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1. Introduction

Let β be a fixed real number greater than 1 and be a positive real number. Then
the expansion of the form =

∑
−∞< ≤ β is said to be aβ−greedy expansionif

∣∣∣∣∣∣
−

∑

≤ ≤

β

∣∣∣∣∣∣
< β(1)

holds for every , where ’s are nonnegative integer with 0≤ ≤ β. In this case,
we denote

= −1 · · · 1 0 −1 −2 · · · (in β)(2)

where we may omit a cosequence of 0’s, if exists, in the tail. We call−1 −2 · · · the
fractional part of .

A Pisot numberis an algebraic integer greater than 1 whose conjugates other than
itself have modulus smaller than 1.

Let Q(β) denote the smallest field containing the field of rational numbersQ and
β > 1.

Theorem 1 (A. Bertrand [5], K. Schmidt [4]). Let β be a Pisot number. Then a
positive real has a periodic greedy expansion in baseβ if and only if ∈ Q(β).

Let Fin(β) be the set of all elements inQ(β) which have finite greedy expansion
in baseβ, that is, the set of all nonnegative numbers for which = 0 hold except
for finitely many ’s in (2). Consider the property

Fin(β) = Z[β−1]≥0(F)

whereZ[β−1]≥0 is the set of all nonnegative elements inZ[β−1]. Akiyama [1] studied
the property (F) for Pisot numbersβ. In Theorem 3, we prove that the Pisot number
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β satisfying the equationβ3− β2− 1 = 0 has the property (F).
Let β = β(1), β(2), · · · , β( 1) andβ( 1+1), β( 1+1), · · · , β( 1+ 2), β( 1+ 2) be respectively

the real and the complex conjugates ofβ. We also denote by ( ) ( = 1 2 · · · 1 +
2 2) the corresponding conjugates of∈ Q(β). Let be a nonnegative integer and
define ( ) ( = 1 2 · · · 1 + 2 2) as an upper bound of

∣∣∣∣∣
∑

=0

− (β( ))

∣∣∣∣∣

where
∑

=0 β− runs through finite greedy expansions of length at most + 1. Let
be an upper bound of ( ) ( = 1 2· · · ). One can take = [β]/(1− |β( )|).

Here [ ] is the greatest integer not exceeding . Let ( = 1 2· · · 1 + 2 2) be
the positive real numbers and = (1 2 · · · 1+2 2) be a set of elements inZ[β]
such that

| ( )| ≤

Theorem 2 (S. Akiyama [6]). Let β be a Pisot number. Thenβ has the property
( ) if and only if every element of = (1 2 3 · · · 1+2 2) has finite greedy
expansion in baseβ.

Define a map :Q(β)→ R 1+2 2−1 by

( )=
(

(2) · · · ( 1) ℜ( ( 1+1)) ℑ( ( 1+1)) · · · ℜ( ( 1+ 2)) ℑ( ( 1+ 2))
)

(3)

Proposition 1 (S. Akiyama [6]). Let β be a Pisot number of degree . Then
(Z[β]) is dense inR −1.

Let ∈ Fin(β) and = −1 · · · be the greedy expansion of inβ, where
6= 0 and 6= 0. Put degβ( ) = deg( ) = and ordβ( ) = ord( ) = . Define
=

−1··· to be the set of all elements inFin(β) whose greedy expansion has
the tail −1 · · · . It means that each element of has the form:

−1 · · · +1 −1 · · ·

Let = ( ). A tile is a set with deg( ) =−1 and asubtile is a set with
deg( )≥ −1. We write byS := = { ∈ Fin(β) | ordβ( ) ≥ 0}. Also, let K := (S)
which is called thecentral tile.

For a Pisot unitβ of degree with property (F), we recall some important prop-
erties of the tiles due to S. Akiyama [6]:
1. R −1 = ∪

deg( )=−1
,
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Fig. 1. Space tiling for 3− 2− 1 = 0

2. If ∈ S then ( )∈ Inn(K) and, especially, the origin is an inner point of the
central tileK,
3. If ∈ then ( )∈ Inn( ), moreover,Inn( ) = ,
4. The set∂( ) of boundary elements of is closed and nowhere dense inR −1,
5. Let β = −1β

−1 + −2β
−2 + · · · + − be the characteristic equation ofβ. If

− = 1 then each tile is arcwise connected.

2. Tiling generated by the real root of the equationx3− x2 − 1 = 0

In [7] and [2], extensive studies on the tiling generated by the Pisot numbers re-
lated to the equations3− 2− − 1 = 0 and 3− − 1 = 0 were done.

In this paper, we concentrate on the Pisot numberβ which is the positive root of
the equation 3− 2− 1 = 0. It is a unit algebraic integer andβ = 1 4655712· · · . For
a sequence of nonnegative integers

−1 · · · 0 −1 −2 · · ·

to be a greedyβ-expansion of a nonnegative number in thisβ is that, ∈ {0 1} with
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the condition:

= 1→ +1 = +2 = 0(1)

for any ∈ Z.
Let β′ = β(2) be one of the complex roots of the equation3 − 2 − 1 = 0. The

mapping in (3) for our case is :Q(β) → R2. We study the tiling ofC ≃ R2 for
the β (Fig. 1). The central tile is known as tridragon, which is a typical example of a
class of fractal sets called Rauzy Fractal.

Proposition 2. For any distinct tiles 1 and 2 it holds thatµ( 1∩ 2) = 0, where
µ denotes Lebesgue measure.

Proof. It suffices to show when1 = K, 2 = 1. Recalling the admissibility
condition (1), we have thatK ∪ 1 = β′−1K and 1 = β′−1 + β′2K. So it holds that

µ(K ∪ 1) = |β′−1|2µ(K) = βµ(K) and µ( 1) = |β′2|2µ(K) = β−2µ(K)

Since 1 +β−2− β = 0 we have that

µ(K ∩ 1) = µ(K) + µ( 1)− µ(K ∪ 1) = (1− β−2− β)µ(K) = 0

Theorem 3. Z[β]≥0 = Fin(β)

Proof. We use the Theorem 2. From (1), we can take2 = (1− |β′|3)−1. Let

= { ∈ Z[β] | 0< < 1 | ′| < (1− |β′|3)−1}

Each element ofZ[β] can be written as +β + β2 with , , ∈ Z. Thus, for
= + β + β2 ∈ C, we have




1 β β2

1 β′ β′2

1 β′ β′2







 =


 ′

′




with 0 ≤ < 1, | ′| = | ′| ≤ 1/(1− |β′|3). Multiplying by the inverse matrix and
considering the absolute value, we get that

| | ≤ 2 | | ≤ 2 | | ≤ 1

Among them the acceptable possibilities are:
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−2 0 1 0 14789· · ·
−2 2 0 0 93114· · ·
−1 1 0 0 46557· · ·

0 −1 −1 0 68232· · ·
0 2 −1 0 78324· · ·
1 −2 1 0 21675· · ·
1 1 −1 0 31767· · ·
2 −1 0 0 53442· · ·

These eight elements have finite greedy expansion in baseβ:

−2 +β2 = β−5 −2 + 2β = β−1 + β−4 + β−9 −1 +β = β−2

−β + β2 = β−1 2β − β2 = β−1 + β−6 1− 2β + β2 = β−4

1 +β − β2 = β3 2− β = β−2 + β−7

Let ( ) = { ∈ C | | − | ≤ }.

Lemma 1. 1. There exists a positive constant1 and a nonnegative integer
such that for any ( = 0 1 · · · ), which admits greedy expansion

∑
=0 β with

0 = 1, we have that|∑ =0 (β′) | − |β′| +1
2 > 1|β′|.

2. (0 1) ⊂ K.

Proof. 1. It suffices to show that for any positive constantǫ there exists a non-
negative integer , such that for any ( = 0 1· · · ), which admits a greedy ex-
pansion

∑
=0 β with 0 = 1, we have

∣∣∣∣∣
∑

=0

(β′)

∣∣∣∣∣ > (1 + ǫ)|β′| +1
2

because we can take1 = ǫ|β′| 2. Assuming the contrary, then there exists a positive
constantǫ, such that for any nonnegative integer there exist ( = 0 1· · · )
satisfying the above conditions and

∣∣∣∣∣
∑

=0

(β′)

∣∣∣∣∣ ≤ (1 + ǫ)|β′| +1
2

So, we have

∣∣∣∣∣
∑

=0

(β′) −

∣∣∣∣∣ ≤ (1 + ǫ)|β′| 2
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Then, we see that the algebraic integers

∑

=0

(β) − =
0∑

=−

+ (β)

must lie in ′ = (|β| (1 + ǫ)|β′| 2) ∩ Z[β]. As 0 = 1, the integers ofQ(β) ex-
pressed by greedy expansion

∑0
=− + (β) must be distinct. Since we can take in-

finitely many , this contradicts with the fact that′ is a finite set.
2. It suffices to show that ∈ Q(β) and | ′| < 1 implies that ′ ∈ K. We first

note that there exist infinitely many such that| |(β −1) ∈ Z[β]≥0. From Theorem
1 we have that

| | =
1∑

= 0

β− +

∑
2
= 1+1 β−

β 2− 1 − 1

which shows that for every that is a multiple of2− 1, it holds that| |(β −1) ∈
Z[β]≥0. Then, from Property (F) we have that

(β − 1)| | =
∑

=0

β +
−1∑

=−

β

If we suppose that − 6= 0 (it means that ′ /∈ K) then, by conjugating both sides,
we get

((β′) − 1)| ′| =
∑

=0

(β′) +
−1∑

=−

(β′)

= |β′|−
∣∣∣∣∣

+∑

=0

− (β′)

∣∣∣∣∣

≥ |β′|−1



∣∣∣∣∣∣
∑

0≤ ≤

− (β′)

∣∣∣∣∣∣
− |β′| +1

2




> 1

(Here we can take sufficiently large such that> .) Taking the limit when →
∞, this inequality implies that| ′| ≥ 1, which is a contradiction.

By computer calculation, the minimum of|∑31
=0 (β′) | under the condition 0 =

1 and (1) is

|1 + (β′)5 + (β′)9 + (β′)12 + (β′)15 + (β′)18 + (β′)22 + (β′)25 + (β′)29| ≈ 0 342683
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On the other hand, since 2 = 1/(1− |β′|3), we obtain 1:

1 =
|1 + (β′)5 + (β′)9 + (β′)12 + (β′)15 + (β′)18 + (β′)22 + (β′)25 + (β′)29| − |β′|32

2

|β′|
≈ 0 4087313

Proposition 3. 1. Every point ofK is an inner point ofK ∪ ( 1 ∪ 00001∪
01∪ 100001∪ 001∪ 0100001∪ 0001).

2. Consider seven tiles 1 00001 01 100001 001 0100001 0001in this order
‘cyclically’, so we consider that 1 and 0001 are also adjacent.
Then,K has infinitely many common points with any of these tiles. Also, two adjacent
tiles have infinitely many points in common, while two tiles, which are not adjacent,
have no points in common.

Proof. 1. Let −1 −2 · · · − be an admissible word of length . We say also
that the tile

−1 −2··· −
has length . Since we have that1|β′|−9 < 2 and

1|β′|−10 > 2, it holds that every point ofK is an inner point of (β ′)−10K. Let
us see first only the tiles of length 10. There are 19 tiles of this type. (See Fig. 2.
Remark that there exist subtiles in this figure.)

0000000001 0000001001 0001001001 1001001001 0010001001

0100001001 1000001001 0000010001 0010010001 0100010001

1000010001 0000100001 0100100001 1000100001 0001000001

1001000001 0010000001 0100000001 1000000001

Since we have the inclusionK ⊂ (0 2) with 2 = 1/(1− |β′|3), we can write:

K ∩ 0000000001⊂ (0 2) ∩ ((β′)−10
2) = ∅

K ∩ 0000001001⊂ (0 2) ∩ ((β′)−10 + (β′)−7
2) = ∅

K ∩ 0001001001⊂ (0 2) ∩ ((β′)−10 + (β′)−7 + (β′)−4
2) = ∅

K ∩ 1001001001⊂ (0 2) ∩ ((β′)−10 + (β′)−7 + (β′)−4 + (β′)−1 |β′|2 2) = ∅
K ∩ 0010001001⊂ (0 2) ∩ ((β′)−10 + (β′)−7 + (β′)−3

2) = ∅
K ∩ 0100001001⊂ (0 2) ∩ ((β′)−10 + (β′)−7 + (β′)−2 |β′| 2) = ∅
K ∩ 1000001001⊂ (0 2) ∩ ((β′)−10 + (β′)−7 + (β′)−1 |β′|2 2) = ∅
K ∩ 0000010001⊂ (0 2) ∩ ((β′)−10 + (β′)−6

2) = ∅
K ∩ 0010010001⊂ (0 2) ∩ ((β′)−10 + (β′)−6 + (β′)−3

2) = ∅
K ∩ 0100010001⊂ (0 2) ∩ ((β′)−10 + (β′)−6 + (β′)−2 |β′| 2) = ∅
K ∩ 1000010001⊂ (0 2) ∩ ((β′)−10 + (β′)−6 + (β′)−1 |β′|2 2) = ∅
K ∩ 0001000001⊂ (0 2) ∩ ((β′)−10 + (β′)−4

2) = ∅
K ∩ 1001000001⊂ (0 2) ∩ ((β′)−10 + (β′)−4 + (β′)−1 |β′|2 2) = ∅
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K ∩ 0010000001⊂ (0 2) ∩ ((β′)−10 + (β′)−3
2) = ∅

K ∩ 0100000001⊂ (0 2) ∩ ((β′)−10 + (β′)−2 |β′| 2) = ∅
K ∩ 1000000001⊂ (0 2) ∩ ((β′)−10 + (β′)−1 |β′|2 2) = ∅

because, by computer calculations, we have:

|(β′)−10| = 6 7613· · · > 4 5832· · · = 2 2

|(β′)−10 + (β′)−7| = 9 9596· · · > 4 5832· · · = 2 2

|(β′)−10 + (β′)−7 + (β′)−4| = 10 9695· · · > 4 5832 = 2 2

|(β′)−10 + (β′)−7 + (β′)−4 + (β′)−1| = 10 8722· · · > 3 8552· · · = (1 + |β ′|2) 2

|(β′)−10 + (β′)−7 + (β′)−3| = 11 3918· · · > 4 5832 = 2 2

|(β′)−10 + (β′)−7 + (β′)−2| = 8 79182· · · > 4 1845· · · = (1 + |β ′|) 2

|(β′)−10 + (β′)−7 + (β′)−1| = 9 6507· · · > 3 8552· · · = (1 + |β ′|2) 2

|(β′)−10 + (β′)−6| = 8 5613· · · > 4 5832· · · = 2 2

|(β′)−10 + (β′)−6 + (β′)−3| = 10 3299· · · > 4 5832· · · = 2 2

|(β′)−10 + (β′)−6 + (β′)−2| = 8 1416· · · > 4 1845· · · = (1 + |β ′|) 2

|(β′)−10 + (β′)−6 + (β′)−1| = 7 64046· · · > 3 8552· · · = (1 + |β ′|2) 2

|(β′)−10 + (β′)−4| = 7 38089· · · > 4 5832· · · = 2 2

|(β′)−10 + (β′)−4 + (β′)−1| = 7 1437· · · > 3 8552· · · = (1 + |β ′|) 2

|(β′)−10 + (β′)−3| = 8 4072· · · > 4 5832· · · = 2 2

|(β′)−10 + (β′)−2| = 5 90557· · · > 4 1845· · · = (1 + |β ′|) 2

|(β′)−10 + ((β′)−1| = 6 19203· · · > 3 8552· · · = (1 + |β ′|2) 2

Hereafter we call this type of arguments as ‘encircling method’. For the remaining
tiles we cannot confirm that the intersection is empty by simple encircling method. We
subdivide the tiles into subtiles, and use arefinedversion of the encircling method. For
simplicity, we call also this version as ‘encircling method’. So, we have:

K ∩ 0000100001= ( 0 ∪ 1 ) ∩ ( 0 0000100001∪ 1 0000100001) = ∅

because

0 ∩ 0 0000100001⊂ (0 |β′| 2) ∩ ((β′)−10 + (β′)−5 |β′| 2) = ∅
0 ∩ 1 0000100001⊂ (0 |β′| 2) ∩ ((β′)−10 + (β′)−5 + 1 |β′|3 2) = ∅
1 ∩ 0 0000100001⊂ (1 |β′|3 2) ∩ ((β′)−10 + (β′)−5 |β′| 2) = ∅
1 ∩ 1 0000100001⊂ (1 |β′|3 2) ∩ ((β′)−10 + (β′)−5 + 1 |β′|3 2) = ∅

since we have that
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|(β′)−10 + (β′)−5| = 4 2036· · · > 3 7858· · · = 2|β ′| 2

|(β′)−10 + (β′)−5 + 1| = 5 1479· · · > 3 1845· · · = (|β ′| + |β′|3) 2

|(β′)−10 + (β′)−5− 1| = 3 2924· · · > 3 1845· · · = (|β ′|3 + |β′|) 2

|(β′)−10 + (β′)−5| = 4 2036· · · > 2 5832· · · = 2|β ′|3 2

In the same way we divide

K ∩ 0100100001= ( 0 ∪ 1 ) ∩ ( 00 0100100001∪ 10 0100100001) = ∅

because

0 ∩ 00 0100100001⊂ (0 |β′| 2) ∩ ((β′)−10 + (β′)−5 + (β′)−2 |β′|2 2) = ∅
0 ∩ 10 0100100001⊂ (0 |β′| 2) ∩ ((β′)−10 + (β′)−5 + (β′)−2 + β′ |β′|4 2) = ∅
1 ∩ 00 0100100001⊂ (1 |β′|3 2) ∩ ((β′)−10 + (β′)−5 + (β′)−2 |β′|2 2) = ∅
1 ∩ 10 0100100001⊂ (1 |β′|3 2) ∩ ((β′)−10 + (β′)−5 + (β′)−2 + β′ |β′|4 2) = ∅

since we have that

|(β′)−10 + (β′)−5 + (β′)−2| = 3 5484· · · > 3 4565· · · = (|β ′| + |β′|2) 2

|(β′)−10 + (β′)−5 + (β′)−2 + β′| = 3 9632· · · > 2 9598· · · = (|β ′| + |β′|4) 2

|(β′)−10 + (β′)−5 + (β′)−2− 1| = 2 8682· · · > 2 8552· · · = (|β ′|3 + |β′|2) 2

|(β′)−10 + (β′)−5 + (β′)−2 + β′ − 1| = 4 2036· · · > 2 3585· · · = (|β ′|3 + |β′|4) 2

Also

K ∩ 1000100001= ( 00 ∪ 1 ∪ 10 ) ∩ ( 000 1000100001∪ 100 1000100001) = ∅

because

00 ∩ 000 1000100001⊂ (0 |β′|2 2) ∩ ((β′)−10 + (β′)−5 + (β′)−1 |β′|3 2) = ∅
00 ∩ 100 1000100001⊂ (0 |β′|2 2) ∩ ((β′)−10 + (β′)−5 + (β′)−1 + (β′)2 |β′|5 2) = ∅
1 ∩ 000 1000100001⊂ (1 |β′|3 2) ∩ ((β′)−10 + (β′)−5 + (β′)−1 |β′|3 2) = ∅

10 ∩ 000 1000100001⊂ (β′ |β′|4 2) ∩ ((β′)−10 + (β′)−5 + (β′)−1 |β′|3 2) = ∅
10 ∩ 100 1000100001⊂ (β′ |β′|4 2) ∩ ((β′)−10 + (β′)−5 + (β′)−1 + (β′)2 |β′|5 2) = ∅

since we have that

|(β′)−10 + (β′)−5 + (β′)−1| = 3 5929· · · > 2 8552· · · = (|β ′|2 + |β′|3) 2

|(β′)−10 + (β′)−5 + (β′)−1 + (β′)2| = 3 > 2 4449· · · = (|β′|2 + |β′|5) 2

|(β′)−10 + (β′)−5 + (β′)−1− 1| = 2 6002· · · > 2 5832· · · = (|β ′|3 + |β′|3) 2
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Fig. 2. Encircling method forK and tiles of length 10.

|(β′)−10 + (β′)−5 + (β′)−1− β′| = 3 83023· · · > 2 3585· · · = (|β ′|4 + |β′|3) 2

|(β′)−10 + (β′)−5 + (β′)−1 + (β′)2 − β′| = 4 2036· · · > 3 3285· · · = (|β ′|4 + |β′|5) 2

and

1 ∩ 100 1000100001= ( 0001 ∪ 1001) ∩ 100 1000100001

⊂ ( (1 |β′|4 2)∪ (1+ (β′)3 |β′|6 2))∩ ((β′)−10+ (β′)−5+ (β′)−1+ (β′)2 |β′|5 2) = ∅

because

|(β′)−10 + (β′)−5 + (β′)−1 + (β′)2− 1| = 2 > 1 9482· · · = (|β ′|4 + |β′|5) 2

|(β′)−10 + (β′)−5 + (β′)−1 + (β′)2− 1− (β′)3| = 1 6166> 1 6092· · · = (|β ′|6 + |β′|5) 2

So we showed, actually, that each element ofK is an inner point of (β′)−9K. In the
same way, we show that the intersection ofK with the tiles of length 9 and 8 is
which means that each element ofK is an inner point of (β′)−7K.

Using the encircling method we have thatK does not intersect each of the tiles
of length 7,6,5,4,3,2 except for the tiles:

0100001 100001 00001 0001 001 01 1
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Since we have that:

−(β′)−2 =
1

1− (β′)3
= 1 + (β′)3 + (β′)6 + (β′)9 + · · · ∈ 1(2)

and that

−(β′)−2 = (β′)−7 + (β′)−2− 1

= (β′)−7 + (β′)−2 +
(β′)2

1− (β′)3

= (β′)−7 + (β′)−2 + (β′)2 + (β′)5 + (β′)8 + · · ·
∈ 0100001

(3)

we get that−(β′)−2 ∈ K ∩ 0100001 so K ∩ 0100001 6= ∅.
Multiplying by β ′ in (2) and (3) we get:

−(β′)−1 =
β′

1− (β′)3
= β′ + (β′)4 + (β′)7 + (β′)10 + · · · ∈ 10(4)

and that

−(β′)−1 = (β′)−6 + (β′)−1 +
(β′)3

1− (β′)3

= (β′)−6 + (β′)−1 + (β′)3 + (β′)6 + (β′)9 + · · ·
∈ 100001

(5)

which shows that−(β′)−1 ∈ K ∩ 100001 so K ∩ 100001 6= ∅.
Multiplying by β ′ in (4) and (5) we get:

−1 =
(β′)2

1− (β′)3
= (β′)2 + (β′)5 + (β′)8 + (β′)11 + · · · ∈ 100(6)

and that

−1 = (β′)−5 + 1 + (β′)4 + (β′)7 + (β′)10 + · · · ∈ 00001(7)

which shows that−1 ∈ K ∩ 00001 so K ∩ 00001 6= ∅.
Multiplying by β ′ in (6) and (7) we get:

−β′ =
(β′)3

1− (β′)3
= (β′)3 + (β′)6 + (β′)9 + (β′)12 + · · · ∈ 1000(8)

and that

−β′ = (β′)−4 + β′ + (β′)5 + (β′)8 + (β′)11 + · · · ∈ 0001(9)
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which shows that−β′ ∈ K ∩ 0001 so K ∩ 0001 6= ∅.
We have another greedy expansion for−(β′)−1

−(β′)−1 = (β′)−3− 1 = (β′)−3 +
(β′)2

1− (β′)3

= (β′)−3 + (β′)2 + (β′)5 + (β′)8 + · · · ∈ 001

(10)

From (10) and (4), we have that−(β′)−1 ∈ K ∩ 001, soK ∩ 001 6= ∅.
Multiplying by β ′ in (10) we get:

−1 = (β′)−2− β′ = (β′)−2 +
(β′)3

1− (β′)3

= (β′)−2 + (β′)3 + (β′)6 + (β′)9 + · · · ∈ 01

(11)

From (11) and (6), we have that−1 ∈ K ∩ 01, soK ∩ 01 6= ∅.
Multiplying by β ′ in (11) we get:

−(β′) = (β′)−1− (β′)2 = (β′)−1 + (β′)4 + (β′)7 + (β′)10 + · · · ∈ 1(12)

From (12) and (8), we have that−β′ ∈ K ∩ 1, soK ∩ 1 6= ∅.

2. Consider the mapη′( ) = β′ + (β′)−4. Then we can show that

K η′7−→ 0001
η′7−→ 0100001

η′7−→ K

by showing that

S η7−→ 0001
η7−→ 0100001

η7−→ S

whereη( ) = β + β−4. For example, if =· · · 0001∈ 0001 then

η( ) = · · ·0 0011 =· · ·0 0010101 =· · ·0 0100001∈ 0100001

Since

−(β′)−2 = (β′)−4 +
β′

1− (β′)3

= (β′)−4 + β′ + (β′)4 + (β′)7 + (β′)10 + · · · ∈ 0001

(13)

and (2), (8), (9), we have{−(β′)−2 −β′} ⊂ K ∩ 0001. As

(η′)3( ) = (β′)3 + 1
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is a contraction map with fixed point−(β′)−2, {(η′)3 (−β′) | = 0 1 2 · · · } is an
infinite set contained inK ∩ 0001. Also we have that

(K ∩ 1) + 1 =K ∩ 0001(17a)

(K ∩ 100001) + (β′)−4 = K ∩ 0001,(17b)

(K ∩ 0100001)β′ = K ∩ 100001(17c)

(K ∩ 00001)(β′)−2 = K ∩ 0100001(17d)

(K ∩ 001)− (β′)−3 = K ∩ ( 00001∪ 1)(17e)

(K ∩ 01) + 1− (β′)−2 = K ∩ 0100001(17f)

which show thatK∩ 1, K∩ 100001, K∩ 0100001, K∩ 00001, K∩ 001, andK∩ 01

are also infinite sets. So we showed that the intersection ofK with each of 7 tiles is
an infinite set.

Since

01∩ 100001= (K ∩ 001) + (β′)−2(18a)

100001∩ 001 = (K ∩ 01) + (β′)−3(18b)

001∩ 0100001= (K ∩ 100001) + (β′)−2 + (β′)−7(18c)

0100001∩ 0001 = (K ∩ 001) + (β′)−4(18d)

0001∩ 1 = (K ∩ 01) + (β′)−4(18e)

1 ∩ 00001 = ( 00 ∩ 01) + (β′)−1(18f)

00001∩ 01 = (K ∩ 001) + (β′)−5(18g)

K ∩ 1, K ∩ 100001, 01 ∩ 001, 001∩ 0100001, 0100001∩ 0001, 0001∩ 1,

1 ∩ 00001, and 00001∩ 01 are also infinite sets. Using the encircling method we
can show that

01∩ ( 001∪ 0100001∪ 0001∪ 1) = ∅(19a)

100001∩ ( 0100001∪ 0001∪ 1 ∪ 00001) = ∅(19b)

001∩ ( 0001∪ 1 ∪ 00001∪ 01) = ∅(19c)

0100001∩ ( 1 ∪ 00001∪ 01∩ 100001) = ∅(19d)

0001∩ ( 00001∪ 01∪ 100001∪ 001) = ∅(19e)

1 ∩ ( 01∪ 100001∪ 001∪ 0100001) = ∅(19f)

00001∩ ( 100001∪ 001∪ 0100001∪ 0001) = ∅(19g)

A common point of at least two tiles is called an element of theboundaryof the
tiling. A common point of at least three tiles is called an element of thevertex of
the tiling. We defineδ(

−1 −2··· −
) to be the set of all boundary points of a tile

−1 −2··· −
and (

−1 −2··· −
) to be the set of all vertices in

−1 −2··· −
.
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Fig. 3. Subset ofK ∩ ( 01∪ 00001∪ 1 ∪ 0001∪ 0100001∪ 001∪ 100001)

Theorem 4. (K) = {−1 −(β′)2−(β′)−3 −β′ −(β′)−2 −1−(β′)−5 (β′)−1 −β′−
(β′)−4}

Proof. If we prove that the intersection of each 3 adjacent tiles in Proposition 3
is only one point, then there are exactly 7 vertices inK. From what we proved in
Proposition 3, we have:

−1 ∈ K ∩ 01∩ 00001

−β′ ∈ K ∩ 1 ∩ 0001

−(β′)−1 ∈ K ∩ 001∩ 100001

−(β′)−2 ∈ K ∩ 0001∩ 0100001

From (6), (7) and (11) we have that

−1− (β′)−5 = (β′)−7 + (β′)−2 + β′ + (β′)5 + (β′)8 + · · ·
= 1 + (β′)4 + (β′)7 + (β′)10 + (β′)13 + · · ·
= (β′)−3 + (β′)3 + (β′)6 + (β′)9 + · · ·

(14)

so it holds

−1− (β′)−5 = 0100001∩ K ∩ 001

Multiplying by β ′ and (β′)2 in (14) we get:

−β′ − (β′)−4 = 100001∩ 0 ∩ 01
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−(β′)2 − (β′)−3 = 00001∩ 00 ∩ 1

The only thing left to be proved is that the intersection of 2 adjacent tiles withK is
only one point. So let us show, for example, thatK ∩ 0001∩ 0100001 is only one
point. Since we know that−(β′)−2 ∈ K ∩ 0001∩ 0100001 it is enough to show that
K ∩ 0001∩ 0100001= {−(β′)−2}. We have that

K ∩ 0001∩ 0100001= (K ∩ 0001) ∩ (K ∩ 0100001)

For the contraction (η′)3( ) = (β′)3( ) + 1 we showed that

K η′7−→ 0001
η′7−→ 0100001

η′7−→ K

We have that (η′)3(K ∩ 0001) = 1 ∩ 0001 and ( 00 ∩ 0001) ∩ 0100001= ∅. Also,
(η′)3(K∩ 0100001) = K∩ 00 0100001and (K∩ 10 0100001)∩ 0001 = ∅. So we have that

(η′)3(K ∩ 0001∩ 0100001) = K ∩ 0001∩ 0100001

Since (η′)3 is a contraction map with fixed point−(β′)−2, we have that

K ∩ 0001∩ 0100001= {−(β′)−2}

Theorem 5. The boundary ofK is a union of7 self-affine sets.(SeeFig. 3) The
Hausdorff dimension of the boundary is1 47131· · · .

According to this theorem we say that1 is an edge between−(β′)2− (β′)−3 and
−β′, which is denoted by (−(β′)2− (β′)−3 −β′), and so on.

Proof. In the proof of Proposition 3, we already showed that

δ(K) = K ∩ ( 1 ∪ 00001∪ 01∪ 100001∪ 001∪ 0100001∪ 0001)

Let us denote by

1 := K ∩ 1

2 := K ∩ 0001

3 := K ∩ 0100001

4 := K ∩ 001

5 := K ∩ 100001

6 := K ∩ 01

7 := K ∩ 00001
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From (17) of Proposition 3 we get

1 + 1 = 2(21a)

5 + (β′)−4 = 2(21b)

β′
3 = 5(21c)

(β′)−2
7 = 3(21d)

4− (β′)−3 = 7 ∪ 1(21e)

6 + (1− (β′)2) = 3(21f)

so all the edges are self-similar. First consider2. By using the encircling method we
have that

2 = ( 00 ∩ 10 0001) ∪ ( 1 ∩ 10 0001)

For the transformation (η′)3( ) = (β′)3 + 1 we have that

(η′)3( 2) = 1 ∩ 10 0001

Since

00 ∩ 10 0001= (β′)2
5 = (β′)2( 2− (β′)−4) = (β′)2

2− (β′)−2

then

2 = ((β′)2
2− (β′)−2) ∪ (((β′)3

2 + 1)

We use here the criterion of Exercise 3.3 in [3] to show that the Hausdorff dimension
of 2 coincides with the upper and lower box counting dimension and Hausdorff

measureH ( 2) is positive. It is also proved in Corollary 3.3 of [3], thatH ( 2) <
∞. Noting that

((β′)2
2− (β′)−2) ∩ ((β′)3

2 + 1) = {−(β′)3 − (β′)−2}

we get

H ( 2) = H ((β′)2
2− (β′)−2) +H ((β′)3

2 + 1) = |β′|2 H ( 2) + |β′|3 H ( 2)

and

1 = |β′|2 + |β′|3

So, the Hausdorff dimension of 2 is

=
λ

log |β′| = 1 47131· · ·
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whereλ is the real root of the equation3 + 2− 1 = 0.
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Berlin, New York (1998)

[2] S. Akiyama and T. Sadahiro:A self-similar tiling generated by the minimal Pisot number,
preprint.

[3] K.J. Falkoner: Techniques in Fractal Geometry, John Wiley and Sons 1997.
[4] K. Schmidt: On periodic expansions of Pisot numbers and Salem numbers, Bull. London Math.

Soc.,12 (1980), 269–278.
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