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1. Introduction and Main Theorem

In this note we construct the evolution operator of parabolic type, or the funda-
mental solution of the linear ordinary differential equation

( )
+ ( ) ( ) = ( ) < <(1.1)

of parabolic type in a Banach space . The equation (1.1) is said to be “of parabolic
type” if it satisfies the condition:
(A1) − ( ) is a linear operator with dense domain, and there exist constantsκ >

π/2 and 0 such that the resolvent set of− ( ) contains the sector κ := {λ ∈
C; | argλ| ≤ κ} for any ∈ := [ ] and ‖λ(λ + ( ))−1‖ → ≤ 0 holds for
any λ ∈ κ and any ∈ .
− ( ) generates an analytic semi-group{ −τ ( ); τ ≥ 0} on .
Our result is stated as follows:

Main Theorem. Assume(A1), and the following hypotheses(A2), (A3):
(A2) The domainD( ( )) = for any ∈ and (·) ∈ C( ;L( )), where is a
Banach space continuously imbedded in .
(A3) Defining

ω( ) := sup{‖ ( + )− ( )‖ → ; ≤ ≤ − }(1.2)

ω( )/ is integrable on(0 δ) for some positiveδ. Then, there exists the evolution op-
erator to the equation(1.1), i.e., there exists a strongly continuousL( )-valued func-
tion ( ), ≤ ≤ ≤ , having the following properties:
(a) ( ) ( ) = ( )for ≤ ≤ ≤ ≤ ,
(b) ( ) = for ≤ ≤ ,
(c) (∂/∂ ) ( ) = − ( ) ( ) for any ∈ and ≤ < < ,
(d) (∂/∂ ) ( ) = ( ) ( ) for any ∈ and < < ≤ .
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Moreover, the evolution operator ( ) is uniquely determined by{ ( )} ≤ ≤ ,
and satisfies the estimates

‖ ( ) ( )‖ → ≤ − ‖ ( ) ( )‖ → ≤ −(1.3)

for any ≤ < ≤ , where is a constant.

It is well known that any strong solution ( ) to (1.1) with the initial date ( ) =

0 must be of the form ( ) = ( )0 + ( ), where

( ) :=
∫

( ) ( )(1.4)

It is also known that the condition ∈ C( ; ) does not guarantee differentiability of
( ). Regard to this we have

Theorem 1.1. Assume(A1), (A2), (A3), ∈ 1( ; ) ∩ 0
∞ 1(( ); )loc, and

define by(1.4). Then ∈ C( ; )∩ C1(( ); ), ( ) ∈ D( ( )) for any ∈ ( ),
and ( ) = ( ) 0 + ( ) is the unique strong solution to(1.1) with the initial con-
dition ( ) = 0.

Study of the evolution operator of parabolic type has a rather long history, but we
recall here only a few articles related to our result. Tanabe [7] constructed the evolu-
tion operator under the hypotheses (A1) (A2) and

ω( ) ≤ θ 0< θ ≤ 1(A3′)

(i.e., ( ) is a Ḧolder continuousL( )-valued function.) It is easy to see that (A3)
is a true improvement of (A3′). Kawatsu [2] gave also an improvement of (A3′), i.e.,
under the assumption that “ω( )| log |/ is integrable on (0δ)” he proved the exis-
tence of the evolution operator. Our assumption is better than that of Kawatsu, and we
hope that our theorem will be useful in studying non-linear problems.

Our result was announced in [3]. The proof given by one of the authors eleven
years ago is based on the approximation theory of integral equations with operator-
valued unknown function and it is rather long. In this note we will give a simple and
straightforword proof which contains some new methods to investigate abstract differ-
ential equations in a Banach space.

The result corresponding to Theorem 1.1 for the case where ( ) is independent
of has been given in [4].
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NOTATION. ‖ ‖ denotes the norm of in a space .
L( ) denotes the space of bounded linear operators from into , whose norm is
denoted by‖ ‖ → L( ) := L( ).
C( ; ) denotes the space of -valued continuous functions on a domain .

( ; ) denotes the space of -valued strongly measurable functions ( ) with
‖ ( )‖ ∈ ( ).

2. Preliminary observation

We first observe that Main Theorem follows from the following fact:
For some small positive numberδ there exists a strongly continuousL( )-valued func-
tion ( ) on the area δ := {( ); ≤ ≤ ≤ − ≤ δ} satisfying the conditions
(b), (c), (d) in Main Theorem and the inequality

‖ ( )‖ → ≤ 1

− for ≤ < ≤ with − ≤ δ(2.1)

In fact, when ( )∈ δ, the derivative of ( ) ( ) with respect vanishes in
the interval ( ). Therefore, ( ) ( ) is independent of∈ ( ). Together with
the strong continuity of ( ) ( ), this implies that ( ) ( ) = ( ) holds
when ( )∈ δ. (1.3) follows dirctly from (2.1), since sup∈ ‖ ( )‖ → <∞.

When δ ≤ − < 2δ, we define ( ) := ( ) ( ), where is a point
with max{ − δ} < < min{ + δ }. ( ) is independent of the choice of ,
since for any max{ − δ} < < 1 < min{ + δ } we have ( ) ( ) =

( 1) ( 1 ) ( ) = ( 1) ( 1 ). Thus, the evolution operator ( ) can be
defined when − < 2δ. The fact that ( ) has the properties (a), (b), (c) and (d)
in Main Theorem is a simple consequence of the definition.

Repeating this argument, we can finally construct the evolution operator for any
point ( ) with ≤ ≤ ≤ , and we see easily that (1.3) holds for any≤ <

≤ .
Finally, if ˜ ( ) is anotherL( )-valued strongly continuous function satisfying

(b) and (c) in Main Theorem, the derivative of ( )˜ ( ) with respect van-
ishes in the interval ( ). So, ( )˜ ( ) is independent of , which implies that

( ) = ( ) ˜ ( ) = ˜ ( ). This gives the uniqueness of the evolution operator,
which completes the proof of Main Theorem.

3. Lemmas

Lemma 3.1. If ∈ 1([α β]; ), then
∫ β
α ( ) ∈ . Here is a Banach

space.

Proof. See Yosida [10] p. 133.
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Lemma 3.2. If (λ) is holomolphic and satisfies‖ (λ)‖ ≤ |λ|α in κ∩{λ ∈
C; |λ| ≥ 1}, ‖

∫
λ (λ) λ‖ ≤ (α 0) −α−1 holds for any0 < ≤ 0 < ∞,

where (α 0) is a constant depend only onα 0 and κ. Here, denotes a pathλ =
λ(σ) (σ ∈ R) contained in κ ∩ {λ ∈ C; |λ| ≥ 1} such that|λ(σ)| → ∞, 0 < ε ≤
± argλ(σ)− π/2 as σ → ±∞.

Lemma 3.3. From (A1) and (A2) it follows that

‖(λ + ( ))−1‖ → ≤ 1(1 + |λ|−1)(3.1)

‖λ(λ + ( ))−1‖ → ≤ 2(3.2)

hold for anyλ ∈ κ and any ∈ := [ ] . Here 1 and 2 are constants.

Proof. Assume (A1) and (A2). Since the identity

(1 + ( ))−1 = (1 + ( 0))−1
∞∑

=0

{( ( 0)− ( ))(1 + ( 0))−1}

holds if ‖ ( ) − ( 0)‖ → < ‖(1 + ( 0))−1‖−1
→ , we see that (1 + ( ))−1 ∈

C( ;L( )), which implies that ′ := sup≤ ≤ ‖(1 + ( ))−1‖ → is finite. Hence,
by the identity (λ+ )−1 = {1 + (1−λ)(λ+ )−1}(1 + )−1 we have (3.1). Also, by the
identity (λ + )−1 = (1 + )−1(λ + )−1(1 + ) we have (3.2).

Lemma 3.2, (3.1), (3.2) and the identities−τ ( ) = (1/(2π ))
∫

λτ (λ+ ( ))−1 λ,

(λ + ( ))−1− (λ + ( ))−1 = (λ + ( ))−1{ ( )− ( )}(λ + ( ))−1

give the following

Lemma 3.4. Assume(A1) and (A2). Then,

‖ −τ ( )‖ → ≤ 0(3.3)

‖ −τ ( )‖ → ≤ 1(3.4)

‖ −τ ( )‖ → ≤ τ−1(3.5)

‖ −τ ( ) − −τ ( )‖ → ≤ 0‖ ( )− ( )‖ →(3.6)

‖ −τ ( ) − −τ ( )‖ → ≤ 1‖ ( )− ( )‖ →(3.7)

‖ −τ ( ) − −τ ( )‖ → ≤ τ−1‖ ( )− ( )‖ →(3.8)

‖ −τ ( ) − −τ ( )‖ → ≤ ′τ‖ ( )− ( )‖ →(3.9)

hold for any ≤ ≤ ≤ and 0 < τ ≤ 0. Here 0 1 0 1 and ′ are
constants independent of andτ .
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By (3.6), (3.7), (3.8) and the strong continuity of semi-group−τ ( ) we see that
−τ ( ) − −σ ( ) = { −τ ( ) − −τ ( )} + { −τ ( ) − −σ ( )} → 0 as (τ ) → (σ ).

Hence, we have

Lemma 3.5. Let 0 < < ∞, and assume(A1) and (A2). Then, −τ ( ) is an
L( )-valued (and L( )-valued) strongly continuous function of(τ ) ∈ [0 ] × [ ] .
−τ ( ) is also anL( )-valued strongly continuous function of(τ ) ∈ (0 ]×[ ] .

4. The series giving the evolution operator

According to Tanabe [7], to construct the evolution operator ( ) we make use
of the series

( ) =
∞∑

=0

( ) := 0( ) +
∞∑

=1

∫
0( ) ( )(4.1)

where 0( ) := −( − ) ( ), 1( ) := −{ ( )− ( )} −( − ) ( ) and

+1( ) =
∫

1( ) ( ) for = 1 2 · · ·(4.2)

To prove the convergence of the series (4.1) we start with

Lemma 4.1. Let ω( ) be a non-negative bounded measurable function of∈
(0 δ0) such that

γ( ) :=
∫

0
ω( ) <∞(4.3)

for 0< ≤ δ0. Then, puttingω1 = ω,

ω +1( ) :=
∫

0

ω( − )
−

ω ( )
for = 1 2 · · ·(4.4)

can be defined inductively, and

∫

0

ω ( ) ≤ γ( )(4.5)

ω ( ) ≤ 2 ′γ( ) −1(4.6)

hold for = 1 2 · · · and 0< ≤ δ0, where ′ := sup0< ≤δ0
ω( ).
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Proof. Clearly (4.5) and (4.6) hold for = 1. Assume that (4.5) and (4.6) hold
for . Then, noting thatγ is a increasing function, by Fubini’s theorem we have

∫

0

ω +1( )
=
∫

0

{∫ ω( − )
−

}ω ( ) ≤ γ( ) +1

Also, taking = /( + 1), we have

ω +1( ) ≤
∫

0

′

−
ω ( )

+
∫

ω( − )
−

′ 2γ( ) −1

≤ ′γ( ) ( + 1)2

This gives (4.6) for + 1.

In the following of this note we always assume that (A1), (A2) and (A3) hold,
and byω we denote the function defined by (1.2).

Lemma 4.2. Let ≤ < ≤ . Then,

‖ ( )‖ → ≤ ω ( − )
− = 1 2 · · ·(4.7)

‖ ( )‖ → ≤ 0( γ( − )) = 0 1 · · ·(4.8)

Proof. As ‖ ( ) − ( )‖ → ≤ ω1( − ), (3.5) implies (4.7) for = 1. Assume
that (4.7) holds for . Then, by (4.2) we have

‖ +1( )‖ → ≤ +1
∫

ω( − )
−

ω ( − )
− = +1ω +1( − )

−

Clearly (4.8) holds for = 0. (4.1), (4.5) and (4.7) imply (4.8) for≥ 1.

5. Norm of Wn(t s)

We make use of the symbols:0( ) := −( − ) ( ), 1( ) := 0( ){ ( ) −
( )}, ( σ ) := { −( −σ) ( ) − −( −σ) ( )} −(σ− ) ( ), ( ) := ( ).

Lemma 5.1. Let ≤ ≤ σ ≤ ≤ . Then

1( ) =
∫

σ

{ 1( ) 0( )− ( ) 1( )}(5.1)

+ ( σ ) +
∫ σ

0( ) 1( )

+1( ) =
∫

σ

[ 1( ) ( ) + ( ( ){ ( )− +1( )}](5.2)

+
∫ σ

[ 0( ) +1( ) + ( σ ) ( )] ( ≥ 1)



EVOLUTION OPERATOR OFPARABOLIC TYPE 425

Proof. By the formula

0( ) 1( ) = 1( ) 0( )− ∂

∂

{
−( − ) ( ) −( − ) ( )

}

we have
∫

σ
0( ) 1( ) =

∫

σ
1( ) 0( ) + ( σ )(5.3)

which implies (5.1), for 0( ) = 0( )− ( ). By (5.3) we have

∫

σ
0( ) +1( )(5.4)

=
∫

σ

[∫

τ
0( ) 1( τ )

]
(τ ) τ

+
∫ σ[∫

σ
0( ) 1( τ )

]
(τ ) τ

=
∫

σ

[∫

τ
1( ) 0( τ ) + ( τ )

]
(τ ) τ

+
∫ σ[∫

σ
1( ) 0( τ ) + ( σ τ )

]
(τ ) τ

=
∫

σ

{ 1( ) ( ) + ( ) ( )} +
∫ σ

( σ τ ) (τ ) τ

which gives (5.2).

The estimate‖ 0( )‖ → ≤ /( − ) follows from (3.5). For the case ≥ 1
we have

Lemma 5.2. ( ) ∈ L( ) when ≤ < ≤ , ( ) ( ) is continuous
with respect to( ) ∈ {( ); ≤ < ≤ }, and the inequality

‖ ( )‖ → ≤
3( γ( − )) −1

−(5.5)

holds for = 1 2 · · · . Here γ( ) is the function given by(4.3).

Proof. Case where = 1 Since it follows from (3.8) that

‖ ( )‖ → ≤ ω( − )
− ≤

′

−(5.6)

and ‖ ( σ )‖ → ≤ ′
0( − σ)−1, by (5.1) with σ = ( + )/2, with the aid of

(3.3), (3.5), and (4.7), we obtain
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‖ 1( )‖ → ≤
∫

σ

‖ 1( ) 0( )− ( ) 1( )‖ →

+‖ ( σ )‖ → +
∫ σ

‖ 0( ) 1( )‖ →

≤
∫

σ

{ ω( − )
( − )( − )

+
ω( − )ω( − )
( − )( − )

}

+
2 ′

0

− +
∫ σ 2ω( − )

( − )( − )

≤ 2 + 2 ′

− γ( − ) +
2 ′

0

− +
2 2γ( − )

− ≤ −

Here we take so that ≥ 4 2γ( − ) + 2 ′( γ( − ) + 0).
Since ( ) is closed, we also see that

( ) 1( ) =
∫

σ

( ){ 1( ) 0( )− ( ) 1( )}

+ ( ) ( σ ) +
∫ σ

( ) 0( ) 1( )

Hence ( ) 1( ) is continuous. In view of Lemma 3.1, we see that the conclusion
of the lemma holds for = 1.

Assume that (5.5) holds for . Hence, takingσ = ( + )/( + 1), by (5.2), (5.6),
(4.7) and (4.6) we have

‖ +1( )‖ →

≤
∫

σ

ω( − )
−

[ γ −1 3

− +
{ ω ( − )

− +
+1ω +1( − )
−

}]

+
∫ σ[

−
+1ω +1( − )
− +

ω( − )
− σ 0

ω ( − )
−

]

≤ γ 3 + ′ γ { 2 + ( + 1)2 γ}
σ − +

( γ) +1 + 0
′ γ

− σ
≤ ( + 1) γ

− { 2 + ′(2 γ + 1) + ′(3 γ + 0) + 2γ}

≤ ( + 1)3 γ

− (Here γ = γ( − ) )

Here, we take := 4 2γ( − ) + ′(3 γ( − ) + 2 0 + 1). This estimate gives
that +1( ) ∈ L( ). The same argument as for1 gives that ( ) ( ) is
continuous in ( ) when ≤ < ≤ .

Construction of U(t s) when t−s is small. Take δ small enough so thatγ(δ) <
1/ , whereγ(δ) is given by (4.3). Then, with help of the estimate (4.8) and (4.5), we
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can define ( ) by (4.1) when− ≤ δ. Since ( ), = 0 1· · · are strongly
continuous function and the series (4.1) converges uniformly, we see that ( ) is
strongly continuous.

By (5.5) we see that the series (4.1) converges inL( ) when 0< − ≤ δ,
since

∑∞
=1( γ(δ)) −1 3 <∞. Hence, ( ) is a strongly continuousL( )-valued

function of ( )∈ {( ); ≤ < ≤ − ≤ δ}, and satisfies (2.1).

6. Proof of differentiability with respect to t

Lemma 6.1. Let ∈ C([ ]; ) , ≤ < , define ( ) :=
∫

0( ) ( ) ,
and assume that ∈ C(( ); ). Then, ∈ C1(( ); ), and

( ) = ( )−
∫

1( ) ( ) − ( ) ( )(6.1)

Proof. Let < < , 0< < − . Then, we have

1{ ( + )− ( )} =
− ( ) − 1

( ) +
∫ 1

0

−( − σ) ( + σ) ( + σ) σ

+
∫

1{ − ( ) − − ( )} −( − ) ( ) ( )

Because of the fact that ( )∈ D( ( )), the fisrt term in the right-hand side converges
to − ( ) ( ) as → +0. Since −τ ( ) is a strongly continuous function of (τ ) ∈
[0 τ0] × [ ] (see Lemma 3.5), it follows that−τ ( ) ( ) is a uniformly continuous
function of (τ ) ∈ [0 τ0] × [ ] × [ ]. Hence, −( − σ) ( + σ) ( + σ) → ( )
as → +0 uniformly with respect toσ ∈ [0 1], which implies that the second term
in the right-hand side converges to ( ). Lebesgue’s dominated convergence theorem
implies that the third term in the right-hand side converges to the second term of the
formula (14) as → +0, since by the estimate (3.9) we have

∥∥∥1{ − ( ) − − ( )} −( − ) ( ) ( )
∥∥∥ ≤ ω( − )

− ‖ ( )‖ ∈ 1

and since

1{ − ( ) − − ( )} −( − ) ( ) ( )→ − 1( ) ( ) as → +0

for any ∈ [ ]. Thus we can conclude that ( ) is right-differentiable, and its right-
derivative is strongly contimuous. From a well-known lemma (see Yosida [10], p. 239)
it follows that ( ) is differentiable and (14) holds, which completes the proof of
Lemma 6.1.

Lemma 6.2. Let ≤ < . Then, ( ) ∈ D( ( )) is strongly differentiable
in ∈ ( min{ + δ }) and its derivative is− ( ) ( ) for any ∈ .
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Proof. Assume that ≤ < ≤ min{ + δ }. Then, by (5.5) we see
that

∑
=0 ( ) converges to ( ), and

∑
=0 ( ) ( ) converges as →

∞. As ( ) is closed, it follows that ( ) ∈ D( ( )) and ( ) ( ) =∑∞
=0 ( ) ( ) for any ∈ . Moreover, the estimate (5.5) implies that the

above series converges uniformly with respect to∈ [ + ε min{ + δ }]. Hence
( ) ( ) is continuous. On the other hand it follows from the above lemma that

( ) is differentiable in ∈ ( ) and its derivative with respect is equal to
( ) − +1( ) − ( ) ( ) for any ∈ . Thus, we have

∂

∂

∑

=0

( ) = − +1( ) −
∑

=0

( ) ( ) → − ( ) ( )

uniformly with respect to ∈ [ + ε min{ + δ }) as → ∞, which completes the
proof of the lemma.

7. Proof of differentiability with respect to s

To prove differentiability of ( ) in we make use of another series which ex-
presses ( ). (See Tanabe [8].)

( ) =
∞∑

=0

( ) := −( − ) ( ) +
∞∑

=1

∫
( ) 0( )(7.1)

where 1( ) := −( − ) ( ){ ( )− ( )} and

+1( ) :=
∫

( ) 1( ) for = 1 2 · · ·(7.2)

Lemma 7.1. If ≤ < ≤ ,

‖ ( )‖ → ≤ ω ( − )
− for = 1 2 · · ·(7.3)

‖ ( )‖ → ≤ 0
′( γ( − )) −1 for = 1 2 · · ·(7.4)

‖ ( )‖ → ≤ 1 γ( − ) for = 0 1 · · ·(7.5)

‖ ( )‖ → ≤ ( γ( − )) −1 for = 1 2 · · ·(7.6)

Proof. By (3.5) and‖ ( )− ( )‖ → ≤ ω( − ) we have (7.3) for = 1. The in-
equality (7.3) can be proved in the same way as (4.7). It is clear that‖ 1( )‖ → ≤

0ω( − ) ≤ 0
′. Assume that (7.4) holds for . Then, by (7.2) and (7.3) we have

‖ +1( )‖ → ≤
∫

0
′ γ( − ) −1ω( − )

− ≤ 0
′( γ( − ))

Also, (7.3) and‖ 0( )‖ → ≤ 1 implies (7.5).
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Next, it follows that‖ 0( )‖ → ≤ 0, and it follows from the identity

1( ) =
∫
{ 1( ) ( ) + 0( ) 1( )} − ( )

and the estimate

‖ 1( ) ( ) + 0( ) 1( )‖ → ≤ 0{ ′ + }ω( − )
−

that 1( ) ∈ L( ) and (7.6) for = 1 holds. Assuming that ( )∈ L( ) and
(7.6) holds for , by the identity

+1( ) =
∫

[{ +1( )− ( )} ( ) + ( ) 1( )]

we see that‖ +1( )‖ → is estimated by

∫
{ 0

′( γ( − )) −1( γ( − ) + 1) + γ( − ) −1}ω( − )
−

≤ 0
′ −1γ( − ) ( γ( − ) + 1) + γ( − )

≤ ( + 1)( γ( − ))

Hence +1( ) ∈ L( ) and (7.5) holds for +1. Thus the lemma has been completely
proved.

Lemma 7.2. ( ) ∈ C1(( ); ) for any < ≤ and any ∈ , and its
derivative with respect to is equal to− ( ) + +1 + ( ) ( ) .

Proof. This follows from the identity

( − ) − ( )
− = −

∫ 1

0
( − σ) − (1−σ) ( − σ) σ

−
∫

( ) −( − ) ( )
− ( ) − − ( )

− ( )
− ( ) − 1

and the argument which led to Lemma 6.1.

In similar way as Lemma 6.2, from Lemma 7.1 and Lemma 7.2 we obtain

Lemma 7.3. Take δ so that γ(δ) < 1 holds. Then, the series(7.1) converges
when ≤ ≤ ≤ , − ≤ δ, ( ) is differentiable with respect to in the
interval (max{ −δ } ) and its derivative is ( ) ( ) if < ≤ and if ∈ .
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Now, the fact that the derivative of ( ) ( ) with respect to vanishes im-
plies that ( ) ( ) is independent of ∈ ( ). Since ( ) and ( ) are
strongly continuous, this gives that ( ) = ( ) ( ) = ( ). Thus, by
Lemma 7.3 we know that ( ) is differentiable with respect to in the interval
(max{ − δ } ) for any ∈ ( ] and for any ∈ .

Thus, the facts stated at the beginning of§2 have been completely proved.

8. Proof of Theorem 1.1

Lemma 8.1. Let ∈ 0
∞ 1(( ); ), and define 0( ) :=

∫
0( ) ( ) .

Then 0 ∈ C( ; ) ∩ C1(( ); ), (·) 0(·) ∈ C( ; ), and the inequalities

‖ ( ) 0( )‖ ≤ ‖ ‖ 0
∞ 1(( ); )) ‖ 0( )‖ ≤ ˜ ‖ ‖ 0

∞ 1(( ); )(8.1)

hold for any ∈ , where and ˜ are constants independent of .

Proof. We first prove that ( ) :=
∫

0( ) ( ) ∈ D( ( )) for any ∈ ,
‖ ( ) ( )‖ ≤ ′‖ ‖ 0

∞ 1(( ); )) for any ∈ , and (·) (·) ∈ C( ; ).

If ∈ C1( ; ), we have that

( )
∫

0( ) ( ) = ( )− 0( ) ( )−
∫

0( ) ′( )(8.2)

holds for any ∈ , where ′( ) = ( )/ (see Proof of Lemma 5 in [4]). Hence,
according to the theory of Besov spaces (see [4]§3), it suffices to consider the case
where

( ) =
∫

0

τ

τ

∫
1
τ
ϕ
( −

τ

)
(τ ) ∈ 1([0 ]; ∞( ; ))

Here,ϕ( ) = (∂ψ/∂ )( ), ψ ∈ C∞(R2) such thatψ( ) = 0 if − (2 − − )/( −
) ≥ 1. Let η be a C∞-function such that

η( ) = 0 when ≤ 1, η( ) = 1 when ≥ 2 and 0≤ η( ) ≤ 1.

Then, by Fubini’s theorem we have

( ) =
∫

0

τ

τ

∫
{ 1(τ ) + 2(τ )} (τ )(8.3)

1(τ ) :=
∫ {

1− η
( −

τ

)}
0( )

1
τ
ϕ
( −

τ

)

2(τ ) :=
∫

η
( −

τ

)
0( )

1
τ
ϕ
( −

τ

)
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As ( ) 0( ) = (∂/∂ ) 0( ), an integration by parts shows that

( ) 1(τ ) =
1
τ
ϕ
( −

τ

)
−
{

1− η
( −

τ

)}
0( )

1
τ
ϕ
( −

τ

)

−
∑

=1 2

∫ {
1− η

( −
τ

)}
0( )

1
τ
ϕ
( −

τ

)

−
∫

η′
( −

τ

)
0( )

1
τ2
ϕ
( −

τ

)

whereϕ1( ) = (∂/∂ )ϕ( ), ϕ2( ) = (∂/∂ )ϕ( ). Hence we have

∫
‖ ( ) 1(τ )‖ → ≤ 0 +

∑

=1 2

∫

−2τ
τ1− + 3

1
τ

∫ −τ

−2τ
≤ 4

Since

ϕ
( −

τ

)
= τ

∂

∂

{
ψ
( −

τ

)}
−τψ1

( −
τ

)

whereψ1( ) := (∂ψ/∂ )( ), we also have

( ) 2(τ ) = −η
( −

τ

)
( ) 0( )ψ

( −
τ

)

−
∫

η
( −

τ

)
( )2

0( )ψ
( −

τ

)

+
∫

1
τ
η′
( −

τ

)
( ) 0( )ψ

( −
τ

)

−
∫

η
( −

τ

)
( ) 0( )ψ1

( −
τ

)

which implies, together with the fact thatη( )/ ≤ 1, that

∫
‖ ( ) 2(τ )‖ → ≤ 5η

( −
τ

) τ

− + 6τ

∫ −τ

( − )−2

+ 7

∫ −τ

−2τ − + 8

∫
η
( −

τ

) τ

−
≤ 9

As ‖ (τ · )‖ ∞( ; ) ∈ 1((0 )) and ( ) is closed, these results and (8.3) give that

( ) ∈ D( ( )) ( ) ( ) =
∫

0

τ

τ

∫
( ){ 1(τ ) + 2(τ )} (τ )

and ‖ ( ) ( )‖ ≤ ′‖ ‖ 0
∞ 1(( ); ). Since this integral converges uniformly with re-

spect to ∈ , we also see that ( ) ( ) is continuous.
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The results proved above imply, with the aid of the following lemma and the
identity 0( ) =

∫
0( ) ( ) −

∫
( ) ( ) , that 0( ) ∈ D( ( )) for any

∈ , the first inequality in (8.1) and (·) 0(·) ∈ C( ; ). The second inequality
in (8.1) and 0 ∈ C( ; ) follow from these facts together with the identity0( ) =
( + ( ))−1( + ( )) 0( ).

Finally, these facts and Lemma 6.1 imply that0 ∈ C1(( ); ).

Lemma 8.2. Let ∈ C( ; ) and put ( ) :=
∫

( ) ( ) . Then ∈
C( ; ) and ‖ ( )‖ ≤ γ( − )‖ ‖ ∞(( ); ).

Proof. This follows from the inequality (5.6).

Now, let us proceedto proveTheorem 1.1.
STEP 1. Consider the case where ∈ 0

∞ 1(( ); ) and γ( − ) < 1,
where γ is the function defined by (4.3). The estimate (4.8) implies that the series∑∞

=0 ( ) ( ) converges to ( ) ( ) in uniformly in ( )∈ := {( ); ≤
≤ ≤ }. Hence we have

( ) =
∫

( ) ( ) =
∞∑

=0

∫
( ) ( ) =

∞∑

=0

( )(8.4)

Using Fubini’s theorem, by (4.1) we have

( ) :=
∫

( ) ( ) =
∫

0( ) ( )(8.5)

for = 0 1 · · · , where 0( ) := ( ) and

( ) :=
∫

( ) ( ) for = 1 2 · · ·(8.6)

By Lemma 8.1 we have 0 ∈ C( ; ) and ‖ 0( )‖ ≤ ˜ ‖ ‖ 0
∞ 1( ; ). Assume that

∈ C( ; ) and ‖ ( )‖ ≤ ( + 1) γ( − ) ‖ ‖ 0
∞ 1( ; )(8.7)

Here is a constant which will be chosen later on. The identity

+1( ) =
∫

[ 1( ) ( ) + ( ){ ( )− +1( )}](8.8)

for = 0 1 · · · , which is a consequence of (5.1) and (5.2) withσ = , together with
(7.3), Lemma 8.2 and the inequality

‖ ( )‖ ≤ γ( − ) ‖ ‖ ∞( ; )(8.9)
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for = 0 1 · · · , which follows from (4.7), implies that

‖ +1( )‖ ≤{ ( + 1)( γ( − )) +1 + 2 γ( − ) +1 } ‖ ‖ 0
∞ 1( ; )

Taking = max{ ˜ 2 / }, this gives (8.7) for + 1. By (8.7) we see that
∑∞

=0

converges inC( ; ), so that ∈ C( ; ).
Furthermore, by (8.5) and Lemma 6.1 we see that∈ C1( ; ) and its derivative

is ′( ) = ( )− +1( )− ( ) ( ). Since the right-hand side of the identity

∑

=0

( ) = ( )− +1( )− ( )
∑

=0

( )

converges to ( )− ( ) ( ) uniformly in as → ∞, we can conclude that ∈
C1( ; ) and ′( ) = ( )− ( ) ( ).

STEP 2. Consider now the general case. Let∈ 1( ; ) ∩ 0
∞ 1(( ); )loc,

and let < < . Takeα andβ so that < α < < β < and γ(β−α) < 1, and
put

( ) =
∫ α

( ) ( ) +
∫

α

( ) ( ) = 1( ) + 2( )(8.10)

Since ∈ 0
∞ 1((α β); ), by the results in Step 1 we see that2( ) ∈ D( ( )),

(·) 2(·) is continuous, 2 is differentiable, and ′
2( ) = ( ) − ( ) 2( ). Since

( α) is differentiable and{∂/∂ } ( α) = − ( ) ( α), it follows that 1( ) =
( α) (α) is differentiable, 1( ) ∈ D( ( )) and ( ) 1( ) is continuous. Thus, ( )

is differentiable and ′( ) = − ( ) 1( ) + ( ) − ( ) 2( ) = ( ) − ( ) ( ). This
completes the proof of Theorem 1.1.

REMARK. The condition ∈ 0
∞ 1(( ); ) follows from ∈ C( ; ) and

ρ( ; ) := sup
≤ < + ≤

‖ ( + )− ( )‖ ∈ 1
(

(0 δ)
)

(8.11)

for someδ. In fact, letϕ( ) be a C∞-function such that
∫
ϕ( ) = 0 andϕ( ) =

0 when | − (2 − − )/( − )| ≥ 1. Then we have

∫

0

∥∥∥
∫

1
τ
ϕ
( −

τ

)
( )

∥∥∥
∞( ; )

τ

τ

=
∫

0

∥∥∥
∫

1
τ
ϕ
(

τ

)
{ ( − )− ( )}

∥∥∥
∞( ; )

τ

τ

≤ 0

∫

0

τ

τ2

∫

| |≤ℓτ −

ρ(| |; ) ≤ 2 0ℓ

∫ −

0
ρ( ; ) <∞
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Thus we have ∈ 0
∞ 1(( ); ) by Thoerem 1 in [4].

From this fact and Theorem 1.1 we see that ( ) is differentiable if ∈
1(( ); ) and the condition (8.11) is satisfied locally. This result has been directly

proved by Tojima [9] (The case where ( ) is independent of has been discussed by
Crandal-Pazy [1]).

References

[1] M. C. Crandall and A. Pazy:On the differentiability of weak solutions of a differential equation
in Banach space, J. Math. Mech.18 (1969), 1007–1016.

[2] S. Kawatsu:Cauchy problem for abstract evolution equations of parabolic type, J. Math. Ky-
oto, 30 (1990), 59–91.

[3] T. Muramatu: An application of Besov spaces to the evolution equation, Kokyuroku, RIMS,
Kyoto Univ. 647 (1989), 99–124 (in Japanese).

[4] T. Muramatu:Besov spaces and analytic semi-groups of lineat operators, J. Math. Soc. Japan,
42 (1990), 134–146.

[5] A. Pazy: Semi-groups of Linear Operators and Applications to Partial Differential Equations,
Springer-Verlag, Berlin, Heideberg, New York, 1983.

[6] H. Tanabe:A class of the equations of evolution in a Banach Space, Osaka J. Math.11 (1959),
121–145.

[7] H. Tanabe:On the equations of evolution in a Banach Space, Osaka J. Math.12 (1960), 363–
376.

[8] H. Tanabe: Equations of Evolution, Pitman, London, 1979.
[9] T. Tojima: Solvability of Cauchy problems for the parabolic evolution equation in a Banach

space, Bull. Fac. Sci. & Eng. Chuo Univ.42 (1999), 1–9.
[10] K. Yosida: Functional Analysis, Springer-Verlag, Berlin-Heideberg-New York, 1966.

Department of Mathematics
Chuo University
1-13-27 Kasuga, Bunkyo-ku
Tokyo, 112-8551, Japan
E-mail: muramatu@math.chuo-u.ac.jp


