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Abstract
We study the shock structure and the asymptotic behaviour ofsome flux across

the origin in one-dimensional Burgers turbulence, the entropy solution to the invis-
cid Burgers equation, with random initial velocity for the uniformly distributed par-
ticles on the positive half line. We assume, in contrast to other works on Burgers
turbulence, initially a vacuum state on the negative half line. We also obtain some
asymptotic estimates for the concave majorant of Brownian motion.

1. Introduction

There has been much interest concerning the one-dimensional Burgers turbulence
(or equivalently the ballistic aggregation) formed by the particles which started with
random velocity. We suppose the sticky particles (infinitesimal or not) get stuck to-
gether upon collision according to the law of conservation of mass and momentum. If
a point mass is created and it is isolated, its mass and velocity are unchanged as long
as it meets no other particles.

The former researches assume the particles are initially distributed uniformly, i.e.,
the mass distribution is proportional to the Lebesgue measure which we interprete as
the initial state of the particles is two-sided. If the particles on (�1;0) are at rest
at the initial time, the initial velocity field has been called one-sided. Otherwise it is
called two-sided. The one-sided or two-sided initial velocity given by a white noise
is studied in [6], [16], [1], [15], [11] etc. There are also works [20] and [10] on the
initial velocity given by a white noise supported on a finite interval. The one-sided
initial velocity given by a Brownian motion is studied in [16], [17], [2], [3] and [4].

In the present paper, we focus on the case when the initial mass distribution is the
Lebesgue measure supported on (0;1). Specifically, we consider the initial velocity
field given by either a white noise or a Brownian motion.

In the white noise case, the particles are clumped into locally finitely many clus-
ters, shocks, immediately after the initial time. On the negative half line (�1;0), we
have infinitely many clusters that are travelling very fast in the negative direction which
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will be eventually isolated in the sense that they will experience no collision after cer-
tain moment. In this case, we will be interested in the structure of limit clusters and
the magnitude at finite timet > 0 of the total mass that lie in (�1;�x] for largex. On our way, we will analyze the convex minorant of Brownian motion studied first
by Groeneboom [13]; We show a limit theorem which we have not found in the liter-
ature yet.

On the other hand, in the Brownian case, we will find the left-most cluster, at the
location denoted by� (t) at time t > 0, travelling slowly in the negative direction and
the countably many clusters that are located densely over the interval (� (t);1). Some
of them have a positive velocity and others have a negative one. But all the particles
located in (� (t);0) have a negative velocity since they have crossed the origin from
the right to the left. We will be interested in the long time asymptotic behaviour of
this flux i.e. the mass that has crossed the origin. As a matterof fact, it has exactly
the same law as the flux for the two-sided initial mass distribution studied in [4,§4]
and we will depend heavily on their result.

This article is organized as follows. In Section 2, we introduce the model of sticky
particles in terms of the so-called Hopf-Cole method. The results concerning the white
noise and the Brownian motion are stated and proven in Sections 3 and 4 respectively.

2. The model of Burgers turbulence with one-sided initial mass distribution

If we initialize the particle system with the two-sided uniform mass distribution,
it is well-known (see [9], [3] and their references) that themass and the velocity field
at time t > 0 is described by the Hopf-Cole solution. In the present article, we define
the state of the system att > 0 by the limit of some sequence of Hopf-Cole solu-
tions. We refer the reader to [9], [12], [5], [10] or [19] for solutions to the equations
of conservation of mass and momentum obtained as limits of the discrete ballistic in-
elastic particles.

Let (u(y;0) ; y � 0) be our initial velocity for the particles whose mass distribu-
tion is the Lebesgue measure on [0;1). We then define the following initial velocity
fields (un(y;0);y � 0)n2N on the entireR:

(1) un(y;0) =�n for y < 0; un(y;0) = u(y;0) for y � 0:
To elaborate the Hopf-Cole solution, we introduce

(2) U (y) =
Z y

0
u(�;0)d� for y � 0; Un(y) =

Z y
0
un(�;0)d� for y 2 R

and assumeU ( � ), hence alsoUn( � ), is continuous and satisfies

lim infy!+1 U (y)y2
� 0; lim infjyj!1 Un(y)jyj2 � 0:
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Note thatUn(y) = U (y) for y � 0 andUn(y) = njyj for y < 0.
We then define

(3) an(x; t) = max

�y 2 R ; Un(y) +
(x � y)2

2t = min�2R

�Un(�) +
(x � �)2

2t
��

It is easily seen thatx 7! an(x; t) is a right-continuous increasing function. We refer
to an(x; t) as the inverse Lagrangian function. This quantity represents the right-most
initial location of the particles that lie in (�1; x] at time t . The mass field att is
given by

(4) �n((x1; x2]; t) = an(x2; t)� an(x1; t) for x1 < x2

and we refer to an interval (x1; x2) as a rarefaction interval ifa(x1; t) = a(x2; t). A
discontinuity pointx for x 7! a(x; t) corresponds to a point mass located atx with a
massan(x; t)� an(x�; t) and a velocity

(5) un(x; t) =
2x � an(x; t)� an(x�; t)

2t :
If we define the functionun(x; t) by

(6) un(x; t) =
x � an(x; t)t

elsewhere,un gives the velocity field. It coincides with the entropy solution to the in-
viscid Burgers equation�t (un) + un�x(un) = 0.

Now we turn our attention to the limit whenn! 1. SinceU ( � ) is continuous,an(x; t) converges to the right-most location of the overall minimum on [0;1) of the
functionU (y)+(x�y)2=(2t) as is easily seen if we noteUn(y)+(x�y)2=(2t) > x2=(2t)
for any y < 0 andn > jxj=t . There is an obvious physical interpretation: The particles
located initially on (�1;0) escape immediately from our sight.

Henceforth, we set

(7) a(x; t) = max

�y 2 [0;1) ; U (y) +
(x � y)2

2t = min�2[0;1)

�U (�) +
(x � �)2

2t
��

and

(8) u(x; t) =
2x � a(x; t)� a(x�; t)

2t
for x 2 R and t > 0. Provided that we neglect all the particles located initially on
(�1;0), a(x; t) for x � 0 clearly corresponds to the total mass of the particles that
have crossed the pointx from the right to the left up to timet > 0.
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3. The white noise case: on the long reach of the particle system

In this section we put

(9) u(x;0) =
dB(x)dx or equivalently U (x) = B(x)

for x � 0 whereB( � ) is the standard Brownian motion started at 0. Although the
initial velocity field is not a classical function, the Hopf-Cole methodology enables us
to analyze the Burgers turbulence viaU ( � ) = B( � ). In fact, the rough features of the
velocity field disappear in an instant andu( � ; t) is a piecewise affine function for anyt > 0 as is known from the works [16], [1] etc. We refer to suchu( � ; t) as the dis-
crete shock structure.

We will show some clusters (of small mass) can have arbitrarily large velocity
in the negative direction at any timet > 0. Moreover, we will seea(x; t) ! 0 asx ! �1 and investigate the speed of this convergence. We relate theanalysis ofa(x; t) to the problem of the convex minorant of Brownian motion studied first by
Groeneboom [13] and then by Pitman [14], Cinlar [7] and Carol–Dykstra [8]. To be
precise, letC( � ) be the convex minorant, i.e., the greatest convex functionthat sat-
isfies C(y) � B(y) for y � 0. Then letA(x) be the right-most location whereC( � )
touches the greatest affine functiony 7! xy + k that satisfiesxy + k � C(y) for ally � 0. This quantity is also interpreted as the right-continuous inverse forC 0( � ):
(10) A(x) = inffy � 0 j C 0(y) > xg:
Note thatC 0( � ) is defined except countably manyy’s and we haveB(A(x)) = C(A(x))
for all x < 0. Moreover, it is straightforward to observe thatA( � ) and �C( � ) are
increasing,A( � ) is right-continuous and that

(11) C(0) = 0; C(1) = �1; A(�1) = 0 and A(0�) = 1:
The law of the jumps ofA( � ) is determined by using Theorem 2.1 in Groeneboom
[13] as follows. Let

(12) P (dx � dl)
be a Poisson point process on (�1;0)� (0;1) with intensity

(13) (2�l)�1=2 exp

�� ljxj2
2

� dx � dl:
Then (A(x) ; �1 < x < 0) has the same law as (

R
0<l<1 lP ((�1; x] � dl) ; �1 <x < 0). The marginal law has the Laplace transform

(14) E[exp(��A(x))] =
2

1 +
p

1 + 2�=jxj2 :
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Note that

(15) A(x) has the same law as
2A(
x)

for any constant
 > 0.

Theorem 3.1. For white noise initial velocity, we have for any fixedt > 0,

lim supx!�1
a(x; t)

2t2jxj�2 log(logjxj) = 1

and

limx!�1
�u(x; t)� xt

�
= 0

with probability 1. Moreover, for any positive increasing functionm( � ) on (�1;�1),
we have

lim infx!�1 a(x; t)t2jxj�2m(x)
= 1 or = 0

with probability 1 according as
R �1�1pm(x)(dx=jxj) <1 or = 1, respectively.

REMARK 3.1. This result reminds the author of the famous experimentperformed
in 1930’s by Zartman and Ko to prove the Maxwell-Boltzman velocity distribution for
gas particles, where the elastic particles escape through apin-hole to the vacuum side.
The distribution of the particles after timet is comparable with the initial velocity dis-
tribution. In contrast, our particles are completely inelastic and we have a good reason
to believe the clusters have tempered velocitites. Theorem3.1 gives the quantitative
nature of this sticky-jet; it implies the intensity of the jet is finite even when the reser-
voir has the infinite volume.

Proof. Let C(t)(y) be the convex minorant ofB(y) + y2=2t and A(t)(x) be the
right-most location whereC(t)(y) touches the greatest affine functiony 7! xy + k that
lie below C(t)(y). Note thatA(t)(x) is a right-continuous increasing function that satis-
fies A(t)(�1) = 0, andA(t)(1) = 1. Note also thatC(t)(0) = 0, C(t)(1) = 1. The
quantityA(t)(x) is related to the inverse Lagrangian function via

(16) a(x; t) = A(t) �xt
� :

Indeed, we have

(x � y)2

2t +B(y) =

�y2

2t +B(y)

�� �xt
� y +

x2

2t
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and the affine function (x=t)y + k lies below and touchesC(t)(y) with an adequeate
choice of k, which impliesA(t)(x=t) is equivalent to the right-most location of the
overall minimum of the function (x � y)2=(2t) +U (y) and we have (16).

The following lemma reveals similarity betweenA(x) andA(t)(x) and will be use-
ful when x tends to�1.

Lemma 3.1. For any x < 0, we have

A(t) �x +
A(x�)t

�
= A(x�);

A(t) �x +
A(x+)t

�
= A(x+):

Proof. SinceB(y) � C(y),

B(y) +
y2

2t � C(y) +
y2

2t
and the last expression is convex iny. Hence by the definition ofC(t)(y),

(17) C(t)(y) � C(y) +
y2

2t :
Moreover if y0 = A(x0) or y0 = A(x0�0) for somex0, we haveB(y0) = C(y0) and

B(y0) +
y2

0

2t = C(t)(y0) = C(y0) +
y2

0

2t :
By the definition ofA( � ), B(y) � x0(y � y0) +C(y0) for any y � 0, and byy2=(2t) �
(2y0(y � y0) + y2

0)=(2t) we have

B(y) +
y2

2t � x0(y � y0) +C(y0) +
2y0

2t (y � y0) +
y2

0

2t
=
�x0 +

y0t
�

(y � y0) +C(y0) +
y2

0

2t :
Since the equality holds if and only ify = y0, A(t)( � ) is continuous atx0 + y0=t and
eventually we haveA(t)(x0 + y0=t) = y0 for any x0 < 0 andy0 := A(x0).

Relying on Groeneboom’s result, we will prove the followinglemma, which is of
its own interest (see Remark 3.4 at the end of this section).
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Lemma 3.2. Let A( � ) be the right-continuous inverse ofC 0( � ) as in (10).
(i) We have with probability1,

(18) lim supx!�1
A(x)

2jxj�2 log(logjxj) = 1:
(ii) For any positive increasing functionm( � ) on (�1;�1), with probability 1,

(19) lim infx!�1 A(x)jxj�2m(x)
= 1 or = 0;

according as
R �1�1pm(x)(dx=jxj) <1 or = 1, respectively.

Before proving Lemma 3.2, we complete the proof of Theorem 3.1. Note that, on
one hand,

a(x; t) = A(t) �xt
� � A(t) �xt +

A(x=t�)t
�

= A �xt �
�

by Lemma 3.1 and on the other hand, sinceA(x=t+) ! 0,

A �xt +
�

= a �x +A �xt +
� ; t� � a (x + 1; t)

for all x with large jxj. Thena(x; t) have the asymptotic behaviour comaprable to that
of A(x=t) as x !�1. Finally note that

2
���xt
����2

log
�
log

���xt
���� � 2t2jxj�2 log(logjxj)

and
R ��1pm(tx)(dx=jxj) <1 if and only if

R ��1pm(x)(dx=jxj) <1 for any fixedt .
The asymptotics foru(x; t) follows immediately from its definition sincea(x; t)

and a(x�; t) tends to 0.

Proof of Lemma 3.2. To bound the left hand side of (18) by 1, note first
that (14) implies

P [A(x) > �] =
Z 1

0
2ze�z dz Z 1

jxj2�
exp

��z2=2T � T =2�p
2�T 3

dT :
Let m(x) = 2 log logjxj for x < �e, fix 
 > 1 and setxn = �
 n. Then

P �A(x) > jxj�2m(x)
�

=
Z 1

0
2ze�z dz Z 1

m(x)

exp
��z2=2T � T =2�p

2�T 3
dT

� �Z 1
0

2ze�z dz�Z 1
m(x)

exp(�T =2)p
2�T 3

dT
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� constm(x)�3=2e�m(x)=2
� const(log logjxj)�3=2(log jxj)�1;

where “const” stands for some constant that depends on
 and varies from line to line
and “�” means the ratio of the both sides tends to 1 asx !�1. Now we have

1X
n=1

P �A(xn) > jxnj�2m(xn)� � const
1X
n=1

(logn)�3=2n�1 <1
and by the Borel-Cantelli lemma,

lim supn!1
A(xn)jxnj�2m(xn) � 1

with probability 1. SinceA(x) is increasing, we have, for anyx that lies betweenxn+1

and xn, A(x)jxj�2m(x)
� A(xn)jxn+1j�2m(xn) = 
 2 A(xn)jxnj�2m(xn)

and by making
 close to 1,

lim supx!�1
A(x)jxj�2m(x)

� 1:
To bound the left hand side of (18) from below, letI (x) dx be the intensity for

the jumps ofA(x) with magnitude greater thanjxj�2m(x), which is another Poisson
point process. By some calculations, we have

I (x) :=
Z 1
jxj�2m(x)

(2�l)�1=2 exp

�� ljxj2
2

� dl
� constjxj�1(log jxj)�1(log logjxj)�1=2

and
R x�1 I (z) dz = 1 for any x < 0. Then a version of Borel-Cantelli lemma asssures,

with probability 1, the existence of a sequence (xn) such thatxn !�1 and

A(xn)� A(xn�) > jxnj�2m(xn):
Hence it follows

lim supx!�1
A(x)jxj�2m(x)

� lim supn!1
A(xn)jxnj�2m(xn) � 1:

We now prove the first half of (19). The integrability condition onm( � ) is equiv-
alent to

R1
0

pm(�es) ds <1 and also to

1X
n=1

pm(�Æ
 n) <1 for all 
 > 1 and Æ > 0:
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We then setxn = �
 n for n � 1 and fix 
 > 0. Sincem(Æxn) ! 0, we have by the
scaling property (15),

P �A(xn) < 
jxnj�2m(Æxn)� = P [A(1)< 
m(Æxn)]
� const

pm(Æxn):
Here we applied the Tauberian theorem to (14) and “const” depends on
 and varies
from line to line. Since the right most side is summable, we have by the Borel-Cantelli
lemma

lim infn!1 A(xn)jxnj�2m(Æxn) � 

with probability 1. By settingÆ = 1=
 and making
 arbitrarily large, we conclude that

lim infn!1 A(xn)jxnj�2m(xn=
 )
= 1:

SinceA( � ) is monotone, we have for anyx with xn+1 = 
 xn < x < xn,
A(x)jxj�2m(x)

� A(xn+1)jxnj�2m(xn) =
A(xn+1)
 2jxn+1j�2m(xn+1=
 )

!1
with probability 1.

To prove the second half of (19), we first note that
P1n=1

pm(�
 n) = 1 for any
 > 1 and setxn = �
 n. We may assumem( � ) < 1 without loss of generality. We
now introduce a sequence of events: For fixed
 > 0, let

En =
�A(xn) < 
 jxnj�2m(xn)	 :

By the Tauberian theorem applied to (14),

(20) P [En] � const
pm(xn)

and hence

(21)
1X
n=1

P [En] = 1:
Then according to Proposition 26.3 in Spitzer [18, p.317], if we have a constantC > 0 such that the inequalities

(22)
X
n;m<M P [En \ Em] � C X

n;m<M P [En]P [Em]

hold for infinitely manyM 2 N, the eventsEn occur for infinitely manyn’s with a
probability at least 1=C. Then this is the case with probability 1 by the 0-1 law since
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A( � ) is a process with independent increments with limx!�1 A(x) = 0 almost surely
(already verified in (i)) and lim supnEn is a tail event.

If En’s occur infinitely many times with probability 1, then

lim infn!1 A(xn)jxnj�2m(xn) � 

and the left hand side actually vanishes since
 > 0 is arbitrary. Hence (22) implies
the second statement of (ii).

Let us then prove (22) for all largeM 2 N. For anyn < m, if we set k = m� n,
we havexm = 
 kxn < xn < 0. Then

Em \ En � �A(xn)� A(xm) < 
jxnj�2m(xn); A(xm) < 
jxmj�2m(xm)
	 :

SinceA( � ) has independent increments,

P [Em \ En] � P [Em] � P �A(xn)� A(xm) < 
jxnj�2m(xn)�
= P [Em] � �P [A(xn)� A(xm) = 0]

+ P �0< A(xn)� A(xm) < 
jxnj�2m(xn)��:
Now we need the following estimates: For�1 < y < x < 0 and� > 0,

P [A(x) = A(y)] =
jxjjyj ;(23)

P [0 < A(x)� A(y) < �] � const
jxjjyj (jyj � jxj)p�;(24)

as �! 0.
To see (23), note first that (14) and independence of increments imply

E �e��(A(x)�A(y))� =
1 +

p
1 + 2�=y2

1 +
p

1 + 2�=x2
:

Making �!1, we have

P [A(x) = A(y)] = lim�!1E �e��(A(x)�A(y))� =
jxjjyj :

We deduce (24) by the Tauberian theorem applied to the following estimate:

E �e�(A(x)�A(y)) ; A(x)� A(y) > 0
�

=
1 +

p
1 + 2�=y2

1 +
p

1 + 2�=x2
� jxjjyj

=
jxjjyj

 p
1 + jyj2=(2�) + jyj=p2�p
1 + jxj2=(2�) + jxj=p2� � 1

!
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� const
jxjjyj jyj � jxjp� ;

where in the last step we make�!1.
Let us resume proving (22). By (23), (24) and then (20), we have

P [Em \ En] < P [Em] � �
�k + const(1� 
�k)pm(xn)�
< P [Em] � �
�k + constP [En]� :

Combining these estimates together,X
n<m<M P [Em \ En]
� X

m<M P [Em]
X
k<m 


�k + const
X
m<M P [Em]

X
n<M P [En]

� const
X
m<M P [Em]

X
n<M P [En]:

In the last inequality, we used
Pn<M P [En] > P1k=1 
�k which is valid for all largeM by (21). Now the proofs of (22), Lemma 3.2 and hence Theorem 3.1 are complete.

REMARK 3.2. Whenx !�0, we have for the right-continuous inverseA( � ) ofC 0( � ) as in (10),

lim supx!�0

A(x)

2jxj�2 log(log(1=jxj)) = 1:
and for any positive decreasing functionm(x) on (�1;0),

lim infx!�0

A(x)jxj�2m(x)
= 1 or = 0;

according as
R 0�1

pm(x)(dx=jxj) <1 or =1, respectively. These results can be proven
by the same techniques.

Now we turn our attention to the long-time asymptotic behaviour. We will see the
particles form “the limit clusters” in the sense of Winkel [21]. To state the result, we
introduce the so-called Lagrangian functionxt (a) by

(25) xt (a) := inffx 2 R ; a(x; t) > ag for a � 0

and also

(26) ut (a) :=
2x � a(xt (a); t)� a(xt (a)�; t)

2t :



250 Y. I SOZAKI

Note thatC 0(a) = inffx < 0 ; A(x) > ag whereC 0(a) is the right derivative.

Proposition 3.3. For white noise case, we have the following.
(i) For each jump locationu of A( � ), i.e. u < 0 such thatA(u) > A(u�), there cor-
responds a limit cluster with massA(u)�A(u�) travelling at the speedu. Moreover,
this cluster is formed at a finite timet(u) and thereafter it meets no other cluster.
(ii) For a continuous pointu of A(�), there is no limit cluster travelling at the speedu.
(iii) For any u < 0 and a > 0, as t ! 1, the limits of a(tu; t) and ut (a) exist
and are equal toA(u�) and C 0(a) respectively. More precisely, ut (a) = C 0(a) for allt > t(C 0(a)).

REMARK 3.3. The law off(u;A(u)�A(u�)) ; u 2 (�1;0); (A(u)�A(u�) > 0g
is identified with that ofP (du� dl) in (12).

Proof. We only prove (i) here since (ii) and (iii) can be shownby a similar
argument in Winkel [21, Lemma 1] where the initial velocity is assumed to have a
cádĺag path.

Groeneboom [13, Lemma 2.1] observed that ifA( � ) is discontinuous atu,
the process

X(y) := B(y +A(u�))� C(y +A(u�))

for 0 � y � A(u) � A(u�), conditionally on� (u) := A(u) � A(u�), is a Brownian
excursion with the duration� (u). There are some known facts on the Brownian excur-
sions: With probability 1,X(y) is non-negative and vanishes only ify = 0 or y = � (u);X(y) � consty(1=2)+" andX(� (u) � y) � consty(1=2)+" for any " > 0 and smally > 0.
Then there exists ans(u) > 0 such that

X(y) � s
2
y(� (u)� y) for any s 2 [0; s(u)] and any y 2 (0; � (u));

and

X(y) =
s(u)

2
y(� (u)� y) for some y = y(u) 2 (0; � (u))

and the uniqueness ofy(u) is a standard fact. This is equivalent to the following. For
any t > 1=(s(u)), the overall minimum of the function

(27) y 7! B(y) +
1

2t
�y � A(u) +A(u�)

2
� tu�2

is attained exactly twice on [0;1) when y = A(u) or y = A(u�). Indeed, it is easy
to see the minimum is not attained on [0; A(u�))[ (A(u);1) as follows. Let
 (y) be
the affine function that touchesC(y) tangentially on the interval [A(u�); A(u)], i.e.


 (y) := u(y � A(u�)) +B(A(u�)):
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By the definition ofA( � ), C(y) > 
 (y) if y =2 [A(u�); A(u)]. Combining this with

1

2t (y � A(u�))(A(u)� y) < 0

which is valid for y =2 [A(u�); A(u)], we have

B(y)� 
 (y)� 1

2t (y � A(u�))(A(u)� y)

� C(y)� 
 (y)� 1

2t (y � A(u�))(A(u)� y)

> � 1

2t (y � A(u�))(A(u)� y)

> 0

for any y =2 [A(u�); A(u)]. But the left hand side vanishes ify = A(u) or y = A(u�).
On the other hand, some elementary calculations reveal the following.

B(y)� 
 (y)� 1

2t (y � A(u�))(A(u)� y)

= B(y)� uy + uA(u�)� B(A(u�)) +
y2

2t � (A(u) +A(u�)) y
2t +

A(u)A(u�)

2t
= B(y) +

1

2t
�y2 � 2tuy � (A(u) +A(u�)) y� + (terms not containingy)

= B(y) +
1

2t
�y � A(u) +A(u�)

2
� tu�2

+ (terms not containingy):
Hence the latter cannot attain its minimum ify =2 [A(u�); A(u)].

Replacingy by y + A(u�), we have, fory 2 (0; � (u)), 
 (y + A(u�)) = C(y +A(u�)) and

B(y +A(u�))� 
 (y +A(u�))� 1

2t y(� (u)� y) = X(y)� 1

2t y(� (u)� y):
Now recall that the right hand side is positive ift > 1=s(u), which implies the left
hand side and hence (27) cannot attain its minimum ifA(u�) < y < A(u), but attains
exactly twice wheny = A(u�) or y = A(u). The same method applies to the case
when t � 1=s(u) and assures the minimum of (27) is attained exactly three times wheny = A(u�); A(u�) + y(u); A(u) if t = 1=s(u). But if t < 1=s(u), these threey’s cannot
be at the same time the locations of the minimum of the function

B(y) +
1

2t (y � x)2

for any choice ofx. By the physical interpretation, at timet 2 [1=s(u);1), there is a
cluster consisting of the particles located initially on exactly (A(u�); A(u)). But it is
not the case at any time before 1=s(u).
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REMARK 3.4. The celebrated law of the iterated logarithm for Brownian mo-
tion states

lim infy!+0

B(y)p
2y log log(1=y)

= �1:
Our Lemma 3.2 supplement it by pointing out that there are sometimes very fewy’s
whereB(y)

Æp
2y log logy walks up to�1. In fact, by neglecting the log log factor,

one is tempted to approximate asC(y) � �p2y, which impliesA(x) � 2�1jxj�2 (this
comes from solvingC 0(A(x)) = x).

Clearly, this is not the case in Lemma 3.2.
If we reverse this course and suppose, for some fixedx > 0, A(x) � 2=jxj2 andC(A(x)) = �p2A(x), we haveC(A(x)) = xA(x) and C(y) is linear on the interval

[0; A(x)]. If we recall a path-property of Brownian motion, we easily deduce the tan-
gential line of slopex to the graphC( � ) never crosses the origin.

However, the above inspection still suggests the tangential line comes much closer
to the origin, more precisely the right-most locationy whereB(y) = C(y) and 0< y <A(x) is very close to the origin thanA(x). In other words, the ratio of two successivey’s whereB(y) = C(y) can be very large.

4. The Brownian case: on the flux across the origin

If we assumeu(y;0) = B(y), we will find no rarefaction intervals in (0;1) as is
the case in [16], [17], [2], [3] and [4]. Moreover we can prove adichotomy in Theo-
rem 4.1. To state the result, it is convenient to introduce the first passage process

(28) T (x) := inffy � 0 ; tB(y) + y � xg
for a Brownian motion with drift.

Proposition 4.1. Fix t > 0 and let � (t) be inffx < 0 ; a(x; t) > 0g. Then for the
Brownian initial velocity,
(i) � (t) lies in (�1;0) with probability 1 and it is in fact the minimum of the setfx < 0 ; a(x; t) > 0g and
(ii) the process(a(x + � (t); t) � a(� (t); t) ; x � 0) has the same law as(T (x); x � 0)
and is independent of4(t) := (� (s) ; 0� s � t) and �(t) := (a(� (s); s) ; 0� s � t).

In particular,
(iii) the shocks at timet > 0 are dense in (� (t);1) and there are no shocks
in (�1; � (t)).

REMARK 4.1. Unfortunately, the author is not able to obtain the law of � (t) nor
that of a(� (t); t). By the above proposition and (33), obtaining the law of� (t) is equiv-
alent to obtaining that ofa(� (t); t) 2 (0; a(0; t)).
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Proof. Note first that for fixedx < 0, a(x; t) > 0 if and only if
R y

0 (tB(�) +�) d� � xy for somey > 0. Then

� (t) = miny>0

1y
Z y

0
(tB(�) + �) d�;

and

(29) a(� (t); t) = max

�y � 0 ;
Z y

0
(tB(�) + �) d� = y� (t)� :

By the argument in Sinai [17, p.605], we have
R y

0 B(�) d� < 0 for somey 2 (0;1)
with probability 1, which implies min0<y<1(1=y)

R y
0 tB(�) d� < 0. It is well-known by

Girsanov’s theorem that the law of the Brownian motion with adrift tB(y) + y is ab-
solutely continuous with respect to that oftB(y) and hence min0<y<1(1=y)

R y
0 (tB(�) +�) d� < 0 is also valid with probability 1. From the other side, sincetB(y)+y is tran-

sient to1, we have miny>1(1=y)
R y

0 (tB(�) + �) d� > �1. Finally,
R y

0 (tB(�) + �) d� =o(y) for small y and hence� (t) > �1 and a(� (t); t) > 0 by (29); the statement (i)
is proven.

To prove (ii), we will show the following: For anyd 2 N, z 2 (�1;0), any
bounded Borel functionalf on the path space, any bounded continuous funtionF on
Rd and any (x1; : : : ; xd ) 2 (0;1)d , we have

E[f (4(t); �(t))F (a(x1 + z; t)� a(z; t); : : : ; a(xd + z; t)� a(z; t)) ; � (t) � z]
= E[f (4(t); �(t)) ; � (t) � z]E[F (T (x1); : : : ; T (xd ))]:

This equality is verified if we note the following facts (a)–(e).
(a) Let z < 0. Then � (t) � z if and only if

R y
0 (tB(�) + �) d� � zy for somey � 0. If we define� (z) by

(30) inf

�y � 0 ;
Z y

0
(tB(�) + �) d� � zy�

where inf; = 1, then � (z) is clearly a stopping time.
(b) Subsequently,

(31) � (z) := inffy � � (z) ; tB(y) + y � zg
is a stopping time such that� (z) <1 if and only if � (t) � z.

(c) Conditionally on the eventf� (z) <1g,
(32) W (y) := B(y + � (z)) +

� (z)� zt
has the same law as (B(y) ; y � 0) and is independent of (B(y) ; 0 � y � � (z)).
Moreover, by the definition ofa(x + z; t), a(x + z; t)� � (z) is exactly the same as the
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right-most location of the overall minimum of the function

y 7! Z y
0

(tW (�) + � � x) d�
for any x � 0,

(d) By Lemma 1 in Bertoin [2] applied toW ( � ), conditionally on the eventf� (z) < 1g, (a(x + z; t) � a(z; t) ; x � 0) has the same law as (T (x) ; x � 0) and
independent of (W (y) ; 0 � y � a(z; t) � � (z)) and at the same time independent of
(B(y) ; 0� y � � (z)) by (c), hence also of (B(y) ; 0� y � a(z; t)).

(e) If � (t) � z, the path-valued random variables4(t) and�(t) are functionals
of the killed process (B(y) ; 0� y � a(z; t)).

Combining (a)–(e), we have

E[f (4(t); �(t))F (a(x1 + z; t)� a(z; t); : : : ; a(xd + z; t)� a(z; t)) ; � (t) � z]
= E[f (4(t); �(t))F (a(x1 + z; t)� a(z; t); : : : ; a(xd + z; t)� a(z; t)) ; � (z) <1]

= E[f (4(t); �(t)) ; � (z) <1]E[F (T (x1); : : : ; T (xd ))]
= E[f (4(t); �(t)) ; � (t) � z]E[F (T (x1); : : : ; T (xd ))]:
Now we show how this equality implies the statement (ii). On one hand,

1X
n=0

E hf (4(t); �(t))F �a �x1 � n
2k ; t

�� a �� n
2k ; t

� ; : : : ;
a �xd � n

2k ; t
�� a �� n

2k ; t
��

; �n + 1

2k < � (t) � � n
2k
�

is equal to

1X
n=0

E �f (4(t); �(t)) ; �n + 1

2k < � (t) � � n
2k
�E [F (T (x1); : : : ; T (xd ))]

= E[f (4(t); �(t))]E[F (T (x1); : : : ; T (xd ))]:
On the other hand, sincex 7! a(x; t) is right-continuous, it converges ask!1 to

E[f (4(t); �(t))F (a(x1 + � (t); t)� a(� (t); t); : : : ;
a(xd + � (t); t)� a(� (t); t))]

and the proof of (ii) is complete.
The statement (iii) follows immediately from (ii) sincea(x; t) vanishes for anyx

in (�1; � (t)) and T (x), being a Ĺevy process with non-finite Ĺevy measure, has the
dense jump times.
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REMARK 4.2. By exploiting the technique of the “delayed solution” in [4, §4],
one can provet 7! (� (t); a(� (t); t)) is a time-inhomogeneous Markov process.

Let us turn our attention to the evolution in time. In the restof this section, we
see the following. At the initial time, all the particles arein the positive side and suf-
ficiently many of them have the negative velocity so that someclusters will cross the
origin from the right to the left. The left-most cluster at� (t) is accompanied by the
clusters that are travelling in the interval (� (t);0) in the negative direction.

Then a(0; t) is interpreted as the total mass of this flux and the initial vacancy
on (�1;0) is irrelevant concerning this quantity. So if we focus on the long or short
time asymptotics ofa(0; t), there is no difference between our setting and those in [2]
and [4] where they assumed the particles are initially uniformly distributed overR and
at rest on (�1;0). In fact, we will heavily depend on the formula obtained there.

Let 0< s < t . Then we have by Theorem 1 in [2],

(33) P [a(0; t) 2 dy] = 2�1=40 �1

4

��1 � yt2
��3=4

exp
�� y

2t2
� d � yt2

� :
According to Lemma 3 and the equation (12) in [4], the increments of t 7! a(0; t) are
decomposed to give

(34) a(0; t)� a(0; s) = �s;t (a(0; s)) +A(s; t)
with a positive random variableA(s; t) specified via its Laplace transform

(35) E[exp(��A(s; t))] =

s st +
t � s

tp1 + 2t2�
and a subordinator�s;t ( � ) (increasing process with stationary and independent incre-
ments) with Laplace transform

(36) E �exp
����s;t (x)

��
= exp

��x(t � s)st2
�p

1 + 2t2�� 1
�� :

where the three random components

(37) (a(0; r) ; 0� r � s); �s;t ( � ) and A(s; t) are independent of each other.

Note that the random variable

(38)
A(
s; 
t)
2

has the same law asA(s; t)
for any constant
 > 0 by (35). We now state the main result in this section.
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Theorem 4.1. For the Brownian initial velocity, we have

(39) lim supt!+1
a(0; t)

2t2 log(logt) = 1

with probability 1. Moreover, for any positive decreasing functionm(x) on (1;1),

(40) lim inft!1 a(0; t)t2m(t) = 1 or = 0

with probability 1 according as
R1

1 m(x)1=4(dx=x) <1 or = 1.

REMARK 4.3. Whent ! +0, we have by the same techniques

lim supt!+0

a(0; t)
2t2 log(log(1=t)) = 1

and for any positive increasing functionm(x) on (0;1),

lim inft!+0

a(0; t)t2m(t) = 1 or = 0

according as
R 1

0 m(x)1=4(dx=x) <1 or =1.

Proof. To bound the left hand side of (39) by 1, we fix
 > 1 and 
 > 0, settn = 
 n for n 2 N andm(t) = 
 log logt . By (33) andm(tn) !1, we have

P �a(0; tn) > t2nm(tn)� =
Z 1
m(tn)

consty�3=4e�y=2 dy
� constm(tn)�3=4e�m(tn)=2
� const(logn)�3=4n�
=2;

which is summable if
 > 2. Hence by the Borel-Cantelli lemma,

lim supn!1
a(0; tn)t2nm(tn) � 1

with probability 1. For anyt that lies betweentn and tn+1, we have

a(0; t)t2m(t) � a(0; tn+1)t2nm(tn) . 
 2 a(0; tn+1)t2n+1m(tn+1)
:

Hence lim supt!+1 a(0; t)=(2t2 log logt) � (

 2)=2 and by making
 arbitrarily close
to 1 and
 arbitrarily close to 2, we have the upper bound by 1.



LOG-LOG LAWS FOR BURGERS’ T URBULENCE 257

To bound the left hand side of (39) from below, we consider thesequence of in-
dependent random variables

fA(tn; tn+1) ; n � 1g
and we will show in the sequel

(41)
1X
n=1

P �A(tn�1; tn) > t2nm(tn)� � 1X
n=1

P �A �
�1;1� > m(tn)� = 1
if 
 � 2. It is easy to see that (41) implies the statement (39). Indeed, sincea(0; tn) �A(tn�1; tn), we have

lim supt!+0

a(0; t)t2m(t) � lim supn!1
a(0; tn)t2nm(tn)

� lim supn!1
A(tn�1; tn)t2nm(tn)� 1

with probability 1 and we only have to set
 = 2. Now it remains to prove (41). To
begin with, note that the random variables

�t�2n A(tn�1; tn) ; n � 1
	

have identical laws by (38), which is in particular the same as that ofA(
�1;1). Ac-
cording to (35), we have

E �exp
���A �
�1;1��� =

s
1
 +


 � 1


p1 + 2�;
which implies the following dichotomy:

E �exp
��A �
�1;1���

8>><
>>:

= 1; if � � 1

2
;

<1; if � < 1

2
:

We then notem(tn) = 
 log(n log
 ) and


1ex=
 � 
2 < 1X
n=1

1fx > m(tn)g < 
3ex=
 + 
4

where 
1; 
2; 
3; 
4 are positive constants depending on
 and 
. Hence the left hand
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side of (41) is bounded from below by

1X
n=1

P �A �
�1;1� � m(tn)� = E
" 1X
n=1

1
�A �
�1;1� � m(tn)	

#

� 
1E �exp
�
�1A �
�1;1��� 
2

�
and the latter diverges if
 � 2.

To prove the first half of (40), note that the integrability condition on m( � ) is
equivalent to

R1
1 m(es)1=4 ds <1 and also to

1X
n=1

m(
 n)1=4 <1 for all 
 > 1:
We then settn = 
 n for n � 1 and fix 
 > 0. Sincem(tn) ! 0, we have by (33),

P �a(0; tn) < 
t2nm(tn)� � Z 
m(tn)

0
consty�3=4e�y=2 dy

� const
1=4m(tn)1=4;
which is summable for any
 and 
. Then by the Borel-Cantelli lemma,

lim infn!1 a(0; tn)t2nm(tn) � 

with probability 1 and by making
 arbitrarily large,

lim infn!1 a(0; tn)t2nm(tn) = 1:
Sincea(0; t) is monotone, we have fortn < t < tn+1 = 
 tn,

a(0; t)t2m(t) � a(0; tn)t2n+1m(tn) =
a(0; tn)
 2t2nm(tn) !1

with probability 1.
To prove the second half of (40), we assumem( � ) < 1 and

P1n=1m(
 n)1=4 = 1
for any 
 > 1. We fix 
 > 0, let tn = 
 n and

En =
�a(0; tn) < 
t2nm(tn)	 :

Then we have

(42) P [En] > const exp

��
m(1)

2

� 
1=4m(tn)1=4
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by (33) so that

(43)
1X
n=0

P [En] = 1:
By the same reasoning as in the proof of Lemma 3.2, according to Proposi-

tion 26.3 in Spitzer [18, p.317], the eventsEn occur for infinitely manyn’s with a
positive probability if we have a constantC > 0 such that the inequalities

(44)
X
n;m<M P [En \ Em] � C X

n;m<M P [En]P [Em]

hold for infinitely manyM 2 N. Then this is the case with probability 1 by the 0-1 law.
If En’s occur infinitely many times, we easily see

lim infn!1 a(0; tn)t2nm(tn) � 

and the left hand side actually vanishes by making
 arbitrarily small. Hence (44) im-
plies the second statement of (40).

Let us then prove (44) for, in fact, all largeM 2 N. For anyn < m, if we setk = m� n, we havetn = 
�ktm < tm. By (34), a(0; tm) � A(tn; tm) and

Em \ En � �a(0; tn) < t2nm(tn); A(tn; tm) < t2mm(tm)
	 :

By making use of the independence as in (37) and the scaling property (38),

P [Em \ En] � P �a(0; tn) < t2nm(tn); A(tn; tm) < t2mm(tm)
�

= P �a(0; tn) < t2nm(tn)�P �A(tn; tm) < t2mm(tm)
�

= P �a(0; tn) < t2nm(tn)�P �A �
�k;1� < m(tm)
� :

By making �!1 in (35), we have

(45) P �A �
�k;1� = 0
�

= 
�k=2:
Moreover we have the following estimate.

Lemma 4.2. For all � > 0 and k 2 N, we have

(46) P �0< A �
�k;1� < �� < const�1=4:
Proof. By (35), (45) and concavity of the square-root, we have

E �exp
����1A �
�k;1�� ; A �
�k;1� > 0

�
=

s

�k +

1� 
�kp
1 + 2��1

�p
�k
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<
s

1� 
�kp
1 + 2��1

= �1=4s1� 
�kp
2 + � < �1=4

21=4
for all k � 1. On the other hand,

E �exp
����1A �
�k;1�� ; A �
�k;1� > 0

�
=
Z 1

0
��1e���1aP �0< A �
�k;1� < a� da

> Z 2�
� ��1e���1aP �0< A �
�k;1� < �� da

=
�e�1 � e�2

�P �0< A �
�k;1� < �� :
Let us resume proving (44). By (45), (46) and then by (42),

P �A �
�k;1� < m(tm)
� � 
�k=2 + constm(tm)1=4 � 
�k=2 + constP [Em]:

Here and in the following, “const” depends on
 and varies from line to line. Then we
have, for all largeM,X

n<m<M P [Em \ En]
� X

n<M P [En] X
k<M�n 


�k=2 + const
X
n<M P [En] Xm<M P [Em]

� const
X
n<M P [En] Xm<M P [Em]:

In the last inequality, we used
Pm<M P [Em] >P1k=1 
�k=2 which is valid for all largeM by (43).
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