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1. Introduction

Throughout this paper all complex spaces are assumed to be reduced and with
countable topology.

Let be a complex space. is said to beembeddableif it can be realized as a
complex analytic subset ofC × P for some positive integers and . For instance,
one checks that a complex curve of bounded Zariski dimension is embeddable.

We say that is 1-convexif is a modification at finitely many points of a Stein
space ,i.e., there exist a compact analytic set⊂ without isolated points and a
proper holomorphic mapπ : −→ such thatπ∗(O ) = O and π induces an
isomorphism between \ and \ π( ). is called theexceptional setof and
the Remmert’s reductionof . See [16] for further properties of 1-convex spaces.

A criterion of Schneider [18] says that a 1-convex space of bounded Zariski
dimension is embeddable if, and only if, there is a holomorphic line bundle over
such that | is ample.

Using this, B̆anic̆a [3] proved that a 1-convex complex surface of bounded
Zariski dimension isembeddableprovided that does not admit compact two dimen-
sional irreducible components. By extending this Colţoiu ([4], [5]) showed that every
connected 1-convex manifold with 1-dimensional exceptional set is embeddable if
dim( ) > 3. This is true also for threefolds with some exceptions when the excep-
tional set contains aP1 ([5]).

In this short note we reconsider Colţoiu’s example from another point of view.
This is based on the following proposition which may be of independent interest.

Proposition 1. Let ⊂ P be a hypersurface of degree with isolated sin-
gularities, π : −→ a resolution of singularities, and ⊂ P a hyperplane
which avoids the singular locus of and such that := ∩ is smooth. Set

:= \ π−1( ). Then for ≥ 4 the following statements are equivalent:
(a) is embeddable.
(b) is Kähler.
(c) is projective.

By this and an example due to Moishezon [12] (see also [6]) we obtain:
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Theorem 1. There exists a1-convex threefold with exceptional setP1 such
that is not K̈ahler; a fortiori is not embeddable.

For the proof of Proposition 1 we use several short exact sequences, Bott’s for-
mula, Thom’s isomorphism, and some facts on pluriharmonic functions.

Also employing recent results due to Fujiki [9] we prove (see the next section for
definitions):

Theorem 2. Let π : −→ be a finite holomorphic map of complex spaces
with of bounded Zariski dimension. If is maximal and is Hodge, then it holds:
(a) compact implies projective.
(b) is 1-convex implies is1-convex and embeddable.

REMARK 1. Note that by [23], 1-convexity is invariant under finite holomorphic
surjections. However, this does not hold for embeddability.

As a consequence of Theorem 2 we improve a well-known projectivity criterion
due to Grauert [10] to:

Proposition 2. Let be a compact complex space. If is Hodge and maximal,
then is projective.

and the embeddability result due to Th. Peternell ([17], Theorem 2.6) to:

Proposition 3. Let be a 1-convex space of bounded Zariski dimension such
that is Hodge and maximal. Then is embeddable.

2. Continuous weakly pluriharmonic functions

Let be a complex space. As usual,P denotes the sheaf of germs of pluri-
harmonic functions on . Then the canonical mapO −→ P given by 7→ Re
induces a short exact sequence

0−→ R −→ O −→ P −→ 0(⋆)

ConsiderP̂ := the sheaf ofcontinuous weakly pluriharmonic functions, i.e., for
every open subset of ,̂P ( ) consists of those ∈ 0( R) which are plurihar-
monic on Reg( ).

Clearly P ⊆ P̂ , and if Ô denotes the sheaf of continuous weakly holomorphic
functions, we have a natural map̂O −→ P̂ given by 7→ Re .

Here we prove:
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Proposition 4. The canonical short sequence

0−→ R −→ Ô −→ P̂ −→ 0

is exact.

Proof. We check only the surjectivity of̂O −→ P̂ . We do this in two steps.
STEP 1. Suppose is normal. Letπ : −→ be a resolution of singularities.

Thenπ⋆P = P by Proposition 2.1 in [9]. Now, since on a complex manifold a con-
tinuous real-valued functionϕ is pluriharmonic if and only ifϕ and−ϕ are plurisub-
harmonic we obtain that̂P = P , whence the desired surjectivity in view of (⋆).

STEP 2. The general case. Letν : −→ be the normalization of . Let
∈ , an open neighborhood of , and∈ P̂ ( ). Then, by Step 1., ◦ ν ∈

P (ν−1( )). By Proposition 2.3 in [9] after shrinking ∋ , there is ∈ Ô ( )
such that Re = . Note that inloc. cit. this is done under the additional hypothesis
∈ ∞( R). But our case followsmutatis mutandis, whence the proposition.

Recall ([7], pp. 122–126) that a complex space is said to bemaximal if O =
Ô and that every complex space admits amaximalization̂ , i.e., ̂ is maximal
and there is a holomorphic homeomorphismπ : ̂ −→ which induces a biholomor-
phic map between̂ \ π−1( ( )) and \ ( ), where ( ) is the non-maximal
locus of , i.e., ( ) = { ∈ ; O 6= Ô }. Clearly every normal complex space
is maximal. For this reason, maximal complex spaces are also called “weakly normal”.

Corollary 1. If is maximal, thenP = P̂ .

Corollary 2. If is normal, then every pluriharmonic function onReg( ) ex-
tends uniquely to a pluriharmonic function on .

Proof. Since and− extend uniquely to plurisubharmonic functionsϕ and ψ
on , we getϕ = −ψ. Henceϕ is continuous, whenceϕ is pluriharmonic by Corol-
lary 1.

By a -closed, real(1 1)-form (in the sense of Grauert [10]) on a complex space
we mean, a -closed, real (1 1)-formω on Reg( ) such that every point ∈

admits an open neighborhood on which there isϕ ∈ 2( R) with ω = ∂∂ϕ on
Reg( ). Thisϕ is called alocal potential functionfor ω. We say thatω is Kähler if
the local potentials may be chosen strongly plurisubharmonic.

Alternatively, by Moishezon [14] we define a -closed, real (1 1)-form on as a
collection {( ϕ )} ∈ where{ } is an open covering of andϕ ∈ 2( R)
are such thatϕ − ϕ is pluriharmonic. Two such collections{( ϕ )} ∈ and
{( ψ )} ∈ define the same form ifϕ − ψ is pluriharmonic on ∩ for all
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indices and .

Corollary 3. For a maximal complex space the above two notions of -
closed, real (1 1)-forms coincide in an obvious sense.

Proof. This is immediate by Corollary 1.

To every -closed, real (1 1)-formω on we associate canonically an element
of 1( P̂ ), which in turn goes into itsde Rhamclass [ω] ∈ 2( R) via the co-
homology sequence from Proposition 4.

We say thatω is integral if its de Rham class belongs to Im(2( Z) −→
2( R)).

One has the following (see [10], proof of Satz 3)

Lemma 1. If ω is an integral form on a maximal space, then there is a holo-
morphic line bundle −→ together with a class 2-hermitean metric on whose
Chern form isω. In particular, if ω is Kähler, then is positive.

Let be a complex space. is said to beKähler if has a K̈ahler form (in
the sense of Grauert). We say that isHodge if it admits a K̈ahler form which is
integral.

Proposition 5. Let π : −→ be a finite holomorphic map of complex spaces
such that is Hodge. Then is Hodge. In particular, the maximalization̂ and the
normalization ⋆ of are Hodge, too.

Proof. Let {( ψ )} , ⋐ , defines a K̈ahler formω on . Let ⋐

such that{ } is also a covering of . Then by [22] for everyδ ∈ 0( R), δ > 0,
there existsψ ∈ ∞( R), 0< ψ < δ, such thatσ := ψ ◦π+ψ are strongly plurisub-
harmonic on :=π−1( ) for all ; hence{( σ )} defines a K̈ahler formπ⋆ω

on . Of courseπ⋆ω depends onδ and ψ, but this is irrelevant for our discussion.
Moreover, in view of a canonical commutative diagram and Proposition 4, ifω is in-
tegral, thenπ⋆ω is integral too.

Now Lemma 1 and the criteria of Grauert [10] and Schneider [18] give Theo-
rem 2.

REMARK 2. There is a compact, normal, two dimensional complex space with
only one singularity such that Reg( ) is Kähler, and isnot Kähler. (This follows
from [14] and [10].)
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3. Proof of proposition 1

The only nontrivial implication is (b)⇒ (c) which we now consider. First we
state:

CLAIM . The restriction map 1( P ) −→ 1( P ) is surjective.

The proof of this will be done in several steps.
STEP 1. For every abelian group we have 1( ) = 0.
Indeed, by a theorem of Siu [19], as\ is a Stein subspace ofP \ , it admits

a Stein open neighborhood ; thusP \ = ∪ (P \ ) is a union of two Stein open
subsets. On the other hand, if an -dimensional complex manifold is a union of
Stein open subsets, then ( ) = 0 for≤ − . The assertion follows easily.

STEP 2. 2( O ) = 0.
For this, we letI be the coherent ideal sheaf of inP . Then I ≃ O(−[ ]),

where [ ] denotes the canonical line bundle associated to the divisor defined by .
Now Bott’s formula gives the vanishing of (P O( )) for integers with

1 ≤ < , and by the long exact cohomology sequence associated to the short exact
sequence 0−→ I −→ OP −→ O −→ 0, the assertion of Step 2 results immediately.

STEP 3. The maps 1( O) −→ 1( O) and 2( O) −→ 2( O) are
surjective and injective respectively.

Let be an arbitrary open neighborhood of in . Since\ is Stein,
the Mayer-Vietoris sequence for = (\ ) ∪ and Step 2 give that the maps

1( O) −→ 1( \ O) and 2( O) −→ 2( \ O) are surjective and injec-
tive respectively.

Assume now ⊂ Reg( ); henceπ−1( ) is biholomorphic to viaπ. This and
the above discussion plus the Mayer-Vietoris sequence for =∪ π−1( ) completes
the proof of Step 3.

STEP 4. 2( ) −→ 2( ) is surjective for every abelian group .
We view as a smooth complex hypersurface in . The inclusion⊂ gives

rise to an exact cohomology sequence (coefficients in any abelian group )

· · · −→ ( : ) −→ ( ; ) −→ ( ; ) −→ +1( ; ) −→ · · ·

On the other hand since is a non-singular complex hypersurface, a tubular
neighborhood of is diffeomorphic to a neighborhood of the 0-section of the normal
bundle of in . This bundle being holomorphic is naturally oriented. We thus have,
see [2], a Thom isomorphism:

( ; ) ∼= −2( ; )

whence the assertion of Step 4 using Step 1.
(•) The proof of the claim follows by diagram chasing using Steps 3 and 4 and
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the next commutative diagram with exact rows:

1( O) −→ 1( P) −→ 2( R) −→ 2( O)
↓ ↓ ↓ ↓

1( O) −→ 1( P) −→ 2( R) −→ 2( O)

(•) For the proof of the proposition we letK1 1 be the sheaf of germs of real
smooth (1 1)-forms on which are -closed. As usual,E represents the sheaf of
germs of smooth real functions on . The short exact sequence on ,

0−→ P −→ E −→ K1 1 −→ 0

where the last non trivial map is given byϕ 7→
√
−1∂∂ϕ, induces a commutative

diagram with exact rows:

( E ) −→ ( K1 1) −→ 1( P ) −→ 0
↓ ↓ ↓ ↓

( E ) −→ ( K1 1) −→ 1( P ) −→ 0

By diagram chasing and the above claim ifω is the K̈ahler form of , then there are:
a smooth, -closed, real (1 1)-formα on and a smooth real-valued functionϕ on

such that

α| − ω =
√
−1∂∂ϕ(¶)

Now, selectχ ∈ ∞( R) which vanishes on a neighborhood ofπ−1(Sing( ))
and equals 1 outside a compact subset of . By (¶), the smooth (1 1)-formω +√
−1∂∂(χϕ) on extends trivially to a smooth, real, and -closed (1 1)-formω̂ on
.

Let β be the canonical K̈ahler form onP . For every > 0 define a -closed
(1 1)-form ω̃ on by setting:

ω̃ := ω̂ + π∗(β)

Clearly ω̃ restricted to is positive definite for every> 0. On the other hand, there
is > 0 sufficiently large such that̃ω is positive definite near the compact set\ .
Thus is K̈ahler. Since is Moishezon, by [13] is projective.

REMARK 3. In [20] a similar version to our Proposition 1, without any smooth-
ness assumption on ∩ and with the additional assumption that2( O ) = 0, is
stated.
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Unfortunately, the “given proof” is wrong. See Colţoiu’s pertinent comments [5]
for this and many, many other fatal errors, which, to our unpleasant surprise, are used
again in [21].

4. Proof of theorem 1

Let ⊂ P4 be a hypersurface of degree> 2 having a nondegenerate quadratic
point as its only singularity [12]. Letσ : −→ P4 be the quadratic transform with
center . Set :=σ−1( ), := the proper transform of ( is a nonsingular
hypersurface in ), and := ∩ ≃ P1 × P1. Let be one of the two factors and
ρ : −→ the corresponding projection.

If denotes the normal bundle of in , the restriction of to each of the
fibres of ρ is the negative of the hyperplane bundle, so the criterion of Nakano and
Fujiki applies ([8], [15]).

In other words is obtained by blowing-up a non singular along a rational
non singular curve . One obtains easily a holomorphic mapπ : −→ which
resolve the singularity of and =π−1( ) ≃ P1.

On the other hand, by [6], is not K̈ahler if > 2. Therefore, if we choose a
linear hyperplane inP4, 6∋ , such that ∩ is smooth, then by Proposition
1, := \ π−1( ∩ ) is the desired example.

REMARK 4. As a counterexample for embeddability this example is due to
Colţoiu [5] where by a different method he obtained that1( O ) = 0 under the
additional hypothesis that intersects transversally.

Here we emphasize the non-Kähler property of the example.
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