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TORIC VARIETIES WHOSE CANONICAL DIVISORS
ARE DIVISIBLE BY THEIR DIMENSIONS
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Abstract
We totally classify the projective toric varieties whose canonical divisors are di-

visible by their dimensions. In Appendix, we show that Reid’s toric Mori theory im-
plies Mabuchi’s characterization of the projective space for toric varieties.

1. Introduction

In [5, Section 6], Akio Hattori and Mikiya Masuda determined the structures ofn-dimensionalnon-singular completetoric varieties whose first Chern classes are di-
visible by n or n + 1 as applications of their theory. Their results are as follows:

Theorem 1.1 (cf. [5, Corollaries 6.4, 6.8]). Let M be a complete non-singular
toric variety of dimensionn.
(A) If 
1(M) is divisible byn + 1, thenM is isomorphic to the projective spacePn as
a toric variety.
(B) If 
1(M) is divisible byn, thenM is isomorphic to an(n � 1)-dimensional pro-
jective space bundle overP1 as a toric variety.
For the more precise statements, see[5, Corollaries 6.6, 6.8].

These results seem to be toric geometric analogues of Kobayashi-Ochiai’s theo-
rems (see [6]). In [6], they characterizedn-dimensional Fano manifolds whose first
Chern classes are divisible byn or n + 1. Before we state the main theorem of this
paper, let us recall the following theorem, which is a directconsequence of the main
theorem of [1].

Theorem 1.2. Let X be an n-dimensional projective toric variety and B =Pj djBj a Q-divisor onX, whereBj is a torus invariant prime divisor and0� dj �
1 for every j . Assume thatKX + B is Q-Cartier, not nef, and �(KX + B) � ND for
some Cartier divisorD on X, whereN is a positive rational number. Then, [1, The-
orem 0.1] impliesN � n + 1. Furthermore, N = n + 1 if and only if X ' Pn, B = 0,
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and OX(D) ' OPn (1). More generally, N > n implies thatX ' Pn, Pj dj < 1, and
OX(D) ' OPn (1).

Obviously, Theorem 1.2 is much stronger than Theorem 1.1 (A)for projectivetoric
varieties. Note that we do not assume thatX is non-singular in Theorem 1.2. Unfor-
tunately, we need theprojectivity assumption for our proof since it depends on the
toric Mori theory. In this short paper, we try to generalize Theorem 1.1 (B) forpro-
jective toric varieties without any assumptions about singularities. The next theorem is
the main theorem of this paper.

Theorem 1.3. Let X be an n-dimensionalprojecitve toric variety such thatKX
is Q-Cartier. Assume thatKX � nD for some Cartier divisorD on X. Then, we can
determine the structure ofX. More precisely, if X is non-singular, thenX has aPn�1-
bundle structure overP1. If X is singular, thenX is P(1;1;2; : : : ;2) or the toric va-
riety constructed inTheorem 3.4.For the more precise statements, seeTheorems 3.2
and 3.4 below.

This paper is not self-contained. It heavily relies on my previous paper: [1]. As
we said before, we need theprojectivity assumption for our proof since it depends
on the toric Mori theory. I do not know if our results are true ornot without this
assumption. In general, ifX is non-projective, then the Kleiman-Mori coneNE(X)
may have little information (see [2], [3], and [9]). After I circulated the preliminary
version of this paper, Akio Hattori obtained Theorem 3.2 below for Q-factorial com-
plete (not necessarily projective) toric varieties on a slightlystronger assumption that�KX � nD. His proof depends on the theory of orbifold elliptic genera. For the de-
tails, see [4, Corollary 5.9]. Finally, in Appendix, we showthat Reid’s toric Mori the-
ory implies Mabuchi’s characterization of the projective space for toric varieties (see
Theorem 4.1). We freely use the notation in [1]. We will work over an algebraically
closed fieldk throughout this note.

We summarize the contents of this paper. In Section 2, we investigateQ-factorial
toric Fano varieties with� = 1 that have long extremal rays. It is a generalization of
[1, Proposition 2.9]. Section 3 is the main part of this paper. Here, we classify the
toric varieties whose canonical divisors are divisible by their dimensions. Section 4
is an appendix, where we treat Mabuchi’s characterization ofthe projective space for
toric varieties.

NOTATION. The symbol � denotes the numerical equivalence forQ-Cartier
divisors.

2. Q-factorial toric Fano varieties with � = 1

We use the same notation as in [1, 2.8]. The following proposition is a key result
in this note. It is a slight generalization of [1, Proposition 2.9]. We recommend the
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reader to see [1, Section 2] before reading this section.

Proposition 2.1. Let X be ann-dimensionalQ-factorial toric Fano variety with
Picard number one. If X 6' Pn and �KX � V (�l;m) � n for every pair (l; m), thenX ' P(1;1;2; : : : ;2).

Proof. It is obvious thatn � 2. By the assumption, we have

�KX � V (�k;n+1) =
1an+1

 n+1X
i=1

ai
!

mult (�k;n+1)

mult (�k) � n
for 1� k � n. Thus

(n + 1)an+1 � n+1X
i=1

ai � mult (�k)
mult (�k;n+1)

nan+1

for every k. Since

mult (�k)
mult (�k;n+1)

2 Z>0;
we have mult (�k) = mult(�k;n+1) for every k. This implies that ak divides an+1

for all k.
Claim 1. a1 = a2 = 1, a3 = � � � = an+1 = 2.

Proof of Claim 1. If a1 = an+1, then a1 = a2 = � � � = an+1 = 1 since we assumeda1 � � � � � an+1. This and�KX � V (�l;m) � n for every (l; m) imply that X ' Pn. See
the proof of [1, Proposition 2.9]. Thus, we havea1 6= an+1. It follows from this fact
that a2 6= an+1 sincev1 is primitive and

Pi aivi = 0. In this case,

�KX � V (�k;n+1) =
1an+1

 n+1X
i=1

ai
!
� n

implies a1 = a2 = 1, a3 = � � � = an+1 = 2. We note that

aian+1
� 1

2

for i = 1;2 andai � an+1 for 3� i � n.

Claim 2. mult(�1) = mult(�2) = 1, that is, �1 and �2 are non-singular cones.
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Proof of Claim 2. It is sufficient to prove mult(�1) = 1. We note that mult(�1;l) =
mult(�1) for 3 � l � n + 1 and v2 is primitive imply that all the lattice points
included in ( n+1X

i=2

tivi
����� 0� ti � 1

)
� NR

are vertices. Thus, mult(�1) = 1.

Therefore, fv1; v2; : : : ; vn+1g spans the latticeN ' Zn. Thus, we obtainX '
P(1;1;2;2; : : : ;2), a weighted projective space.

REMARK 2.2. Let X ' P(1;1;2;2; � � � ;2). Then it is not difficult to see thatV (vi) is a torus invariant Cartier divisor andKX � �nV (vi) for 3� i � n + 1.

3. Main Theorems

In this section, we classify the structures of theQ-Gorenstein projective toric vari-
etiesX with �KX � nD. Before we go to the classification, let us note the following
lemma. The proof is easy.

Lemma 3.1 (Numerical equivalence andQ-linear equivalence). Let X be a pro-
jective toric variety andD a Cartier divisor onX. ThenD � 0 if and only if D � 0.

LetD1 andD2 beQ-Cartier divisors onX. ThenD1 �D2 if and only if D1 �Q D2.

First, we decide the structures ofX under the assumption thatX is Q-factorial
and�KX � nD, wheren = dimX � 2.

Theorem 3.2 (Q-factorial case). Let X be a Q-factorial projective toric variety
with dimX = n � 2. Let D be a Cartier divisor onX. If �KX � nD, then the one of
the following holds.
(1) X ' PP1(O(q1)�O(q2)�� � ��O(qn)) such that

Pni=1 qi = 2. In this case, OX(D) '
OP(1), whereOP(1) is the tautological line bundle ofPP1(O(q1)�O(q2)�� � ��O(qn)).
Note thatX is non-singular and�(X) = 2.
(2) X ' P(1;1;2;2; : : : ;2), and D is a torus invariant prime Cartier divisor onX,
seeRemark 2.2.Note thatX is singular and�(X) = 1.

Proof. SinceKX is not nef, there exists aKX-negative extremal rayR. Its length
is obviously� n. This means that�KX � C � n for every integral curveC such that
[C] 2 R. So,� = 0 or 1 in the proof of the theorem in [1] (see [1, p.558–559]).If � =
1, then it can be checked easily that� = 0 (see [1, p.558]). In this case, there exists a
contraction' : X �! P1 such that the general fibers arePn�1. Therefore,F �Dn�1 = 1
for any fiberF since' is flat. Thus, every fiber is reduced and isomorphic toPn�1.
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So, we obtainX ' PP1(O(q1)�O(q2)�� � ��O(qn)). We can assume that 0<P qi � n
without loss of generality. SinceO(KX) ' '�OP1

�P qi � 2
�
(�n) and �KX � nD,

we have
P qi = 2. Therefore,OX(KX) ' OP(�n). We finish the proof when� = 1.

When � = 0, it is obvious that� = 0 and �(X) = 1. Then this case follows from
Proposition 2.1.

REMARK 3.3. TakeX = PP1(O� � � ��O�O(2)), which is a special case of (1)
in Theorem 3.2. Then, the Picard number�(X) = 2. So,NE(X) has two rays. One
ray R corresponds to thePn�1-bundle structureX �! P1. Another rayQ corresponds
to the contraction' := 'Q : X �! P(1;1;2; : : : ;2). We note thatKX is '-numerically
trivial and that' contracts a divisorP1� Pn�2 ' PP1(O� � � � �O) � X. Thus,' is a
crepant resolution ofP(1;1;2; : : : ;2).

Next, we investigate the structures ofX whenX is not Q-factorial and�KX �nD. In the following theorem, it is obvious thatn � 3. It is because every toric sur-
face isQ-factorial.

Theorem 3.4 (non-Q-factorial case). Let X be a non-Q-factorial projective toric
variety with dimX = n � 3. Assume thatX is Q-Gorenstein and�KX � nD for some
Cartier divisor onX. We putY = PP1(O�� � ��O�O(1)�O(1)). ThenX is the target
space of the flopping contraction' : Y �! X. Note that' contractsP1 � Pn�3 '
PP1(O � � � � � O) � PP1(O � � � �O � O(1)� O(1)). In this case, �(X) = 1 and X is
Gorenstein.

Proof. We take a small projective toricQ-factorializationf : Y �! X (see [1,
Corollary 5.9]). SinceY is Q-factorial, KY � nf �D, and �(Y ) � 2, we haveY '
PP1(O(q1)�O(q2)� � � ��O(qn)) with

P qi = 2. Since�(Y ) = 2, NE(Y ) has two raysR andQ. One rayR corresponds to thePn�1-bundle structureY �! P1. Another rayQ corresponds to the flopping contraction' := 'Q : Y �! X. Note thatQ is spanned
by one of the sectionsCi := PP1(O(qi)) � Y for 1 � i � n. It is because all extremal
rays are spanned by torus invariant curves. We can assume that q1 � q2 � � � � � qn
without loss of generality. Since

P qi = 2, we haveq1 � 0. Note thatKX � R < 0 andKX �Ci = �nqi . If q1 < 0, thenQ is spanned by someCi0 with KX �Ci0 = �nqi0 > 0.
It is becauseNE(Y ) is spanned byR andQ andKX � R < 0. Since'Q is a flopping
contraction, we obtainq1 � 0. Therefore, (q1; q2; : : : ; qn) = (0;0; : : : ;0;1;1) (see also
Remark 3.3). It is not difficult to see that the target space ofthe flopping contraction'Q : Y �! X has the desired properties.

4. Appendix

In this section, we show that Mabuchi’s characterization of the projective space
for toric varieties (cf. [7, Theorem 4.1]) easily follows from [8]. We can skip Step 2
in the proof of [7, Theorem 4.1] by applying [8, (2.10) Corollary].
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Theorem 4.1 (cf. [7, Theorem 4.1]). Let V be ann-dimensional complete non-
singular toric variety. Assume that the normal bundle of each torus invariant divisor
is ample. ThenV ' Pn.

Proof. We note thatV is projective since it has ample line bundles. Let1 be
the fan corresponding toV . Take an extremal rayR of NE(V ). Let C be a torus
invariant integral curve such that the numerical equivalence class ofC is in R. Lethv1; : : : ; vn�1i 2 1 be the (n � 1)-dimensional cone corresponding toC. Take twon-
dimensional coneshv1; : : : ; vn�1; vni and hv1; : : : ; vn�1; vn+1i from 1. Thus we havePn�1i=1 aivi + vn + vn�1 = 0. Note thatV is non-singular. We putDi := V (vi) for everyi. SinceODi (Di) is ample, we obtain thatai = D1 � � �Di�1 �D2i �Di+1 � � �Dn�1 > 0 for
every i. Thus, n-dimensional coneshv1; : : : ; vi�1; vi+1; : : : ; vn; vn+1i 2 1 for 1 � i �n � 1 (see [8, (2.10) Corollary]). Therefore,ai = 1 for all i sinceV is non-singular.
So, we obtain thatV ' Pn.

The following corollary is obvious by Theorem 4.1.

Corollary 4.2. Let V be an n-dimensional complete non-singular toric variety.
ThenV ' Pn if and only if the tangent bundleTV is ample.
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