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Abstract
In the context of Connes’ spectral triples, a suitable notion of morphism is intro-

duced. Discrete groups with length function provide a natural example for our def-
initions. Connes’ construction of spectral triples for group algebras is a covariant
functor from the category of discrete groups with length functions to that of spec-
tral triples. Several interesting lines for future study ofthe categorical properties of
spectral triples and their variants are suggested.

1. Introduction

The notions of morphism, as a generalization of “coordinatetransformation,” and
respectively of category, as a generalization of “group of transformations,” are going
to be central in all the attempts to reformulate the conceptsof physical covariance in
an algebraic context (see for instance J. Baez [1]).

In the abstract framework of A. Connes’ Non-commutative Geometry [7, 11],
where non-commutative manifolds are described by spectraltriples, a definition of
“morphism of spectral triples” is still missing in the literature. With the present short
note, we intend to provide tentative definitions of “morphism” and of “category of
spectral triples,” and to investigate some of their properties.

Since, as typical feature of every non-commutative geometric setting, “non-
commutative spaces” are described dually by the category of“spectra” (categories of
representations) of their algebras of functions, defining amorphism of non-commutative
spaces actually amounts to the specification of a functor between representations cat-
egories and, under this point of view, our work can also be seen as an example of
“categorification” process in which sets are replaced by categories (see for example
J. Baez, J. Dolan [2] or L. Ionescu [14]).

In the second part of this paper, we proceed to the construction of a natural co-
variant functor, from the category of discrete groups equipped with a length function,
to our category of spectral triples, that shows the validityof the proposed definition of
morphisms. We expect this functor to be just one particular example in a class of func-
tors from suitable categories of “geometrical objects” to the category of spectral triples.
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Actually this work is part of a much wider research project [3] that, among
several other objectives, has the purpose to study an appropriate notion of non-
commutative (totally geodesic) submanifold and quotient manifold and the study of
some suitable functorial relations between the categoriesof spectral triples and spin
Riemannian manifolds. This program will be carried out in detail in a forthcoming pa-
per [4]. The situations investigated here are usuful to present all the relevant structures
involved without dealing with the complications arising from “spinorial calculus” on
Riemannian spin manifolds.

Treatments of non-commutative geometry in a suitable categorical framework,
mostly appealing to Morita equivalence, have already appeared in a more or less ex-
plicit form. In [8, 9, 10] A. Connes shows how to transfer a given Dirac operator
using Morita equivalence bimodules and compatible connections on them, thus lead-
ing to the concept of “inner deformations” of a spectral geometry that encompasses
a formula for expressing the transformed Dirac operator in the form eD = D + A +JAJ�1. The categorical “ideology” becomes especially evident among the practitioners
of “non-commutative algebraic geometry” (see for example M.Kontsevich and
A. Rosenberg [15, 16, 24]) and morphisms between non-commutative manifolds,
thought of as non-commutative spectra, have been proposed by Y. Manin [18] in terms
of the notion of “Morita morphisms,” i.e. functors among representations categories
that are obtained by tensorization with bi-modules.

The notion of morphism of spectral triples described in the sequel is not as gen-
eral as possible, and several further generalizations are undoubtedly at hand.

In a wider perspective [5] a morphism of the spectral triples(Aj ;Hj ;Dj ), withj = 1;2, might be formalized as a “suitable” functorF : A2M ! A1M , between the
categoriesAj M of Aj -modules, having “appropriate intertwining” properties with the
Dirac operatorsDj .

The morphisms described in the sequel are only a very specialcase of that pic-
ture. However for the present purposes that level of generality would be unnecessary,
and so we stick to the more restrictive definition provided byhomomorphisms� : A1 ! A2 of algebras with an intertwining operators8 : H1 ! H2 between the
Dirac operators.

We can thus establish our main result, stating that Connes’ construction of spectral
triples from group algebras is functorial in nature.

Whether these functors can be chosen to be full, if they are extendable to non-
monomorphic cases and, in a broader context, which other functors into categories of
spectral triples can be obtained this way seem to be interesting questions and we hope
to return to these and related issues elsewhere.

2. A category of spectral triples

In this section we define a “natural” notion of morphism between spectral triples.
Examples will be provided in the next section 3.
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In order to facilitate the reader and to establish our notations, we start recalling
the definitions and key properties related to spectral triples.

2.1. Preliminaries on spectral triples. A. Connes (see [7, 11]) has proposed a
set of axioms for “non-commutative manifolds,”1 called a (compact) spectral triple or
an (unbounded) K-cycle.
• A (compact)spectral triple (A;H;D) is given by:

– a unital pre-C�-algebra2 A;
– a representation� : A ! B(H) of A on the Hilbert spaceH;
– a (non-necessarily bounded) self-adjoint operatorD on H, called the Dirac
operator, such that:

a) the resolvent (D � �)�1 is a compact operator,8� 2 C n R,3

b) [D;�(a)]� 2 B(H), for every a 2 A, where [x; y]� := xy � yx denotes
the commutator ofx; y 2 B(H).

• The spectral triple is calledeven if there exists a grading operator, i.e. a bounded
self-adjoint operator0 2 B(H) such that:

02 = IdH; [0; �(a)]� = 0; 8a 2 A; [0;D]+ = 0;
where [x; y]+ := xy + yx is the anticommutator ofx; y.

A spectral triple that is not even is calledodd.
• A spectral triple isregular if the function

4x : t 7! exp(it jDj)x exp(�it jDj)
is regular, i.e.4x 2 C1(R;B(H)),4 for every x 2 �D(A), where5

�D(A) := spanf�(a0)[D;�(a1)]� � � � [D;�(an)]� j n 2 N; a0; : : : ; an 2 Ag:
• The spectral triple isn-dimensional iff there exists an integern such that the
Dixmier trace ofjDj�n is finite nonzero.
• A spectral triple is �-summable if exp(�tD2) is a trace-class operator for
every t > 0.
• A spectral triple is real if there exists an antiunitary operatorJ : H ! H

such that:��(a); J�(b�)J�1�� = 0; 8a; b 2 A;

1At least in the case of compact, finite dimensional, Riemannian, orientable,spin manifolds.
2SometimesA is required to be closed under holomorphic functional calculus.
3As already noticed by Connes, this condition has to be weakened in the case of non-compact

manifolds, cf. [13, 12, 20, 21].
4This condition is equivalent to� (a); [D;� (a)]� 2 T1m=1 DomÆm, for all a 2 A, where Æ is the

derivation given byÆ(x) := [jDj; x]�.
5We assume that forn = 0 2 N the term in the formula simply reduces to� (a0).



330 P. BERTOZZINI, R. CONTI AND W. LEWKEERATIYUTKUL

�
[D;�(a)]�; J�(b�)J�1�� = 0; 8a; b 2 A; first order condition;

J 2 = �IdH; [J;D]� = 0;

and, only in the even case, [J; 0]� = 0;
where the choice of� in the last three formulas depends on the “dimension”n of the
spectral triple modulo 8 in accordance to the following table:

n 0 1 2 3 4 5 6 7J 2 = � IdH + + � � � � + +
[J;D]� = 0 � + � � � + � �
[J; 0]� = 0 � + � +

• A spectral triple is calledcommutativeif the algebraA is commutative.

2.2. Morphisms of spectral triples. The objects of our categoryS will be
spectral triples (A;H;D). Given two spectral triples (Aj ;Hj ;Dj ), with j = 1;2, a
morphism of spectral triplesis a pair

(�;8) 2 MorS [(A1;H1;D1); (A2;H2;D2)];
(A1;H1;D1)

(�;8)���! (A2;H2;D2);
where � : A1 ! A2 is a �-morphism between the pre-C�-algebras A1;A2 and8 : H1 ! H2 is a bounded linear map inB(H1;H2) that “intertwines” the representa-
tions �1; �2 Æ � and the Dirac operatorsD1;D2:

�2(�(x)) Æ8 = 8 Æ �1(x); 8x 2 A1;(2.1)

D2 Æ8 = 8 ÆD1;
i.e. such that the following diagrams commute for everyx 2 A1:

H1

D1

��

8 //

	

H2

D2

��
H1

8 // H2

H1

�1(x)

��

8 //

	

H2

�2Æ�(x)

��
H1

8 // H2

Of course, the intertwining relation between the Dirac operators makes sense only on
the domain ofD1. In the rest of the paper, we tacitly assume that8 carries the do-
main ofD1 into that ofD2.

Note also that such a definition of morphism implies quite a strong relationship
between the spectra of the Dirac operators of the two spectral triples.
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Loosely speaking, in the commutative case (see [4] for details), one should expect
such definition to become relevant only for maps that “preserve the geodesic struc-
tures” (totally geodesic immersions and totally geodesic submersions). Clearly our def-
inition of morphism contains as a special case the notion of (unitary) equivalence of
spectral triples [11, pp.485–486].

2.3. Categories of real and even spectral triples. In the case of real spec-
tral triples, we can define a natural notion of morphism simply by requiring that the
morphisms be compatible with the real structures in the following sense: given two
real spectral triples (Aj ;Hj ;Dj ; Jj ), with j = 1;2, a morphism in ourcategory of
real spectral triplesSr will be a morphism of spectral triples

(�;8) 2 MorS [(A1;H1;D1); (A2;H2;D2)];
(A1;H1;D1)

(�;8)���! (A2;H2;D2);
such that8 also “intertwines” the real structure operatorsJ1; J2:

(2.2) J2 Æ8 = 8 Æ J1;
i.e. such that the following diagram commutes:

H1

J1

��

8 //

	

H2

J2

��
H1

8 // H2

In a completely similar way, we can consider even spectral triples (A;H;D; 0)
and define thecategory of even spectral triplesSe, considering only those morphisms

(A1;H1;D1)
(�;8)���! (A2;H2;D2);

such that8 “intertwines” with the parity operators01; 02, i.e. such that:

02 Æ8 = 8 Æ 01;
H1

01

��

8 //

	

H2

02

��
H1

8 // H2

(2.3)

Again, in the case of real even spectral triples (A;H;D; J; 0) we will obtain a
category of real even spectral triplesSre, choosing those morphisms that satisfy at
the same time both the intertwining conditions 2.2 and 2.3 above.
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Of course the categorySre of real even spectral triples is in general a non-full
subcategory of both the categoriesSr and Se which are in turn non-full sub-
categories ofS .

REMARK 2.1. According to our definition of morphisms, an automorphism of a
real spectral triple (A;H;D; J ) in the categorical sense is given by a pair (�;8) with� 2 Aut(A) and8 2 B(H) implementing� and commuting withD and J . If we had
required from the beginning the8 appearing in (2.1) to be isometric, we would have
obtained an extension of the isometry subgroup of Aut+, the latter being the group of
diffeomorphisms preserving the K-homology class of the spectral triple introduced by
A. Connes [10, Section XI].

Define�pD(A) := spanf�(a0)[D;�(a1)] � � � [D;�(ap)] j a0; : : : ; ap 2 Ag, the space
of p-forms. Every morphism (�;8) : (A1;H1;D1) ! (A2;H2;D2) of spectral triples
intertwines thep-forms according to the following formula:

8 Æ NX
j=1

�1
�a(j )

0

��D1; �1
�a(j )

1

�� � � � �D1; �1
�a(j )p ��

=
NX
j=1

�2
���a(j )

0

���D2; �2
���a(j )

1

��� � � � �D2; �2
���a(j )p ��� Æ8:

REMARK 2.2. Our morphisms of spectral triples are compatible with the inner
deformation of the metric (see A. Connes [8, 9, 10]) in the following sense. Suppose
that (�;8) : (A1;H1;D1) ! (A2;H2;D2) is a morphism of spectral triples. Let us
consider the two spectral triples (A1;H1;D1 +A1) and (A2;H2;D2 +A2) obtained by
Morita “self-equivalences” ofA1 and A2 using the “gauge potentials”A1 2 �1D1

(A1)
andA2 2 �1D2

(A2), respectively. We notice that (�;8) continues to be a morphism of
the “deformed” spectral triples if and only if8 Æ A1 = A2 Æ8.

3. Discrete groups with weights

In order to prove the perfect mathematical naturality of ourtentative definition
of morphism of spectral triples, we provide here one interesting example of covariant
functor with values in our categoryS .

3.1. Preliminaries on group algebras. For the benefit of the reader, we set up
the framework by recalling a few properties of group algebras (of discrete groups) and
their representations.

Let G be a group equipped with the discrete topology6.

6With this topologyG is of course a topological group.



MORPHISMS OFSPECTRAL TRIPLES 333

We recall that, given a groupG, we can always construct itsgroup algebraC[G],
that we will denote here byAG := C[G]. The algebraAG consists of all the possible
complex-valued functions onG with finite supportAG := ff : G ! C j f �1fC �f0gg is a finitesetg, with sum and “scalar” multiplication by complex numbers defined
pointwise: (f + h)(x) := f (x) + g(x), (�f )(x) := �(f (x)), and multiplication defined by
the “convolution” product: (f � h)(z) :=

Pf(x;y)jxy=zg f (x)g(y). It is quickly established
thatAG, with the previously defined operations, is a complex associative unital algebra

whose identity7 is ÆGe (x), whereÆGy (x) :=

(
1; x = y
0; x 6= y , and thatAG becomes a unital

associative involutive algebra with the natural involution (f �)(x) := f (x�1).

Proposition 3.1. There exists a covariant functorA from the categoryG of
groups with homomorphisms, to the categoryA of associative complex unital invo-
lutive algebras with unital involutive algebra homomorphisms that to every groupG
associates the group algebraAG.

Proof. We have to define the functor on morphisms i.e. given a homomorphism� : H ! G between two groupsH andG, we have to define a unital involutive homo-
morphismA� : AG ! AH between the group algebras.

First of all notice that every groupG can be naturally “embedded” inside its group
algebra byÆG : G! AG, z 7! ÆGz . The mapÆG is injective, unital (i.e.,e 7! ÆGe ), mul-
tiplicative (i.e. ÆGx � ÆGy = ÆGxy), involutive (i.e. (ÆGx )� = ÆGx�1).

Then recall that for a given groupG, (AG; ÆG) is a free object overG in the
category of unital associative involutive algebras i.e. every unital multiplicative invo-
lutive function  : G ! B from G to a unital associative involutive algebraB can
be “lifted” to a unital involutive algebra homomorphism9 that makes the following
diagram commutative:

G ÆG //

   B
BB

BB
BB

B
	

AG
9
��
B

Finally take in the above diagram respectivelyB := AH ,  : G! AH defined by :=ÆH Æ� in order to get the desired morphism of unital involutive algebrasA� := 9. The
association� 7! A� is “functorial” i.e. respects compositions and identity functions.

Proposition 3.2. On the complex vector spaceAG there exists a natural inner

7Here e denotes the identity element ofG.
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product given by:

hf j hi :=
X
x2G f (x)h(x):

With this inner productAG is a pre-Hilbert space. The completion ofAG with respect
to the previous inner product is a Hilbert space.

The Hilbert space constructed in Proposition 3.2 is naturally identified with the
Hilbert spacel2(G) := L2(G;�), where � is the counting measure on the discrete
groupG. In the following we will always denote this Hilbert space byHG := l2(G).

Proposition 3.3. There is a natural unital representation�0G : AG ! L(AG) of
the group algebraAG over itself by left action(by convolution). The representation
is faithful.

Proof. To every elementf 2 AG we associate the element�0G(f ) : AG ! AG
given by (�0G(f ))(h) := f � h, for everyh 2 AG.

From the definition of�0G it is clear that�0G(f ) 2 L(AG) and thatf 7! �0G(f ) is
a linear function:�0G 2 L(AG;L(AG)).

By direct calculation,�0G is multiplicative and unital hence a representation.
The injectivity of �0G follows from the triviality of the kernel (as in any unital

left-regular representation): iff 6= 0, then�0G(f )(ÆGe ) = f � ÆGe = f 6= 0.

Corollary 3.4. There is a natural faithful representation�G : AG ! B(HG) of
the group algebraAG as bounded operators on the Hilbert spaceHG.

Proof. The operator�0G(f ) 2 L(AG) is a bounded operator on the pre-Hilbert
spaceAG. To prove this note that iff =

Px2G f (x)ÆGx , by the linearity of�0G, we
have�0G(f ) =

Px2G f (x)�0G(ÆGx ) so that it is enough to prove the boundedness of the
operators�0G(ÆGx ) for all x 2 G. This follows immediately from the fact that�0G(ÆGx ) is
an isometry of the inner product spaceAG:

�0G �ÆGx � (h)
2

=
ÆGx � h2

=
X
z2G

��h �x�1z���2 =
X
z2Gjh(z)j2 = khk2:

By linear extension theorem,�0G(f ) extends to a bounded operator�G(f ) on HG with
the same norm.

The representation�G : AG ! B(HG), in Corollary 3.4, is nothing but theleft-
regular representation�G : C[G] ! B(l2(G)).

Proposition 3.5. The exists a natural antilinear involutionJG : HG ! HG on the
Hilbert spaceHG.
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Proof. On the pre-Hilbert spaceAG, the algebra involution� : AG ! AG, de-
fined by f �(x) := f (x�1), is antilinear and isometric:

hf � j g�i =
X
x2G f (x�1) g(x�1) =

X
x2G g(x�1)f (x�1) =

X
x2G g(x)f (x) = hg j f i:

By linear extension theorem (for antilinear maps), there exists a unique antilinear
extensionJG : HG ! HG to the closureHG of AG. The map JG is antilinear,
involutive, isometric.

3.2. Preliminaries on weighted groups.

DEFINITION 3.6. By a weight on a groupG we mean a real-valued function! : G! R. Given two weighted groups (G;!G) and (H;!H ), we say that a function� : G! H is a weighted homomorphismif:

� : G! H is a group homomorphism and!G = ��(!H ) := !H Æ �:
A weight is calledproper if for every k 2 N, !�1G ([�k;+k]) is a finite set inG.

Note that proper weights exist only on countable groups.

REMARK 3.7. A special case of weight on a groupG, is given by the notion of
a length functionon a group8 [6] i.e. a functionlG : G! R such that:

lG(xy) � lG(x) + lG(y); 8x; y 2 G;
lG(x�1) = lG(x); 8x 2 G;
lG(x) = 0 () x = e; wheree 2 G is the identity element ofG:

Of course a length function is always positive since: 0 =lG(e) = lG(xx�1) � lG(x) +lG(x�1) = 2lG(x) for all x 2 G.
A weighted homomorphism of groups with length is called anisometry. The pre-

vious conditions actually imply that every isometry is injective:

�(x) = eH =⇒ lH (�(x)) = lH (eH ) = 0 =⇒ lG(x) = 0 =⇒ x = eG:
Proposition 3.8. The class of (proper) weighted groups with weighted homo-

morphisms forms a category. The class of groups equipped with a(proper) length
function when the morphisms are the isometries, is a full subcategory.

8Here we follow the definition used by M. Rieffel [22, Section 2].
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Proof. The composition of weighted homomorphisms (respectively isometries)� : G! H and : H ! K is a weighted homomorphism (isometry):

( Æ �)�(!K ) = ��( �(!K )) = ��(!H ) = !G:
For every object (H;!H ), the identity isomorphism� : H ! H is a weighted homo-
morphism (isometry) that satisfies Æ � =  , and � Æ � = � for every composable
weighted homomorphisms�; .

Of course the category of normed spaces with linear norm-preserving maps is a
(non-full) subcategory of the category of Abelian groups with length function (the
length function being the norm) and isometries as defined above coincide with the
well-known concept of norm-preserving maps in normed spaces.

Proposition 3.9. There is a covariant functorA from the categoryGi of groups
with injective homomorphism as arrows, to the categorypHi of pre-Hilbert spaces
with isometries.

In the same way, we have a covariant functorH from the categoryGi of groups
with injective morphism to the categoryHi of Hilbert spaces with isometries.

The functorsA and H are left exact.

Proof. The functor on objects is defined byG 7! AG 2 pHi and byG 7! HG 2
Hi respectively.

To define the functor on morphisms, we first note that for any given groupG, the
set fÆGx j x 2 Gg is a (Hamel) basis for the vector spaceAG that is orthomormal with
respect to the inner product inAG.

If the function � : G! H is a monomorphism, the induced (linear) map
A� : AG ! AH becomes an isometry because it mapsÆGx to ÆH�(x) i.e. it sends an or-
thonormal basis to an orthonormal set.

SinceA� is an isometry, it is bounded as a map fromAG to HH and it can be
uniquely extended to an isometryH� : HG ! HH .

The associations� 7! A� and � 7! H� satisfy all the functorial properties.

The following theorem is a well-known result of A. Connes [6,Lemma 5]:

Theorem 3.10. To every pair (G;!G) where G is a discrete countable group
and !G is a weight function onG, we can associate a triple(AG;HG;D!G) given
as follows:
• AG is the group algebra ofG as defined above inSubsection 3.1.
• HG is the Hilbert space ofG as defined above inProposition 3.2.
• The representation of the algebraAG on HG is the left-regular representation�G : AG ! B(HG) defined above inCorollary 3.4.



MORPHISMS OFSPECTRAL TRIPLES 337

• The Dirac operatorD!G is the pointwise multiplication operator by the weight
function!G, i.e.

(D!G� )(x) := !G(x)� (x); 8x 2 G;
naturally defined on the domain

�� 2 HG �� Px2Gj!G(x) � (x)j2 <1	.
The triple (AG;HG;D!G) is a spectral triple if and only if the weight!G is prop-

er and such that, for all x 2 G, the differences9 [!G � �x(!G)] : G! R, are bounded
real-valued functions.

Proof. AG is a pre-C� algebra: definingkf k := k�G(f )kHG , we see that the C�-
propertykf �f k = kf k2 is immediate10.

The Dirac operatorD!G is self-adjoint and has compact resolvent if and only if!G is proper.
Every elementf 2 AG can be written asf =

Px2G f (x)ÆGx .
It follows that �G(f ) =

Px2G f (x)�G(ÆGx ) and we have:

k[D!G ; �G(f )]k =


X
x2G f (x)

�D!G ; �G �ÆGx ��
 �

X
x2Gjf (x)j � �D!G ; �G�ÆGx ��;

so that, in order to show the boundedness of [D!G ; �G(f )] it is enough to show the
boundedness of [D!G ; �G(ÆGx )] for all x 2 G.

Now, from the fact that�G(ÆGx ) is unitary inHG, we have:�D!G; �G �ÆGx �� =
D!G�G �ÆGx �� �G �ÆGx �D!G

=
�D!G � �G �ÆGx �D!G�G �ÆGx ��1

��G �ÆGx �
=
D!G � �G �ÆGx �D!G�G �ÆGx ��1


and since, by direct calculation, we get�G(ÆGx )D!G�G(ÆGx )�1 = D�x (!G), where�x(!G) : y 7! !G(x�1y), we see thatk[D!G ; �G(ÆGx )]k = kD!G � D�x (!G)k. SincekD!G � D�x (!G)k = k!G � �x(!G)k1 := supfj!G(y) � !G(x�1y)j : y 2 Gg, the asser-
tion is proved11.

9Where�x (!G) : y 7! !G(x�1y) is the “left x-translated” of!G.
10It must be pointed out that, denoting byC�r (G) the closure ofAG in the norm defined above,

the correspondenceG 7! C�r (G) is not functorial, in general. It becomes so, for the full subcategory
of amenable groups. In the case of non amenable groups we do not have finite dimensional spectral
triples (see A. Connes [6, Theorem 19]).

11Let u : G � G ! T be a normalized2-cocycle onG and consider the left-regular representation
of G twisted by u, defined by(�Gu (ÆGx ))ÆGy := u(y�1x�1; x)ÆGxy . Then up to minor modifications the
same argument shows that the Dirac operatorD!G also gives a spectral triple over the “twisted group
algebra” generated by the�Gu (ÆGx )’s.
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REMARK 3.11. In the case of length funtions on groups, the last condition of
Theorem 3.10 is automatically satisfied:

lG(y)� �x(lG)(y) = lG(y)� lG(x�1y) � lG(x):
Lemma 3.12. AG � HG is an invariant core for the operatorD!G .

Proof. Suppose that12 (�; �) 2 D!G . SinceAG is dense inHG, there is a se-

quence�n n!1���! � with �n 2 AG. We show that it is possible to choose the sequence�n 2 AG in such a way thatD!G(�n) n!1���! �. In fact, selecting an arbitrary well or-
dering n 7! xn 2 G in the support set of� , we can always define�n :=

Pnj=0 � (xj )ÆGxj
and check that�n n!1���! � and alsoD!G(�n) n!1���! � so that (�; �) 2 D!G jAG i.e. AG
is a core forD!G .

Of course, since�n has finite support,D!G(�n) also has finite support and soD!G(�n) 2 AG. In particularAG is an invariant subspace forD!G .

Lemma 3.13. Given the weight!G : G! R on the groupG, the following con-
ditions are equivalent13:

8x 2 G !G � �x(!G) is constant;

!G = � + �; where� is a constant and� : G! R is a homomorphism;

8x 2 G; !G � � 0x(!G) is constant;

!G �xzy�1
�� !G �zy�1

�
= !G(xz)� !G(z); 8x; y; z 2 G:

Proof. By direct calculation if!G = �+� then!G� �x(!G) and!G� � 0x(!G) are
constant. That!G � �x(!G) being constant is equivalent to

(3.1) !G(xg) = !G(g)� � �x�1� ;
for some function� : G! R. Taking x = g�1 in the previous equation we have�(g) =!G(g)� !G(eG). Hence equation (3.1) implies

(3.2) �(xg) = �(g)� � �x�1�
and (takingg = eG) �(x) = ��(x�1). Substituting this in equation (3.2), we see that�
is a homomorphism so that! = � + � with � := !(eG). The same proof applies to the
case!G� � 0x(!G) being constant. The last equation is easily reduced to equivalence to
the constancy of!G � � 0x(!G) by substitutions.

12Operators and their graphs are denoted with the same symbol.
13By definition, � 0x (!G) : y 7! !G(yx�1) is the “right” translation of!G by x.
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In view of their relevance for the construction of spectral triples, weights satisfy-
ing the last condition in Theorem 3.10 deserve a special name.

DEFINITION 3.14. A weight!G on the groupG is said to be aDirac weight if!G � �x(!G) are bounded functions, for everyx 2 G.

The following proposition is essentially a restatement of the results already ob-
tained by M. Rieffel [23, see the end of Section 2].

Proposition 3.15. Given a proper Dirac-weighted countable group(G;!G), the
anti-unitary operatorJG defined inProposition 3.5is a real structure on the spectral
triple (AG;HG;D!G ) if and only if either!G is a constant function or!G is a homo-
morphism of groups.

Proof. We haveJ 2G = IdHG .
By linear extension, the condition (JGD!G)(� ) = �(D!GJG)(� ) for � 2 HG holds

if and only if (JGD!G)(ÆGx ) = �(D!GJG)(ÆGx ), which is also equivalent to:

(3.3) !G�x�1� = �!G(x) 8x 2 G:
There is no problem at all to verify the property

(3.4) (JG�G(g)JG) Æ �G(f )(� ) = �G(f ) Æ (JG�G(g)JG)(� ); 8� 2 HG:
In fact, for all f; g; � 2 AG:

[�G(f ) Æ (JG�G(g)JG)](� ) = f � JG(g � (JG(� ))) = f � �J 2G(� ) � JG(g)
�

= f � � � (JG(g)) = JG(g � (JG(� )) � (JG(f )))

= (JG�G(g)JG)(f � � ) = [(JG�G(g)JG) Æ �G(f )](� )

and by linear extension theorem (sinceJG, �G(f ), and�G(g) are all bounded) condi-
tion (3.4) holds for all� 2 HG.

We now prove that the first order condition

(3.5) [D!G ; �G(f )]� Æ (JG�G(g)JG)(� ) = (JG�G(g)JG) Æ [D!G ; �G(f )]�(� );
for all f; g 2 AG and all � 2 HG, holds if and only if!G � �x(!G) are constant
functions. Since all the operators involved are bounded on the Hilbert spaceHG, by
linear extension theorem, it is enough to check the first order condition only for
every � 2 AG.

Let f =
Px2G f (x)ÆGx , g =

Py2G g(y)ÆGy and � =
Pz2G � (z)ÆGz be three elements

in AG. Substitution in equation (3.5) above and (anti-)linearity yieldX
x;y;z2G f (x)g(y)� (z) � �D!G ; ÆGx �� Æ �JG�G �ÆGy � JG� �ÆGz �
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=
X

x;y;z2G f (x)g(y)� (z) � �JG�G �ÆGy � JG� Æ �D!G ; ÆGx �� �ÆGz � :
This last equation holds if and only if, for allx; y; z 2 G:

�D!G ; ÆGx �� Æ �JG�G �ÆGy � JG� �ÆGz � =
�JG�G �ÆGy � JG� Æ �D!G ; ÆGx �� �ÆGz � :

By direct calculation we have:�D!G; ÆGx �� Æ �JG�G �ÆGy � JG� �ÆGz � = !G �xzy�1�� !G �zy�1� ÆGxzy�1;�JG�G �ÆGy � JG� Æ �D!G; ÆGx �� �ÆGz � = !G(xz)� !G(z)ÆGxzy�1:
Hence our result is that the first order condition (3.5) holdsif and only if

!G �xzy�1�� !G �zy�1� = !G(xz)� !G(z); 8x; y; z 2 G:
and this, by lemma 3.13, is equivalent to the fact that!G = � + � where� : G ! R

is constant and� : G! R is a homomorphism of groups.
Now, equation (3.3) above, in the plus case, is equivalent to� = 0 and so to!G =� being a constant. In the minus case, it is equivalent to� = 0 and so to!G = � being

a homomorphism of groups.

REMARK 3.16. The spectral triple (AG;HG;D!G ) is regular (see M. Rieffel [23,
end of Section 2]). For instance, [jD!G j; �G(f )] and [jD!G j; [D;�G(f )]] are bounded
for all f 2 AG as a consequence of the following estimates which can be obtained by
repeating the argument in the proof of Theorem 3.10:�Dj!Gj; �G(ÆGx )

� � k�x(j!Gj)� j!Gjk1 � k�x(!G)� !Gk1;�Dj!Gj; �D!G ; �G(ÆGx )
�� � k�x(!G)� !Gk21;

and more generally�jD!G j; : : : ; �jD!G j; �G�ÆGx � � � � � �| {z }n
 � k�x(!G)� !Gkn1:

�jD!G j; : : : ; �jD!G j; �D!G ; �G�ÆGx �� � � � � �| {z }n
 � k�x(!G)� !Gkn+11 :

REMARK 3.17. On the real spectral triple (AG;HG;D!G ; JG), it is impossible to
introduce a grading operator0G, (unless!G is the zero function14). This is because if!G is a non-zero constant the equationD!G0 = �0D!G cannot be satisfied. On the
other hand, if!G is a homomorphism, then we are in the caseJGD!G = �D!GJG

14In the case!G equal to zero, a convenient grading is given by0(ÆGx ) := ÆGx�1 .
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which, from the table at the end of Section 2.1, is incompatible with the existence of
a grading. Of course, “doubling” in an appropriate way the Hilbert spaceHG, we can
easily get another graded real spectral triple:
• the pre-C�-algebra is the same group algebraAG;
• the Hilbert space is given by the direct sumHG �HG;
• the representation ofAG in HG � HG is the direct sum representation�G � �G
i.e. for all f 2 AG and �; � 2 HG:

[�G � �G(f )](� � �) :=

��G(f ) 0
0 �G(f )

� � ���
�

=

�
[�G(f )](� )
[�G(f )](�)

�
;

• the Dirac operator is given by:

D!G � (�D!G) =

�D!G 0
0 �D!G

�
;

• the grading operator is given by:

0G :=

�
0 1
1 0

�
;

• the real structure is given by:

JG � JG =

�JG 0
0 JG

� :
3.3. The functor: monomorphism case.

Theorem 3.18. There exists a covariant functorF, from the categoryG !i of
proper Dirac-weighted countable groups with weighted monomorphisms to the cate-
gory of spectral triples, that to every(G;!G) associates(AG;HG;D!G ).

Proof. We only need to prove existence of a functor on monomorphisms� : G ! H . It is our purpose to show that the pair (A�;H�) defined in Proposi-
tion 3.9 is a morphism

(AG;HG;D!G )
(A� ;H� )����! (AH ;HH ;D!H )

of spectral triples.
This amounts to showing that for everyf 2 AG and for every� 2 HG:

H� Æ �G(f )(� ) = �H (A�(f )) ÆH�(� );
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and that:

(3.6) H� ÆD!G(� ) = D!H ÆH�(� ):
The first property follows from the fact that, for everyf 2 AG and for every� 2 AG � HG we have:

(H� Æ �G(f ))(� ) = H�(f � � ) = A�(f � � ) = A�(f ) �A�(� ) = �H (A�(f )) ÆH�(� ):
Since, for everyf 2 AG, the bounded operatorsH� Æ �G(f ) and �H (A�(f )) Æ H�
coincide on the dense subspaceAG of HG, the identity follows.

The second property is obtained from the fact that, for every� 2 AG � HG:

H� ÆD!G(� ) = H�
 X
z2G !G(z)� (z)ÆGz

!
=
X
z2G !G(z)� (z)H� �ÆGz �

=
X
z2G !G(z)� (z)ÆH�(z) =

X
z2G !H (�(z))� (z)ÆH�(z)

= D!H
 X
z2G � (z)ÆH�(z)

!
= D!H

 X
z2G � (z)H� �ÆGz �

!

= D!H ÆH�
 X
z2G � (z)ÆGz

!
= D!H ÆH�(� );

so that the two operatorsH� Æ D!G and D!H Æ H� coincide on the dense subspace
AG of HG. From the fact thatAG is an invariant subspace forD!G and H� , and
from Lemma 3.12 above, we see thatAG is a core for both operators and the
equality (3.6) follows.

Proposition 3.19. Under the same assumptions as inTheorem 3.18,if the weight!G is a group homomorphism or a constant, then (A�;H�) is a morphism of real
spectral triples i.e.:

H� Æ JG = JH ÆH� :
Proof. For every element� =

Px2G � (x)ÆGx 2 AG � HG we have:

H� Æ JG
 X
x2G � (x)ÆGx

!
=
X
x2GH� Æ JG �� (x)ÆGx � =

X
x2G � (x)H� �JG �ÆGx ��

=
X
x2G � (x)H� �ÆGx�1

�
=
X
x2G � (x)ÆH�(x)�1

=
X
x2G JH

�� (x)ÆH�(x)

�
=
X
x2G JH ÆH� �� (x)ÆGx �
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= JH ÆH�
 X
x2G � (x)ÆGx

!
:

This means that both the operatorsH� Æ JG and JH ÆH� coincide on the dense sub-
spaceAG of the Hilbert spaceHG and, since they are bounded, it follows by linear
extension theorem, that they are equal on all ofHG.

REMARK 3.20. With the same notations developed in Remark 3.17, it iseasily
established that (A�;H� � H�) is a morphism of graded spectral triples (with real
structure, when available). The associationG 7! AG, � 7! (A�;H� � H�) is func-
torial from the categoryG !i to the categoryS of spectral triples.

An automorphism� of G induces by functoriality an automorphismA� of the
group algebraAG implemented by the unitaryH� on the Hilbert spaceHG and, if �
is also weighted, (A�;H�) is an automorphism of the spectral triple (AG;HG;D!G ).
In particular, if � := adg; g 2 G, is inner, H� = �G(g)J�G(g)J is the image ofg
through the inner regular representation ofG.15

Equivalence classes of monomorphisms categorically correspond to subobjects, in
our case, subgroups. Every subgroupH of the weighted group (G;!G) comes natu-
rally equipped with a weight function!H := !GjH obtained by restriction of the orig-
inal weight function onG and the inclusion map� : H ! G is a morphism inG !i .
By Proposition 3.9 and Theorem 3.18, (A�;H�) is a monomorphism from the spec-
tral triple (AH ;HH ;D!H ) to the spectral triple (AG;HG;D!G). Similarly, one has
the following:

Corollary 3.21. The functorF : G !i ! S is left exact: every monomorphism of
groups gives rise to a monomorphism of spectral triples.

Note however that the functorF is not full: there are morphisms (even mono-
morphisms) of spectral triples over group algebras that arenot obtained from mono-
morphisms of groups. This fact might call for suitable modifications of our setting that
could entail better functorial correspondences.

3.4. Preliminaries on charged groups and co-isometries.Before proceeding
further, we need to collect a few more facts about weights andlengths on groups.

DEFINITION 3.22. A charged groupis a weighted group (G;!G) such that the
function j!Gj : x 7! j!G(x)j is a length function onG.

A homomorphism � : G! H between charged groups is calledisometric
if ��(j!H j) = j!Gj.

15Note that(AG;HG;D!G ), with AG acting onHG by the (linearization of the) inner regular rep-
resentation ofG, is a spectral triple too.
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REMARK 3.23. Every group with length function (G; lG) is a charged group.
An isometric homomorphism between charged groups is continuous with respect

to the metric topologies induced by the length functions.
Every weighted homomorphism� : G! H between charged groups (G;!G) and

(H;!H ) is isometric16.
The category of charged groups with isometric weighted morphisms is a full sub-

category of the category of weighted groups with weighted monomorphisms.

DEFINITION 3.24. Let (G;!G) and (H;!H ) be two weighted groups. A homo-
morphism of groups� : G ! H is called aco-weighted homomorphismif there ex-
ists a weighted homomorphism� : H ! G such that� Æ � = �H . A co-weighted
homomorphism between two charged groups is said to beco-isometricif j!H (�(g))j �j!G(g)j for all g 2 G.

Lemma 3.25. Let (G; lG) be a group with length function and letH be a normal
subgroup ofG. The functionlG=H : G=H ! R defined by

lG=H (xH ) := infflG(xh) j h 2 H g
is a length onG=H called thequotient length.

Proof. Using the normality ofH in G we see thatfxyhk j h; k 2 H g = fxhyk jh; k 2 H g. Hence this calculation follows:

lG=H (xyH ) � lG(xhyk) � lG(xh) + lG(yk) 8h; k 2 H
=⇒ lG=H (xyH )� lG(xh) � lG(yk); 8h; k 2 H
=⇒ lG=H (xyH )� lG(xh) � lG=H (yH ); 8h 2 H
=⇒ lG=H (xyH )� lG=H (yH ) � lG(xh); 8h 2 H
=⇒ lG=H (xyH )� lG=H (yH ) � lG=H (xH ):

SinceH is normal inG, we havefx�1h j h 2 H g = f(xh)�1 j h 2 H g and so:

lG=H �x�1H � = inf
�lG �x�1h� �� h 2 H	 = inf

�lG �(xh)�1� �� h 2 H	
= infflG(xh) j h 2 H g = lG=H (xH ):

Finally, we have 0� lG=H (H ) = infflG(h) j h 2 H g � lG(eG) = 0.

Lemma 3.26. Let � : G! H be a homomorphism between two groups andlG a
length function onG. We can define the push-forward��(lG) : �(G) ! R as follows:

(��(lG))(h) := infflG(g) j g 2 G; �(g) = hg; 8h 2 �(G):
16Of course,� is continuous.
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The push-forward is a length function on�(G).

Proof. Under the natural isomorphism�(G) ' G=Ker�, the function��(lG) co-
incides with the functionlG=Ker� defined above.

REMARK 3.27. A co-weighted homomorphism� : G! H between two charged
groups is a co-isometry if and only ifj!H j = ��(j!Gj).

Lemma 3.28. There is a categoryG whose objects are groups and whose mor-
phisms are epimorphisms.

There is a category whose objects are charged groups and whose morphisms are
co-isometric homomorphisms.

Proof. The composition of epimorphisms is another epimorphism and the compo-
sition of co-isometric homomorphisms is a co-isometric homomorphism. The identity
map of every group is a co-isometric homomorphism (hence epimorphism) that plays
the role of the identity in the category.

Corollary 3.29. There is a categoryH whose objects are Hilbert spaces and
whose morphisms are co-isometries.

DEFINITION 3.30. A covariant relator from the categoryA to the categoryB
is a pair (ROb;RMor) of relations,ROb � ObA � ObB between objects andRMor �
MorA �MorB between morphisms, such that:

(A;B) 2 ROb =⇒ (�A; �B ) 2 RMor

and, whenever�1; �2 are composable morphisms inA and whenever�1; �2 are com-
posable morphisms inB:

(�2; �2); (�1; �1) 2 RMor =⇒ (�2 Æ �1; �2 Æ �1) 2 RMor:
REMARK 3.31. A covariant functor is a covariant relator such that both ROb and

RMor are functions. Contravariant relators are defined in a similar way interchanging
the order of compositions.

Proposition 3.32. There is a contravariant relatorH from the categoryG of
groups with epimorphisms to the categoryH of Hilbert spaces with isometries.

Proof. HOb is the function that to every objectG in G associates the Hilbert
spaceHG 2 H.

We now define the relationHMor. As we already know from Proposition 3.1, every
homomorphism� : G ! H is associated to a linear mapA� : AG ! AH of pre-
Hilbert spaces.
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If � is an epimorphism, the linear mapA� is continuous if and only if Ker� is
a finite subgroup ofG:

(3.7)

kA�(f )k2H =

A�
 X
x2G f (x)ÆGx

!
2

H =


X
x2G f (x)ÆH�(x)


2

H
=


X
y2H

0
� X
x2��1(y)

f (x)

1
A ÆHy


2

H
=
X
y2H

������
X

x2��1(y)

f (x)

������
2

�X
y2H

0
� X
x2��1(y)

jf (x)j
1
A

2

�X
y2H

X
x2��1(y)

card(Ker�)jf (x)j2
=
X
x2G card(Ker�)jf (x)j2 = card(Ker�)kf k2G:

It follows that in general the operatorA� is an unbounded operator from the Hilbert
spaceHG to the Hilbert spaceHH .

The operatorA� is densely defined because its domain contains the dense sub-
spaceAG � HG. Hence there exists an adjoint operatorA�� that, in the case of finite
Ker�, coincides with the “pull-back” operatorf 7! f Æ�, for f 2 AH . Unfortunately,
when Ker� is not finite,A� is not a closable operator.

Let us now denote byP the set of linear isometric operatorsK � HG�HH such
thatK � A� . The familyP is an inductive partially ordered set and as such, by Zorn’s
lemma, it admits a maximal element. Every maximal operatorK in the family P is
necessarily surjective and so its adjointK� : HH ! HG is an isometry andK�� = K

is a partial isometry with rangeHH .
Every maximal partial isometryK 2 P has a closure that is the adjoint operator

H� of an isometric operatorH , where : H ! G is a monomorphism that is right
inverse to the epimorphism� : G! H .

We now define a contravariant relatorHMor on morphisms by saying that (�;K�)2
HMor if and only if K is a maximal isometry inA� .

H will be a contravariant functor if and only if the set of maximal partial isome-
tries in A� has cardinality one, which is equivalent to the fact that there exists only
one “splitting homomorphism” for� i.e. there exists a unique : H ! G such
that � Æ  = �H .

The same considerations can be applied to the full subcategory of (proper)
weighted groups.

REMARK 3.33. The relation between the kernel of� and the kernel ofA� is
given by:

Ker(�) = G \ �ÆGe + Ker(A�)
� ; Ker(A�) = ÆGe + span(Ker(�)):
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3.5. The functor: coisometric case.

Theorem 3.34. There exists a contravariant relatorR from the categoryG ! of
proper Dirac-weighted groups with co-weighted homomorphisms to the category of
spectral triplesS , that to every(G;!G) associates(AG;HG;D!G ).

Proof. The relator on objectsROb coincides with the functor defined in
Theorem 3.18.

We want to see that, on morphisms, the relatorRMor is defined in the same way
as in Proposition 3.32 i.e.RMor associates to every splitting weighted epimorphism� : G! H the family of pairs (A ;H ), where is any weighted (mono)morphism : H ! G such that� Æ  = �H .

Let � : G ! H be a co-weighted epimorphism of proper weighted groups. For
sure (see Proposition 3.1) we have thatA : AG ! AH is an involutive unital homo-
morphism of the group algebras.

If the homomorphism� : G ! H admits “right inverses” i.e. if there exist
weighted morphisms : H ! G such that� Æ  = �H , from Proposition 3.32 we
know that, for any such “right inverse” , the functionH : HG ! HH is an isom-
etry of Hilbert spaces. From the same Proposition 3.32 we also know that the pair
(ROb;RMor) where the second relation is given byRMor := f(A ;H ) j � Æ  =�H ; � 2 MorG ! g is a contravariant relator.

From theorem 3.18, (A ;H ) is a morphism in the category of spectral triples
S , i.e. for all f 2 AH and for all � 2 AH :

H Æ �H (f )(� ) = �G(A (f )) ÆH (� )

D!G ÆH (� ) = H ÆD!H (� ):
REMARK 3.35. The relator becomes a functor in case that it is possible to select

canonically a splitting of the co-isometry (for example in the case of Hilbert spaces).

4. Conclusion and further remarks

In this work we have proposed a definition of morphism for spectral triples (and
their real and even variants).

Some remarks on further generalizations are in order. We have presented here the
most elementary instructive example of functorial relations between our proposed
categoryS of spectral triples and other categories: in this specific case the categories
G !i of proper Dirac-weighted groups with monomorphisms andG ! of proper
Dirac-weighted groups with co-weighted homomorphisms. Other examples involving
categories of Riemannian manifolds equipped with a spin structure will be dealt
with in [4].
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Other alternative variants of our definition of morphism of spectral triples are
worth investigating. For example we might substitute the “strong” requirement of com-
mutation of the Dirac operators with the Hilbert space maps with some milder prop-
erty like17: H� Æ [DG; �G(f )] = [DH ; �H (A�(f ))] ÆH� .

As regards the specific examples of functorial relations described here, several im-
mediate generalizations and comments come to mind. Among them, we mention:

Most of the facts presented here for the category of weighted groups can be
rephrased for the category of “weighted” small categories considering the “con-
volution algebra” of a small category in place of the group algebra.

The notions of weight and charge on a group can be further generalized by
considering functions! : G � G ! C having properties formally similar to
those of Hermitian forms and inner products. The Dirac operators D! associated
to these functions! include, in the case of finite groups, all available Dirac op-
erators according to the classification of finite spectral triples (see, for example,
T. Krajewski [17]).

The only possible choice of Dirac operatorD!G on a weighted group (G;!G) that
is fully compatible with the requirements of a real zero dimensional spectral triple,
where the real structureJ is the one obtained by Tomita–Takesaki modular the-
ory (from the cyclic separating vectorÆGeG 2 HG), is D!G = 0. This fact asks for
some investigation on the mutual relationship between modular theory and non-
commutative geometry. We hope to discuss this point elsewhere [3].
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cal Seminars 1996–1999, Birkhäuser (2000), 85–108,http://xxx.lanl.gov/math.AG/
9812158, 30 December 1998.

[16] M. Kontsevich and A. Rosenberg:Noncommutative spaces, preprint MPIM2004-35, Max
Planck Institut f̈ur Mathematik (2004).

[17] T. Krajewski: Classification of finite spectral triples, J. Geom. Phys.28 (1998), 1–30,
http://xxx.lanl.gov/hep-th/9701081, 20 January 1997.

[18] Y. Manin: Real multiplication and noncommutative geometry; in The Legacy of Niels Henrik
Abel, Springer, Berlin, 2004, 685–727.http://xxx.lanl.gov/math.AG/0202109, 12
February 2002.

[19] M. Paschke and R. Verch:Local covariant quantum field theory over spectral geometries, Class.
Quantum Grav.21 (2004), 5299–5316,http://xxx.lanl.gov/gr-qc/0405057, 11
May 2004.

[20] A. Rennie: Smoothness and locality for nonunital spectral triples, K-Theory 28, (2003),
127–165.

[21] A. Rennie:Summability for nonunital spectral triples, K-Theory 31, (2004), 71–100.
[22] M.A. Rieffel: Metrics on states from action of compact groups, Doc. Math.3 (1998), 215–229,

http://xxx.lanl.gov/math/9807084, 04 January 1999.
[23] M.A. Rieffel: Group C�-algebras as compact quantum metric spaces, Doc. Math. 7 (2002),

605–651,http://xxx.lanl.gov/math.OA/0205195, version 3, 21 November 2002
[24] A. Rosenberg:Noncommutative spaces and schemes, preprint, MPIM1999-84, Max Planck In-

stitut für Mathematik (1999).



350 P. BERTOZZINI, R. CONTI AND W. LEWKEERATIYUTKUL

Paolo Bertozzini
Department of Mathematics and Statistics
Faculty of Science and Technology
Thammasat University - Rangsit Campus
Bangkok 12121, Thailand
e-mail: paolo.th@gmail.com

Roberto Conti
Department of Mathematics
Faculty of Science
Chulalongkorn University
Bangkok 10330, Thailand
e-mail: conti@math.sc.chula.ac.th

Wicharn Lewkeeratiyutkul
Department of Mathematics
Faculty of Science
Chulalongkorn University
Bangkok 10330, Thailand
e-mail: Wicharn.L@chula.ac.th


