AN ESTIMATE OF THE RIBBON NUMBER BY THE JONES POLYNOMIAL

Dedicated to Professor Yukio Matsumoto on the occasion of his 60th birthday

Yоко MIZUMA

(Received March 18, 2005)

Abstract

For a ribbon knot we define the notion of its ribbon number. In this paper we estimate the ribbon number for a ribbon knot by using the Jones polynomial. As a corollary we determine the ribbon number of the Kinoshita-Terasaka knot.

1. Introduction

To investigate the complexity of a ribbon knot, we define the notion of the ribbon number. This obvious measure of a ribbon knot's complexity is often hard to determine. In fact, even in a simple case of the Kinoshita-Terasaka knot, its ribbon number is hard to determine. In this paper, we estimate the ribbon number by using a formula for the first derivative at -1 of the Jones polynomial of a ribbon knot of 1 -fusion in [6]. As a corollary we determine the ribbon number of the Kinoshita-Terasaka knot.

1.1. Definitions and theorems.

Definition 1.1. A ribbon disk is an immersed 2-disk of D^{2} into S^{3} with only transverse double points such that the singular set consists of ribbon singularities, that is, the preimage of each ribbon singularity consists of a properly embedded arc in D^{2} and an embedded arc interior to D^{2} (see Fig. 1). A knot is a ribbon knot if it bounds a ribbon disk in S^{3} (cf. [3], [4]).

For a ribbon knot we define its ribbon number as follows.
DEFINITION 1.2. The ribbon number of a ribbon knot is defined as the minimal number of ribbon singularities needed for a ribbon disk bounded by the ribbon knot.

Here we have some remarks of Definition 1.2.

Fig. 1. A ribbon disk with two ribbon sigularities
Remark 1.3. A ribbon knot whose ribbon number is zero is a trivial knot and there does not exist a ribbon knot whose ribbon number is one.

REmARK 1.4. The ribbon number of a ribbon knot K is greater than or equal to the genus of K ([1]).

Now we can state the following theorem.

Theorem 1.5. Let K be a ribbon knot satisfying $\Delta_{K}(t)=1$ and $J_{K}^{\prime}(-1) \neq 0$, where $\Delta_{K}(t)$ is the Alexander polynomial of K and $J_{K}^{\prime}(-1)$ is the first derivative at -1 of the Jones polynomial of K. Then the ribbon number of K is greater than or equal to three.

To state the next theorem we review a ribbon knot of 1 -fusion as follows.
Definition 1.6. We call a knot K in S^{3} a ribbon knot of 1-fusion, if it has a knot diagram described in Fig. 2, where n is even and each small rectangle named C_{i} is determined by $c_{i} \in\{-1,0,1\}(i=1,2, \ldots, n)$ and there are disjointly embedded $(n+1)$ bands in the big rectangle, being knotted, twisted and mutually linked (cf. [6], [5]). The diagram is called 1-fusion diagram of K and gives a ribbon disk bounded by K.

Remark 1.7. A ribbon knot of 1 -fusion is a band sum of 2 -component trivial link and vice versa.

Here we can state the following theorem.

Fig. 2. A 1-fusion diagram

Fig. 3. $(1,1,0,-1)$

Fig. 4. The Kinoshita-Terasaka knot
Theorem 1.8. If K has a 1-fusion diagram with $\left(c_{1}, c_{2}, c_{3}, c_{4}\right)=(1,1,0,-1)$ as shown in Fig. 3, where $J_{K}^{\prime}(-1) \neq 0$, then the ribbon number of K is three.
1.2. An application of theorems. Now we consider the ribbon number of the Kinoshita-Terasaka knot, which has a 1-fusion diagram as in Fig. 4 and $\Delta(t)=1$ and $J^{\prime}(-1)=48$. Hence we obtain the following theorem from Theorem 1.8.

Theorem 1.9. The ribbon number of the Kinoshita-Terasaka knot is three.

Note that the genus of the Kinoshita-Terasaka knot is two ([2]).

2. Proof

Now we start to prove theorems.

Proof of Theorem 1.5. Let K be a ribbon knot satisfying $\Delta_{K}(t)=1$ and $J_{K}^{\prime}(-1) \neq 0 . K$ is not a trivial knot, so the ribbon number of K is greater than or equal to two. Note that a ribbon disk with two ribbon singularities bounded by a nontrivial knot is bounded by a ribbon knot which has one of eight 1-fusion diagrams as shown in Fig. 5, where C_{i} is determined by $c_{i} \in\{-1,1\}(i=1,2,3)$. By using a formula for the Alexander polynomial of a ribbon knot of 1-fusion in [5], $\Delta(t) \neq 1$ for each knot in the left side of Fig. 5 and $\Delta(t)=1$ for each knot in the right side of Fig. 5. By using a formula for the first derivative at -1 of the Jones polynomial of a ribbon knot of 1-fusion, $J^{\prime}(-1)=0$ for each knot in the right side of Fig. 5 (Example 1.12 in [6]). Hence the ribbon number of K is not two. This completes the proof.

Proof of Theorem 1.8. By using a formula for the Alexander polynomial of a ribbon knot of 1 -fusion in [5], a knot K which has a 1-fusion diagram as shown in

Fig. 5. $\left(c_{1}, c_{2}\right)$ and $\left(0, c_{2}, c_{3}, 0\right)$
Fig. 3 satisfies $\Delta_{K}(t)=1$. By Theorem 1.5, the ribbon number of K is greater than or equal to three. The diagram in Fig. 3 gives a ribbon disk bounded by K which has three ribbon singularities, hence the ribbon number of K is three.

Acknowledgments. I am grateful to Professor Akio Kawauchi for suggesting me this problem of ribbon number.

References

[1] R.H. Fox: Characterizations of slices and ribbons, Osaka J. Math. 10 (1973) 69-76.
[2] D. Gabai: Genera of the arborescent links, Mem. Amer. Math. Soc. 59 (1986) 1-98.
[3] L.H. Kauffman: On Knots, Ann. of Math. Stud. 115, Princeton Univ. Press, Princeton, NJ, 1987.
[4] A. Kawauchi: A Survey of Knot Theory, Birkhäuser Verlag, 1996.
[5] Y. Marumoto: On ribbon 2-knots of 1-fusion, Math. Sem. Notes Kobe Univ. 5 (1977), 59-68.
[6] Y. Mizuma: Ribbon knots of 1-fusion, the Jones polynomial and the Casson-Walker invariant, Rev. Mat. Complut. 18 (2005), 387-425.
[7] H. Terasaka: On null-equivalent knots, Osaka Math. J. 11 (1959), 95-113.

Research Institute for Mathematical Sciences
Kyoto University
Sakyo-ku, Kyoto 606-8502, Japan
e-mail: mizuma@kurims.kyoto-u.ac.jp
The Fields Institute for Research in Mathematical Sciences 222 College Street, Toronto, Ontario, M5T 3J1, Canada e-mail: ymizuma@fields.utoronto.ca

