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1. Introduction

Let be an oriented surface of genus (≥ 2) with (≥ 0) boundary compo-
nents and denote byM its mapping class group, that is to say, the group of ori-
entation preserving diffeomorphisms of which are the identity on ∂ modulo
isotopy. For a simple closed curve in , we define the Dehn twistalong as
indicated in Fig. 1. We denote the isotopy class of Dehn twistalong by the same
letter .

It is known thatM is generated by Dehn twists [5], [16]. McCool [19] showed
thatM is finitely presented. Hatcher and Thurston [7] defined a simply connected
complex whose vertices are isotopy classes of “cut systems”and introduced a method
of giving a presentation forM by making use of this complex. Harer [8] reduced
the member of the 2-simplices of this complex, and Wajnryb [20] gave a simple
presentation forM 1 andM 0. Following Wajnryb’s presentation, Gervais [6] gave
a symmetric presentation forM . We set some notations indicating circles on
as in Fig. 2. A triple of integers ( )∈ {1 . . . 2 + −3}3 will be said to begood
when:

Fig. 1.
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Fig. 2.

i) ( ) 6∈ {( ) | ∈ {1 . . . 2 + − 2}},
ii) ≤ ≤ or ≤ ≤ or ≤ ≤ .
Gervais’ symmetric presentation is as follows,

Theorem 1.1 ([6]). If ≥ 2, ≥ 0, thenM is generated by , 1, . . ., −1,

1, . . ., 2 + −2, , and its defining relations are
(A) “ HANDLES”: 2 2 +1 = 2 −1 2 for all , 1≤ ≤ − 1,
(B) “BRAIDS”: for all , among the generators, = if the associated curves
are disjoint and = if the associated curves intersect transversely in a single
point,
(C) “STARS”: = ( )3 for all good triples , , , where = 1.

Let denote the group with presentation given by Theorem 1.1.
On the other hand, Harvey [10] introduced a complex of curvesfor , whose

vertices are isotopy classes of essential (neither homotopic to a point nor any bound-
ary component) simple closed curves and simplices are the set of vertices which are
represented by disjoint and non-isotopic curves. Harer [9]showed the higher connec-
tivity of this complex and, by using this complex, proved thestability of the coho-
mology group of mapping class groups. McCullough [18] defined a disk complex of
a handle body (an oriented 3-dimensional manifold obtainted from 3-ball by attach-
ing 1-handles), which is defined from a complex of curves by replacing “curves” with
“meridian disks”. He showed that the disk complex is contractible. The author [12]
gave a presentation for the mapping class group of a handle body by investigating
the action of the mapping class group on this complex. The aimof this paper is to
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give a Gervais’ symmetric presentation forM with the same method as above, that
is to say, by investigating the action ofM on the complex of curves for . We
remark here that our method introduced in this paper does notuse Wajnryb’s sim-
ple presenation. This fact means that we do not need to use Hatcher-Thurston’s com-
plex to give a presentation forM . In [21], Wajnryb proved simple connectedness of
Hatcher-Thurston’s complex without using Cerf Theory, anduse this to give his simple
presenatation forM 0 andM 1. On the other hand, Ivanov [13] gave an elementary
proof of the simple connectivity of Harvey’s complex, and Hatcher [11] gave an ele-
mentary proof of the higher connectivity of this complex. Therefore, our method in-
troduced in this paper is another elementary approach to themapping class group of
a surface.

Recently, S. Benvenuti (Pisa Univ.) [1] showed a similar result, independently, us-
ing different “complex of curves”, which includes separating curves. We remark that
Matsumoto [17] gave a beautiful presentation for the mapping class groups of surfaces
in terms of Artin groups.

We set notations and conventions used in this paper. Composition of elements of
M will be written from right to left. We will denote by ¯ the inverse of and ( )
the conjugate ¯ of by . The notation⇄ means “commute with”. For example,
for two elements , ofM , ⇄ means = . We use braid relations and
handle relations very often. We indicate the place to use a braid relation (resp. handle
relation) by an underline together with the letter “braid” (resp. “handle”) below it. For
example, if , , 1, 2 are loops on and if and intersect transversely in
a single point and 1 and 2 are disjoint, then

· · ·
braid

· · · 1 2
braid

· · · = · · · · · · 2 1 · · ·

2. A presentation for M2 0

Birman and Hilden [4] showed:

Theorem 2.1 ([4]). M2 0 admits the presentation:
generators: τ1, τ2, τ3, τ4, τ5,
defining relations:
(i) τ τ = τ τ , if | − | ≥ 2, 1≤ , ≤ 5,
(ii) τ τ +1τ = τ +1τ τ +1 1≤ ≤ 4,
(iii) ( τ1τ2τ3τ4τ5)6 = 1,
(iv) (τ1τ2τ3τ4τ

2
5τ4τ3τ2τ1)2 = 1,

(v) τ1τ2τ3τ4τ
2
5τ4τ3τ2τ1 ⇄ τ 1≤ ≤ 5.

As we defined previously, 2 0 is a group with the following presentation:
generators: 1, , 2, 1, 1 2,
defining relations:
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(1) 1 1 = 1 , 2 2 = 2 , 2 1 2 = 1 2 1, 1 1 2 1 = 1 2 1 1 2, every other
pair of generators commutes,
(2) ( 1 1 2 )3 = 2

1 2.
Let ψ2 0: 2 0→M2 0 be an epimorphism defined byψ2 0( 1) = τ1, ψ2 0( ) = τ2,

ψ2 0( 2) = τ3, ψ2 0( 1) = τ4 and ψ2 0( 1 2) = τ5. We want to proveψ2 0 is an iso-
morphism. We shall construct an inverse mapφ2 0 : M2 0 → 2 0. For each genera-
tors of 2 0, we defineφ2 0(τ1) = 1, φ2 0(τ2) = , φ2 0(τ3) = 2, φ2 0(τ4) = 1, and
φ2 0(τ5) = 1 2. If the relations (i)–(v) are mapped byφ2 0 onto relations in 2 0, then
φ2 0 extends to a homomorphism. Then, we can showψ2 0 ◦ φ2 0 = IdM2 0 and φ2 0 is
an epimorphism, hence,ψ2 0 is an isomorphism. Therefore, in order to proveφ2 0 is
an isomorphism, it is enough to show that the defining relations (i)–(v) are satisfied
in 2 0.

Relations (i) and (ii) are nothing but the relations (1) for2 0. In 2 0, the right
hand side of relation (v) is1 2 1 1 2 1 2 1 2 1, hence we need to show

1 2 1 1 2 1 2 1 2 1⇄ 1 2 1 1 2

For short, we denote =1 2 1 1 2 1 2 1 2 1. Using the relations (1), we can show
( ) = , ( 2) = 2, ( 1) = 1, ( 1 2) = 1 2. In order to show (1) = 1, we have

to give another presentation for .

Lemma 2.2. ( 1 2 1 2 2 1)3 = 1 1.

Proof. We introduce an element =1 2 1 1 2 1 2 1 1 2 1 1of M2 0.
By using the relations (1), we can show (1) = 1 2, ( ) = 1, ( 2) = 2,

( 1) = , and ( 1 2) = 1. We take a conjugation of the relation (2) by , then
we get the equation we need.

Lemma 2.3. = 1 1 1 1 1̄ 2 1̄ 2 2̄ 1̄ 2 1̄ 2 2̄.

Proof. By the relations (1), we can show,

1 2 1 2 2 1 1 2 1 2 2 1 1 2 1 2 2
braid

1 = 1 2 1 2 2 1 1 2 1 2 2 1 2
braid

1 2 1 2 1

= 1 2 1 2 2 1 1 2 1 2 1 2 1 1 2 1 2 1

We have shown 1 1 = ( 1 2 1 2 2 1)3, in Lemma 2.2. Therefore,

1 1 = 1 2 1 2 2 1 1 2 1 2 1 2 1 1 2 1 2 1

From this equation,

2 1 1 2 1 2 1 2= 1̄ 2 1̄ 2 1 1
braid

1̄ 1̄ 2 1̄ 2 1̄ = 1 1 1̄ 2 1̄ 2 1̄ 1̄ 2 1̄ 2 1̄
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and hence we can show,

= 1 2 1 1 2 1 2 1 2 1= 1 1 1 1̄ 2 1̄ 2 1̄ 1̄ 2 1̄ 2 1̄ 1
braid

by the above equation

= 1 1 1 1
braid

1̄ 2 1̄ 2 1̄ 1̄ 2 1̄ 2 1̄ = 1 1
braid

1 1̄ 2 1̄ 2 1̄ 1̄ 2 1̄ 2 1̄

= 1 1 1 1 1̄ 2 1̄ 2 1̄ 1̄ 2 1̄ 2 1̄

We can show (1) = 1 by using the above Lemma and the relations (1).
The relation (iv) is interpreted as2 = 1 in 2 0. By Lemma 2.3,

2 = 1 1 1 1 1̄ 2 1̄ 2 1̄ 1̄ 2 1̄ 2 1̄ 1 1 1 1
braid

1̄ 2 1̄ 2 1̄ 1̄ 2 1̄ 2 1̄

= 1 1 1 1 1 1 1 1 1̄ 2 1̄ 2 1̄ 1̄ 2 1̄ 2 1̄ 1̄ 2 1̄ 2 1̄ 1̄ 2 1̄ 2 1̄

If we can show (1 1 )4 = ( 1 2 1 2 1)4, then 2 = ( 1 2 1 2 1)4( 1̄ 2 1̄ 2 2̄)4. Since we
can show (1 2 1 2 1)4 = ( 1 1 2 1 2)4 by the relations (1), we get 2 = 1. Therefore it
is enough to show:

Lemma 2.4. ( 1 1 )4 = ( 1 2 1 2 1)4

Proof. We denote 1 = 1 1 1 1 , 2 = 1 2 1 2 1 1 2 1 2 1 for short. We can
show,

1 2 1 2 = 1 1 1 1 2 1 1 1
braid

1 2 = 1 1 1 1 2 1 1
braid

1 2

= 1 1 1 1 2
braid

1 1 2 = 1 1 1 1 2
braid

2 1
braid

1 2

= 1 1 2 1 1 1
braid

2 1 2 = 1 1 2 1 1
braid

2 1 2

= 1 1 2
braid

1 2 1 2 = 1 1 2 2 1 2 1
braid

2

= 1 1 2 2 1 2 1
braid

1 2 = 1 1 2 2 1 2 1
braid

1 1 2
braid

= 1 1 2 2 1 1 2 2
braid

1 1 = 1 1 2 2 1 1
braid

2 1 1

= 1 1 2 2 1 1
braid

1 2 1 1 = 1 1 2 2 1 1
braid

1 1 2 1 1

= ( 1 1 2 )3
1 1

and, by the relation (2), (1 1 2 )3
1 1 = 1 2 1 2 1 1. Hence 1 2 1 2 = 1 2 1 2 1 1.

From the last equation, we can show21 = 1 2̄ 1̄ 1 2 1 2 1 1̄ 2. In the same way
as above, but using Lemma 2.2 in place of relation (2), we can show 2

2 =
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2 2̄ 2̄ 1 2 1 2 1 1̄ 2. If we can show 1( 2) = 2( 2), then we get 2
1 = 2

2 . In fact,

2( 2) = 1 2 1 2 1 1 2
braid

1 2 1( 2) = 1 2 1 1 2
braid

1 1 2 1
braid

( 2)

= 1 1 2 1 1 2 1
braid

1 2( 2) = 1 1 2 1 2 1 1 2 1 2( 2)
braid

= 1 1 2 1 2 1( 2) = 1( 1 1 2 )3
1( 2) by the relation (2)

= 1 1 1 2 1 1 2 1 1 2 1( 2)
braid

= 1 1 1 2 1 1 2 1 1 2 2̄
braid

( 1)

= 1 1 1 2 1 1 2 1 1̄ 2 ( 1)
braid

= 1 1 1 2 1 1 2
braid

1 1¯ 2( 1)

= 1 1 1 2 2 1 1 1
braid

1¯ 2( 1) = 1 1 1 2 2 1 1 1̄
braid

2( 1)

= 1 1 1 2 2
braid

1 1 1̄ 1 2
braid

( 1) = 1 1 1 2 1 2 1( 1)
braid

= 1 1 1 2 1
braid

2( 1) = 1 1 1 2 1 1
braid

2( 1) = 1 1 1 2 1 1 1 2
braid

( 1)

= 1 1 1 2 1 1 2 1( 1)
braid

= 1 1 1 2 1 1
braid

2( 1) = 1 1 1 1 1 2 2
braid

( 1)

= 1 1 1 1 1 2 ( 1)
braid

= 1 1 1 1 1 2( 1)
braid

= 1 1 1 1 1 1̄
braid

( 2)

= 1 1̄ 1 1 1 1 ( 2) = 1 1 1 1 ( 2) = 1( 2)

The relation (iii) is interpreted as (1 2 1 1 2)6 = 1. If we regard 1, , 2, 1,

1 2 as generators of the 6-string braid group, namely,1 as an interchange of the 1st
and the 2nd string, as an interchange of the 2nd and the 3rd string and so on, then
( 1 2 1 1 2)6 is a full twist. By investigating a figure of a 6-string full twist, or re-
peatedly applying the relations (1), we can show

( 1 2 1 1 2)6 = ( 1 2 1 1 2)2
1 2 1 1 2 1 2 ( 2 1 1 2)4

By Lemma 2.2,

1 1 = ( 1 2 1 2 2 1)
3

= 1 2 1 2 2
braid

1 1 2 1 2 2 1 1 2 1 2 2 1= 2 1 2 1 2 1 1 2
braid

1 2 2 1 1 2 1 2 2 1

= 2 1 2 1 1 2
braid

1 1 2 2 1 1 2 1 2 2 1= 2 1 1 2 1 1 1 2 2
braid

1 1 2 1 2 2 1

= 2 1 1 2 1 1 2 1 2 1 1 2
braid

1 2 2 1 = 2 1 1 2 1 1 2 1
braid

1 2 1 1 2 2 1

= 2 1 1 2 1 2 1
braid

2 1 2 1 1 2 2 1= 2 1 1 2 2 1 2 2 1 2
braid

1 1 2 2
braid

1
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= 2 1 1 2 2 1 1 2 2 2 1 2
braid

1 2 1 = 2 1 1 2 2 1 1 2 2 1 2 1 1 2 1
braid

= 2 1 1 2 2 1 1 2 2 1 2 1 2
braid

1 1 2 = ( 2 1 1 2)
4

Therefore,

( 1 2 1 1 2)6 = ( 1 2 1 1 2)2
1 2 1 1 2 1 2 1 1

= 1 2 1 1 2 1 2 1 1 2 1
braid

2 1 1 2 1 2 1 1

= 1 2 1 1 2 1 2 1 2
braid

1 1 2 2 1
braid

1 2 1 2 1 1

= 1 2 1 1 2 1 2 1 2 1 2
braid

1 1 2 1 2 1 2 1 1

= 1 2 1 1 2 1 2 1 1
braid

2 1 1
braid

1 2 1 2 1 2 1 1

= 1 2 1 1 2 1 2 1 1 2
braid

1 1 1 2 1 2 1 2 1 1

= 1 2 1 1 2 1 2 1 1 2
braid

2 1
braid

1 1 2 1 2 1 2 1 1

= 1 2 1 1 2 1 2 1 2 1 1
braid

2 1 1 2 1 2 1 2 1 1

= 1 2 1 1 2 1 2 1 2 ( 1 2 1 1 2 1 2 1 2 1) 1

We have already shown that1 2 1 1 2 1 2 1 2 1= ⇄ 1. Hence, (1 2 1 1 2)6 =
( 1 2 1 1 2 1 2 1 2 1)2 = 2 = 1.

3. Elementary relations

In this section, we assume≥ 3 or = 2, ≥ 1. We shall prove some relations
in which are frequently used in the following sections. The first one is known as
the “lantern relation”, which is proved in [6, Lemma 3]. So weomit the proof here:

Lemma 3.1. For all good triples ( ), one has in the relation,

( ) : = =

where = .

The next one is:

Lemma 3.2. If 6= 2 , one has in the relation,

( 2 ) :(1) 2 2 −1 2 ( 2 ) = 2 ( 2 −1)
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(2) 2 2 −1 2 ( 2 ) = 2 ( 2 −1)

(3) 2 2 −1 2 ( 2 ) = 2 ( 2 +1)

(4) 2 2 −1 2 ( 2 ) = 2 ( 2 +1)

Proof. We will prove (1). Other relations are proved in the same way. We write

1 = 2 2 −1 2 , 2 = 2 for short. Then,

2 1( 2 ) = ¯ 2̄ ¯ ¯ ¯ 2̄ −1 2 2̄ ¯ ( 2 )
braid

= ¯ 2̄ ¯ ¯ ¯ 2̄ −1 2 2̄ 2 ( )

The lantern relation 2 −1 2 says 2 = 2 2 −1 2 2 −1 2̄ −1 2 2̄ −1 2. There-
fore,

2 1( 2 ) = ¯ 2̄ ¯ ¯ ¯ 2̄ −1 2 2̄ 2 2 −1 2 2 −1 2̄ −1 2 2̄ −1 2( )

= ¯ 2̄ ¯ ¯ ¯ 2 −1 2̄ −1¯ 2̄ ¯ ¯ 2̄ −1 2 ( )
braid

= ¯ 2̄ ¯ ¯ ¯ 2 −1 2̄ −1¯ 2̄ ¯ ¯ 2̄ −1 2
braid

( )

= ¯ 2̄ ¯ ¯ ¯ 2̄ −1¯ 2̄ ¯ ¯ 2̄ −1 2
braid

2 −1( )
braid

= ¯ 2̄ ¯ ¯ ¯ 2̄ −1¯ 2̄ ¯ ¯ 2̄ −1
braid

2 ( )
braid

= ¯ 2̄ ¯ ¯ ¯ 2̄ −1
braid

¯ 2̄ ¯ 2 −1
braid

¯ 2̄ −1 2
braid

( )

= ¯ 2̄ ¯ ¯ ¯ 2̄ −1 ¯¯
braid

2 −1 2̄ ¯ 2
braid

2̄ −1( )
braid

= ¯ 2̄ ¯ ¯ ¯ 2̄ −1¯¯ 2 −1
braid

2̄ (̄ )
braid

= ¯ 2̄ ¯ ¯ ¯ 2̄ −1¯¯ 2 −1 2 −1 2̄
braid

( )

= ¯ 2̄ ¯ ¯ ¯ 2̄ −1¯¯ 2 −1 2̄ 2 −1( )
braid

= ¯ 2̄ ¯ ¯ ¯ 2̄ −1¯¯ 2 −1 2̄ ( )
braid

= ¯ 2̄ ¯ ¯ ¯ 2̄ −1¯¯ 2 −1
braid

( 2 ) = ¯ 2̄ ¯ ¯ ¯ 2̄ −1¯¯ 2 −1
braid

( 2 )

= ¯ 2̄ ¯ ¯ 2̄ −1¯ 2 −1
braid

¯ ( 2 ) = ¯ 2̄ ¯ ¯ 2̄ −1¯¯
braid

( 2 )

= ¯ 2̄ ¯ 2̄ −1
braid

¯¯ ( 2 )
braid

= ¯ 2̄ ¯ 2̄ −1 (̄ 2 )
braid

= ¯ 2̄ 2̄ −1 2
braid

( )

= ¯ 2̄ 2 2̄ −1( )
braid

= ¯ ( 2 −1) = 2 −1
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The third one is known as the “chain relation”:

Lemma 3.3. One has in the relation:

{( 2 −2 2 −1)2
2 −2 −1}3 = 2 −3 2 −1

Proof. We write

= 2 −2 2 −1 −1 2 −2 2 −3 2 −2 2 −1 −1 2 −2 2 −2 2 −1 −1 2 −2

× 2 −2 2 −1 −1 2 −2 2 −1

for short. By using braid relations, we can show (2 −2 2 −1) = 2 −3, ( −1) = ,
( 2 −2) = 2 −2, ( 2 −3) = 2 −2 2 −1. For ( 2 −1),

( 2 −1)

= 2 −2 2 −1 −1 2 −2 2 −3 2 −2 2 −1 −1 2 −2

× 2 −2 2 −1 −1 2 −2 2 −2 2 −1 −1 2 −2 2 −1( 2 −1)
braid

= 2 −2 2 −1 −1 2 −2 2 −3 2 −2 2 −1 −1 2 −2

braid

( 2 −1)

= 2 −2 2 −1 −1 2 −2 2 −2 2 −1

braid

−1 2 −2 2 −3 ( 2 −1)

= 2 −2 2 −1 −1 2 −2 2 −1

braid

2 −2 −1

braid

2 −2 2 −3 ( 2 −1)

= −1 2 −2 2 −1 −1 2 −2 −1

braid

2 −2 2 −3 ( 2 −1)

= −1 2 −2 2 −1 2 −2 −1 2 −2 2 −2

braid

2 −3 ( 2 −1)

= −1 2 −2 2 −1 2 −2 −1 2 −2 2 −3

braid

( 2 −1)

= −1 2 −2 2 −1 2 −2 −1 2 −2 2 −3

braid

2 −3( 2 −1)
braid

= −1 2 −2 2 −1 2 −2 −1 2 −3 2 −2 ( 2 −1)

= −1 2 −2 2 −1 2 −2 −1 −1 2 −2 2 −1 2 −2 −1( 2 −2 2 −3) by 2 −3 2 −2(3)

= 2 −2 2 −3

The star relation 2 −3 2 −3 2 −2 of says:

{( 2 −3)2
2 −2 }4 = 2 −3 2 −2

handle

2 −2 2 −3

= 2 −2 2 −1 2 −2 2 −3
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Fig. 3.

We take a conjugation of this equation by, then we get the equation which we need.

4. A presentation for M2 1

In this section, we give a presentation forM2 1 and show thatM2 1
∼= 2 1. For

this purpose, it is enough to show that all the relations forM2 1 are satisfied in 2 1

by the same reason as Section 2.
Let 1 be a point on 2. We give a presentation forπ0(Diff +( 2 1)) along

the way of [3]. Let α be a surjection fromπ0(Diff +( 2 1)) to π0(Diff +( 2)) de-
fined by forgetting the point 1. We define a homomorphismβ from π1( 2 1) to
π0(Diff +( 2 1)) as follows: The homotopy classes of loops indicated in Fig. 3 gener-
ate π1( 2 1). For a loop corresponding to one of these generators, we take a reg-
ular neighborhood of this loop in 2. Since this is an annulus, its boundary has
two connected components. With regard to the orientation for , we denote by 1 the
right hand side of these components, and denote by2 the left hand side of them. We
defineβ (which is an element ofπ1( 2 1) corresponding to ) to be equal to1 2̄.
For short, we write =β( ) ( = 0, 1, 2, 3). For these homomorphismsα, β, there
is a short exact sequence:

(S1) 0−→ π1( 2 1)
β−→ π0(Diff +( 2 1))

α−→ π0(Diff +( 2)) −→ 0

There is a natural surjection fromπ0(Diff +( 2 1 rel∂ 2 1)) to
π0(Diff +( 2 1/∂ 2 1 ∂ 2 1/∂ 2 1)) and the latter one is isomorphic to
π0(Diff +( 2 1)). Hence there is a surjectionγ from π0(Diff +( 2 1 rel∂ 2 1)) ∼= M2 1

to π0(Diff +( 2 1)). The kernel of γ is an infinite cyclic groupZ generated by
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the Dehn twist along the loop∂ 2 1, which we denote by 3 1. Hence, there is a short
exact sequence:

(S2) 0−→ Z −→M2 1
γ−→ π0(Diff +( 2 1)) −→ 0

In general, if there is a short exact sequence,

0−→ φ−→ ψ−→ −→ 0

and and are finitely presented, then a finite presentation foris given as fol-
lows (see, for example, Chapter 10 of [14]). Let1 . . . be the generators of and,

1 . . . be the generators of . For each 1≤ ≤ , we denote bỹ the image of
underφ, and for each 1≤ ≤ , we fix one of the preimages of byψ and denote
this ˜ . Then is generated bỹ1 . . . ˜ and 1̃ . . . ˜ , and there are the following
three types of relations for .
(1) For each 1≤ ≤ , 1≤ ≤ , ˜ ˜ ˜ −1 is an element ofφ( ). The equation

˜ ˜ ˜ −1 = a presentaion of ˜̃ ˜ −1 in terms of 1̃ . . . ˜

is a relation for ,
(2) Each relation for is presented by a word (1 . . . ). The element

( 1̃ . . . ˜ ) is in the kernel ofψ and hence it is an element ofφ( ). The equation

( 1̃ . . . ˜ ) = a presentation of ( ˜1 . . . ˜ ) in terms of 1̃ . . . ˜

is a relation for ,
(3) For each relation for , the equation obtained from this relation by replacing
with ˜ is also a relation for
We apply this method to the above short exact sequences (S1) and (S2). For (S1),
by observing that 1, , 2, 1, 1 2 in π0(Diff +( 2 1)) are mapped, byα, to the ele-
ments ofπ0(Diff +( 2)) denoted by the same letters, we can see thatπ0(Diff +( 2 1))
is generated by 0, 1, 2, 3, 1, , 2, 1, 1 2 and its defining relations are:

1( 0) = 0 1( 1) = 1 0̄ 1( 2) = 2 0̄ 1( 3) = 3 0̄(1- 1)

( 0) = 1 ( 1) = 1 0̄ 1 ( 2) = 2 ( 3) = 3(1- )

2( 0) = 0 2( 1) = 2 2( 2) = 2 1̄ 2 2( 3) = 3(1- 2)

1( 0) = 0 1( 1) = 1 1( 2) = 2 1( 3) = 3 2̄ 3(1- 1)

1 2( 0) = 0 1 2( 1) = 1 1 2( 2) = 2 1 2( 3) = 3 2̄ 1 0̄(1- 1 2)

1 1 = 1 2 2 = 2 2 1 2 = 1 2 1 1 1 2 1= 1 2 1 1 2

other pairs of{ 1 2 1 1 2} commute each other,
(2-1)

( 1 1 2 )3¯2
1 2 ∈ β(π1( 2 1))(2-2)
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3 2̄ 1 0̄ 3̄ 2 1̄ 0 = 1(3)

Among the above relations, (1-1) to (1- 1 2) can be checked by drawing figures of
actions of 1, , 2, 1, 1 2 on π1( 2 1), (2-1) and (2-2) come from the relation (1)
and (2), introduced in Section 2, forM2 0

∼= 2 0, and (3) is a relation forπ1( 2 1)
which is obtained by reading the word on the boundary of an octahedron which is
obtained by cutting 2 along 0, 1, 2, 3. By making use of (S2), we can show that
M2 1 is generated by 0, 1, 2, 3, 1, , 2, 1, 1 2, 3 1, and the defining relations
are the relations (1-1) to (3) up to the powers of 3 1. On the other hand, we can
see 0 = 1 3̄, 1 = ( 0), 2 = 2( 1), 3 = 1( 2) and hence,M2 1 is generated by

1, 2, 3, , 1, 1 2, 3 1. We can now derive the defining relations forM2 1 from
the raltions for 2 1 as follows.
(1) It is shown, in the proof of Lemma 9 in [6], that all the relations (1- 1) to (1- 1 2)
up to the powers of 3 1 are derived from the relations for 2 1. We remark that

1 2( 3) = 3 2̄ 1 0̄ 3 1

which will be used later.
(2-1) These relations are nothing but braid relations.
(2-2) The lantern relation 2 3 1 says

2 2 3 3 1 1= 2 1 3 3 ¯ = 2 1 ¯ 3 3

where = 2 1

that is to say,

2 1 2̄ 3 = 2 3 1 1 3̄ ¯ 3̄ · · · · · · (α)

1 2 3 3̄ = 3̄ 1 2̄ 2 1 ¯ 3 · · · · · · (β)

The star relation 1 1 2 says ( 1 1 2 )3 = 1 2 2 1, so that, (1 1 2 )3( 1̄ 2)2 = 2 1 1̄ 2.
For the right hand of the last equation, we can show,

2 1 1̄ 2
handle

= 2 1 2̄ 3 = 2 3 1
braid

1 3̄ ¯ 3̄ by (α)

= 3 1 2 1 3̄ ¯ 3̄ = 3 1 2 1 1
braid

2 3̄¯ 2̄ 1̄¯ 3̄

= 3 1 2 1 2
braid

3̄¯ 2̄ 1̄¯ 3̄ = 3 1 2 1 2 2̄ 3
braid

¯ 2̄ 1̄¯ 3̄

= 3 1 2 1 2 3̄ 2¯ 2̄
braid

1̄¯ 3̄ = 3 1 2 1 2 3̄¯
braid

2̄ 1̄¯
braid

3̄

= 3 1 2 1 2 3̄
braid

¯ 3 2̄ 1̄
braid

¯ 1 3̄ = 3 1 2 1 3̄ 2¯ 2̄
braid

1̄ 3 1 3̄

= 3 1 2 1 3̄¯ 2̄ 1̄ 3 1 3̄ = 3 1 2 1̄ 0
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This shows 2 1 1̄ 2 ∈ β(π1( 2 1))×Z. Therefore, (1 1 2 )3( 1̄ 2)2 ∈ β(π1( 2 1))×
Z.
(3) Using the lantern relation 2 3 1 and the braid relations, we can show,

3( 2 3) = 1 2 1 3̄¯ 2̄ 1̄( 2 3)
braid

= 1 2 1 3̄¯ 2̄ 2 3
braid

( 1)

= 1 2 1 2 3 3̄¯ 2̄( 1)

= 1 2 3̄ 1 2̄ 2 1 ¯ 3 ¯ 2̄( 1) by (β)

= 1 2 3̄ 1 2̄ 2 1¯ 1̄ 2̄
braid

¯ 3 2 1
braid

¯ 2̄( 1)

= 1 2 3̄ 1 2̄ 2 1¯ 2̄ 1̄¯ 3 1 2 2̄( 1)

= 1 2 3̄ 1 2̄ 2 1¯ 2̄ 1̄¯ 3 1( 1)
braid

= 1 2 3̄ 1 2̄ 2 1¯ 2̄
braid

( 1) = 1 2 2̄ 2 1¯ 2̄ 3̄ 1( 1)
braid

= 1 2 2̄ 2 1
braid

¯ 2̄( 1) = 1 2 1 2 2̄
braid

¯ 2̄( 1)

= 1 2 1¯ 2 ¯ 2̄( 1) = 1 2 1 (̄ 1)
braid

= 1 2 1( 1)
braid

= 1 1̄( 2 1) = 2 1

Hence we get:

2 3( 3̄) = 2 3 3̄ 2̄ 3 = 3̄ 3 2 3 3̄ 2̄ 3

= 3̄ 2 1 2̄ 3 from the above equation3( 2 3) = 2 1

= 3̄ 2 3 1 1 3̄ ¯ 3̄ by (α)

= 3̄ 2 3 1 1 2 1 3̄¯ 1̄ 2̄¯ 3̄
braid

= 3̄ 2 1 2 1
braid

3̄¯ 1̄ 2̄¯ 3̄ 3 1

= 3̄ 2 1 1
braid

2 3̄¯
braid

1̄ 2̄¯ 3̄ 3 1 = 3̄ 2 1 2 3̄
braid

¯ 3 1̄ 2̄
braid

¯ 3̄ 3 1

= 3̄ 2 1 3̄ 2¯ 2̄
braid

3 1̄¯ 3̄ 3 1 = 3̄ 2 1 3̄¯
braid

2̄ 3 1̄¯ 3̄ 3 1

= 3̄ 2 1 3̄¯ 3 2̄
braid

3 1̄¯ 3̄ 3 1 = 3̄ 2 1 3̄¯ 2̄ 3 3
braid

1̄¯ 3̄ 3 1

= 3̄ 2 1 3̄¯ 2̄ 3 1̄¯
braid

3̄ 3 1 = 3̄ 2 1 3̄¯ 2̄ 3 1̄¯ 1 3̄ 3 1

= 3̄ 2 1̄ 0 3 1

Previously, we remarked that1 2( 3) = 3 2̄ 1 0̄ 3 1. Hence,

3 2̄ 1 0̄ 3̄ 2 1̄ 0 = 1 2 3 1̄ 2 3̄ 1 2 3 3̄ 2̄ 3 3̄ 1
braid

= 1 2 3 1̄ 2 2 3
handle

3̄ 2̄ 3
handle

( 3̄ 1)2
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= 1 2 3 1̄ 2 1 2 3̄ 1̄ 2( 3̄ 1)2 = ( 3̄ 1)2

This shows that, modulo powers of3 1, 3 2̄ 1 0̄ 3̄ 2 1̄ 0 = 1 is derived from rela-
tions for 2 1.

From the above results, we can now conclude:

Proposition 4.1. M2 1
∼= 2 1.

5. Action of Mg n on X(Σg n) and a presentation for Mg n

In this section, we assume ≥ 3, and ≥ 1. We call a simple closed curve
on non-separating, if its complement is connected. Define a simplicial com-
plex ( ) of dimension − 1, whose vertices (0-simplices) are the isotopy classes
of non-separating simple closed curves on , and whose simplices are determined
by the rule that a collection of + 1 distinct vertices spans a -simplex if and only if
it admits a collection of representative which are pairwisedisjoint and the complement
of their disjoint union is connected. This complex ( ) is defined by Harer [9].
In the same paper, he showed the following Theorem:

Theorem 5.1 ([9, Theorem 1.1]). ( )is homotopy equivalent to a wedge of
( − 1)-dimensional spheres.

Especially, if ≥ 3, ( ) is simply connected.
For each elementφ of M and a simplex ([ 0] . . . [ ]) of ( ),

([φ( 0)] . . . [φ( )]) is also a simplex of ( ). Hence, we can define an ac-
tion of M on ( ) by φ([ 0] . . . [ ]) = ([φ( 0)] . . . [φ( )]). We can
see that, each of{2-simplices of ( )}/M , {1-simplices of ( )}/M and
{vertices of ( )}/M consists of one element, each of which is represented
by ([ 0] [ 1] [ 2]), ([ 0] [ 1]), and ([ 0]), where 0 = 2 −2 2 −1, 1 = 2 −2,

2 = 2 −4. If the stabilizer of each vertex is finitely presented, and if that of each
1-simplex is finitely generated, we can obtain a presentation for M as in the way
of [15], [20]. Here, we shall recall this method.

We fix a vertex 0 of ( ), fix an edge (= a 1-simplex with orientation)0
of ( ) which emanates from0, and fix a 2-simplex 0 of ( ) which con-
tains 0. Let 0 1 and 2 be non-separating simple closed curves defined as above,
and we set 0 = [ 0], 0 = ([ 0] [ 1]) and 0 = ([ 0] [ 1] [ 2]). We choose
an element 1 of M which switches the vertices of0. In our situation, we set

1 = −1 2 −2 2 −1 2 −2 −1. By this notation, we see0 = ( 0 1( 0)). We denote
by (M ) 0 the stabilizer of 0, by (M ) 0 that of 0, and by〈 1〉 an infinite cyclic
group generated by1. The free product (M ) 0 ∗ 〈 1〉 with the following three types
of relations defines a presentation forM . (In Subsection 5.1, we give a set of gen-
erators for (M ) 0. In the following statements, “a presentation of as an element
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of (M ) 0” means a presentation of as a word of elements of this set of genera-
tors.)
(Y1) 2

1 = a presentation of21 as an element of (M ) 0.
(Y2) For each generator of (M ) 0,

1(a presentation of as an element of (M ) 0) 1

= a presentation of1 1 as an element of (M ) 0

(Y3) For the loop∂ 0 in ( ), we define an element 0 of (M ) 0 ∗ 〈 1〉 in
the following manner. The loop∂ 0 consists of three vertices0, 1, 2 and three
edges 1, 2, 3 such that 1 = ( 0 1), 2 = ( 1 2), 3 = ( 2 0). There is an
element 1 of (M ) 0 such that 1( 0) = 1 i.e. 1 = ( 0 1 1( 0)), then 1 1( 2)
is an edge emanating from0. Hence, there is an element2 of (M ) 0 such that

2( 0) = 1 1( 2) i.e. 2 = ( 1 1( 0) 1 1 2 1( 0)), then 1 1 2 1( 3) is an edge emanat-
ing from 0. So, there is an element3 of (M ) 0 such that 3( 0) = 1 1 2 1( 3) i.e.

3 = ( 1 1 2 1( 0) 1 1 2 1 3 1( 0)). We define 0 = 1 1 2 1 3 1. This element 0

fixes 0, so the following is a relation forM :

0 = a presentation of 0 as an element of (M ) 0

Under the assumption thatM −1
∼= −1 , if we can show all the relations for

(M ) 0 and the relations of the above three types (Y1) (Y2) (Y3) are satisfied in
, then we can show the following theorem by the same reason as Section 2.

Theorem 5.2. If ≥ 3, ≥ 1 andM −1
∼= −1 , thenM ∼= .

In the previous section, we have shownM2 1
∼= 2 1 (Proposition 4.1), therefore,

M 1
∼= 1 for any ≥ 2. On the other hand, Gervais showed the following theorem

in §3 of [6]:

Theorem 5.3. If ≥ 1, ≥ 1 and M ∼= , thenM +1
∼= +1,

M −1
∼= −1.

Theorem 1.1 is proved by Theorem 5.2 and Theorem 5.3. We remark that Theo-
rem 5.3 was proved without using Wajnryb’s simple presentation [20]. In the following
subsections, we show all relations for (M2 1) 0 (Subsection 5.1), relations of type (Y1)
and (Y2) (Subsection 5.2), and a relation of type (Y3) (Subsection 5.3) are satisfied
in .

5.1. A presentation for (Mg n) 0. We assume thatM −1
∼= −1 , and ≥

1. Let Diff+( ) denote the group of orientation preserving diffeomorphisms of .
For subsets 1 . . . and of , we define Diff+( 1 . . . rel ) =
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{φ ∈ Diff +( ) | φ( 1) = 1 . . . φ( ) = φ| = id }. In this sub-
section, we give a presentation for (M ) 0 = π0(Diff +( 0 rel∂ )). Let

′ be a surface obtained from by cutting along0, and let 1, 2 be con-
nected components of∂ ′ which appeared as a result of cutting. Letα be a nat-
ural surjection fromπ0(Diff +( ′

1 ∪ 2 rel∂ )) to Z2 which is a permuta-
tion group of 1 and 2, and β be an inclusion ofπ0(Diff +( ′ rel∂ ′ )) into
π0(Diff +( ′

1 ∪ 2 rel∂ )). Then, there is a short exact sequence:

0−→π0(Diff +( ′ rel∂ ′ ))
β−→ π0(Diff +( ′

1 ∪ 2 rel∂ ))
α−→ Z2 −→ 0

We can see that

π0(Diff +( 0 rel∂ )) ∼=
π0(Diff +( ′

1 ∪ 2 rel∂ ))

2 −2 2 −1 = 2 −3 2 −2

and

π0(Diff +( ′ rel∂ ′ )) ∼= M −1 +2

By Theorem 5.3,π0(Diff +( ′ rel∂ ′ ))∼= −1 +2. Let −1 ={( 2 −3 2 −2)2 −1}2.
Then −1 ∈ π0(Diff +( 0 rel∂ )), that is to say, we can regard−1 as an ele-
ment ofπ0(Diff +( ′

1∪ 2 rel∂ )). Thenα( −1) generatesZ2. From the above
observations, we can see:
π0(Diff +( 0 rel∂ )) is isomorphic to −1 +2 ∗ 〈 −1〉 with the following re-
lations:
(A1) 2 −2 2 −1 = 2 −3 2 −2,
(A2) For each generator of −1 +2,

−1 ¯−1 = a presentation of ¯ as an element of −1 +2

(A3) 2
−1 = 2 −3 2 −1.

We need to show that these relations are derived from relations for .
(1) The relation (A1) is nothing but a handle relation.
(2) By repeatedly applying star relations, we can show−1 +2 is generated byE =
{ (1 ≤ ≤ 2 + − 2) 2 −1 2 (1 ≤ ≤ − 2) −1 (2 − 2 ≤ ≤ 2 + −
2) 2 + −2 1}. Here, we remark that (M ) 0 is generated byE ∪{ −1}. By drawing
figures, we can show:

−1( ) = −1( ) = if 6= 2 − 2 1≤ ≤ 2 + − 2

−1( 2 −1 2 ) = 2 −1 2 if 1 ≤ ≤ − 2

−1( 2 −3 2 −2) = 2 −2 2 −1 −1( 2 −2 2 −1) = 2 −3 2 −2
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−1( −1 ) = −1 if 2 ≤ ≤ 2 + − 2

−1( 2 + −2 1) = 2 + −2 1

−1 2 −2¯ −1 2 −3 2 −1 2 −2 = 2 −1 2 −3( 2 −3 2 −2)2 · · · · · · (∗)

The above equations except (∗) are derived from braid relation. We shall show that
the equation (∗) is satisfied in .

−1( 2 −2) = 2 −3 2 −2 2 −3 2 −2 −1 2 −3 2 −2

braid

2 −3 2 −2 −1( 2 −2)

= 2 −3 2 −2 −1 2 −3 2 −2

braid

−1 2 −3 2 −2 −1

braid

( 2 −2)

= −1 2 −3 2 −2 −1 2 −3 2 −2 −1

braid

2 −3 2 −2( 2 −2)

= −1 2 −3 2 −2 2 −3 2 −2 −1 2 −3 2 −2 2 −3 2 −2( 2 −2)
braid

= −1 2 −3 2 −2 2 −3 2 −2 −1( 2 −2)

By a star relation 2 −3 2 −2 2 −1 and a handle relation2 −3 2 −2 = 2 −2 2 −1,

2 −3 2 −2 2 −3 2 −2 2 −1 2 −3 = ( 2 −3 2 −2 2 −1 )3

Therefore we have,

−1( 2 −2) = −1( 2 −3 2 −2 2 −1 )3
2̄ −1 2 −3 −1

braid

( 2 −2)

= −1( 2 −3 2 −2 2 −1 )3
−1 2̄ −1 2 −3( 2 −2)

braid

= −1( 2 −3 2 −2 2 −1 )3
−1( 2 −2)

braid

= −1( 2 −3 2 −2 2 −1 )2
2 −3 2 −2 2 −1

braid

2̄ −2( −1)

= −1( 2 −3 2 −2 2 −1 )2
2 −3 2 −1 2 −2 2̄ −2

braid

( −1)

= −1( 2 −3 2 −2 2 −1 )2
2 −3 2 −1¯ 2 −2 ( −1)

braid

= −1( 2 −3 2 −2 2 −1 )2
2 −3 2 −1¯ 2 −2( −1)

braid

= −1( 2 −3 2 −2 2 −1 )2
2 −3 2 −1¯ ¯−1

braid

( 2 −2)

= −1( 2 −3 2 −2 2 −1

braid

)2¯ −1 2 −3 2 −1 (̄ 2 −2)

= ( −1 2 −3 2 −1

braid

2 −2 ¯ −1

braid

)2
2 −3 2 −1 (̄ 2 −2)
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= ( 2 −3 2 −1 −1 2 −2¯ −1

braid

)2
2 −3 2 −1 (̄ 2 −2)

= 2 −3 2 −1 2̄ −2 −1 2 −2 2 −3 2 −1 2̄ −2

braid

−1 2 −2 2 −3 2 −1 (̄ 2 −2)

= 2 −3 2 −1 2̄ −2 −1 2 −2 2̄ −2

braid

2 −3 2 −1 −1 2 −2 2 −3 2 −1 (̄ 2 −2)

= 2 −3 2 −1 2̄ −2 −1¯
braid

2 −2 2 −3 2 −1 −1

braid

2 −2 2 −3 2 −1 (̄ 2 −2)

= 2 −3 2 −1 2̄ −2¯ −1 2 −2 −1 2 −3 2 −1 2 −2

braid

2 −3 2 −1

braid

(̄ 2 −2)

= 2 −3 2 −1 2̄ −2¯ −1 2 −2 −1 2 −3 2 −2 2 −1 2 −1

braid

2 −3 (̄ 2 −2)

= 2 −3 2 −1 2̄ −2¯ −1 2 −2 −1 2 −3 2 −2 2 −1 2 −3¯
braid

( 2 −2)

= 2 −3 2 −1 2̄ −2¯ −1 2 −2 −1

braid

2 −3 2 −2

braid

2 −1 2̄ −3

braid

2 −3( 2 −2)
braid

= 2 −3 2 −1 2̄ −2¯ 2 −2

braid

−1 2 −2 2 −2

braid

2 −3 2̄ −3

braid

2 −1 ( 2 −2)

= 2 −3 2 −1 2̄ −2¯ −1

braid

2 −2 ¯ 2 −3 2 −1

braid

( 2 −2)

= 2 −3 2 −1 2̄ −2 −1 2 −2 2 −3 2 −1 2 −1( 2 −2)
braid

= 2 −3 2 −1 2̄ −2 −1 2 −2 2 −3 2 −1 ( 2 −2)
braid

= 2 −3 2 −1 2̄ −2 −1 2 −2 2 −3 2 −1 2̄ −2

braid

( )

= 2 −3 2 −1 2̄ −2 −1 2 −2 2̄ −2 2 −3 2 −1( )

= 2 −3 2 −1 2̄ −2 −1 2 −3 2 −1

braid

( )

= 2 −3 2 −1 2̄ −2 2 −3 2 −1

braid

−1( )
braid

= 2 −3 2 −1 2 −3 2 −1 2̄ −2( )
braid

= 2 −3 2 −1

braid

2 −3 2 −1 ( 2 −2)

= 2 −1 2 −3 2 −3

braid

2 −1 ( 2 −2) = 2 −1 2 −3 2 −1

braid

( 2 −2)

= 2 −1 2 −3 2 −1

braid

2 −1( 2 −2)
braid

= 2 −1 2 −1

braid

2 −3 ( 2 −2)

= 2 −1 2 −3

braid

( 2 −2) = 2 −1 2 −3

braid

2 −3( 2 −2)
braid

= 2 −3 2 −1 ( 2 −2)

The lantern relation 2 −3 2 −2 2 −1 says,

2 −3 2 −1 2 −2 2 −3 2 −1 2 −2¯ 2̄ −1 2̄ −3¯ = 2 −3 2 −3 2 −2 2 −2 2 −1 2 −1
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Then,

2 −3 2 −1 2 −2¯ 2̄ −1 2̄ −1¯ = 2̄ −2 2̄ −3 2 −1 2 −3 2 −3 2 −2 2 −2 2 −1 2 −1

braid

= 2 −1 2 −3 2 −3 2 −2 2 −2 2 −1

handle

2̄ −2 2̄ −3 2 −1

= 2 −1 2 −3( 2 −3 2 −2)2
2̄ −2 2̄ −3 2 −1

Therefore,

2 −3 2 −1 2 −2¯ 2̄ −1 2̄ −3¯ 2 −3 2 −1 2 −2 = 2 −1 2 −3( 2 −3 2 −2)2

In the above equation, we exchange

2 −3 2 −1 2 −2¯ 2̄ −1 2̄ −3¯ = 2 −3 2 −1 ( 2 −2)

with −1( 2 −2), then we get (∗). Hence the relation (A2) is satisfied in .
(3) At first, we can see:

−1 2 −2 −1 2 −2( 2̄ −2 2 −1)2

braid

= {( 2 −3 2 −2

handle

)2
−1}2

2 −2{( 2 −3 2 −2

handle

)2
−1}2

2 −2( 2̄ −2 2 −1)2

braid

= {( 2 −2 2 −1)2
−1}2

× 2 −2 2 −2 2 −1 2 −2 2 −1 −1 2 −2 2 −1

braid

2 −2 2 −1 −1( 2̄ −2 2 −1)2
2 −2

= {( 2 −2 2 −1)2
−1}2

× 2 −2 2 −2 2 −1 −1 2 −2 2 −1

braid

−1 2 −2 2 −1 −1

braid

( 2̄ −2 2 −1)2
2 −2

= {( 2 −2 2 −1)2
−1}2

× 2 −2 −1 2 −2 2 −1 −1 2 −2 2 −1 −1

braid

2 −2 2 −1( 2̄ −2 2 −1)2
2 −2

= {( 2 −2 2 −1)2
−1}2

× 2 −2 −1 2 −2 2 −1 2 −2 2 −1 −1 2 −2 2 −1 2 −2 2 −1( 2̄ −2 2 −1)2
2 −2

= ( 2 −2 2 −1)2
−1( 2 −2 2 −1)2

−1 2 −2 −1

braid

( 2 −2 2 −1)2
−1 2 −2

= ( 2 −2 2 −1)2
−1( 2 −2 2 −1)2

2 −2

braid

−1 2 −2( 2 −2 2 −1)2
−1 2 −2

= {( 2 −2 2 −1)2
−1 2 −2}3

= 2 −3 2 −1 by Lemma 3.3
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Therefore,

2
−1 = −1 2̄ −2¯−1 2 −1 2 −3( 2 −2 2 −1)2

2̄ −2

From the above equation and (∗), we can see 2
−1 = 2 −3 2 −1.

5.2. Generators of (Mg n)e0, and relations of type (Y1) and (Y2). In this
subsection, we give generators of

(M ) 0 = π0(Diff +( 2 −2 2 −1 2 −4 rel∂ ))

and, by investigating the action of1 on these elements, we will give relations of type
(Y2), and show that these relations and a relation of type (Y1) are satisfied in .

At first, we show 2
1 ∈ (M ) 0. By Lemma 3.3 and braid relations,

2 −3 2 −1

= 2 −2 2 −1 2 −2 2 −1

× 2 −2 −1 2 −2 2 −1 2 −2 2 −1 2 −2

braid

−1 2 −2 2 −1 2 −2 2 −1 2 −2 −1

= 2 −2 2 −1 2 −2 2 −1

× 2 −2 −1 2 −2 2 −2 2 −1 2 −2 2 −1 −1 2 −2 2 −1

braid

2 −2 2 −1 2 −2 −1

= 2 −2 2 −1 2 −2 2 −1

× 2 −2 −1 2 −2 2 −2 2 −1 −1 2 −2 2 −1

braid

−1 2 −2 2 −1 2 −2 −1

= 2 −2 2 −1 2 −2 2 −1 2 −2 −1 2 −2 −1

braid

2 −2 2 −1 −1 −1 2 −2 2 −1 2 −2 −1

= 2 −2 2 −1 2 −2 2 −1 2 −2 2 −2 −1 2 −2 2 −2 2 −1

braid

−1 −1 2 −2 2 −1 2 −2 −1

= ( 2 −2 2 −1)2( 2 −2)2 2
1 since 1 = −1 2 −2 2 −1 2 −2 −1

Therefore, 2
1 = ( 2̄ −2)2( 2̄ −2 2 −1)2

2 −3 2 −1 ∈ (M ) 0. This shows that the rela-
tion of type (Y1) is satisfied in .

Let ′′ be a surface obtained from by cutting along0 = 2 −2 2 −1,

1 = 2 −2. As in Fig. 4, let ′
0 and ′′

0 (resp. ′
1 and ′′

1 ) be connected components
of ∂ ′′ which appeared as a result of cutting along0 (resp. 1). We denote the
simple closed curve in the interior of ′′ which is homotopic to ′

0 (resp. ′′
0 , ′

1,
′′
1 ) and Dehn twist along this curve by the same letter. We can seethat −2 +4

∼=
M −2 +4 is generated by (1≤ ≤ 2( − 3) + ( + 4)), , (1 ≤ ≤ − 3),

2 −1 2 (1≤ ≤ − 3), +1(2( − 3) + 1≤ ≤ 2( − 3) + ( + 3)), and 2( −3)+( +4) 1.
There is a homomorphismγ from M −2 +4 to π0(Diff +( ′′ rel∂ ′′ )) defined by

γ( ) = 2 −4 if 1 ≤ ≤ 2 − 5
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Fig. 4.

γ( 2 −4) = 2 −4 2 −2

γ( 2 −3) = 2 −4

γ( ) = 2 −4 if 2 − 2≤ ≤ 2( − 3) + ( + 4)

γ( ) = −2

γ( ) = if 1 ≤ ≤ − 3

γ( 2 −1 2 ) = 2 −1 2 if 1 ≤ ≤ − 3

γ( 2( −3)+1 2( −3)+2) = ′′
0

γ( 2( −3)+2 2( −3)+3) = ′′
1

γ( 2( −3)+3 2( −3)+4) = ′
1

γ( 2( −3)+4 2( −3)+5) = ′
0

γ( +1) = +1 if 2( − 3) + 5≤ ≤ 2( − 3) + ( + 3)

γ( 2( −3)+( +4) 1) = 2 −2

This homomorphism is induced by a homeomorphism from−2 +4 to ′′ . Hence,
γ is an isomorphism, and this fact means that the set

C′′ =





2 −4 2 −4 2 −2

−2 2 −1 2

′
0

′′
0

′
1

′′
1

+1 2( −3)+( +4) 1

∣∣∣∣∣∣∣∣∣∣

1≤ ≤ 2 − 5

2 − 2≤ ≤ 2( − 3) + ( + 4)

1≤ ≤ − 3

2( − 3) + 5≤ ≤ 2( − 3) + ( + 3)





generatesπ0(Diff +( ′′ rel∂ ′′ )). Let Z2 × Z2 denote the group, whose first factor
is a permutation group of ′

0 and ′′
0 and the second factor is that of′1 and ′′

1 . We
denote byδ a natural homomorphism fromπ0(Diff +( ′′ ′

0∪ ′′
0

′
1∪ ′′

1 rel∂ ))
to Z2× Z2, and ǫ an inclusion ofπ0(Diff +( ′′ rel∂ ′′ )) into

π0(Diff +( ′′ ′
0 ∪ ′′

0
′
1 ∪ ′′

1 rel∂ ))
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Then, there is a short exact sequence,

0−→ π0( Diff +( ′′ rel∂ ′′ ))
ǫ−→ π0(Diff +( ′′ ′

0 ∪ ′′
0

′
1 ∪ ′′

1 rel∂ ))
δ−→ Z2× Z2 −→ 0

Let = 2 −2 2 −2 , ′ = 1 1̄. Then, by drawing some figures, we can check
that and ′ ∈ (M ) 0 and (resp. ′) reverse the orientation of 1 (resp. 0).
Hence, induces a homeomorphism on′′ which exchanges ′

0 with ′′
0 (resp. ′

1

with ′′
1 ). On the other hand, there is an isomorphism

π0(Diff +( ′′ ′
0 ∪ ′′

0
′
1 ∪ ′′

1 rel∂ ))

( ′
0 = ′′

0
′
1 = ′′

1 )
∼= π0(Diff +( 2 −2 2 −1 2 −2 rel∂ ))

which maps ′
0 = ′′

0 to 2 −2 2 −1, ′
1 = ′′

1 to 2 −2. Therefore, we can show that
(M ) 0 is generated by (C′′ −{ ′

0
′′
0

′
1

′′
1 })∪{ 2 −2 2 −1 2 −2

′}. For each
element ofC′′ − { 2 −2 2 −4 2 −4 2 −2

′
0

′′
0

′
1

′′
1 }, the associated curve of

is disjoint from those of −1, 2 −2, and 2 −2 2 −1. Hence, by braid relations,1 1̄ =
∈ (M ) 0. This fact shows that, for the above element , the relation oftype (Y2)

is satisfied in .
In Subsection 5.1, we showed that (M ) 0 is generated byE ∪ { −1}, so a pre-

sentation of some element as an element of (M ) 0 means a presentation of this el-
ements as a word ofE ∪ { −1}. Here, we need to present and′ as words of
these elements. Since 2 −2 ∈ E , is presented as an element of (M ) 0. We
shall present ′ as an element of (M ) 0.

2 −2 1( ) = 2 −2 −1 2 −2 2 −1 2 −2

braid

−1( )
braid

= 2 −2 −1 2 −2 2 −2 2 −1( )
braid

= 2 −2 −1 2 −2( )
braid

= 2 −2 −1¯
braid

( 2 −2) = 2 −2 −1( 2 −2)
braid

= 2 −2 2̄ −2( −1) = −1

2 −2 1( 2 −2) = 2 −2 −1 2 −2 2 −1 2 −2 −1( 2 −2)
braid

= 2 −2 −1 2 −2 2 −1 2 −2 2̄ −2( −1)

= 2 −2 −1 2 −2 2 −1( −1)
braid

= 2 −2 −1¯ −1( 2 −2 2 −1)

= 2 −2 ( 2 −2 2 −1)
braid

= 2 −2 2 −1

Here, we remark that these equations show1( 2 −2) ∈ (M ) 0. From these equa-
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tions, we can show,

2 −2 1 1̄¯ 2̄ −2 = 2 −2 1 2 −2 2 −2 1̄¯ 2̄ −2

= −1 2 −2 2 −1 2 −2 2 −1 −1

On the other hand,

−1 = (( 2 −3 2 −2

handle

)2
−1)2

= (( 2 −2 2 −1)2
−1)2

Hence, −1 2 −2 2 −1 2 −2 2 −1 −1 = ( 2̄ −1 2 −1)2 −1. From the above equations,
we can show ′ = 1 1̄ = ¯ 2̄ −1( 2̄ −2 2 −1)2 −1 2 −2 . This gives a presentation
of ′ as an element of (M ) 0. For , the relation of type (Y2) is

1( 2 −2 2 −2 ) 1̄ = 1 1̄ = ¯ 2̄ −2( 2̄ −2 2 −1)2
−1 2 −2

This relation is satisfied in . For ′, the relation of type (Y2) is,

1(¯ 2̄ −2( 2̄ −2 2 −1)2
−1 2 −2 ) 1̄ ∈ (M ) 0

We shall show that this equation is satisfied in . Previously,we have shown (1)2,
∈ (M ) 0. By the definition of ′, we can show,

1(¯ 2̄ −2( 2̄ −2 2 −1)2
−1 2 −2 ) 1̄ = 1( 1 1̄) 1̄ = 2

1
2̄
1 ∈ (M ) 0

For 2 −2 2 −1, 2 −4, we can show1 exchanges 2 −2 2 −1 and 2 −4,

1( 2 −2 2 −1) = −1 2 −2 2 −1 2 −1

braid

−1( 2 −2 2 −1)
braid

= −1 2 −2 2 −2 2 −1 2̄ −2 2 −1( −1)

= −1 2 −2( −1)
braid

= −1¯ −1( 2 −2) = 2 −2

1( 2 −2) = −1 2 −2 2 −1 2 −2 −1( 2 −2)
braid

= −1 2 −2 2 −1 2 −2 2̄ −2

braid

( −1)

= −1 2 −2 2 −1( −1)
braid

= −1¯ −1( 2 −2 2 −1) = 2 −2 2 −1

This fact shows1 2 −2 2 −1 1̄, 1 2 −1 1̄ ∈ (M ) 0.
For 2 −2 2 −4,

1( 2 −2 2 −4) = −1 2 −2 2 −1 2 −2

braid

−1( 2 −2 2 −4)
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= −1 2 −2 2 −2 2 −1

handle

−1( 2 −2 2 −4)

= −1 2 −2 2 −3 2 −2 −1( 2 −2 2 −4)

= 2 −4 2 −2 ( 2 −1) (by 2 −4 2 −2(4))

Since , 2 −1, 2 −2, 2 −4 ∈ (M ) 0, this equation shows1 2 −2 2 −4 1̄ ∈
(M ) 0.

For 2 −4 2 −2, we do the same way as above,

1( 2 −4 2 −2) = −1 2 −2 2 −1 2 −2

braid

−1( 2 −4 2 −2)

= −1 2 −2 2 −2 2 −1

handle

−1( 2 −4 2 −2)

= −1 2 −2 2 −3 2 −2 −1( 2 −4 2 −2)

= 2 −4 2 −2 ( 2 −3) (by 2 −4 2 −2(2))

Since , 2 −2, 2 −3, 2 −4 ∈ (M ) 0, this equation shows1 2 −4 2 −2 1̄ ∈
(M ) 0.

Here, we conclude that all the relations of type (Y2) are satisfied in .

5.3. Relations of type (Y3). We define 2 = 2 −2 2 −4 . For the notations
used to present a relation of type (Y3), it is possible to set1 = 1, 2 = 2 and 3 = 2.
Then, 0 = 1 2 1 2 1. By braid relations, we can show1 2 1 = 2 1 2 as follows.

1 2( −1) = −1 2 −2 2 −1 2 −2 −1 2 −2 2 −4 ( −1)
braid

= −1 2 −2 2 −1 2 −2 −1 2 −2( −1)
braid

= −1 2 −2 2 −1 2 −2 −1 ¯ −1

braid

( 2 −2)

= −1 2 −2 2 −1 2 −2 −1¯ −1 ( 2 −2)

= −1 2 −2 2 −1 2 −2 ( 2 −2)
braid

= −1 2 −2 2 −1 2 −2 2̄ −2( ) = −1 2 −2 2 −1( )
braid

=

1 2( 2 −2 2 −1) = −1 2 −2 2 −1 2 −2 −1 2 −2 2 −4 ( 2 −2 2 −1)
braid

= −1 2 −2 2 −1 2 −2 −1( 2 −2 2 −1)
braid

= −1 2 −2 2 −1 2 −2 2̄ −2 2 −1

braid

( −1)

= −1 2 −2 2 −1 2̄ −2 2 −1 2 −2( −1)
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= −1 2 −2( −1)
braid

= −1¯ −1( 2 −2) = 2 −2

1 2( 2 −2) = −1 2 −2 2 −1 2 −2 −1 2 −2 2 −4 ( 2 −2)
braid

= −1 2 −2 2 −1 2 −2 −1 2 −2 2 −4 2̄ −2

braid

( )

= −1 2 −2 2 −1 2 −2 −1 2 −2 2̄ −2 2 −4( )

= −1 2 −2 2 −1 2 −2 −1 2 −4( )
braid

= −1 2 −2 2 −1 2 −2 −1 (̄ 2 −4)

= −1 2 −2 2 −1 2 −2 −1( 2 −4)
braid

= 2 −4

Therefore, 1 2 1 2̄ 1̄ = 1 2( −1 2 −2 2 −1 2 −2 −1) 2̄ 1̄ = 2 −2 2 −4 = 2, that is

1 2 1 = 2 1 2. Hence, we get 0 = 1 2 1 2 1 = 2
1 2

2
1 . As we have shown in Sub-

section 5.2, 2
1 ∈ (M ) 0, and, since , 2 −2, 2 −4 ∈ (M ) 0, we can show

2 ∈ (M ) 0. By using these facts, we conclude that 0 ∈ (M ) 0 is satisfied
in .
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