SOME THEOREMS CONCERNING EXTREMA OF BROWNIAN MOTION WITH d-DIMENTIONAL TIME

Dedicated to Professor N. Ikeda on his 70th birthday

Hiroshi TANAKA

(Received October 16, 1999)

Introduction

Let $X=\left\{X(x), x \in \mathbf{R}^{d}\right\}$ be a Lévy's Brownian motion with d-dimensional time ([2]) defined on a certain probability space (Ω, P); thus X is a centered Gaussian system with continuous sample functions satisfying $X(0)=0$ and $E\{X(x) X(y)\}=$ $(|x|+|y|-|x-y|) / 2$. For a nonempty subset A of \mathbf{R}^{d} we put

$$
\underline{X}(A)=\inf \{X(x): x \in A\}, \quad \bar{X}(A)=\sup \{X(x): x \in A\} .
$$

We often use the notation $X(A)$ to denote either $\underline{X}(A)$ or $\bar{X}(A)$. For example, $X(A)-$ $X(B)$ denotes any one of $\underline{X}(A)-\underline{X}(B), \underline{X}(A)-\bar{X}(B), \bar{X}(A)-\underline{X}(B)$ and $\bar{X}(A)-\bar{X}(B)$. A point x in \mathbf{R}^{d} is called a point of local minimum (resp. local maximum) of a sample function X if there exists a neighborhood U of x such that $X(x)=\underline{X}(U)$ (resp. $X(x)=$ $\bar{X}(U))$. A point of either local minimum or local maximum is called an extreme-point.

The following are typical of those problems and theorems we discuss in this paper.
(I) Under what condition on A does the probability distribution of $X(A)$ admit a strictly positive C^{∞}-density?
(II) Under what condition on A and B does the joint probability distribution of $X(A)$ and $X(B)$ admit a strictly positive C^{∞}-density?
(III) Almost all sample functions X have the following property: There are no distinct extreme-points x and y with $X(x)=X(y)$.
We give some sufficient conditions that will give positive answers to the problems (I) and (II) and then give a proof of (III). Formulating the problems somewhat generally we state our main results in the following theorems.

Theorem 1. Let $A_{k}, 1 \leq k \leq n$, be nonempty bounded closed sets not containing the origin 0 . Then for any constants $c_{k}, 1 \leq k \leq n$, such that $c_{1}+c_{2}+\cdots+c_{n} \neq 0$, the probability distribution of

$$
c_{1} X\left(A_{1}\right)+c_{2} X\left(A_{2}\right)+\cdots+c_{n} X\left(A_{n}\right)
$$

can be expressed as a convolution $\gamma * \mu$ where γ is a nondegenerate Gaussian distribution with mean 0 and μ is some probability distribution in \boldsymbol{R}. In particular, the distribution of each of $\underline{X}(A)$ and $\bar{X}(A)$ has a strictly positive C^{∞}-density provided that A is a nonempty bounded closed set not containing 0 .

Theorem 2. Let $A_{j}, B_{k}, 1 \leq j \leq m, 1 \leq k \leq n$, be nonempty bounded closed sets such that $\cup_{j=1}^{m} A_{j}$ is separated from $\cup_{k=1}^{n} B_{k}$ by a certain (d -1)-dimensional hyperplane Π passing through the origin 0 . Then for any constants $c_{j}, c_{k}^{\prime}, 1 \leq j \leq$ $m, 1 \leq k \leq n$, such that $\sum_{j=1}^{m} c_{j} \neq 0$ and $\sum_{k=1}^{n} c_{k}^{\prime} \neq 0$, the joint distribution of

$$
\begin{equation*}
f_{1}(X)=\sum_{j=1}^{m} c_{j} X\left(A_{j}\right), \quad f_{2}(X)=\sum_{k=1}^{n} c_{k}^{\prime} X\left(B_{k}\right) \tag{1}
\end{equation*}
$$

has a form $\left(\gamma_{1} \otimes \gamma_{2}\right) * \nu$ where each γ_{i} is a nondegenerate Gaussian distribution with mean 0 and ν is some 2-dimensional probability distribution. In particular, the joint distribution of $X(A)$ and $X(B)$ has a strictly positive C^{∞}-density provided that A and B are nonempty bounded closed sets separated from each other by a certain ($d-1$)dimensional hyperplane passing through 0.

Theorem 3. Let $A_{j}, B_{k}, 1 \leq j \leq m, 1 \leq k \leq n$, be nonempty bounded closed sets such that $\cup_{j=1}^{m} A_{j}$ is separated from $\cup_{k=1}^{n} B_{k}$ by a certain $(d-1)$-dimensional hyperplane. Then for any constants $c_{j}, c_{k}^{\prime}, 1 \leq j \leq m, 1 \leq k \leq n$, such that $\sum_{j=1}^{m} c_{j}=\sum_{k=1}^{n} c_{k}^{\prime} \neq 0$, the probability distribution of $f_{1}(X)-f_{2}(X)$, with f_{1} and f_{2} given by (1), has a form $\gamma * \mu$ where γ is a nondegenerate Gaussian distribution with mean 0 and μ is some distribution in R. In particular, the distribution of each of $\underline{X}(A)-\underline{X}(B), \underline{X}(A)-\bar{X}(B)$ and $\bar{X}(A)-\bar{X}(B)$ has a strictly positive C^{∞}-density provided that A and B are nonempty bounded closed sets separated from each other by a certain (d-1)-dimensional hyperplane.

Theorem 4. Almost all sample functions X have the following property: There. are no distinct extreme-points x and y of X such that $X(x)=X(y)$.

An example of the applicability (or our motivation) of Theorem 4 will be given in the final section.

1. A lemma

Given a centered Gaussian system $\left\{X_{\lambda}, \lambda \in \Lambda\right\}$ defined on a certain probability space (Ω, P), we denote by H the real Hilbert space spanned by $\left\{X_{\lambda}, \lambda \in \Lambda\right\}$ and by H_{0} the closed linear span (abbreviation: c.l.s.) of $\left\{X_{\lambda}-X_{\mu}, \lambda, \mu \in \Lambda\right\}$. Clearly $H_{0} \subset H \subset L^{2}(\Omega, P)$. We now introduce the following conditions.

Condition (A). There exists a nondegenerate Gaussian random variable Y_{0} inde-
pendent of $\left\{X_{\lambda}-Y_{0}, \lambda \in \Lambda\right\}$.
Condition (B). There exists $\lambda \in \Lambda$ such that $X_{\lambda} \notin H_{0}$.
It is easy to see that the condition (B) implies that $X_{\lambda} \notin H_{0}$ for all $\lambda \in \Lambda$. Denote by \mathbf{R}^{Λ} the space of real valued functions on Λ; it has a Borel structure defined in a natural way. Then we can regard $X_{\Lambda}=\left\{X_{\lambda}, \lambda \in \Lambda\right\}$ as a random variable taking values in \mathbf{R}^{Λ}. The following lemma is rather trivial; nevertheless, it plays a fundamental role in this paper.

Lemma 1. (i) Let f be a Borel function from \mathbf{R}^{Λ} to R such that

$$
\begin{equation*}
f(w+t \mathbf{1})=f(w)+c t \tag{1.1}
\end{equation*}
$$

for any $w \in \mathbf{R}^{\Lambda}$ and $t \in \mathrm{R}$ where c is some nonzero constant and $\mathbf{1}$ denotes the function on Λ that identically equals 1 . Then under the condition (A) we have $f\left(X_{\Lambda}\right)=c Y_{0}+Y$ with a suitable random variable Y independent of Y_{0}; in particular, the probability distribution of $f\left(X_{\Lambda}\right)$ has a strictly positive C^{∞}-density.
(ii) Suppose Λ is a locally compact space with a countable open base and assume that X_{λ} is continuous in λ with probability 1 . We regard $X_{\Lambda}=\left\{X_{\lambda}, \lambda \in \Lambda\right\}$ as a random variable taking values in the space $C(\Lambda)$ of continuous functions on Λ, which is equipped with the compact uniform topology. Then, under the condition (A), the conclusion of (i) remains valid for any Borel function f from $C(\Lambda)$ to R satisfying (1.1) for $w \in C(\Lambda)$ and $t \in R$.
(iii) The condition (B) implies the condition (A).

Remark 1. Let $\Lambda_{k}, 1 \leq k \leq n$, be subsets of Λ and let $c_{k}, 1 \leq k \leq n$, be constants such that $c_{1}+\cdots+c_{n} \neq 0$. Let $w\left(\Lambda_{k}\right)$ indicate either $\inf \left\{w(\lambda): \lambda \in \Lambda_{k}\right\}$ or $\sup \left\{w(\lambda): \lambda \in \Lambda_{k}\right\}$; the choice may depend on k but not on w. Then

$$
\begin{equation*}
f(w)=c_{1} w\left(\Lambda_{1}\right)+\cdots+c_{n} w\left(\Lambda_{n}\right) \tag{1.2}
\end{equation*}
$$

is a typical example of f satisfying (1.1) with $c=c_{1}+\cdots+c_{n}$ provided that f can be defined to be a Borel function.

Remark 2. Let F be a class of functions defined on $[0,1]$ and taking values in Λ (an example of such an F is the space of continuous paths in Λ connecting two given points of Λ). Then the function f defined by $f(w)=\inf \{g(w, u): u \in F\}$ with $g(w, u)=\sup \{w(u(t)): 0 \leq t \leq 1\}$ satisfies (1.1).

Remark 3. If $\left\{X_{\lambda}, \lambda \in \Lambda\right\}$ satisfies (A) (resp. (B)) and if Λ_{1} is a nonempty subset of Λ, then the sub-system $\left\{X_{\lambda}, \lambda \in \Lambda_{1}\right\}$ also satisfies (A) (resp. (B)).

Proof of Lemma 1. (i) Under the condition (A) $X_{\Lambda}-Y_{0} \mathbf{1}$ and Y_{0} are independent so $f\left(X_{\Lambda}\right)-c Y_{0}=f\left(X_{\Lambda}-Y_{0} \mathbf{1}\right)$ and Y_{0} are independent. If we put $Y=f\left(X_{\Lambda}\right)-c Y_{0}$,
then we have the expression $f\left(X_{\Lambda}\right)=c Y_{0}+Y$ in which Y_{0} and Y are independent and Y_{0} is a nondegenerate Gaussian random variable. The assertion (ii) follows from (i).
(iii) It is easy to see that $X_{\lambda}+H_{0}=\left\{X_{\lambda}+Y: Y \in H_{0}\right\}$ does not depend on λ. The condition (B) means that $X_{\lambda}+H_{0} \not \supset 0$. Since $X_{\lambda}+H_{0}$ is a closed convex set, there exists a unique $Y_{0} \in X_{\lambda}+H_{0}$ such that

$$
\sqrt{E\left\{Y_{0}^{2}\right\}}=\min \left\{\sqrt{E\left\{\left|X_{\lambda}+Y\right|^{2}\right\}}: Y \in H_{0}\right\}>0
$$

Then clearly $Y_{0} \perp H_{0}$. Since $X_{\lambda}-Y_{0} \in H_{0}, X_{\lambda}-Y_{0} \perp Y_{0}$ for all λ. This implies that Y_{0} is independent of $\left\{X_{\lambda}-Y_{0}, \lambda \in \Lambda\right\}$.

2. Proof of Theorem 1

As stated in Introduction let $X=\left\{X(x), x \in \mathrm{R}^{d}\right\}$ be a Brownian motion with d-dimensional time. For any fixed pair of real numbers t_{1} and t_{2} such that $0<t_{1}<t_{2}$ we put $\Lambda=\left\{x \in \mathrm{R}^{d}: t_{1} \leq|x| \leq t_{2}\right\}, H=$ c.l.s. $\{X(x), x \in \Lambda\}$ and $H_{0}=$ c.l.s. $\{X(x)-$ $X(y), x, y \in \Lambda\}$. First we prepare the following lemma.

Lemma 2. The condition (B) is satisfied for $\{X(x), x \in \Lambda\}$, namely, there exists $x \in \Lambda$ such that $X(x) \notin H_{0}$.

Proof. (i) We consider the case where the dimension d is odd and $d \geq 3$. Denoting by $\hat{d} \theta$ the uniform distribution on $S^{d-1}=\left\{\theta \in \mathrm{R}^{d}:|\theta|=1\right\}$, we put

$$
\begin{aligned}
R(t) & =\int_{S^{d-1}} X(t \theta) \hat{d} \theta, \quad t \geq 0 \\
H_{1} & =\text { c.l.s. }\left\{R(t), \quad t_{1} \leq t \leq t_{2}\right\} \\
H_{1}^{\perp} & =\text { the orthogonal complement of } H_{1} \text { in } H .
\end{aligned}
$$

Then we have

$$
\begin{equation*}
X(x)-R(|x|) \in H_{1}^{\perp} \quad \text { for any } x \in \Lambda \tag{2.1}
\end{equation*}
$$

In fact, it is easy to see that, for each fixed $t \geq 0, E\{(X(x)-R(|x|)) R(t)\}$ depends only on $|x|$ and hence it must vanish, which implies (2.1). We are going to prove that $X\left(t_{1} \theta\right) \notin H_{0}$ for $\theta \in S^{d-1}$. The relation (2.1) implies that $X\left(t_{1} \theta\right)=R\left(t_{1}\right)+X^{\prime}$ with $X^{\prime} \in H_{1}^{\perp}$ and that $H_{0} \subset H_{10} \oplus H_{1}^{\perp}$ where $H_{10}=$ c.l.s. $\left\{R(t)-R(s), t, s \in\left[t_{1}, t_{2}\right]\right\}$. Therefore, for the proof of $X\left(t_{1} \theta\right) \notin H_{0}$ it is enough to show that $R\left(t_{1}\right) \notin H_{10}$. We now make use of the canonical representation of the Gaussian process $\{R(t), t \geq 0\}$ due to McKean [5], which means that

$$
R(t)=\int_{0}^{t} f(t, r) d B(r), \quad t \geq 0
$$

where $\{B(r), r \geq 0\}$ is a one-dimensional standard Brownian motion and

$$
\begin{equation*}
f(t, r)=k(d) \int_{r / t}^{1}\left(1-u^{2}\right)^{(d-3) / 2} d u, \quad 0 \leq r \leq t \tag{2.2}
\end{equation*}
$$

$k(d)$ being a suitable constant depending only on d. For any s and t with $t_{1} \leq s<$ $t \leq t_{2}$ we have

$$
\begin{aligned}
R(t)-R(s) & =\int_{0}^{t_{1}} f_{t s}(r) d B(r)+\int_{t_{1}}^{t} g_{t s}(r) d B(r) \\
R\left(t_{1}\right) & =\int_{0}^{t_{1}} f(r) d B(r)
\end{aligned}
$$

where $f_{t s}(r)=f(t, r)-f(s, r), f(r)=f\left(t_{1}, r\right)$ and $g_{t s}(r)$ is a suitable function. Therefore, if we put

$$
\begin{aligned}
& \tilde{H}_{0}=\text { c.l.s. }\left\{\int_{0}^{t_{1}} f_{t s}(r) d B(r), t, s \in\left[t_{1}, t_{2}\right]\right\} \\
& \tilde{H}_{+}=\text {c.l.s. }\left\{B(u)-B(r), r, u \in\left[t_{1}, t_{2}\right]\right\}
\end{aligned}
$$

then $\tilde{H}_{0} \perp \tilde{H}_{+}, H_{10} \subset \tilde{H}_{0} \oplus \tilde{H}_{+}$and $R\left(t_{1}\right) \perp \tilde{H}_{+}$. From these observations we see that for the proof of $R\left(t_{1}\right) \notin H_{10}$, it is enough to show

$$
\begin{equation*}
\int_{0}^{t_{1}} f(r) d B(r) \notin \tilde{H}_{0} \tag{2.3}
\end{equation*}
$$

Let L_{0}^{2} be the subspace of $L^{2}\left[0, t_{1}\right]$ spanned by the functions $f_{t s}(\cdot), t, s \in\left[t_{1}, t_{2}\right]$. Then the Hilbert space \tilde{H}_{0} is isomorphic to L_{0}^{2} and (2.3) is equivalent to $f \notin L_{0}^{2}$. Now the assumption that d is an odd integer ≥ 3 implies that $f_{t s}(r), t, s, \in\left[t_{1}, t_{2}\right]$, are polynomials of degree $d-2$ vanishing at $r=0$ (use (2.2)). Therefore all the functions in L_{0}^{2} are also polynomials of degree at most $d-2$ vanishing at $r=0$. On the other hand it is easy to see that f is a polynomial of degree $d-2$ with $f(0)>0$. Therefore $f \notin L_{0}^{2}$, which finally implies $X\left(t_{1} \theta\right) \notin H_{0}$. This completes the proof in the case where d is odd and $d \geq 3$.
(ii) The proof in the case where d is even can be obtained by the method of descent in which a Brownian motion with d-dimensional time is viewed as the restriction of a Brownian motion with $(d+1)$-dimensional time to $\mathrm{R}^{d} \times\{0\} \subset \mathrm{R}^{d+1}$ and also by using Remark 3. The proof in the case $d=1$ is easy. The proof of Lemma 2 is finished.

We are now able to prove Theorem 1. From the assumption on $A_{k}, 1 \leq k \leq n$, there exist t_{1} and t_{2} with $0<t_{1}<t_{2}$ such that $\Lambda=\left\{x \in \mathrm{R}^{d}: t_{1} \leq|x| \leq t_{2}\right\}$ includes all A_{k}. Then, by Lemma 2 the condition (B) is satisfied for $X_{\Lambda}=\{X(x), x \in \Lambda\}$

and by Remark 1 the condition (1.1) is satisfied for the function $f(w)=c_{1} w\left(A_{1}\right)+$ $c_{2} w\left(A_{1}\right)+\cdots+c_{n} W\left(A_{n}\right), w \in C(\Lambda)$, with $c=c_{1}+\cdots+c_{n}$. Therefore by Lemma 1 the probability distribution of the random variable $f\left(X_{\Lambda}\right)=c_{1} X\left(A_{1}\right)+c_{2} X\left(A_{2}\right)+\cdots+$ $c_{n} X\left(A_{n}\right)$ has a form $\gamma * \mu$. This completes the proof of Theorem 1 .

3. Proof of Theorem 2

Under the assumption on A_{j} and B_{k} in Theorem 2 we can take disjoint closed balls K and L with the following properties:
(3.1) $K \supset \cup_{j=1}^{m} A_{j}, \quad L \supset \cup_{k=1}^{n} B_{k}$.
(3.2) K is separated from L by the hyperplane Π.
(3.3) The center a of K and the center b of L are on the straight line that passes through the origin 0 and is perpendicular to Π.
We consider open balls U_{1} and U_{2} with a common radius ε and with centers δa and δb, respectively, where $\delta>0$ is chosen so that $\delta a \notin K$ and $\delta b \notin L$ (see the figure). We now make use of the Chentsov representation of $X(x)$ ([1]), which asserts that

$$
\begin{equation*}
X(x)=W\left(D_{x}\right), \tag{3.4}
\end{equation*}
$$

where D_{x} is the open ball with center $x / 2$ and radius $|x| / 2$, and $\{W(d \xi)\}$ is a suitable white noise in R^{d} associated with the measure $c_{d}|\xi|^{-d+1} d \xi$ (c_{d} is a suitable constant), namely, a Gaussian random measure in R^{d} such that $E\{W(d \xi)\}=0$ and $E\left\{W(d \xi)^{2}\right\}=$ $c_{d}|\xi|^{-d+1} d \xi$. By taking $\varepsilon>0$ small enough, we can assume

$$
\begin{equation*}
U_{1} \subset\left\{\bigcap_{x \in K} D_{x}\right\} \bigcap\left\{\bigcup_{y \in L} D_{y}\right\}^{c}, \quad U_{2} \subset\left\{\bigcap_{y \in L} D_{y}\right\} \bigcap\left\{\bigcup_{x \in K} D_{x}\right\}^{c} \tag{3.5}
\end{equation*}
$$

If we write $X(x)=W\left(D_{x}\right)=W\left(U_{1}\right)+\tilde{X}_{x}$ and $X(y)=W\left(D_{y}\right)=W\left(U_{2}\right)+\tilde{X}_{y}$, then (3.5) implies that the 2-dimensional random vector $\left(W\left(U_{1}\right), W\left(U_{2}\right)\right)$ is independent of the Gaussian family $\left\{\left(\tilde{X}_{x}, \tilde{X}_{y}\right): x \in K, y \in L\right\}$. Therefore we have

$$
f_{1}(X)=c W\left(U_{1}\right)+\tilde{f}_{1}, \quad f_{2}(X)=c^{\prime} W\left(U_{2}\right)+\tilde{f}_{2}
$$

with $c=\sum_{j=1}^{m} c_{j}, c^{\prime}=\sum_{k=1}^{n} c_{k}^{\prime}$ and $\left(W\left(U_{1}\right), W\left(U_{2}\right)\right)$ is independent of $\left(\tilde{f}_{1}, \tilde{f}_{2}\right)$. Since $W\left(U_{1}\right)$ and $W\left(U_{2}\right)$ are independent and each of them is a nondegenerate Gaussian random variable with mean 0 , the joint distribution of $f_{1}(X)$ and $f_{2}(X)$ has a form $\left(\gamma_{1} \otimes \gamma_{2}\right) * \nu$.

4. Proof of Theorem 3 and Theorem 4

By using the fact that $\left\{X(x)-X\left(x_{0}\right), x \in \mathrm{R}^{d}\right\}$ is identical in law to $\left\{X\left(x-x_{0}\right), x \in\right.$ $\left.\mathrm{R}^{d}\right\}$ for each $x_{0} \in \mathrm{R}^{d}$ and also by using the assumption $\sum_{j=1}^{m} c_{j}=\sum_{k=1}^{n} c_{k}^{\prime}$, we see that the probability distribution of $f_{1}(X)-f_{2}(X)$ is invariant under any simultaneous shift of A_{j} and B_{k}. Therefore, in proving Theorem 3 we may assume that A_{j}. and B_{k} satisfy the same assumption as in Theorem 2. Then the joint distribution of $f_{1}(X)$ and $f_{2}(X)$ has a form $\left(\gamma_{1} \otimes \gamma_{2}\right) * \nu$ by Theorem 2 and this implies the conclusion of Theorem 3.

Before going to the proof of Theorem 4 we introduce some notation. Denote by \mathcal{K} the set of all pairs (K_{1}, K_{2}) of disjoint closed balls K_{1} and K_{2} with rational centers and rational radii. We put $f\left(K_{1}, K_{2} ; \sigma_{1}, \sigma_{2}\right)=X\left(K_{1} ; \sigma_{1}\right)-X\left(K_{2} ; \sigma_{2}\right)$ where each σ_{i} is either 0 or 1 and $X\left(K_{i} ; \sigma_{i}\right)$ denotes either $\underline{X}\left(K_{i}\right)$ or $\bar{X}\left(K_{i}\right)$ according as $\sigma_{i}=0$ or 1. We also denote by $\mathcal{E}\left(K_{1}, K_{2} ; \sigma_{1}, \sigma_{2}\right)$ the event $\left\{f\left(K_{1}, K_{2} ; \sigma_{1}, \sigma_{2}\right)=0\right\}$ and then put $\mathcal{E}^{\prime}=\cup \mathcal{E}\left(K_{1}, K_{2} ; \sigma_{1}, \sigma_{2}\right)$ where the union is taken over all $\left(K_{1}, K_{2}\right) \in \mathcal{K}$ and all $\left(\sigma_{1}, \sigma_{2}\right) \in\{0,1\}^{2}$. Finally let \mathcal{E} be the event such that there exist distinct extremepoints x and y with $X(x)=X(y)$. It is then easy to see that $\mathcal{E} \subset \mathcal{E}^{\prime}$. On the other hand Theorem 3 implies $P\left\{\mathcal{E}\left(K_{1}, K_{2} ; \sigma_{1}, \sigma_{2}\right)\right\}=0$ and hence $P\left\{\mathcal{E}^{\prime}\right\}=0$. This implies $P\{\mathcal{E}\}=0$ as was to be proved.

5. Remarks on a diffusion process in a d-dimensional Brownian environment

This section is to supply an example for the applicability of Theorem 4. We change the notation for a Brownian motion with a d-dimensional time since we want to use $X(t)$ for a diffusion process. Let \mathbf{W} be the space of continuous functions on R^{d} vanishing at 0 . In this section an element W of \mathbf{W} is called an environment. We consider the probability measure P on W such that $\left\{W(x), x \in \mathrm{R}^{d}, P\right\}$ is a Lévy's Brownian motion with a d-dimensional time. Let Ω be the space of continuous functions on $[0, \infty)$ taking values in R^{d}. The value of $\omega(\in \Omega)$ at time t is denoted by $X(t)=X(t, \omega)=\omega(t)$. For each fixed environment W we consider the probability measure P_{W} on Ω such that $\left\{X(t), t \geq 0, P_{W}\right\}$ is a diffusion process in R^{d} with generator

$$
\frac{1}{2}(\Delta-\nabla W \cdot \nabla)=\frac{1}{2} e^{W} \sum_{k=1}^{d} \frac{\partial}{\partial x_{k}}\left(e^{-W} \frac{\partial}{\partial x_{k}}\right)
$$

and starting from 0 . Let \mathcal{P} be the probability measure on $W \times \Omega$ defined by $\mathcal{P}(d W d \omega)=P(d W) P_{W}(d \omega)$. Then $\{X(t), t \geq 0, \mathcal{P}\}$ can be regarded as a process defined on the probability space ($W \times \Omega, \mathcal{P}$), which we call a diffusion process in
a d-dimensional Brownian environment. When $d=1$, this model is a diffusion analogue of well-known Sinai's random walk in a random environment(1982) and much is known about the long-term behavior of $\mathrm{X}(\mathrm{t})$ such as localization. When $d \geq 2$, a similar diffusion model appeared in [3]. Now our interest is the long-term behavior of $\{X(t), t \geq 0, \mathcal{P}\}$ in the case $d \geq 2$. Tanaka [6](see also [7]) proved that, for any dimension $d,\left\{X(t), t \geq 0, P_{W}\right\}$ is recurrent for almost all Brownian sample environments W. Mathieu[4] proved that localization takes place for $\{X(t), t \geq 0, \mathcal{P}\}$, in the sense that

$$
\lim _{N \rightarrow \infty} \varlimsup_{\lambda \rightarrow \infty} \mathcal{P}\left(\lambda^{-2} \max \left\{|X(t)|: 0 \leq t \leq e^{\lambda}\right\}>N\right)=0 .
$$

However, in the case $d \geq 2$, it seems that the existence of the limiting distribution of $\left\{\lambda^{-2} X\left(e^{\lambda}\right), \mathcal{P}\right\}$ as $\lambda \rightarrow \infty$ is still an open problem. We give a remark on this problem. We notice the scaling relation

$$
\left\{X(t), t \geq 0, P_{\lambda W_{\lambda}}\right\} \stackrel{d}{=}\left\{\lambda^{-2} X\left(\lambda^{4} t\right), t \geq 0, P_{W}\right\},
$$

where $\lambda>0$ and $W \in \mathbf{W}$ are fixed, W_{λ} denotes an element of W defined by $W_{\lambda}(x)=$ $\lambda^{-1} W\left(\lambda^{2} x\right), x \in \mathrm{R}^{d}$, and $\stackrel{d}{=}$ means the equality in distribution. This scaling relation combined with $W_{\lambda} \stackrel{d}{=} W$ imply the following: If we can prove that $\left\{X\left(e^{r \lambda}\right), P_{\lambda W}\right\}$ has the limiting distribution as $\lambda \rightarrow \infty$ under the condition $r=r(\lambda) \rightarrow 1$, then so does $\left\{\lambda^{-2} X\left(e^{\lambda}\right), \mathcal{P}\right\}$. From now on we are interested in $\left\{X(t), P_{\lambda W}\right\}$. For $W \in \mathbf{W}$ we define the sub-level domain D as the connected component of the open set $\left\{x \in \mathrm{R}^{d}\right.$: $W(x)<1\}$ containing 0 . Then it is easy to see that D is bounded, P-a.s. By making use of Theorem 4 we see that for W not belonging to some P-negligible subset of \mathbf{W}, there exists a point \tilde{b} of local (strict) minimum of W with depth >1 inside D. Such a point \tilde{b} is characterized by (i) $W(\tilde{b})<W(x)$ for $x \in U-\{\tilde{b}\}$ and (ii) $U \subset D$, where U denotes the connected component of the open set $\left\{x \in \mathrm{R}^{d}: W(x)-W(\tilde{b})<1\right\}$ containing \tilde{b}. It is obvious that the totality of such points \tilde{b} is a finite set, which is denoted by $\left\{b_{k}(W), 1 \leq k \leq l(W)\right\}$. Now suppose $l(W)=1$ and put $b=b_{1}(W)$. Then from the argument of [4] we see that

$$
\begin{equation*}
\left.X\left(e^{r \lambda}\right) \rightarrow b \text { (in probability with respect to } P_{\lambda W}\right) \tag{5.1}
\end{equation*}
$$

as $\lambda \rightarrow \infty$ provided $r=r(\lambda)$ (non-random) tends to 1 . If $l(W) \geq 2$, we do not know whether the limiting distribution of $X\left(e^{r \lambda}\right)$ exists. Hoping for the best, we think it might be possible to define b, in one way or another, as a single point among $b_{k}(W), 1 \leq k \leq l(W)$, and to prove (5.1) even in the case $l(W) \geq 2$, for almost all w.

References

[1] N.N. Chentsov: Lévy Brownian motion for several parameters and generalized white noise, Theory Probab. Appl. 2 (1957), 265-266 (English translation).
[2] P. Lévy: Processus Stochastiques et Mouvement Brownien, Gauthier-Villars, Paris, 1948.
[3] E. Marinari, G. Parisi, D. Ruelle and P. Windy: On the interpretation of $1 / f$ noise, Comm. Math. Phys. 89 (1983), 1-12.
[4] P. Mathieu: Zero white noise limit through Dirichet forms, with application to diffusions in a random medium, Probab. Theory Related Fields, 99 (1994), 549-580.
[5] H.P. McKean: Brownian motion with a several-dimensional time, Theory Probab. Appl. 8 (1963), 335-354.
[6] H. Tanaka: Recurrence of a diffusion process in a multidimensional Brownian environment, Proc. Japan Acad. Math. Sci. 69 (1993), 377-381.
[7] H. Tanaka: Diffusion processes in random environments, Proc. International Congress of Mathematicians, Zürich, 1994, Birkhäuser, Basel, 1995, 1047-1054.

Department of Mathematical and Physical Sciences Japan Women's University
2-8-1 Mejirodai Bunkyo-ku, Tokyo 112-8681
Japan
Present address: 1-4-17-104 Miyamaedaira
Miyamae-ku, Kawasaki 216-0006
Japan

