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0. Introduction

Let be a normal,Q-Gorenstein projective variety, and let :→ be a res-
olution of singularities. The discrepancy divisor = − ∗ =

∑
, where

the are the irreducible exceptional divisors for , plays a key role in the geome-
try of . For example, the singularities allowed on a minimal (resp. on a canonical)
model of are defined in terms of . Also, effective results for global generation of
linear systems on singular threefolds (cf. [2]) depend on an upper bound for certain
coefficients of .

There are many difficult conjectures, and several important results (at least in di-
mension≤ 3), regarding the discrepancy coefficients of (i.e., the coefficients ). In
this paper we study a special case of the following problem:

Shokurov’s conjecture ([10], [6]). If dim( ) = , and ∈ is a singular point,
then md ( )≤ − 2.

The minimal discrepancyof at , md ( ), is defined as

md ( ) = inf{ord ( ) | ( ) = { }; : → resolution of }

The following theorem gives an easy way to bound md ( ) for a large class of
hypersurface singularities.

Theorem 1. Assume that the germ( ) is analytically equivalent to a hyper-
surface singularity( ′ 0)⊂ (A +1

C
0), given by

′ = {( 1 . . . +1) | ( 1 . . . +1) = 0}; (0 . . . 0) = 0

For an -tuple ( 1 . . . ) of positive integers, write ( 1
1 . . . ) =

φ( 1 . . . ) + +1ψ( 1 . . . ) with φ( 1 . . . ) 6= 0. Note thatφ is always
a polynomial of degree at most , even if is a power series. Assume thatφ has at
least one irreducible factor with exponent1 in its factorization.

Thenmd ( )≤ , where = ( 1 + · · · + )− .
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This criterion applies, for example, to hypersurface singularities of multiplicity 2
and rank at least 2 (if the singularity ( 0) is defined by = 0, then we define its
rank as the rank of the quadratic part of at 0). It applies also to terminal (and,
more generally,cDV) singularities in dimension 3. Shokurov’s conjecture for terminal
threefolds was proved by D. Markushevich [7], using the language of toric geometry,
Newton diagrams, admissible weights, etc., and using the fact that the singularities are
isolated. The proof we give in this paper (§4) is more elementary, and works for non-
isolated singularities as well. For this reason, we can prove Shokurov’s conjecture for
log-terminal threefolds without using Mori’s very difficult results on existence of flips.
(The log-terminal case is not covered in [7].)

On the other hand, Shokurov’s conjecture is true for non-terminal threefold singu-
larities (and therefore it is true in full generality in dimension 3, by combining this
fact with Markushevich’s result). But the proof, cf. 2.5 below, which I learned from
S. Ishii, uses the existence of a terminal modification — and therefore the existence
of flips. From this point of view, the proof is not as satisfying as one might wish;
it would certainly be nice to have a complete proof of Shokurov’s conjecture in di-
mension 3 without using the existence of flips. (Several experts have suggested to me
that, even in higher dimension, it should be possible to reduce the general case of
Shokurov’s conjecture to the terminal case, but I don’t know how this can be done.)

The paper is organized as follows. In§1 I discuss discrepancy coefficients in gen-
eral. Everything in this section is well-known to the experts; I wrote it mainly to fix
the notation and terminology. I discuss in some detail the invariance of certain def-
initions under analytic equivalence of germs; I couldn’t find a satisfactory reference
in the literature. (N. Mohan Kumar pointed out to me that the matter is not com-
pletely trivial.) In §2 I discuss minimal discrepancies and prove several reductions of
Shokurov’s conjecture. In particular, Theorem 7 in 2.5 shows that the conjecture is true
for non-terminal threefold singularities. The proof may well be known among the ex-
perts, but I couldn’t find it in the literature. I am very grateful to S. Ishii for kindly al-
lowing me to include it here. In§3 I prove Theorem 1, and in§4 I carry out the com-
putations forcDV threefold singularities. Note that the proof of Theorem 1 is easy; the
difficulty rests in applying it tocDV singularities.

I would like to express my gratitude to L. Ein, P. Ionescu, S. Ishii, R. Lazarsfeld,
and N. Mohan Kumar; our many conversations were very useful.

1. Generalities about discrepancy coefficients

In this section I recall several definitions and results regarding discrepancy coeffi-
cients, cf. [9], [1], [5].

1.1. Let : → be a birational morphism of -dimensional normal projective
varieties overC. A prime Weil divisor ⊂ is -exceptionalif dim ( ) ≤ − 2.
The closed subset ( )⊂ is called thecenter of on . More generally, aQ-
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Weil divisor =
∑

is -exceptional if all the irreducible components are
-exceptional. Let Exc( ) ={ ∈ | is not an isomorphism at}; then is -

exceptional if and only if Supp( )⊂ Exc( ).

1.2. Choose a canonical divisor on . Assume that isQ-Gorenstein, with
global index ; i.e., is Cartier for some integer≥ 1, and is the smallest such
integer. Then we can define aQ-divisor ∗ on by ∗ = (1/ ) ∗( ). On
the other hand, there is a unique canonical divisor on such that theQ-divisor

= − ∗ is -exceptional. ( is obtained as follows: letω be a rational dif-
ferential -form on reg, the smooth locus of ; then∗ω extends uniquely to a ratio-
nal form on , which we still denote by ∗ω. If ω is chosen such that = div (ω),
then = div ( ∗ω).) The divisor = − ∗ is called thediscrepancy divisor
of . Note that varies in a linear equivalence class on , and correspondingly
varies in its own linear equivalence class on ; however, is uniquely determined by

.

1.3. Write =
∑

; the rational numbers are calleddiscrepancy coeffi-
cients. Now consider another birational morphism′ : ′ → (with ′ a normal
projective variety of dimension ). ′−1 ◦ is a birational map : · · · → ′. Let
⊂ be an -exceptional divisor which intersects the regular locus Reg( ) of ,

and assume that is an isomorphism at the generic point of ; i.e.,( ∩ Reg( ))
is a divisor ′ on ′. Then ′ is an ′-exceptional divisor; in fact, and ′ have
the same center on , ( ) = ′( ′). Moreover, if ′ is the coefficient of ′ in

′ = ′ − ′∗ , then ′ = . In other words, for every exceptional divisor , the
discrepancy coefficient and the center on depend only on the discrete valuation of
the rational function fieldC( ) determined by .

1.4. Let be any divisorial discrete valuation ofC( ); that is, is associated
to some divisor 0 ⊂ 0 for some birational morphism 0 : 0 → . Then, by Hi-
ronaka’s embedded resolution of singularities, if we start withany birational morphism

: → as before, we can find a suitable0 with 0 smooth, Exc( 0) a divisor
with normal crossings, and 0 obtained from by a finite sequence of blowing-ups
along smooth centers.0( 0) ⊂ depends only on ; this closed subset is called the
center of on . is -exceptionalif this center has dimension at most− 2, and
in this case has a well-defined discrepancy coefficient with respect to .

1.5. Let : → be as before, and let ⊂ be -exceptional. The com-
putation of the discrepancy coefficient is local on ; i.e., we may replace with
an open neighborhood of the generic point of ( ), and with an open neighbor-
hood of the generic point of . From this point of view, the projectivity requirement
is irrelevant. In particular, we may consider discrepancy coefficients forgerms ( )
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of algebraic varieties; one such coefficient is associated to each -exceptional discrete
valuation ofC( ) whose center on contains .

Moreover, the requirement that be normal is also irrelevant in some situations;
for example, if is a Cartier divisor on (or at least on some open subset⊂
with ∩ 6= ∅), then the generic point of has anonsingularopen neighborhood
in , and we may replace with this neighborhood if we are interested only in the
discrepancy coefficient of .

1.6. Definition. A projective variety as before (i.e. normal,Q-Gorenstein, -
dimensional) hasonly terminal (canonical, log-terminal, log-canonical) singularities if
all discrepancy coefficients of are> 0 (resp.≥ 0, > −1, ≥ −1). Similarly, is
terminal (canonical, etc.) at a point , or the germ ( ) is terminal (etc.), if all dis-
crepancy coefficients of divisorial discrete valuations with center containing are> 0
(resp.≥ 0, etc.)

Proposition 2 ([1, Proposition 6.5]). Let : → be a proper birational mor-
phism, with smooth andExc( ) a divisor with only normal crossings. Let =
− ∗ =

∑
, and letα = min{ }.

If −1≤ α ≤ 1, then all the discrepancy coefficients of are≥ α (even for those
divisorial discrete valuations ofC( ) which are -exceptional but do not correspond
to divisors on ). And if α ≥ 1, then all the discrepancy coefficients of are≥ 1.

In particular, to check whether (or a germ ( )) is terminal (etc.), it suffices
to examine the discrepancy coefficients of a single log-resolution as above.

We reproduce the proof here (cf. [1]) for the reader’s convenience, since the same
computation will be used again in 1.7 and in Definition 2.1.

Proof. As explained in 1.4, it suffices to consider a single blowing-up of along
a smooth center ⊂ . Let : ′ → be this blowing-up, ′ = −1 (proper
transform), and ′ = the exceptional divisor of . Let = codim ( )≥ 2. Since
Exc( ) = ∪ has only normal crossings, is contained in at most of the divisors

; say ⊂ 1 . . . , ≤ . Let ′ = ◦ : ′ → , and ′ = ′ − ′∗ ; then

′ = ′ − ∗ ∗ = ′ − ∗( − )

= ′ − ∗ + ∗
(∑ )

= ( − 1) ′ +
∑

′ +


∑

=1


 ′;

the discrepancy coefficient of ′ is therefore ′ = ( − 1) + (
∑

1 ). If α ≤ 0, we have∑
1 ≥ α ≥ α (because ≤ and α ≤ 0), and therefore ′ ≥ ( − 1) + α ≥ α

(because > 1 andα ≥ −1). If 0 < α ≤ 1, then we get ′ ≥ − 1 ≥ 1 ≥ α, and if
α ≥ 1 we get at least ′ ≥ 1.
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REMARKS. 1. The conditionα ≤ 1 can always be achieved for a suitable ,
as follows: let : → be any log-resolution; choose a smooth subvariety⊂
of codimension 2, such that 6⊆ Exc( ); and replace with ◦ , where :˜ →
is the blowing-up of along . The computation used in the proof of the proposition
shows that the exceptional divisor of has discrepancy coefficient 1 relative to .
2. If α < −1, then the infimum of all discrepancy coefficients relative to is−∞,
cf. [1, Claim 6.3]. We prove a more precise statement in§2, Lemma 4.

In general, the infimum of all discrepancy coefficients is called the (total) discrep-
ancy of , notation: discrep( ). Thus discrep( ) =−∞ if is not log-canonical; if

is log-canonical, then−1 ≤ discrep( )≤ 1, and discrep( ) can be calculated by
examining a single resolution of singularities :→ as in the proposition.

We may also define the total discrepancy at a given point : discrep( ) is the
infimum of all discrepancy coefficients of exceptional divisor whose center on con-
tains .
3. If α ≥ 0, the proof shows that every -exceptional discrete valuation ofC( ),
other than those associated to the exceptional divisors of , has discrepancy coefficient
≥ 1.

1.7. Let ( ) be an algebraic germ, as before, and let ( ) be the corre-
sponding analytic germ; note that normal and irreducible=⇒ normal and
irreducible. Also, Q-Gorenstein =⇒ Q-Gorenstein. The theory of discrepancy
divisors, discrepancy coefficients, terminal singularities, etc., can be developed in par-
allel in the category of germs of Moishezon analytic spaces; the results discussed so
far are identical in the two categories.

An interesting question arises when we try to compare the discrepancy coefficients
for ( ) and ( ). For example, is it true that ( ) is terminal if and only if
( ) is terminal? (If this is true, then “terminal” depends only on the analytic
equivalence class of an algebraic germ.) In general, the field of meromorphic func-
tions of ,M( ), has many divisorial discrete valuations which vanish identically
on the rational function field,C( ); therefore the question is non-trivial.

The answer is given by the following observation:

Proposition 3. Let : → ( ) be a proper birational morphism with
smooth andExc( ) a divisor with normal crossings. Let{ } ∈ be the -exceptional
divisors on , and let =

∑
.

Then the set ofall discrepancy coefficients of( ) is completely determined by
the following combinatorial data:
(1) The finite set ;
(2) The rational numbers (one for each ∈ ); and
(3) For each subset ⊂ , the logical value of

⋂
∈ 6= ∅ (TRUE or FALSE).
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This observation (and its proof below) is valid in the algebraic as well as in the
analytic case. In particular, the set of all “algebraic” and the set of all “analytic” dis-
crepancy coefficients of ( ) coincide: we may start with the same algebraic resolu-
tion : → ( ) in the analytic category, as : → ( ); then the initial
combinatorial data for is the same as for .

Proof. Let be a -exceptional discrete valuation ofC( ) with center con-
taining . By [3, Main Theorem II], there exists a finite succession of blowing-ups

: +1 → along ⊂ , where 0≤ < and 0 = , with the following
properties:
(i) corresponds to a divisor on ;
(ii) is smooth and irreducible; and
(iii) If 0 = Exc( ), and +1 = −1( )red∪ −1( )red, 0≤ < , then has only
normal crossings with .
(Recall what this means, from [3, Definition 2]: at each point∈ there is a regular
system of parameters ofO , say ( 1 . . . ), such that each component of which
passes through has ideal inO generated by one of the , and the ideal of in
O is generated by some of the .)

Let 1 : 1→ be the blowing-up along a smooth irreducible subvariety⊂ ,
of codimension ≥ 2, such that Exc( ) =∪ ∈ has only normal crossings with .
Say ⊂ if and only if ∈ { 1 . . . }; ≤ .

Considering = ◦ 1 : 1 → , we get a new element′ added to , 1 =
∪{ ′}, where ′ corresponds to the exceptional divisor′ of 1. The corresponding

number is ′ = ( −1) + ( 1 + · · ·+ ). Since the have only normal crossings with
, the “intersection data” for 1 is completely determined by the data for , plus the

following combinatorial data for :
(4) For each ⊂ , the non-negative integer = dim(∩ [

⋂
∈ ]).

(Note that this collection of data contains, in particular, the codimension of , in
the form ∅ = − , and also the information about which ’s contain , in the form
⊂ ⇔ { } = − .)

Finally, which such functions{ } ⊂ are possible is completely determined by
the “intersection data” for . Since every discrepancy coefficient of is obtained after
a finite number of such elementary operations on the combinatorial data (correspond-
ing to a succession of blowing-ups along smooth centers), the result follows by induc-
tion.

2. Minimal discrepancies and Shokurov’s conjecture

2.1. Definition. Let ( ) be an algebraic or analytic germ (as always, we as-
sume it is normal,Q-Gorenstein, -dimensional). Theminimal discrepancy of at ,
md ( ), is the infimum of all discrepancy coefficients of divisorial discrete valuations
of C( ), resp.M( ), whose center on is .
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Lemma 4. If ( ) is not log-canonical at , thenmd ( ) =−∞.

Proof. Let : → ( ) be a resolution of singularities with Exc( ) a divisor
with normal crossings. We may also assume that−1( ) is a union of ( -exceptional)
divisors. Let ⊂ be an -exceptional divisor with ∈ ( ) and discrepancy
coefficient < −1. Since −1( ) is a union of -exceptional divisors, and meets

−1( ), there is at least one exceptional divisor with ( ) ={ } and ∩ 6=
∅. We may assume that and are distinct (if ⊂ −1( ) and it is the only
component of the fiber, we may blow up at a point of ; then take the exceptional
divisor of this blowing-up in place of , and the proper transform of in place of

). Set = ∩ ; then is a smooth subvariety of codimension 2 in , and is
not contained in any other exceptional divisor. Let be the discrepancy coefficient of

.
Let : ˜ → be the blowing-up of along . Let ′ be its exceptional divi-

sor, with discrepancy coefficient′ relative to . Then ′ = 1 + + (see the proof
of Proposition 2 in§1). Moreover, ′ has center{ } on , and intersects the proper
transform ′ of on ˜ (which has discrepancy coefficient′ = relative to ).

Note that < −1 =⇒ ′ < . In fact, since all the discrepancy coefficients
of ( ) are integer multiples of 1/ (if is the index of at ), we see that′ ≤
− 1/ . Therefore the proof may be completed by induction.

2.2. Recall the statement of Shokurov’s conjecture from the Introduction. The
lemma we have just proved shows that the conjecture is true for non-log-canonical sin-
gularities.

Shokurov’s conjecture is vacuously true for curves (there are no singular normal
points in dimension 1). It is also true in dimension 2: if ( ) is a normal singularity
and : → ( ) is the minimal desingularization, thenall the coefficients of =
− ∗ are≤ 0.
In dimension ≥ 3, let ( ) be anisolated singularity. Then there exists a

resolution of singularities : → ( ) with Exc( ) a divisor with normal cross-
ings and such that Exc( ) =−1( ); see [3, Main Theorem I in the strong form, p.
132]. If α = discrep( )< 1 (see 1.6, Remark 2), then Proposition 2 shows that
some divisor in Exc( ) has discrepancy coefficient equal toα. Then md ( ) =α,
for ( ) = { }, and in particular Shokurov’s conjecture is true in this case. In
other words, forisolated singularities (in any dimension) there only remains to prove
Shokurov’s conjecture when discrep( ) = 1. (For singularities with index one, the
last condition is equivalent to “terminal”.)

2.3. The following lemma shows that the conjecture can be reduced to the case
of singularities of index one:
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Lemma 5. Let ϕ : ′ → be a finite morphism of normal,Q-Gorenstein
varieties. Assume thatϕ is étale in codimension one. Let′ be a point of ′, and

= ϕ( ′).
Thenmd ( )≤ md ′( ′).

In particular, if ( ) has index , then there exists aϕ : ′ → as in the
lemma, with ′ having index one (the “index-one cover”, cf. [1, Definition 6.8]). Thus
it would suffice to prove Shokurov’s conjecture for singularities of index one.

Proof (cf. [2, proof of Lemma 2.2]). Let ′ : ′ → ′ be a resolution of singu-
larities of ′ such that md′( ′) = ord ′ ( ′) ≥ −1, where ′ = ′ − ′∗

′ and ′

is a divisor on ′ with ′( ′) = { ′}. (If md ′( ′) = −∞, let α < −1 be a rational
number, and choose ′ ′ such that ′( ′) = { ′} and ord ′ ( ′) < α.)

Let : → be a resolution of singularities of . By blowing up , then′,
if necessary, we may assume thatψ = −1 ◦ ϕ ◦ ′ : ′ → is a morphism and that
ψ( ′) is a divisor ⊂ . Let = − ∗ and = ord ( ).

Let be the ramification index ofψ along ′. Then:

′ = ψ∗ + ( − 1) ′ + other terms

= ψ∗( ∗ + + other terms ) + (− 1) ′ + other terms

= ψ∗ ∗ + ( + − 1) ′ + other terms

= ′∗ϕ∗ + ( + − 1) ′ + other terms

= ′∗
′ + ( + − 1) ′ + other terms

(note thatϕ∗ = ′ , becauseϕ is étale in codimension one). Therefore ord′ ( ′) =
+ − 1.

If ord ′ ( ′) ≥ −1, we get ord ( ) = ≤ ord ′( ′) = md ′ ( ′); indeed, ≥ 1,
and therefore ≤ + ( − 1)(1 + ord ′ ( ′)) = ord ′ ( ′).

If ord ′ ( ′) < α < −1, then ord ( ) = ≤ (1/ ) ord ′ ( ′) < (1/ )α, with
1≤ ≤ deg(ϕ) andα an arbitrarily negative rational number.

Since ( ) ={ }, the lemma is proved.

2.4. Now we show that md ( ) is an analytic invariant. In fact, we show that
the set of all discrepancy coefficients for divisors with center{ } on is the same in
the algebraic and in the analytic category.

Proposition 6. Let : → ( ) be a resolution of singularities, as inPropo-
sition 3. Then the set of all discrepancy coefficients for divisors with center{ } on
is completely determined by the combinatorial data(1), (2), (3) in Proposition 3, plus:
(3+) For each ∈ , the logical value of “ ( ) = { }” (TRUE or FALSE).
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Proof. Let 1 : 1→ be the blowing-up of a smooth subvariety⊂ , as in
the proof of Proposition 3. Put = ◦ 1, and let ′ be the exceptional divisor of1.
Then [ ( ′) = { }] ⇔ [ ( ) = { } for at least one of the ’s containing ]. Indeed,
if ⊂ and ( ) ={ }, then ( ′) = ( ) ⊂ { }, so that in fact ( ′) = { }.
Conversely, ( ′) = { } =⇒ ⊂ −1( ). As is irreducible and −1( ) is a union
of divisors with ( ) ={ }, must be contained in at least one such .

Therefore the “extended” combinatorial data for (including the information in
(3+)) can be obtained from the “extended” combinatorial data for . The conclusion
follows by induction.

2.5. Finally, we show that Shokurov’s conjecture is true for non-terminal three-
fold singularities.

Theorem 7. Let ( ) be a non-terminal three-dimensional singularity(normal
and Q-Gorenstein as always). Then ( ) ≤ 1.

Proof (S. Ishii). By [8, Theorem (0.3.12), (i)], there exists a projective birational
morphism : → such that has only (Q-factorial) terminal singularities and
is -semiample. ( , or , is called aQ-factorial terminal modificationof .)

Write − ∗ =
∑

; then ≤ 0, ∀ , since is -nef. Since ( )
is not terminal, is not an isomorphism above . And since is normal and is
birational, this means that−1( ) contains at least one integral curve .

Let : ′ → be the blowing-up of along , with exceptional divisor , and
put = ◦ : ′ → . Note that ′ may be non-normal; but even then, since terminal
threefold singularities are isolated and is integral, both and are smooth at the
generic point of . Therefore ′ and are smooth at the generic point of , and the
discrepancy coefficient of with respect to is 1.

Then ′ − ∗ = +
∑

∗ ; since ≤ 0 for all and the coefficient
of in each ∗ is non-negative, we see that the discrepancy coefficient of with
respect to is≤ 1. As ( ) = ( ) ={ }, we get md ( )≤ 1, as stated.

REMARK. Putting together Theorem 7 and the main theorem in [7] (or our com-
putations in§4), we see that Shokurov’s conjecture is true in dimension 3.

REMARK. In several conference and seminar talks I gave on the results contained
in this paper, I was repeatedly asked to comment on the following passage from the
Utah seminar [6, Remark 17.1.3] (slightly modified and simplified):

. . . Assume that [Shokurov’s] conjecture [inany dimension] fails for ∈ . Then
is terminal. Thus if a list of terminal singularities is known, the conjecture can

be verified. [. . .] For dim = 3 it was checked by Markushevich. [Then an in-
correct bibliographical reference is given. The correct one is[7], which was pub-
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lished several yearsafter the Utah seminar.]
These same claims have been circulated among the experts for some time. For ex-

ample, J. Kolĺar repeated them at the Santa Cruz Summer Institute in 1995.
Here is my take on these claims. First, if the conjecture fails for∈ , I don’t

see why must be terminal – unless the existence of a terminal modification of
is known, as is the case in dimension 3. (And even then, if the conjecture is false
for terminal singularities, then it may be false for non-terminal singularities as well;
in that case the existence of a terminal modification wouldn’t solve the problem.) I
believe that any questions related to this point should be addressed to the author of
that passage, not to me.

And second, even if a list of terminal singularities were known, I don’t know how
Shokurov’s conjecture could be verified – even, say, for hypersurface singularities in
dimension at least 4, and even if explicit equations were known. I am not aware of
any general method for calculating the minimal discrepancy even when the equation is
given. The computations in dimension 3, both in this paper and in [7], are ad hoc – in
a sense, we just got lucky here. Again, I believe that any further questions should be
addressed to the author of the passage quoted above, who certainly knows much more
about these things than me.

3. Proof of Theorem 1

3.1. Recall the statement of Theorem 1 from the Introduction. By 2.4, we may
assume that is the hypersurface = 0 inA +1, with = 0. For convenience, denote
A +1 by ; thus ⊂ . Let = A +1; write the coordinates in as (1 . . . +1),
and the coordinates in as (1 . . . ).

Let : → be the birational morphism defined by+1 = ; = =
1 . . . . Let ⊂ be the hyperplane ( = 0); then Exc( ) = . (Of course, is
just one affine patch in a weighted blowing-up of at the origin, but this observation
plays no role in the proof.)

3.2. Let ¯ ⊂ be the proper transform of by ,̄ : ¯ → the restriction
of to ¯, and ¯ = | ¯ (as a Cartier divisor). By hypothesis,∗ = ¯ + , and ¯

has equationφ( 1 . . . ) = 0 in ∼= A . Sinceφ has at least one irreducible fac-
tor with exponent 1, ¯ has at least one irreducible component with multiplicity one:
¯= 1 + · · · . As explained in 1.5, sincē is smooth in a neighborhood of the generic
point of 1, and 1 is the exceptional divisor which will display the desired discrep-
ancy coefficient, we need not worry about the normality of¯.

3.3. Take ω = 1 ∧ · · · ∧ +1 on ; then ∗ω = 1+···+
1 ∧ · · · ∧ ∧

on , so that − ∗ = ( 1 + · · · + ) .
The adjunction formula gives = +| and ¯ = + ¯| ¯. Therefore we
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have:

¯ − ∗̄ = ( + ¯)| ¯ − ∗̄( + | )

= ( − ∗ + ¯− ∗ )| ¯
= (( 1 + · · · + ) − )| ¯
= ¯= 1 + · · ·

(Recall that = (1 + · · · + )− .)
Thus the discrepancy coefficient of1 ⊂ ¯ with respect to is equal to . Since

(̄ 1) = { }, Theorem 1 is proved.

3.4. Example. Let ( ) be a singular germ of multiplicity 2; that is, is a
hypersurface inA +1 given by an equation = 0; = 0; and all its first-order
partial derivatives at 0 are equal to zero, and some second-order partial derivative of

at 0 is non-zero.
If ( 0) has rank at least 2, then md ( )≤ − 2 (as predicted by Shokurov’s

conjecture). Indeed, consider the usual blowing-up of at 0; that is, take1 = · · · =
= 1. The hypothesis means that = 2, and — after a linear change of coordinates,

if necessary —φ( 1 . . . ) = 2
1 + · · ·+ 2, where ≥ 2 is the rank of the singularity.

Thus = ( 1 + · · · + )− = − 2 in this case, andφ is irreducible (if ≥ 3), resp.
a product of two distinct irreducible factors, if = 2.

4. Minimal discrepancies of log-terminal threefold singularities

Let ( ) be a three-dimensional log-terminal singularity. In this section we will
show that md ( )≤ 1, without using the existence of a terminal modification.

4.1. As shown in 2.3, we may assume that ( ) has index one. Then ( ) is
canonical (the index-one cover of a log-terminal singularity is again log-terminal, by
Proposition 2, and therefore canonical).

In this case, M. Reid [9, Theorem 2.2] proved that either ( ) is acDV point
(see below), or there exists a proper birational morphism :′ → with ∗ =

′ and −1( ) containing at least one prime divisor of′. Of course, in the latter
case we have md ( ) = 0. There only remains to consider the case when ( ) is a
compound Du Val (cDV) point; that is, ( ) is analytically equivalent to a hypersur-
face singularity at the origin 0∈ A4, with equation = 0,

( 1 2 3 ) = ( 1 2 3) + ( 1 2 3 )

where ( 1 2 3) = 0 defines a Du Val singularity (rational double point) of a surface
at 0∈ A3.

To simplify notation, we writey for 1 2 3 and u for 1 2 3.
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By 2.4, we may assume that ( )is the hypersurface ( = 0)⊂ A4, with = 0.
By Theorem 1, it suffices to find1 2 3≥ 1 such that

( 1
1

2
2

3
3 ) = φ(u) + +1ψ(u )

with φ(u) 6= 0, ( 1 + 2 + 3)− = 1, andφ having at least one irreducible factor with
exponent one in its prime decomposition.

4.2. We will do a case-by-case analysis, according to the type of singularity;
( 0) is of type , , or , if the surface singularity (y) = 0 ⊂ A3 is of
type , , or .

In each case, (y) is completely known. (y ), on the other hand, is not. Of
course, we have (0 0 0 0) = 0, or else ( 0) would be a smooth point. We will
not make any other assumptions about .

Write = 1 + 2 + · · · , where is a homogeneous form of degree , and ( ) =
+ +1 + · · · ( ≥ 1).

A note on terminology: we distinguish betweenform andpolynomial; for instance,
a quadratic polynomial is the sum of a quadratic form, a linear form, and a constant
term. We say that a polynomial (or a form)containsa certain monomial if the coef-
ficient of the monomial in that polynomial is non-zero. We say that a monomialcon-
tains 1 if that monomial is divisible by 1.

4.3. Case cAn: f (y) = y2
1 + y2

2 + yn+1
3 (n ≥ 1).

Then ( 0) is a singularity of multiplicity 2 and rank at least 2. This case is there-
fore covered by Example 3.4.

4.4. Case cDn: f (y) = y2
1 + y2

2y3 + yn−1
3 (n ≥ 4).

If 1(y ) 6= 0, then the quadratic part of = + is2
1 + 1(y ). If this

quadratic part has rank at least 2, then the conclusion follows from Example 3.4. If it
has rank 1, i.e. if 2

1 + 1(y ) is the square of a linear form, then a linear change of
variable, ′

1 = 1 + α 2 + β 3 + γ , transforms the equation = 0 into a similar one
with 1(y ) = 0.

So we need to consider only the case1 = 0. Note that a similar argument applies
to singularities of type .

Assume that 1 = 0. Then put 1 = 2, 2 = 3 = 1; that is, put 1 = 2
1 2 =

2 3 = 3. We have:

( 2
1 2 3 ) = 3φ(u) + 4ψ(u )

whereφ(u) = 2
2 3 + δ 4

3
3 + [terms of degree≤ 2 in the ]; δ 4 = 1 if = 4, oth-

erwise δ 4 = 0. (The terms of lower degree come from2( 2
1 2 3 ), with 2

— the quadratic component of (y ). Note that notall the terms in 2 contribute to
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φ(u): as 1 = 2
1, the monomials in 2(y ) which contain 1 give rise to monomials

containing to the fourth or higher power.)
The proof in this case is complete, for (1 + 2 + 3)− = (2 + 1 + 1)− 3 = 1, and

φ has at least one irreducible factor with exponent one (otherwiseφ would have to be
the cube of a linear polynomial inu; that linear polynomial would have to contain2,
becauseφ contains 2

2 3, and thenφ, being the cube of that linear polynomial, would
contain 3

2, which is not the case).

4.5. Case cE6: f (y) = y2
1 + y3

2 + y4
3.

As in 4.4, we may assume that the linear part1(y ) of (y ) is equal to zero.
In 2 (the quadratic part of ), separate the monomials which contain1 from

those that don’t: 2(y ) = 1 (y ) + ( 2 3 ), where is a linear form and
is a quadratic form.

Put 1 = 2
1 2 = 2 3 = 3; then

( 2
1 2 3 ) = 3φ(u) + 4ψ(u )

with φ(u) = 3
2 + ( 2 3 1).

If φ is not the cube of a linear polynomial, then we complete the proof just as
in 4.4. However, in this case it might be thatφ is a perfect cube. If this is so, then

3
2 + ( 2 3 ) is the cube of a linear form in2 3 . A linear change of variable,
′
2 = 2 +α 3 +β , reduces the proof to the case = 0. This argument is valid also in

the cases 7 and 8, discussed below.
There only remains to consider the case2(y ) = 1 (y ), where is a linear

form (possibly zero). In this case put1 = 2 = 2 3 = 1, i.e. 1 = 2
1 2 = 2

2 3 =

3. Then:

(y ) = 2
1 + 3

2 + 4
3 + [ 1 (y ) + 3( )] and

( 2
1

2
2 3 ) = 4φ(u) + 5ψ(u )

whereφ(u) = 2
1 + 4

3 + [terms of degree≤ 3 in the ], and the expression in brackets
does not contain 2

1 (so that 2
1 doesn’t cancel out fromφ).

Note that deg(φ) = 4, andφ cannot be the square of a quadratic polynomial in the
(if it were, thenφ would contain the mixed product1 2

3, because it contains2
1

and 4
3 but no 4

1; the monomial 1
2
3 could only arise from a monomial (1 2

3 ) of
(y ), ≥ 0; but ( 2

1)( 3)2 = 5+
1

2
3, so 1

2
3 cannot be a monomial ofφ).

Thereforeφ has an irreducible factor with exponent one, and the conclusion follows
— note that (1 + 2 + 3)− = (2 + 2 + 1)− 4 = 1.
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4.6. Case cE7: f (y) = y2
1 + y3

2 + y2y3
3.

We may again assume that1 = 0, as in 4.4, and that2 = 1 (y ) with a
linear form (possibly zero), as in 4.5.

Write (y ) = 1( 1 2) + 2( 3 ), and 3(y ) = 1(y ) + 2( 3 ), where 1

and 2 are cubic forms such that every monomial of1 contains 1 or 2.
Put 1 = 2 = 2 3 = 1; then

(y ) = 2
1 + 3

2 + 2
3
3 + [ 1 1( 1 2) + 1 2( 3 )

+ 1(y ) + 2( 3 ) + 4( )] and

( 2
1

2
2 3 ) = 4φ(u) + 5ψ(u )

whereφ(u) = 2
1 + 1 2( 3 1) + 2( 3 1).

Note that ( 1 + 2 + 3)− = (2 + 2 + 1)− 4 = 1.
If φ has degree 3 (i.e. if 2( 3 ) contains 3

3), then φ has an irreducible factor
with exponent one, becauseφ cannot be a perfect cube (it contains21 but no 3

1); in
this case the proof is complete.

Otherwiseφ has degree 2 (for it contains2
1). Then eitherφ has an irreducible

factor with exponent one (and then the proof is complete), or elseφ is the square of
a linear polynomial. In the latter case,21 + 1 2( 3 ) + 2( 3 ) is a perfect square.
The (non-linear) change of variable′1 = 1 + (1/2) 2( 3 ) transforms the equation

= 0 into a similar one with 2 = 2 = 0. Therefore we may assume that has the
form:

(y ) = 2
1 + 3

2 + 2
3
3 + [ 1 1( 1 2) + 1(y ) + 4( )]

where 1 is a linear form, and 1 is a cubic form such that every monomial of1
contains 1 or 2. (The same argument carries over unchanged to the last case,8.)

Now put 1 = 3 2 = 2 3 = 1; that is, 1 = 3
1 2 = 2

2 3 = 3. We have:

( 3
1

2
2 3 ) = 5φ(u) + 6ψ(u )

whereφ(u) = 2
3
3 + 2 ( 3)+ ( 3); 2 ( 3) corresponds to the monomials of1(y )

of the form 2 3
2− = 0 1 2 (all other monomials of 1 produce at least a sixth

power of ; recall that all monomials of the cubic form1 contain 1 or 2), and
( 3) corresponds to the monomials of4 of the form 3

4− = 0 . . . 4. Note that
φ has degree exactly one as a polynomial in2, and thereforeφ cannot be the square
of another polynomial in the . Sinceφ has (total) degree 4, it must have an irre-
ducible factor with exponent one. As (1 + 2 + 3)− = (3 + 2 + 1)− 5 = 1, the proof
is complete in this case.
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4.7. Case cE8: f (y) = y2
1 + y3

2 + y5
3.

As in the previous case, we may assume that

(y ) = 2
1 + 3

2 + 5
3 + [ 1 1( 1 2) + 1(y ) + 4( )]

where 1 is a linear form and 1 is a cubic form such that every monomial of1
contains 1 or 2.

If we take 1 = 3 2 = 2 3 = 1, i.e. 1 = 3
1 2 = 2

2 3 = 3, we get

( 3
1

2
2 3 ) = 5φ(u) + 6ψ(u )

with φ(u) = 5
3 + 2 ( 3) + ( 3), where ( 3) and ( 3) are exactly as in the previous

case.
( 1 + 2 + 3) − = (3 + 2 + 1)− 5 = 1; so the proof is complete ifφ has an

irreducible factor with exponent one.
Since deg(φ) = 5, if φ does not have an irreducible factor with exponent one then

φ = 2 3 for two linear polynomials = (2 3) and = ( 2 3) (possibly
equal). In particular, if this is the case thenφ cannot have degree exactly one as a
polynomial in 2, and therefore (3) = 0; i.e., 1(y ) contains no monomials of the
form 2 3

2− ( = 0 1 2). As every monomial of 1 contains 1 or 2, this means
that every monomial of 1 actually contains 1 or 2

2.
Now φ(u) = 5

3 + ( 3) ( of degree at most four) = 2( 3) 3( 3). If we write

4(y ) = 1(y ) + 2( 3 ), with 1 2 forms of degree 4 such that every monomial
of 1 contains 1 or 2, then ( 3) = 2( 3 1). 5

3 + ( 3) = 2( 3) 3( 3) means that
5
3 + 2( 3 ) = ˜ 2( 3 ) ˜ 3( 3 ), with ˜ ˜ linear forms in 3 ( ( 3) = ˜ ( 3 1),

etc.) A linear change of variable′3 = 3 + α reduces to the form

(y ) = 2
1 + 3

2 + 3
3( 3 + )2 + [ 1 ( 1 2) + 1(y ) + 1(y ) + 5( )]

where ∈ C (possibly = 0), every monomial of the cubic form1 contains 1 or
2
2, and every monomial of the quartic form1 contains 1 or 2.

Put 1 = 3 2 = 3 = 2; that is, 1 = 3
1 2 = 2

2 3 = 2
3. Then

( 3
1

2
2

2
3 ) = 6φ(u) + 7ψ(u )

with φ(u) = 2
1 + 3

2 + [terms of degree at most 2 in the ], and21 is not among the
terms inside the brackets. Thereforeφ has an irreducible factor with exponent one; as
( 1 + 2 + 3)− = (3 + 2 + 2)− 6 = 1, the proof is complete in all cases.

4.8. Remarks. 1. If ( ) is a terminal threefold singularity of index one,
then md ( ) = 1. On the other hand, Kawamata [4] proved that the minimal discrep-
ancy of a terminal threefold singularity of index≥ 2 is 1/ .
2. Our computations in§4 seem related to those in [7], except for the fact that
Markushevich uses the toric language. At first glance, it looks like his proof works
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only if the singularity is isolated; however, this is needed only to reduce the equation
= 0 to various standard forms, and — as our elementary computations in 4.3-4.7

show — this can be done without assuming the singularity is isolated.
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