
Tanaka, H.
Osaka J. Math.
38 (2001), 369–377

SOME THEOREMS CONCERNING EXTREMA
OF BROWNIAN MOTION WITH d -DIMENTIONAL TIME

Dedicated to Professor N. Ikeda on his 70th birthday

HIROSHI TANAKA

(Received October 16, 1999)

Introduction

Let = { ( ) ∈ R } be a Ĺevy’s Brownian motion with -dimensional time
([2]) defined on a certain probability space ( ); thus is a centered Gaussian
system with continuous sample functions satisfying (0) = 0 and{ ( ) ( )} =
(| | + | | − | − |)/2. For a nonempty subset ofR we put

( ) = inf{ ( ) : ∈ } ( ) = sup{ ( ) : ∈ }

We often use the notation ( ) to denote either( ) or ( ). For example, ( )−
( ) denotes any one of ( )− ( ), ( )− ( ), ( )− ( ) and ( )− ( ). A

point in R is called a point of local minimum (resp. local maximum) of a sample
function if there exists a neighborhood of such that ( ) =( ) (resp. ( ) =

( )). A point of either local minimum or local maximum is called an extreme-point.
The following are typical of those problems and theorems we discuss in this pa-

per.
(I) Under what condition on does the probability distribution of ( ) admit a
strictly positive ∞-density?
(II) Under what condition on and does the joint probability distribution of ( )
and ( ) admit a strictly positive ∞-density?
(III) Almost all sample functions have the following property: There are no distinct
extreme-points and with ( ) = ( ).
We give some sufficient conditions that will give positive answers to the problems (I)
and (II) and then give a proof of (III). Formulating the problems somewhat generally
we state our main results in the following theorems.

Theorem 1. Let 1 ≤ ≤ , be nonempty bounded closed sets not contain-
ing the origin 0. Then for any constants 1≤ ≤ , such that 1 + 2 + · · ·+ 6= 0,
the probability distribution of

1 ( 1) + 2 ( 2) + · · · + ( )
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can be expressed as a convolutionγ ∗ µ whereγ is a nondegenerate Gaussian distri-
bution with mean0 and µ is some probability distribution inR. In particular, the dis-
tribution of each of ( ) and ( ) has a strictly positive ∞-density provided that

is a nonempty bounded closed set not containing0.

Theorem 2. Let 1 ≤ ≤ 1 ≤ ≤ , be nonempty bounded closed
sets such that∪ =1 is separated from∪ =1 by a certain( − 1)-dimensional hy-
perplane passing through the origin0. Then for any constants ′ 1 ≤ ≤

1≤ ≤ , such that
∑

=1 6= 0 and
∑

=1
′ 6= 0, the joint distribution of

1( ) =
∑

=1

( ) 2( ) =
∑

=1

′ ( )(1)

has a form(γ1⊗ γ2) ∗ ν where eachγ is a nondegenerate Gaussian distribution with
mean0 and ν is some2-dimensional probability distribution. In particular, the joint
distribution of ( ) and ( ) has a strictly positive ∞-density provided that and

are nonempty bounded closed sets separated from each other by a certain( − 1)-
dimensional hyperplane passing through0.

Theorem 3. Let , , 1≤ ≤ 1 ≤ ≤ , be nonempty bounded closed
sets such that∪ =1 is separated from∪ =1 by a certain( − 1)-dimensional hy-
perplane. Then for any constants ′ 1 ≤ ≤ 1 ≤ ≤ , such that∑

=1 =
∑

=1
′ 6= 0, the probability distribution of 1( ) − 2( ), with 1 and

2 given by (1), has a formγ ∗ µ where γ is a nondegenerate Gaussian distribution
with mean0 and µ is some distribution in . In particular, the distribution of each
of ( ) − ( ), ( ) − ( ) and ( ) − ( ) has a strictly positive ∞-density
provided that A and B are nonempty bounded closed sets separated from each other
by a certain( − 1)-dimensional hyperplane.

Theorem 4. Almost all sample functions have the following property: There.
are no distinct extreme-points and of such that( ) = ( ).

An example of the applicability (or our motivation) of Theorem 4 will be given
in the final section.

1. A lemma

Given a centered Gaussian system{ λ λ ∈ } defined on a certain probability
space ( ), we denote by the real Hilbert space spanned by{ λ λ ∈ } and
by 0 the closed linear span (abbreviation: c.l.s.) of{ λ − µ λ µ ∈ }. Clearly

0 ⊂ ⊂ 2( ). We now introduce the following conditions.
Condition (A). There exists a nondegenerate Gaussian random variable0 inde-
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pendent of{ λ − 0 λ ∈ }.
Condition (B). There existsλ ∈ such that λ 6∈ 0.

It is easy to see that the condition (B) implies thatλ 6∈ 0 for all λ ∈ . Denote by
R the space of real valued functions on ; it has a Borel structure defined in a nat-
ural way. Then we can regard ={ λ λ ∈ } as a random variable taking values
in R . The following lemma is rather trivial; nevertheless, it plays a fundamental role
in this paper.

Lemma 1. (i) Let f be a Borel function fromR to R such that

( + 1) = ( ) +(1.1)

for any ∈ R and ∈ R where is some nonzero constant and1 denotes
the function on that identically equals1. Then under the condition(A) we have

( ) = 0 + with a suitable random variable independent of0; in particular,
the probability distribution of ( ) has a strictly positive ∞-density.
(ii) Suppose is a locally compact space with a countable open base and assume

that λ is continuous inλ with probability 1. We regard = { λ λ ∈ } as a
random variable taking values in the space( ) of continuous functions on , which
is equipped with the compact uniform topology. Then, under the condition(A), the
conclusion of(i) remains valid for any Borel function from ( ) to R satisfying
(1.1) for ∈ ( ) and ∈ R.
(iii) The condition(B) implies the condition(A).

REMARK 1. Let 1 ≤ ≤ , be subsets of and let 1≤ ≤ , be
constants such that1 + · · · + 6= 0. Let ( ) indicate either inf{ (λ) : λ ∈ } or
sup{ (λ) : λ ∈ }; the choice may depend on but not on . Then

( ) = 1 ( 1) + · · · + ( )(1.2)

is a typical example of satisfying (1.1) with =1 + · · ·+ provided that can be
defined to be a Borel function.

REMARK 2. Let be a class of functions defined on [0 1] and taking values in
(an example of such an is the space of continuous paths in connecting two

given points of ). Then the function defined by ( ) = inf{ ( ) : ∈ } with
( ) = sup{ ( ( )) : 0≤ ≤ 1} satisfies (1.1).

REMARK 3. If { λ λ ∈ } satisfies (A) (resp. (B)) and if 1 is a nonempty
subset of , then the sub-system{ λ λ ∈ 1} also satisfies (A) (resp. (B)).

Proof of Lemma 1. (i) Under the condition (A) − 01 and 0 are independent
so ( )− 0 = ( − 01) and 0 are independent. If we put = ( )− 0,
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then we have the expression ( ) =0 + in which 0 and are independent and

0 is a nondegenerate Gaussian random variable. The assertion (ii) follows from (i).
(iii) It is easy to see that λ + 0 = { λ + : ∈ 0} does not depend onλ. The
condition (B) means that λ + 0 6∋ 0. Since λ + 0 is a closed convex set, there
exists a unique 0 ∈ λ + 0 such that

√
{ 2

0} = min

{√
{| λ + |2} : ∈ 0

}
> 0

Then clearly 0 ⊥ 0. Since λ − 0 ∈ 0 λ − 0 ⊥ 0 for all λ. This implies that

0 is independent of{ λ − 0 λ ∈ }.

2. Proof of Theorem 1

As stated in Introduction let ={ ( ) ∈ R } be a Brownian motion with
-dimensional time. For any fixed pair of real numbers1 and 2 such that 0< 1 < 2

we put ={ ∈ R : 1 ≤ | | ≤ 2}, = c.l.s.{ ( ) ∈ } and 0 = c.l.s.{ ( )−
( ) ∈ }. First we prepare the following lemma.

Lemma 2. The condition(B) is satisfied for{ ( ) ∈ }, namely, there ex-
ists ∈ such that ( ) 6∈ 0.

Proof. (i) We consider the case where the dimension is odd and≥ 3. De-
noting by ˆθ the uniform distribution on −1 = {θ ∈ R : |θ| = 1}, we put

( ) =
∫

−1

( θ) ˆθ ≥ 0

1 = c l s { ( ) 1 ≤ ≤ 2}
⊥
1 = the orthogonal complement of1 in .

Then we have

( )− (| |) ∈ ⊥
1 for any ∈(2.1)

In fact, it is easy to see that, for each fixed≥ 0, {( ( ) − (| |)) ( )} depends
only on | | and hence it must vanish, which implies (2.1). We are going to prove that

( 1θ) 6∈ 0 for θ ∈ −1. The relation (2.1) implies that (1θ) = ( 1) + ′ with
′ ∈ ⊥

1 and that 0 ⊂ 10 ⊕ ⊥
1 where 10 = c.l.s.{ ( ) − ( ) ∈ [ 1 2]}.

Therefore, for the proof of (1θ) 6∈ 0 it is enough to show that (1) 6∈ 10. We
now make use of the canonical representation of the Gaussian process{ ( ) ≥ 0}
due to McKean [5], which means that

( ) =
∫

0
( ) ( ) ≥ 0
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where{ ( ) ≥ 0} is a one-dimensional standard Brownian motion and

( ) = ( )
∫ 1

/

(1− 2)( −3)/2 0≤ ≤(2.2)

( ) being a suitable constant depending only on . For any and with1 ≤ <

≤ 2 we have

( )− ( ) =
∫

1

0
( ) ( ) +

∫

1

( ) ( )

( 1) =
∫

1

0
( ) ( )

where ( ) = ( )− ( ) ( ) = ( 1 ) and ( ) is a suitable function. There-
fore, if we put

˜ 0 = c l s

{∫
1

0
( ) ( ) ∈ [ 1 2]

}

˜ + = c l s { ( )− ( ) ∈ [ 1 2]}

then ˜ 0 ⊥ ˜ + 10 ⊂ ˜ 0 ⊕ ˜ + and (1) ⊥ ˜ +. From these observations we see that
for the proof of (1) 6∈ 10, it is enough to show

∫
1

0
( ) ( ) 6∈ ˜ 0(2.3)

Let 2
0 be the subspace of2[0 1] spanned by the functions (·) ∈ [ 1 2]. Then

the Hilbert space˜ 0 is isomorphic to 2
0 and (2.3) is equivalent to 6∈ 2

0. Now
the assumption that is an odd integer≥ 3 implies that ( ) ∈ [ 1 2], are
polynomials of degree − 2 vanishing at = 0 (use (2.2)). Therefore all the functions
in 2

0 are also polynomials of degree at most− 2 vanishing at = 0. On the other
hand it is easy to see that is a polynomial of degree−2 with (0)> 0. Therefore
6∈ 2

0, which finally implies (1θ) 6∈ 0. This completes the proof in the case where
is odd and ≥ 3.

(ii) The proof in the case where is even can be obtained by the method of de-
scent in which a Brownian motion with -dimensional time is viewed as the restriction
of a Brownian motion with ( + 1)-dimensional time to R× {0} ⊂ R +1 and also by
using Remark 3. The proof in the case = 1 is easy. The proof of Lemma 2 is fin-
ished.

We are now able to prove Theorem 1. From the assumption on 1≤ ≤ ,
there exist 1 and 2 with 0 < 1 < 2 such that ={ ∈ R : 1 ≤ | | ≤ 2} includes
all . Then, by Lemma 2 the condition (B) is satisfied for ={ ( ) ∈ }
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1 2

δ δ
0

and by Remark 1 the condition (1.1) is satisfied for the function ( ) =1 ( 1) +

2 ( 1) + · · · + ( ) ∈ ( ), with = 1 + · · · + . Therefore by Lemma 1
the probability distribution of the random variable ( ) =1 ( 1) + 2 ( 2) + · · · +

( ) has a formγ ∗ µ. This completes the proof of Theorem 1.

3. Proof of Theorem 2

Under the assumption on and in Theorem 2 we can take disjoint closed
balls and with the following properties:
(3.1) ⊃ ∪ =1 ⊃ ∪ =1

(3.2) is separated from by the hyperplane .
(3.3) The center of and the center of are on the straight line that passes
through the origin 0 and is perpendicular to .
We consider open balls 1 and 2 with a common radiusε and with centersδ and
δ , respectively, whereδ > 0 is chosen so thatδ 6∈ and δ 6∈ (see the figure).
We now make use of the Chentsov representation of ( ) ([1]), which asserts that

( ) = ( )(3.4)

where is the open ball with center/2 and radius| |/2, and{ ( ξ)} is a suitable
white noise in R associated with the measure|ξ|− +1 ξ ( is a suitable constant),
namely, a Gaussian random measure in R such that{ ( ξ)} = 0 and { ( ξ)2} =
|ξ|− +1 ξ. By taking ε > 0 small enough, we can assume

1 ⊂
{⋂

∈

}⋂



⋃

∈



 2 ⊂




⋂

∈




⋂{⋃

∈

}
(3.5)

If we write ( ) = ( ) = ( 1) + ˜ and ( ) = ( ) = ( 2) + ˜ , then
(3.5) implies that the 2-dimensional random vector ( (1) ( 2)) is independent of
the Gaussian family{( ˜ ˜ ) : ∈ ∈ }. Therefore we have

1( ) = ( 1) + ˜1 2( ) = ′ ( 2) + ˜2
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with =
∑

=1
′ =

∑
=1

′ and ( ( 1) ( 2)) is independent of (̃1 ˜2). Since
( 1) and ( 2) are independent and each of them is a nondegenerate Gaussian

random variable with mean 0, the joint distribution of1( ) and 2( ) has a form
(γ1⊗ γ2) ∗ ν.

4. Proof of Theorem 3 and Theorem 4

By using the fact that{ ( )− ( 0) ∈ R } is identical in law to{ ( − 0) ∈
R } for each 0 ∈ R and also by using the assumption

∑
=1 =

∑
=1

′ , we see
that the probability distribution of 1( ) − 2( ) is invariant under any simultaneous
shift of and . Therefore, in proving Theorem 3 we may assume that . and

satisfy the same assumption as in Theorem 2. Then the joint distribution of1( )
and 2( ) has a form (γ1 ⊗ γ2) ∗ ν by Theorem 2 and this implies the conclusion of
Theorem 3.

Before going to the proof of Theorem 4 we introduce some notation. Denote by
K the set of all pairs ( 1 2) of disjoint closed balls 1 and 2 with rational centers
and rational radii. We put (1 2;σ1 σ2) = ( 1;σ1)− ( 2;σ2) where eachσ is
either 0 or 1 and ( ;σ ) denotes either ( ) or ( ) according asσ = 0 or
1. We also denote byE( 1 2;σ1 σ2) the event{ ( 1 2;σ1 σ2) = 0} and then
put E ′ = ∪E( 1 2;σ1 σ2) where the union is taken over all (1 2) ∈ K and all
(σ1 σ2) ∈ {0 1}2. Finally let E be the event such that there exist distinct extreme-
points and with ( ) = ( ). It is then easy to see thatE ⊂ E ′. On the other
hand Theorem 3 implies {E( 1 2;σ1 σ2)} = 0 and hence {E ′} = 0. This implies
{E} = 0 as was to be proved.

5. Remarks on a diffusion process in ad-dimensional Brownian environment

This section is to supply an example for the applicability of Theorem 4. We
change the notation for a Brownian motion with a -dimensional time since we want
to use ( ) for a diffusion process. LetW be the space of continuous functions on
R vanishing at 0. In this section an element ofW is called an environment. We
consider the probability measure on such that{ ( ) ∈ R } is a Lévy’s
Brownian motion with a -dimensional time. Let be the space of continuous func-
tions on [0∞) taking values in R . The value ofω(∈ ) at time is denoted by

( ) = ( ω) = ω( ). For each fixed environment we consider the probability mea-
sure on such that{ ( ) ≥ 0 } is a diffusion process in R with generator

1
2

( −∇ · ∇) =
1
2

∑

=1

∂

∂

(
− ∂

∂

)

and starting from 0. LetP be the probability measure on × defined by
P( ω) = ( ) ( ω). Then { ( ) ≥ 0 P} can be regarded as a process
defined on the probability space (× P), which we call a diffusion process in
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a -dimensional Brownian environment. When = 1, this model is a diffusion ana-
logue of well-known Sinai’s random walk in a random environment(1982) and much
is known about the long-term behavior of X(t) such as localization. When≥ 2, a
similar diffusion model appeared in [3]. Now our interest is the long-term behavior
of { ( ) ≥ 0 P} in the case ≥ 2. Tanaka [6](see also [7]) proved that, for any
dimension { ( ) ≥ 0 } is recurrent for almost all Brownian sample environ-
ments . Mathieu[4] proved thatlocalization takes place for{ ( ) ≥ 0 P}, in the
sense that

lim
→∞

lim
λ→∞

P
(
λ−2 max{| ( )| : 0≤ ≤ λ} >

)
= 0

However, in the case ≥ 2, it seems that the existence of the limiting distribution of
{λ−2 ( λ) P} as λ → ∞ is still an open problem. We give a remark on this prob-
lem. We notice the scaling relation

{ ( ) ≥ 0 λ λ
} = {λ−2 (λ4 ) ≥ 0 }

whereλ > 0 and ∈W are fixed, λ denotes an element of defined byλ( ) =

λ−1 (λ2 ) ∈ R , and = means the equality in distribution. This scaling relation

combined with λ = imply the following: If we can prove that{ ( λ) λ }
has the limiting distribution asλ → ∞ under the condition = (λ) → 1, then so
does{λ−2 ( λ) P}. From now on we are interested in{ ( ) λ }. For ∈W we
define the sub-level domain as the connected component of the open set{ ∈ R :

( ) < 1} containing 0. Then it is easy to see that is bounded, -a.s.By making
use of Theorem 4 we see that for not belonging to some -negligible subset ofW,
there exists a point̃ of local (strict) minimum of with depth> 1 inside . Such
a point ˜ is characterized by (i) (˜) < ( ) for ∈ −{˜} and (ii) ⊂ , where

denotes the connected component of the open set{ ∈ R : ( ) − (˜) < 1}
containing ˜. It is obvious that the totality of such points̃ is a finite set, which is
denoted by{ ( ) 1≤ ≤ ( )}. Now suppose ( ) = 1 and put =1( ). Then
from the argument of [4] we see that

( λ)→ (in probability with respect to λ )(5.1)

as λ → ∞ provided = (λ)(non-random) tends to 1. If ( )≥ 2, we do not
know whether the limiting distribution of (λ) exists. Hoping for the best, we think
it might be possible to define , in one way or another, asa single point among

( ) 1 ≤ ≤ ( ), and to prove (5.1) even in the case ( )≥ 2, for almost
all .
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