Tanaka, H.
Osaka J. Math.
38 (2001), 369-377

SOME THEOREMS CONCERNING EXTREMA
OF BROWNIAN MOTION WITH d-DIMENTIONAL TIME

Dedicated to Professor N. lkeda on his 70th birthday

HirosHI TANAKA
(Received October 16, 1999)

Introduction

Let X = {X(x),x € R} be a Lévy's Brownian motion withd -dimensional time
([2]) defined on a certain probability spac&,(P ); this is a centered Gaussian
system with continuous sample functions satisfyiig (0) = 0 &K (x)X(y)} =
(|x| +|y| — |x — y])/2. For a nonempty subset &¢ we put

X(A) =inf{X(x):x € A}, X(A)=sup{X(x):x € A}.

We often use the notatioX A( ) to denote eitt&fA) or X(A). For example X 4 )

X(B) denotes any one aX(A)—X(B), X(A)—X(B), X(A)—X(B) and X(A)—X(B). A

point x in R? is called a point of local minimum (resp. local maximum) of a sample

function X if there exists a neighborho@d eof such thak (X&) (resp.X {)=

X(U)). A point of either local minimum or local maximum is called an extreme-point.
The following are typical of those problems and theorems we discuss in this pa-

per.

() Under what condition onA does the probability distribution ®¥fA ( ) admit a

strictly positive C>°-density?

(I Under what condition onA and does the joint probability distributionxofdA ( )

and X (B) admit a strictly positive”°°-density?

(11 Almost all sample functionsX have the following property: There are no distinct

extreme-pointst ang  witlX x( ) X y( ).

We give some sufficient conditions that will give positive answers to the problems (1)

and (II) and then give a proof of (Ill). Formulating the problems somewhat generally

we state our main results in the following theorems.

Theorem 1. Let Ay, 1 < k < n, be nonempty bounded closed sets not contain-
ing the origin 0. Then for any constants,, 1 < k <n, such thatc; +c,+---+c¢, Z0,
the probability distribution of

c1X(Aq) + c2X(AQ) +- -+ ¢, X(Ay)
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can be expressed as a convolutigor 1 wherey is a nondegenerate Gaussian distri-
bution with mearQ and p is some probability distribution ifR. In particular, the dis-
tribution of each ofX(A) and X(A) has a strictly positiveC>-density provided that
A is a nonempty bounded closed set not contairting

Theorem 2. Let A;, By, 1< j <m, 1<k <n, be nonempty bounded closed
sets such that/’L;A; is separated fromu;_, B, by a certain(d — 1)-dimensional hy-
perplaneTT passing through the origida Then for any constants;, c¢;, 1 < j <
m, 1<k <n,such thaty "_ c; 70 and 37/ ¢; # 0, the joint distribution of

m

@) AX) =D X)), f(X) =D X (B
k=1

j=1

has a form(v1 ® 72) * v where eachy; is a nondegenerate Gaussian distribution with
mean0 and v is some2-dimensional probability distribution. In particular, the joint
distribution of X(A) and X(B) has a strictly positiveC>°-density provided that and
B are nonempty bounded closed sets separated from each other by a dertaifth)-
dimensional hyperplane passing through

Theorem 3. Let A;, By, 1< j <m, 1<k <n, be nonempty bounded closed
sets such that/’_;A; is separated fromu;_, B, by a certain(d — 1)-dimensional hy-
perplane. Then for any constantg, ¢, 1 < j < m, 1 < k < n, such that
dmaci = Ygmcr # 0, the probability distribution of f1(X) — f2(X), with £, and
f2 given by(1), has a form~ x u where~ is a nondegenerate Gaussian distribution
with mean0 and p is some distribution inR . In particularthe distribution of each
of X(A) — X(B), X(A) — X(B) and X(A) — X(B) has a strictly positiveC>-density
provided that A and B are nonempty bounded closed sets separated from each other
by a certain(d — 1)-dimensional hyperplane.

Theorem 4. Almost all sample functionX have the following propefyere.
are no distinct extreme-points and &  such th&tc) = X(y).

An example of the applicability (or our motivation) of Theorem 4 will be given
in the final section.

1. A lemma

Given a centered Gaussian systéri,, A € A} defined on a certain probability
space 2, P ), we denote by  the real Hilbert space spannefiXby A € A} and
by Hy the closed linear span (abbreviation: c.l.s.){afx — X,, A\, p € A}. Clearly
Ho C H C L%, P). We now introduce the following conditions.

Condition (A). There exists a nondegenerate Gaussian random vaiighlede-
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pendent of{ X, — Yo, A € A}.

Condition (B). There exista € A such thatX, ¢ Hp.
It is easy to see that the condition (B) implies that ¢ Hp for all A € A. Denote by
R* the space of real valued functions @n ; it has a Borel structure defined in a nat-
ural way. Then we can regarki, {X., A € A} as a random variable taking values
in RA. The following lemma is rather trivial; nevertheless, it plays a fundamental role
in this paper.

Lemma 1. (i) Let f be a Borel function fronR* to R such that
(1.1) flw+11) = fw)+ect

for any w € RA andt € R wherec is some nonzero constant ahddenotes
the function onA that identically equals. Then under the conditiolfA) we have
f(XA) =cYp+Y with a suitable random variable’ independent X, in particular,
the probability distribution off(X,) has a strictly positiveC>-density.

(ii) SupposeA is a locally compact space with a countable open base and assume
that X, is continuous in\ with probability 1. We regardX, = {X,, A € A} as a
random variable taking values in the spa€g€A) of continuous functions on, which
is equipped with the compact uniform topology. Then, under the condifipnthe
conclusion of(i) remains valid for any Borel functiory front'(A) to R satisfying
(1.1) for w € C(A) andr € R.

(iii) The condition(B) implies the condition(A).

Remark 1. Let Ay, 1< k < n, be subsets oA and let,, & k < n, be
constants such that +---+¢, # 0. Let w (A;) indicate either iffw()\) : A € A} or
sup{w(\) : A € Ai}; the choice may depend dn  but not an . Then

(1.2) fw) = caw(Ag) +-- -+ caw(An)

is a typical example off satisfying (1.1) with & +---+¢, provided thatf can be
defined to be a Borel function.

RemArRk 2. Let F be a class of functions defined on [0 1] and taking values in
A (an example of such ar is the space of continuous paths in  connecting two
given points ofA ). Then the functioff  defined byw ( ) ={pfw, u) : u € F} with
g(w, u) = supfw(u(r)) : 0 <r <1} satisfies (1.1).

Remark 3. If {X,, A € A} satisfies (A) (resp. (B)) and if\; is a nonempty
subset ofA , then the sub-systefiY,, A € A;} also satisfies (A) (resp. (B)).

Proof of Lemma 1. (i) Under the condition (AY, — Yol and Yy are independent
SO f(Xa)—cYo = f(Xa — Yol) and Yy are independent. If we plt £ X( ) cYo,
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then we have the expressighX{ Y¥,+Y in which Yy andY are independent and
Yo is a nondegenerate Gaussian random variable. The assertion (ii) follows from (i).
(iii) It is easy to see thal, + Hy = {X,+Y : Y € Hp} does not depend oi. The
condition (B) means thak, + Hy # 0. Since X, + Hp is a closed convex set, there
exists a uniquery € X, + Hy such that

\E{YZ} = min{,/E{|XA +Y[]2}:Y € Ho} > 0.

Then clearlyYy L Hy. Since X — Yo € Hp, X — Yy L Yy for all X, This implies that
Yo is independent of X, — Yo, A € A}. O

2. Proof of Theorem 1

As stated in Introduction le&X X(x), x € R’} be a Brownian motion with
d-dimensional time. For any fixed pair of real numbersandz, such that O0< r; < 2
we putA ={x € R? i1 < |x| <1}, H =cl.s{X(x), x € A} and Hp = c.l.s{X(x) —
X(y), x,y € A}. First we prepare the following lemma.

Lemma 2. The condition(B) is satisfied for{X(x), x € A}, namely there ex-
ists x € A such thatX(x) € Ho.

Proof. (i) We consider the case where the dimengion is odddaxd3. De-
noting by df the uniform distribution oS¢~ ={# € R? : |0| = 1}, we put

R(t) = / X(t0)do, >0,
Hy = c.SI‘.s{R(t), f <t <t}
Hit = the orthogonal complement @iy in H.
Then we have
(2.1) X(x)— R(x]) e H+  for anyx € A.

In fact, it is easy to see that, for each fixed> 0, E{(X(x) — R(Jx|))R(¢)} depends
only on |x| and hence it must vanish, which implies (2.1). We are going to prove that
X(110) ¢ Ho for € S?=1. The relation (2.1) implies thak #@) = R(f1) + X’ with

X' € Hi- and thatHy C Hio ® Hi- where Higp = c..s{R(t) — R(s),t,s € [t1,12]}.
Therefore, for the proof ofX #{f) ¢ Hp it is enough to show thar ri() ¢ Hio. We

now make use of the canonical representation of the Gaussian propRé3s ¢ > 0}

due to McKean [5], which means that

R(t) = /0 F R dBG). 130,
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where{B(r), r > 0} is a one-dimensional standard Brownian motion and
1
(2.2) fle,r)=k@d) | @-ud32qu, 0<r<t,
r/t

k(d) being a suitable constant depending onlydn . For any rand mith s <
t <t we have

R(1) — R(s) = /O ' fu(r)dB(r) + / ¢ ()AB(r).

n

R(n) = /0 CF(r)dB).

where f;s ¢ ) =f €, r ) f(s,r), f(r) = f(t1,7) and g5 ¢ ) is a suitable function. There-
fore, if we put

&
|

= c.l.s {/tl fis(r)dB(r), t,s € [t1, tg]},
0

= cl.s {B(u) — B(r),r,u € [t1,1]},

I
|

then Hy L H., Hio C Ho® H. and R ¢) L H,. From these observations we see that
for the proof of R 1) &€ Hio, it is enough to show

(2.3) /O " F()B() ¢ fio.

Let L3 be the subspace df?[0, #;] spanned by the functiong, -)(z, s € [t1, 2]. Then
the Hilbert spacefl, is isomorphic toL3 and (2.3) is equivalent tof ¢ LZ. Now
the assumption tha# is an odd integer 3 implies that f;; £ )z, s, € [11, 1], are
polynomials of degree — 2 vanishing atr =0 (use (2.2)). Therefore all the functions
in L3 are also polynomials of degree at mast- 2 vanishing atr = 0. On the other
hand it is easy to see thgt is a polynomial of degfee2 with f(0) > 0. Therefore

f & L3, which finally impliesX (,0) ¢ Ho. This completes the proof in the case where
d is odd andd > 3.

(ii) The proof in the case wheré is even can be obtained by the method of de-
scent in which a Brownian motion witli -dimensional time is viewed as the restriction
of a Brownian motion with { + 1)-dimensional time to’ R {0} ¢ R?** and also by
using Remark 3. The proof in the cage = 1 is easy. The proof of Lemma 2 is fin-
ished. U

We are now able to prove Theorem 1. From the assumptiodon < k1< n,
there existr; and 1, with 0 < #; <, such thatA ={x € R? :#; < |x| < £} includes
all A,. Then, by Lemma 2 the condition (B) is satisfied f&  {X(x),x € A}
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and by Remark 1 the condition (1.1) is satisfied for the functjfom ( J1®(A1) +
cow(A)) +---+c,W(A,),w € C(A), with ¢ = ¢1 +---+¢,. Therefore by Lemma 1
the probability distribution of the random variable X{ Y£X(A1) + coX(A2) +--- +
¢, X(A,) has a formy x u. This completes the proof of Theorem 1.

3. Proof of Theorem 2

Under the assumption oA;  anB in Theorem 2 we can take disjoint closed
balls K andL with the following properties:
B K DU A, L D U}, By.
(3.2) K is separated fromh. by the hyperplafe
(3.3) The centem ofK and the centér &f are on the straight line that passes
through the origin 0 and is perpendicular b
We consider open ball&/; and U, with a common radiug and with centersa and
ob, respectively, wheréd > 0 is chosen so thaia ¢ K and éb ¢ L (see the figure).
We now make use of the Chentsov representatioX of () ([1]), which asserts that

(3:4) X(x) = W(Dx),

where D, is the open ball with center2 and radiugx|/2, and{W(d¢&)} is a suitable
white noise in R associated with the measufg|~“*1d¢ (c; is a suitable constant),
namely, a Gaussian random measure fn R suchAHa¥ (d¢)} = 0 and E{W(d¢)?} =
cql€|~%*1d¢. By taking e > 0 small enough, we can assume

(35) UicC {XDK Dx} N {VEUL D).}C, U, C {QL D}.} N {XEJK Dx}p.

If we write X(x) = W(D,) = WU+ X, and X () =W (D,) =W () + X,, then
(3.5) implies that the 2-dimensional random vect@éf (/1)( W (U>)) is independent of
the Gaussian family{(X,, X,) : x € K, y € L}. Therefore we have

f(X) = WU+ fi,  foX) = W(Ua) + fa,
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with ¢ = 3% cj. ¢’ = Yj_y ¢ and W U1), W(U2)) is independent of fi. f5). Since
W(U;) and W ({U,) are independent and each of them is a nondegenerate Gaussian
random variable with mean 0, the joint distribution ¢f(X) and f>(X) has a form

(11 ®72) xv.

4. Proof of Theorem 3 and Theorem 4

By using the fact tha{ X (x)— X (xo), x € R?} is identical in law to{ X (x—xo), x €
R’} for eachxo € R and also by using the assumption’_; c; = Y7/, ¢;, we see
that the probability distribution off1(X) — f2(X) is invariant under any simultaneous
shift of A; and B, . Therefore, in proving Theorem 3 we may assume #yt . and
B, satisfy the same assumption as in Theorem 2. Then the joint distributigh( &)
and f>(X) has a form {1 ® 7,) * v by Theorem 2 and this implies the conclusion of
Theorem 3.

Before going to the proof of Theorem 4 we introduce some notation. Denote by
K the set of all pairs K, Ky) of disjoint closed ballsk; and K, with rational centers
and rational radii. We puff Ki, K»; 01, 02) = X(K1;01) — X(K2; 02) where eachy; is
either 0 or 1 andX K; ¢;) denotes eithetX(K;) or X(K;) according ass; = 0 or
1. We also denote by¥(K1, K3; 01, 02) the event{ f(Ki1, K2; 01,02) = 0} and then
put & = UE(K1, K, 01, 02) where the union is taken over alK({, K;) € K and all
(01, 02) € {0, 1}2. Finally let £ be the event such that there exist distinct extreme-
pointsx andy withX £ ) =X { ). It is then easy to see tilatC £’. On the other
hand Theorem 3 implie®{£(K1, K2; 01, 02)} =0 and henceP{£’} = 0. This implies
P{&} =0 as was to be proved.

5. Remarks on a diffusion process in al-dimensional Brownian environment

This section is to supply an example for the applicability of Theorem 4. We
change the notation for a Brownian motion withda -dimensional time since we want
to use X () for a diffusion process. L&/ be the space of continuous functions on
R? vanishing at 0. In this section an elemé#it  Wfis called an environment. We
consider the probability measu® % such th#f(x), x € R?, P} is a Léevy’s
Brownian motion with ad -dimensional time. L&  be the space of continuous func-
tions on [Q oo) taking values in R . The value af(c ) at time ¢ is denoted by
X(t) = X(t,w) = w(t). For each fixed environmer¥  we consider the probability mea-
sure Py, onQ such thafX(¢),t > 0, Py} is a diffusion process in ‘R with generator

d
1 1 0 0
—(A — . = — w N -w_=
(A= VIW-V) = 5e ;axk <e axk>
and starting from 0. LetP be the probability measure oW x Q defined by
PdWdw) = P(dW)Py(dw). Then {X(¢),t > 0,P} can be regarded as a process
defined on the probability spacéV(x €2, P), which we call a diffusion process in
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a d-dimensional Brownian environment. When = 1, this model is a diffusion ana-
logue of well-known Sinai’'s random walk in a random environment(1982) and much
is known about the long-term behavior of X(t) such as localization. Wiien 2, a
similar diffusion model appeared in [3]. Now our interest is the long-term behavior
of {X(r),r > 0,P} in the cased > 2. Tanaka [6](see also [7]) proved that, for any
dimensiond, {X(t),t > 0, Py} is recurrentfor almost all Brownian sample environ-
mentsW . Mathieu[4] proved thdobcalization takes place fo{ X(¢),t > 0, P}, in the
sense that

lim Tim P (A ?max{|X()]:0<t <e*} > N) =0.

N—o00 A—o00
However, in the casd > 2, it seems that the existence of the limiting distribution of
{A\72X(e*), P} as A — oo is still an open problem. We give a remark on this prob-
lem. We notice the scaling relation

{X(t), t >0, Paw,} £{A2X(\), t >0, Py},

where\ > 0 andW € W are fixed, W, denotes an element ¥  defined By (x) =
A~LW(\2x), x € RY, and ‘= means the equality in distribution. This scaling relation
combined with W, < w imply the following: If we can prove tha{X(e™*), Pw}
has the limiting distribution as\ — oo under the conditionr 3 X) — 1, then so
does{A\~2X(e), P}. From now on we are interested {X (), Pxw}. For W € W we
define the sub-level domai® as the connected component of the opén seR? :
W(x) < 1} containing 0. Then it is easy to see that is bounded, Bysmaking
use of Theorem 4 we see that foF  not belonging to some -negligible subsét, of
there exists a poink of local (strict) minimum of W with depth> 1 inside D . Such
a pointb is characterized by (i b) < W(x) for x € U —{b} and (i) U ¢ D, where
U denotes the connected component of the open{set R? : W (x) — w(b) < 1}
containingb. It is obvious that the totality of such points is a finite set, which is
denoted by{b,(W), 1<k <I(W)}. Now supposd W )=1 and pét & (W). Then
from the argument of [4] we see that

(5.1) X(e™) — b (in probability with respect taPyy)

as A — oo providedr =r Q)(non-random) tends to 1. If W > 2, we do not
know whether the limiting distribution ok e(*) exists. Hoping for the best, we think
it might be possible to defin@ , in one way or another, aasingle pointamong
b(W), 1 < k < [(W), and to prove (5.1) even in the caséV ( >) 2, for almost
all w.
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