7;l7;71 = a presentaion of;[;7; 71 in terms ofiy, .. .1,

is a relation forG
(2) Each relation for R is presented by a word r1,(..,r,). The element
w(r1, ..., ) is in the kernel ofyy and hence it is an element g{L). The equation

w(r, ..., F,) = a presentation ofv r{...,7,) in terms ofiy, ...l

is a relation forG ,

(3) For each relation fo. , the equation obtained from thiatien by replacing/;
with [; is also a relation foiG

We apply this method to the above short exact sequences (®ILY%R2). For (S1),
by observing that, b, az, b1, c1.2 in To(Diff *(Z2, p1)) are mapped, by, to the ele-
ments of mo(Diff (X,)) denoted by the same letters, we can see HéDiff *(X>, p1))
is generated by, x1, x2, x3, a1, b, az, b1, c12 and its defining relations are:

(1-a1)  ai(xo) = xo, ai(x1) =x1xo, ai(xz) = x2Xo, ai(xs) = xaxo,
(1-b) b(xo) = x1, b(x1) = x1Xox1, b(x2) = x2, b(x3) = xa,
(1-a2)  az(xo) = x0, az(x1) = x2, ax(xz) = xax1x2, ax(xs)=xs,
(1-b1) bi(xo0) = x0, bi(x1) = x1, bi(x2) = x2, bi(x3) = x3x2x3,

(L-c12)  c12(x0) = x0, c12(x1) =x1, c12(x2) = x2, c12(x3) = X3x2x1X0,
albal = balb, azbaz = bazb, azblaz = blazbl, blc 1 ;b 1= Cl,ZblCl 2

2-1
@D other pairs of{a1, b, az, b1, c12} commute each other,

(2-2) (a1a1a2b)°c5 5 € B(m1(Z2, pa)),
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(3) nglefofgxzflxo =1

Among the above relations, ) to (1<12) can be checked by drawing figures of
actions ofaa, b, az, b1, c12 on (X2, p1), (2-1) and (2-2) come from the relation (1)
and (2), introduced in Section 2, fov120 = G20, and (3) is a relation forr1 (X2, p1)
which is obtained by reading the word on the boundary of amreron which is
obtained by cutting®, alongxo, x1, x2, x3. By making use of (S2), we can show that
Moy 1 is generated by, x1, x2, x3, a1, b, az, ba, c1.2, c3.1, and the defining relations
are the relations (&) to (3) up to the powers otz 1. On the other hand, we can
seexp = aias, X1 = b(xo), x2 = az(x1), x3 = b1(x2) and henceM,; 1 is generated by
ai, az, as, b, b1, c1,2, c31. We can now derive the defining relations far, 1 from
the raltions forG,,1 as follows.

(1) It is shown, in the proof of Lemma 9 in [6], that all the rid@s (1a;1) to (1-1.2)
up to the powers ots 1 are derived from the relations fa¥, 1. We remark that

c1,2(x3) = x3x2x1X0C3, 1,

which will be used later.
(2-1) These relations are nothing but braid relations.
(2-2) The lantern relatior., 31 says

axcp3c3 1 1= c21a3Xa3X = cp1XazXas,
where X =basa1b,

that is to say,

C2,1€2,3 = a2C3 10 1Xa3Xa3 ------ (Oé)

aicy 203 = CT3 16726‘2, XasX (ﬁ)

The star relationEy 1 » says @aiazh)® = c1.2c2 1, SO that, raiash)3(c12)? = ca1c12.
For the right hand of the last equation, we can show,

€21C12 =¢21C23= azcz1a1XazXas by ()
handle braid

=310 1X673X673 = C31a20a 1ba 16121%73[%?26711%?3
braid

=310 zba 1ba 2b673b672671b673 =310 zba 1a gba 173[%726711%?3
braid braid

=310 2ba 1a zbagazbazglbag =310 2ba 1a 2b(73b(72b671b673
braid braid braid

=310 zba 1a igbagc?zc?lbalc?g, =3, 1a2ba 167302b6726?1613ba 1673
braid  braid braid

=c310a 2ba 1(73b672b671a3ba 1673 =C3,1X 2)?1)60.
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This showscy 1c1.2 € (m1(T2, p1)) x Z. Therefore, draiab)*(c1.2)* € B(m1(T2, p1)) x
7.
(3) Using the lantern relatiofi, 31 and the braid relations, we can show,

x3(€2,3) = brazbasazbazbi(c 3) = brazbasazbaycs 5(by)
braid braid

= byazbac o wsbaz(b1)
= biasbcs 1azcr 1XazXbay(by) by (3)

= blazbc_‘g, 16726‘2 11;6716721;6131761261 1b1;672(b1)
braid braid

= byasbs 1d2¢2 1bazarbasbayazaz(by)
= biasbcs 1ascs ibaraibasbay(by)
braid
= brasbcs 1ax¢p 1bay(b1) = biasbazco 1bazcs 1(b1)
braid braid
= blazbazcz 1b672(b1) = blcz 1a ZbCTZbCTZ(bl)
braid braid

= byca 1bazbbay(by) = bic 1b(b) = bic 1(b1) = babi(c2,1) = c2.1.
braid braid

Hence we get:

€2,3(X3) = €2,3X3C2,3 = X3X3C2 3X3C2,3
=x3ca1c23  from the above equatioms(czs) = ¢2.1
= YaaxcaaXazXaz by (@)

= x_g,azca 1a 1ba a 176731%71672[9673 = )?361261 1ba2a 1b673b671672b6?36‘3, 1
braid braid

= x_g,aza 1ba 1a2b673b671672b6736‘3, 1= )E,azba 1ba 26731761367167217536‘3, 1
braid braid braid  braid

= )C_g,azba 1[%736121%72613671[96736‘3, 1= )E,azba 1b673b672ba3671b6736‘3, 1
braid braid

= )c_y,azba 1073ba3072ba3071b07303, 1= )Egazba 1073b672a3ba 3a_1b673€3’ 1
braid braid
= )C_g,azba 1673[%721%13[96711)67303 1= x_g,azba 1673b672b613671b6116736‘3, 1
braid

= x_3x2)71x003 1.
Previously, we remarked that »(x3) = x3x2x1x0c31. Hence,

X3X2X1X0X3X2X1X0 = €1,2X3C1,2C3,1€C2 3¥3C2,3C3,1
braid

_ — — = = \2
= c1,26301,2 €2 3X3 €23 (€3,1)
handle handle
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_ — —— = 2 _ = \2
= c1,2x301, 21, 203¢1,2(€3,1)° = (c3,1)°.

This shows that, modulo powers of 1, xsxax1xoxsx2x1x0 = 1 is derived from rela-
tions for Go.1.
From the above results, we can now conclude:

Proposition 4.1. M1 ™ G21.

5. Action of Mgy, on X(2y,n) and a presentation for Mg,

In this section, we assumg > 3, andn > 1. We call a simple closed curve
on X,, non-separating if its complement is connected. Define a simplicial com-
plex X (X,,,) of dimensiong — 1, whose vertices (0-simplices) are the isotopy classes
of non-separating simple closed curves Bg, , and whose sieplre determined
by the rule that a collection of + 1 distinct vertices spans simplex if and only if
it admits a collection of representative which are pairndsgoint and the complement
of their disjoint union is connected. This complek £, ) is definby Harer [9].

In the same paper, he showed the following Theorem:

Theorem 5.1([9, Theorem 1.1]). X X, , )s homotopy equivalent to a wedge of
(g — 1)-dimensional spheres.

Especially, ifg > 3, X (X, ,) is simply connected.

For each elementp of M,, and a simplex o],...,[Ca]) of X(X,.),
([¢(Co)l, ... [¢(C,)]) is also a simplex ofX X,, ). Hence, we can define an ac-
tion of Mg, on X(Zgn) by &([Col.....[Ca) = ([&(Co)l....,[¢(Cn)]). We can
see that, each of2-simplices ofX &, , }/M,., {1-simplices ofX &, , }/M,, and
{vertices ofX &, , }/M,,, consists of one element, each of which is represented
by ([Co].[Cal.[C2]), ([Col.[Ca]), and ([Co]), where Co = c2—22-1, C1 = az—2,

Co = ape—4. If the stabilizer of each vertex is finitely presented, ahdhat of each
1-simplex is finitely generated, we can obtain a presemtafito M, , as in the way
of [15], [20]. Here, we shall recall this method.

We fix a vertexvg of X(X,,), fix an edge (= a 1-simplex with orientatiom)
of X(X, ) which emanates fromy, and fix a 2-simplexf, of X(X,,) which con-
tains vo. Let Co, C1 and C, be non-separating simple closed curves defined as above,
and we setvg = [Cq], e0 = ([Col,[Ca]) and fo = ([Co],[Ci],[C2]). We choose
an elementr; of M,, which switches the vertices ofy. In our situation, we set
t1 = by_1020_224—1a2,—2b,_1. By this notation, we seeo = (vo, t1(vo)). We denote
by (Mg..)y, the stabilizer ofvg, by (M, )., that of eg, and by (z1) an infinite cyclic
group generated by. The free product#, ,)., * (r1) with the following three types
of relations defines a presentation &, ,. (In Subsection 5.1, we give a set of gen-
erators for (M, ,),. In the following statements, “a presentation of as an eféme
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of (Mg,)y" means a presentation of as a word of elements of this set nérge
tors.)

(Y1) t? = a presentation of? as an element Oof Nl g ) o

(Y2) For each generator  ofMl, ,)e,.

t1(a presentation of as an element @¥( ,),,)f1
= a presentation ofist; as an element of N, ,,)y,.

(Y3) For the loopdfy in X(%,,), we define an elemenWy, of (Mg )y * (f1) in
the following manner. The loo@ f, consists of three verticesyg, v, v, and three
edgese;, ez, ez such thate; = (vo, v1), e2 = (v1,v2), e3 = (v2,vg). There is an
elementh; of (M, )y, such thathi(eg) = ey i.e. e1 = (vo, hat1(vo)), then hiti(es)
is an edge emanating fromy. Hence, there is an elemenp of (M, ,),, such that
ho(eg) = hata(er) i.e. ez = (hat1(vo), hatrh ot 1(vo)), thenhitihotq(es) is an edge emanat-
ing from vo. So, there is an element of (M, ), such thaths(eo) = hitihot1(es) i.e.
e3 = (hatihoti(vo), hatrhot1h # {vo)). We defineWy, = hitihoth 31 This elementW,
fixes vo, so the following is a relation foM, ,:

Wy, = a presentation oWy, as an element of Xl ).,

Under the assumption thatt,_1, = G,_1,, if we can show all the relations for
(Mg.n)v, and the relations of the above three types (Y1) (Y2) (Y3) atisBed in
Gg.n, then we can show the following theorem by the same reasoreeisof 2.

Theorem 5.2. If g>3,n>1and My_1, ¥ Ge_1,, then Mg, = Gg .

In the previous section, we have showwl, 1 =~ G2 1 (Proposition 4.1), therefore,
Mg 1% G, 1 for any g > 2. On the other hand, Gervais showed the following theorem
in §3 of [6]:

Theorem 5.3. If g > 1, n > 1 and My, ¥ G, then Mg ,11 ¥ Gyt
Mg,nfl = Gg,nfl-

Theorem 1.1 is proved by Theorem 5.2 and Theorem 5.3. We kethat Theo-
rem 5.3 was proved without using Wajnryb’s simple presémtaf20]. In the following
subsections, we show all relations fok1; 1),, (Subsection 5.1), relations of type (Y1)
and (Y2) (Subsection 5.2), and a relation of type (Y3) (Sabtise 5.3) are satisfied
in Gy .

5.1. A presentation for (Mg n),,. We assume thatl,_1, ¥ G,_1,, andn >
1. Let Diff'(Z,,) denote the group of orientation preserving diffeomaospis of &, , .
For subsetsAy, ..., A, and B of X,,, we define Diff(Zg,,,,Al,...,Am,relB) =
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{¢p € Diff"(Z,,) | #(A1) = A1,...,0(An) = Am, ¢|p = idg}. In this sub-
section, we give a presentation fol; ), = wo(Diff“(Eg,n,Co, rel0x, ,)). Let
E;,n be a surface obtained frork, , by cutting alody, and let £;, E> be con-

nected components cﬁng which appeared as a result of cutting. Letbe a nat-

ural surjection fromwo(Diff+(Z(’g’n,E1 U Es, reld%,,)) to Z, which is a permuta-

tion group of E; and E,, and 3 be an inclusion ofro(Diff *(X’ relox; ,)) into

g.n’

mo(Diff (T’ |, E1 U E, rel0%, ,)). Then, there is a short exact sequence:

g.n>
0 —mo(Diff*(Z,,, rel 9%}, ) — wo(Diff *(S4,,, E1U Ea, 1l 9%, ,))

i>Z2—>0

We can see that

mo(Diff (2, ,, E1U Eo, rel 9%, ,
(DI (S, Co, 10105, ) & 2O B E1 U Ea 1€10%,.0))

€2¢—2,2g—1 = C2g—3,2¢—2

and

mo(Diff *(Z, . relo%; ) = M, 1442

g.n’

By Theorem 5.37(Diff (%} ,, rel0%; )= G 14+2. Let rg_1={(c2g—3.2,2)°bg 1}
Thenr,_1 € wo(Diff"(Zg,,,, Co, rel0%, ,)), that is to say, we can regard_; as an ele-
ment ofwo(Diff"(Z;,n, E1UE, rel0%, ,)). Thena(r,—1) generates;. From the above
observations, we can see:

wo(Diff"(Zg,,,, Co, rel0%, ,)) is isomorphic toG,_1 ,+2 * (r,—1) With the following re-
lations:

(A1) c2g-22¢-1 = C2g-325 2,

(A2) For each generatar af,_1,+2,

re—1tre—1 = @ presentation of,tr,  as an element 6f%,_1 2,

(A3) r§,1 = €29—-3,24—1.

We need to show that these relations are derived from raktior G, , .
(1) The relation (A1) is nothing but a handle relation.
(2) By repeatedly applying star relations, we can shGw. 1 ,+, iS generated by =
{byai 1<i<2g+n—2),c5-12 1<j<g—2)ck1x (28—2<k<2g+n—
2), cogtn—21}. Here, we remark that\f, ,),, is generated b¥ U{r,_1}. By drawing
figures, we can show:

rg—1(b)=b, re_1(@)=a; fi728—-2 1<i<2g+n-2
re_1(c2j—12)) = c2j—12; 1< j<g—2

Pa—1(C20—329—2) = C2g—2.2¢—1, Vg—1(C24—224—1) = C24—3.2¢—2
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rg_l(ck_l,k) = Cr—1k if 2g <k< 2g +n—2
rgfl(c2g+n72, 1) = C2g+n—2,1
Fg 102 2Tg 1C2g 3.2¢ 1G22 = Ag 1a23(C2g3.20-2)° ~+ -+ (%)

The above equations except) (are derived from braid relation. We shall show that
the equation «) is satisfied inG,, .

rg—1(a2g—2) = C2g—325—2C2— 3,24 2bg_1C25_3 25 2C24 3,2, 2bg_1(a242)
braid

= C2g-305-2bg1C2-3,25-2 bg—1C2-3252bg—1(az-2)
braid braid

= bg_1C2—320—2bg_1C29—32¢—2bg—1C2¢—3 25— 2(a12g—2)
braid

= by 1C2-3,2¢-2C2—3,25—2bg—1C25—3,20—2C2¢—3,20—2(a2¢—2)
braid

= bg1C2—3,20—2C2—3,2—2bg—1(a24—2).

By a star relationEo,_3 2,2 2,1 and a handle relationy,_3 2, > = c24—2 2,1,

C2g—3.2¢-2C2g—3.26—2C2—1.2¢—3 = (A2g—3G 24— 2a2,1b)>.

Therefore we have,

re—1(aze—2) = by 1(aze 3a2, 2a2, 1b)c2q 1,20 3bg1(aze 2)
braid

= by 1(azg—3a2—2a21b)°bg 1C2g 1.2 3(a242)
braid

= by_1(a2g—3a2g—2a251b)°bg1(az,2)
braid

= by 1(a2g—3a2g—2a251b) 23022025 1baAzg—2(bg—1)
braid

= by 1(azg—3a2q—2a2,—1b)*ag 302,102 2bazg2(bg—1)
braid
= by 1(azg—3a24—2a2,1b)*azg 302, 1bazg 2b(by—1)
braid
_ 2 -
= by—1(a2g—3a24—2a2—1b) 243025 —1ba2—2(bg—1)
braid

= by 1(ag—3a2g—2a251b) 2305 _1bbg_1(az,—2)
braid
- 27 -
= by 1(aze—302s—2a2-1b) by 102,302 —1b(a2,—2)
braid

= (by—1a2q—3a24—102—2bby 1)’z —3a2,—1b(a2s2)
braid braid
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= (a2g—3a2—1bg 102, 2bg1b)*a243a2,1b(a2e—2)
braid

= Agg—3021G2g—2bg—1a2—2bA2g—3a24—1a2—2bg—1a2¢—2ba2g 302, 1b(azg-2)
braid

= Apg—3A2¢—102¢—2bg—1A2¢—2bA2g 20243025 _1Dg 102 2ba24 3025 —1b(A24—2)
braid

= dgg-302,1G2g—2bg—1ba2e 2ba2g—3a2,1bg 1G24 2ba2,—3a2,1b(az,—2)
braid braid

= dgg302,1G2g—2bbg 1G24 2bg1ba2g 302,102, 2bazs 302, 1b(aze—2)

braid braid
= dgg—302,—1G2g—2bbg 1G24 2bg1ba2;—3a2,2a2,—1ba; 1024 3b(azg—2)
braid
= Ay 3021025 2bbg 1G24 by 1bA2e 3025 2ba2, 1ba2, 3b(a2,—2)
braid
= dpg_302 1025 2bbg 10242y 1DA2, 3025 2ba2e 102, 3ba2,—3(a24—2)
braid braid braid braid
= Ay 3021025 2ba2 _2bg 1025 _2ba2e 5 A24—3ba2, 302, 1b(A24—2)
braid braid braid
= dpg_302—1ba2g_2bby_1bazg_2bbas, 3baz,1b(az,—2)
braid braid

= Ay 302 1bA2g by 1024202302 1D, 1(A2—2)
braid

= Ay 302 1bA2g by 102, 20253024 1b(a24—2)
braid

= Ay 302 1bA2g by 1G24 20253021024 2(D)
braid

= Ay 3024 1bA2g by 1022022024302, —1(D)
= Apg—3a2¢—1ba2g—2bg_1a2,—3a2,—1(D)
braid

= Apg—3a2¢—1bA2g—2a2 30241 bg_1(D)
braid braid

= agg-32g—1ba2g 3024102 —2(D) = A2g—3a25—1ba24— 3025 1b(a2e2)
braid braid

= apq—1a2¢—3ba2g 302 1b(a24—2) = a24—1ba2,—3ba2,—1b(azs—2)
braid braid
= age_1baz, 3az, 1baz, 1(azg—2) = azg—1baz, 1024 3b(az,2)
braid braid braid
= bag,_1baz,_3b(azs—2) = baze_1a2,—3baz,_3(a2s—2) = baze—3a2,—1b(az—2).
braid braid braid

The lantern relationLo,_3 2,2 2,—1 Says,

Cog—3,2¢—102¢—2ba2g 3025 —1ba2g—2bA2g 1G24 —3b = A2g—3C25—3,24—2C2g—2,2¢- 1021
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Then,

bagy_3a25_1baze_2baz, 1024 1b = G24_2C24—3 21024 —3C24—3,2g—2C2¢—2,29 1021
braid

= A2¢—102¢—3C2—3,20—2C2—2 24— 102g—2C2g—3,2¢—1
handle

= apg—1024—3(C2g—3,20—2) A2g—2C2g—3,26—1-
Therefore,
bazg—3612g—1bazg—21;672g—1672g—31;02g—3,2g—1azg—2 = dge1a2e-3(C2g—3,2¢-2)>
In the above equation, we exchange
bag, 302, 1baz, 2baz, 1, 3b = baze 3az, 1b(az2)

with r,_1(a2.—2), then we get £). Hence the relation (A2) is satisfied (d, ,
(3) At first, we can see:

— 2
Fg—102q—2Tg—1a2¢—2(C24—2 25—1)
braid

= {(c2g-3.2¢-2)°bg—1}Y2a24—2{(Cog—3.202)bg—1} 224 2(Cog—2.2¢1)*
handle handle braid

= {(c2g—2.2¢-1)°bg—1}?

— 2
X A24—2C2¢—22¢—1C2¢—2,2g—1Dg1C25 2 20 1C24—2 2 1bg_1(C2g—2,2,—1) 242
braid

= {(c2g—2.2¢-1)°bg—1}*

— 2
X A2g—2C2g—2 2q—1Dg—1C29—-2 2¢—1 Dg—1C24—2 29—1bg_1(C29—224—1) 242
braid braid

= {(c2g—2.2¢-1)°bg—1}?

— 2
X lpg_2bg 1C25—2 25— 1Dg_1C24—2 20— 1Dg_1C25—2 25— 1(C24—2.20—1) 292
braid

- 2¢—2,2g—1) Ug—1
={(c )?bg-1}?
X a2g—2bg—102g—2,2g—102g—2,2g—lbg—102g—2,2g—lc2g—2,2g—l(c_2g—2,2g—l)2a2g—2

= (c2g-2.2¢-1)?g—1(C2g—2.20—1)°bg—1a24—2bg—1(C2g—2.20—1)?bg 10242
braid

= (c20-2,20—1)?Pg—1(C26—2,20—1)°A2—2bg 1024 2(Cog—2,2—1)*bg—1a24—2
braid

= {(c2g-2.2¢-1)%bg—1a2,—2}>
= a2g—3a2—1 by Lemma 3.3
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Therefore,
P2 | = Fe 102 2Ty 102,—102,—3(cC )2a;
g—1 — Ig—1U2g—2Fg—1U2g-1U2¢—3\C2¢—22¢—1 2g—2-
From the above equation and)(we can seezrgz_l = C2g—32¢—1.

5.2. Generators of (Mg n)e,, and relations of type (Y1) and (Y2). In this
subsection, we give generators of

(Mg,n)eo = 7T0(Diff+(2g’n, C2g—2,2¢—1, A2g—4, rel@Eg,n))

and, by investigating the action of on these elements, we will give relations of type
(Y2), and show that these relations and a relation of type) @& satisfied inG,, .
At first, we show?? € (M,.,)y. By Lemma 3.3 and braid relations,

Q230251
= C2-2,2¢-1C2-2.2-1

X Qg 2bg 1C2 224 1C25 225 1G24 2bg 1C25 225 1C2¢ 2.2, 1425 2bg 1
braid

= €2g—2,2-1€2g—2,2¢—1

X agg—2bg—102g—2C25—2.20-1C2g-2,20—1Dg—1C2—2 29— 1€2g—2,2¢-1025-2bg 1
braid

= C2-2,2¢-1C25-2.2-1

X zg—2bg—1a2¢—2C2g—2 20— 1bg—1C2¢—2,20—1bg— 1252201425 —2bg 1
braid

= C2g—2,2—1C2g—2,2¢—102¢—2bg_1A25_2bg_1C25_2 24_1Dg_1bg_1C2g_2 251024 _2bg_1
braid

= Cog 2,24 1C2 2,2¢ 102 2a2g 2bg 1025 2C25 22 1Dy 1bg 1C2 224 102 2bg 1
braid

_ 2 2.2 - _
= (cog—2,25-1)(az2g—2)t; sincery = by 102225 1a25—2bg_1.

Therefore,? = (aze—2)*(Cag—2,2—1)%a2g—3a2—1 € (Mg.n)uo- This shows that the rela-
tion of type (Y1) is satisfied inG, ,

Let E;{n be a surface obtained fronx,, by cutting alol = c2,—2 251,
C1 = az—». As in Fig. 4, letCj and C{ (resp.C; and C{) be connected components
of 9%/, which appeared as a result of cutting alo@g (resp. C1). We denote the

simpleg’closed curve in the interior &', which is homotopic toCy (resp.Cy, Ci,
C7) and Dehn twist along this curve by the same letter. We cantfssteG,_»,+4 =
Mg_2,+4 is generated by, (< i < 2(g—-3)+(@n+4),b,b;(1<j < g—3),
12l <k<g—3),c120g—3)+1<1<2(g —3)+ @ +3)), andca(g—3)+u+4) 1-
There is a homomorphism from M,_5 ,+4 to mo(Diff *(Z! relox;,)) defined by

8.n’

Y(a;) = ciog-a if1<i<2g—05,
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Fig. 4.

Y(a2g—4) = C29—4,2¢—2,
Y(a24—3) = azg—a,
Y(ai) = cige—a if2g—2<i<2(g—3)+{n+4)
v(b) = by—2,
vbj)=b; f1<j<g-—3
Y(eam—1,2) = cu—rx F1<k<g—3,
V(ca-3p1.26-3+2) = Cos
Y(c2—3)+2 2¢—3)+3) = C7,
Y(C2(—3)+3 2¢—3)+4) = C1,
Y(c2(—3)+4 2¢—3)+s) = Co,
Y(erv) =cryv1 if2(g —3)+5<1<2(g—3)+(n +3),

Y(C2g—3)++4), 1) = A2g—2.

This homomorphism is induced by a homeomorphism frBg5 ,+4 to Z;’,n. Hence,
~ is an isomorphism, and this fact means that the set

Cig—4, C2g—42¢—2, | 1<i<2g—05
o = by 2, bj, c2j12j, | 26—2<i<2(g—-3)+{n +4)
o C(l)’ Cé’a Civ C1/5 l S ,] S 8 — Sv
ClLi+1, C2g-3)y@+a)1 | 20 —3)+5<1<2(g—3)+ (@ +3)

generates;ro(Diff’r(Egn, relox;,)). Let Z, x Z, denote the group, whose first factor

is a permutation group of and CJ and the second factor is that ¢ff and Cy. We
denote bys a natural homomorphism fromg(Diff *(Z; ,,, CoUCY, C1UCY, rel 0%, ,))
to Zy x Z,, ande an inclusion ofro(Diff *(Z” reloxy,)) into

g.n’

mo(Diff*(£L,, Co U C§, CL U CY, rel 9%, ,)).
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Then, there is a short exact sequence,

0 — mo(Diff (7, relox”,)

— mo(DIff (T, ChU CY, CLUCY, 1eld%, ) 2 Zo x Zp — O
Let p = bay, 2az_2b, p’' = t1pt1. Then, by drawing some figures, we can check
that p andp’ € (M,,)., and p (resp.p’) reverse the orientation of (resp. Co).
Hence,p induces a homeomorphism By, which exchange<’; with Cy (resp.C;
with C{). On the other hand, there is an isomorphism
mo(Diff*(£] . Co U Cy, C1 U CY, el 9%, )
(Co=C4.C1=Cf
= 7TO(Diff-'-(z;g,ns C2g—2,2¢—1, A2g—2, relazg,n))’

which mapsCy = C{ 10 co5_22,—1, C1 = C{ t0 az_». Therefore, we can show that
(Mg.n)e, is generated by(}é{n—{cg, Cy. C1, CY P U{cag—2.25—1, az—2, p, p'}. For each
elements ofCé{n — {C2g—225—4, C29—a,2,—2, Cg, Cg, C1, C{'}, the associated curve of
is disjoint from those ob,_1, az,—», andco,—2 2,—1. Hence, by braid relationsg;st; =

5 € (Mg 1) This fact shows that, for the above element , the relatiotypé (Y2)
is satisfied inG,, .

In Subsection 5.1, we showed that1; )., is generated by¥ U {r,_1}, so a pre-
sentation of some element as an elementJof,(,),, means a presentation of this el-
ements as a word of U {r,_1}. Here, we need to presept and as words of
these elements. Sindg ax,—> € &, p is presented as an element o1 ,),,. We
shall presenp’ as an element of A, )y,

Clzg_zbtl(b) = azg_zbbg_lczg_z,zg_lazg_z bg_l(b)

braid braid
= azg_zbbg_lazg_zczg_zﬂ28_1(19) = agg_zbbg_lazg_z(b)
braid braid
= g 2bbg1b(azg—2) = azg—2bg—1(aze—2) = azg—2a2¢—2(bg—1) = bg—1,
braid braid

azg—2bt1(azg_2) = azg_2bby_1C2, 2 2 102, 2bg_1(a2,2)
braid

= Ao 2bby_1C2g—2 251022025 2(bg—1)

= apq—2bbg_1025—22—1(bg—1) = a24—2bbg_1bg_1(C24—224—1)
braid

= aq—2b(C2g—2,29—1) = €29—2,2—1.
braid

Here, we remark that these equations she(z,—2) € (M,.,),. From these equa-
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tions, we can show,

a2g—2bt1pt1bazy 2 = azg—2bt1baz, a2, 2bt1baze >

=by_1C25—224—1C2¢—22¢—1bg_1.
On the other hand,

re—1 = ((c2¢—3.2¢—2)°bg—1)*
handle

= ((c2g—2.20-1)%bg—1)?

Hence, by _1c25—2.20—1C2p—2.2g—1bg—1 = (C2g—1.20—1)’rs—1. From the above equations,
we can showp’ = tipt; = bazg—1(Cog—2.2,—1)°r¢—1a2,—2b. This gives a presentation
of p’ as an element of X1, ,),. For p, the relation of type (Y2) is

11(bazy 2z, 2b)t1 = t1pt = baze 2(Cog—2.2¢1)°rg— 1024 2b
This relation is satisfied itG,, . Fop’, the relation of type (Y2) is,
11(bazg—2(C2g—2,201)rg—1a25—2b)11 € (Mgn)ug-

We shall show that this equation is satisfiedGn, . Previously,have shownr()?,
P € (Mg.n)y- By the definition ofp’, we can show,

= - 2 PR N\, = 42,72
tl(bazgfg((,‘zg,gzg,l) rgflazgfzb)ll = tl(l‘lptl)l‘l =1pty € (Mg,n)vo-
For cog—22,—1, aze—a, We can show; exchanges,—» 2,—1 andas,_a,

t1(c2g—2,29—1) = bg—1C2g—2.20—1a25—1 bg_1(c24—224—1)
braid braid

= by 1a2-2C25—2,2¢-1C2¢—2.2¢—1(bg—1)
=bg1a2-2(bg—1) = bg—1bg—1(aze—2) = aze—2,
braid

t1(a24—2) = bg—1C2¢—2 24— 1a25—2bg_1(a24—2)
braid

= by_1C2g—2 21022024 2(bg_1)
braid

= bg_1020—220—1(bg—1) = bg—1bg_1(C29—22¢—1) = C29—2,25—1.
braid
This fact showsticag—2 2,111, t1a2—111 € (Mg.n)uo-
For c2g_22,—a4,

11(C2g—2,2g—4) = bg_1C2g_2 251025 2bg_1(C2g—2,25—4)
braid
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= by 1a2-2C25—2,25—1bg—1(C2¢—2,25—4)

handle
= by 102g—2C29—3,2g—2bg—1(C20—2,25—4)
= bagg—aaz,—2b(az,—1) (bY Xog—4,2,—2(4)).

Since b, az—1, azg—2, az—a € (Mgn)u, this equation showsicy 2241 €
(Mg,ﬂ)UO'
For ¢ae—4,2,—2, we do the same way as above,

11(C2g—4,2y—2) = bg_1C25_ 225125 2bg_1(a24— 425 2)
braid

= by 1a2 222251y 1(C2g—2,2,—2)

handle
= by 1a2, 2243 252Dy 1(C2g—2,2,2)
= bagg—aaz—2b(az—3)  (by Xog—4,2,-2(2)).

Since b, axy_3, azg—3, aze—4 € (Mgn)y,, this equation showslczg,4,zg,2t_1 S
(Megn)vo-
Here, we conclude that all the relations of type (Y2) ares§atl inG, , .

5.3. Relations of type (Y3). We definet, = bas,_oas_4b. For the notations
used to present a relation of type (Y3), it is possible to/set 1, hy =1, and h3 = 1.
Then, Wy, = ratat it ot 1. By braid relations, we can showt.t1 = 12112, as follows.

t112(bg—1) = bg_1C24—2 2g—1A2¢—2bg_1ba24 202 —4b(bg—1)
braid

= by 1C25-2,2¢—1a25—2bg—1baz,—2(bg—1)
braid

= by 1022201025 2bg—1Dbg—1(a2g-2)
braid

= by 1C252.25 1020 2bg—1bg—16(azg—2)

= bg—1025-2,20—1a25—2b(a2g—2)
braid
= by 102 2.2 1025 2a25 2(b) = by 1024 22, 1(b) = b,
braid

t1to(Cog—22¢-1) = bg_1C2g 22, 1a24 2Dy _1bA2, 2024 4D (C2q 2,2, 1)
braid

= by_1C24—2 24— 1024—2bg_1(C24—2,2—1)
braid

= by 10252 24— 102g—2C2¢—225—1(bg—1)
braid

= by_1C2g—2,2—1C2g—2,2¢—1a24—2(bg—1)
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= by 1a2e—2(bg—1) = b1y 1(a2s—2) = azg 2,
braid

t112(a2g—2) = bg—1C25—2,2¢—1a25—2bg_1ba2g _2a2,—ab(A24—2)
braid

= bg_1C2g—2 2¢—1a2g—2bg_1ba2q 2024 —4a24_2(D)
braid

= by 10222102 2bg 122024 2a2,—4()

= by 102422125 2by_1baz,_4(b)
braid

= by 1025 2.2, 124 2bg 1bb(az, 1)

= bg—1025-2.24- 124 2bg—1(azg 1) = azg-a.
braid

TheI'Efore,tltztlt_zt_l = tltz(bg_1C2g_2,2g_1azg_zbg_1)t_2t_1 = bazg_zazg_4b = 1, that is

a1 = totita. Hence, we getWy, = nitotitot1 = titt?. As we have shown in Sub-
section 5.2,£2 € (Mg, and, sinceb ,as—2, aze—4 € (Mgn)y,, We can show
t2 € (Mgn)w. By using these facts, we conclude thiét, € (M,,), iS satisfied

in Gy .
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