BORSUK-ULAM TYPE THEOREMS ON STIEFEL MANIFOLDS

Akira INOUE

(Received September 6, 2004, revised December 9, 2004)

Abstract

In this paper, we study the degree of equivariant maps between Stiefel manifolds by using cohomological index theory. As applications, we have some Borsuk-Ulam type theorems on Stiefel manifolds.

1. Introduction

We are concerned with the following classical version of the Borsuk-Ulam theorem:
(i) If $n>k$ then there is no map $f: S^{n} \rightarrow S^{k}$ such that $f(-x)=-f(x)$ for all x. This easily follows from the next proposition:
(ii) Let $f: S^{n} \rightarrow S^{n}$ be a map of the sphere such that $f(-x)=-f(x)$ for all x. Then $\operatorname{deg} f \equiv 1(\bmod 2)$.
Now let S^{n} denote the standard n-dimensional sphere with antipodal \boldsymbol{Z}_{2}-action, then the proposition (ii) implies that for any \mathbf{Z}_{2}-map $f: S^{n} \rightarrow S^{n}$, the degree of f is odd.

Many authors have been contributing to generalizing and extending the BorsukUlam theorem in various ways. E. Fadell-S. Husseini and J. Jaworowski introduced an ideal-valued cohomological index theory, and generalized the Borsuk-Ulam theorem (see [2], [3] and [5]). Let $V_{k}\left(\boldsymbol{R}^{m}\right)$ denote the space of orthonormal k-frames in \boldsymbol{R}^{m} and $O(k)$ the orthogonal group. If we represent an element of $V_{k}\left(\boldsymbol{R}^{m}\right)$ as a column vector $\left[v_{1} \cdots v_{k}\right]^{T}$, and if $O(k)$ is the orthogonal group of $k \times k$ matrices, then $V_{k}\left(\boldsymbol{R}^{m}\right)$ is a free $O(k)$-space under the action induced by matrix multiplication $g\left[v_{1} \cdots v_{k}\right]^{T}$, $g \in O(k)$. In [4], Yasuhiro Hara considered the degree of $O(k)$-maps $f: V_{k}\left(\boldsymbol{R}^{m}\right) \rightarrow$ $V_{k}\left(\boldsymbol{R}^{m}\right)$.

In this paper, we will consider the degree of $\left(\boldsymbol{Z}_{2}\right)^{k}$-maps $f: V_{k}\left(\boldsymbol{R}^{m}\right) \rightarrow V_{k}\left(\boldsymbol{R}^{m}\right)$ where $\left(\boldsymbol{Z}_{2}\right)^{k}=\boldsymbol{Z}_{2} \times \cdots \times \boldsymbol{Z}_{2}$ (k times) is the subgroup of $O(k)$ which is diagonally imbedded. We will show

Theorem 3.3. Let $f: V_{k}\left(\boldsymbol{R}^{m}\right) \rightarrow V_{k}\left(\boldsymbol{R}^{m}\right)$ be a $\left(\boldsymbol{Z}_{2}\right)^{k}$-map. Then the degree of f is odd.

By a similar way, $U(k)$ acts freely on the complex Stiefel manifold $V_{k}\left(\boldsymbol{C}^{m}\right)$. We restrict the $U(k)$-action on $V_{k}\left(\boldsymbol{C}^{m}\right)$ to the subgroup $\left(\boldsymbol{Z}_{p}\right)^{k}$ where p is a prime number. Then we will show

Theorem 3.5. Let $f: V_{k}\left(\boldsymbol{C}^{m}\right) \rightarrow V_{k}\left(\boldsymbol{C}^{m}\right)$ be a $\left(\boldsymbol{Z}_{p}\right)^{k}$-map. Then the degree of f is not congruent to zero modulo p.

The author wishes to express his gratitude to Professor Ikumitsu Nagasaki and Professor Yasuhiro Hara for their advice.

2. Index theory

In this section we will recall the definition and basic properties of index theory which was first introduced by Fadell and Husseini and independently by Jaworowski.

Let G be a compact Lie group and X a G-CW complex. We denote the universal principal G-bundle by $E G \rightarrow B G$. Then G acts freely on $E G \times X$ by $g(e, x)=$ ($g e, g x$). We denote the quotient space of this action by $E G \times{ }_{G} X$. Note that the orbit map $p: E G \times X \rightarrow E G \times_{G} X$ is a fiber bundle of the fiber G. The Borel cohomology of X with coefficients in a field \boldsymbol{K} is defined by $H_{G}^{*}(X ; \boldsymbol{K})=H^{*}\left(E G \times_{G} X ; \boldsymbol{K}\right)$, where $H^{*}()$ is singular cohomology theory. Let $c_{X}: X \rightarrow *$ be a constant map to one-point space. The G-index of X, denoted by $\operatorname{Ind}^{G}(X ; \boldsymbol{K})$, is an ideal in $H^{*}(B G ; \boldsymbol{K})$. Ind $^{G}(X ; \boldsymbol{K})$ is defined to be the kernel of the homomorphism $\bar{c}_{X}^{*}=\left(i d \times_{G} c_{X}\right)^{*}$: $H^{*}(B G ; \boldsymbol{K})=H_{G}^{*}(* ; \boldsymbol{K}) \rightarrow H_{G}^{*}(X ; \boldsymbol{K})$. If X is a free G-space, then $\operatorname{Ind}^{G}(X)$ coincides with the kernel of the homomorphism $H^{*}(B G) \rightarrow H^{*}(X / G)$ induced from a classifying map $X / G \rightarrow B G$ for the free G-action on X. Furthermore for an integer k we set

$$
\operatorname{Ind}_{k}^{G}(X ; \boldsymbol{K})=\operatorname{Ind}^{G}(X ; \boldsymbol{K}) \cap H^{k}(B G ; \boldsymbol{K})=\operatorname{ker}\left(\bar{c}_{X}^{*}: H^{k}(B G ; \boldsymbol{K}) \rightarrow H_{G}^{k}(X ; \boldsymbol{K})\right) .
$$

The following proposition is a basic property of the G-index.

Proposition 2.1 ([2], [5]). If there exists a G-map $f: X \rightarrow Y$, then for any $k \in \boldsymbol{Z}$

$$
\operatorname{Ind}_{k}^{G}(X) \supset \operatorname{Ind}_{k}^{G}(Y) .
$$

We now consider a basic computation which is important to an application which we give later on.
$V_{k}\left(\boldsymbol{R}^{m}\right)$ denotes the space of orthonormal k-frames in \boldsymbol{R}^{m} and $O(k)$ denotes the orthogonal group. Then $O(k)$ acts freely on $V_{k}\left(\boldsymbol{R}^{m}\right)$ by the usual action $g v, g \in O(k)$ and v is a column vector representing k-frame. We restrict this action to the subgroup $\left(\boldsymbol{Z}_{2}\right)^{k}$ of diagonal matrices with entries ± 1. Then $V_{k}\left(\boldsymbol{R}^{m}\right)$ is also a free $\left(\boldsymbol{Z}_{2}\right)^{k}$-space.

Recall that $B\left(\boldsymbol{Z}_{2}\right)^{k}=B \mathbf{Z}_{2} \times \cdots \times B \boldsymbol{Z}_{2}(k$ times $)$ and

$$
H^{*}\left(B\left(\boldsymbol{Z}_{2}\right)^{k} ; \boldsymbol{Z}_{2}\right)=H^{*}\left(B \boldsymbol{Z}_{2}\right) \otimes \cdots \otimes H^{*}\left(B \boldsymbol{Z}_{2}\right)=\boldsymbol{Z}_{2}\left[t_{1}, \ldots, t_{k}\right]
$$

where $\operatorname{dim} t_{i}=1$. Fadell proved the following in [3].
Proposition 2.2. The monomial $t_{1}^{m-1} t_{2}^{m-2} \cdots t_{k}^{m-k}$ does not belong to $\operatorname{Ind}^{\left(\boldsymbol{Z}_{2}\right)^{k}}\left(V_{k}\left(\boldsymbol{R}^{m}\right) ; \boldsymbol{Z}_{2}\right)$.

In particular, since $\operatorname{dim} V_{k}\left(\boldsymbol{R}^{m}\right)=m k-k(k+1) / 2$, we can assert

We have an analogous proposition for complex Stiefel manifolds. $V_{k}\left(\boldsymbol{C}^{m}\right)$ denotes the space of orthonormal k-frames in \boldsymbol{C}^{m} and $U(k)$ denotes the unitary group. Then $U(k)$ acts freely on $V_{k}\left(\boldsymbol{C}^{m}\right)$ by the usual action $g v, g \in U(k)$ and v is a column vector representing k-frame. We restrict this action to the subgroup $\left(\boldsymbol{Z}_{p}\right)^{k}$ of diagonal matrices with entries p-th root of one and consider $\operatorname{Ind}^{\left(\boldsymbol{Z}_{p}\right)^{k}}\left(V_{k}\left(\boldsymbol{C}^{m}\right) ; \boldsymbol{Z}_{p}\right)$, where p is a prime number.

In case $p=2$ we show that $t_{1}^{2(m-1)+1} t_{2}^{2(m-2)+1} \cdots t_{k}^{2(m-k)+1}$ is not in $\operatorname{Ind}^{\left(\boldsymbol{Z}_{2}\right)^{k}}\left(V_{k}\left(\boldsymbol{C}^{m}\right) ; \boldsymbol{Z}_{2}\right)$ by induction on k. The computation will be based on the fibration

$$
\begin{equation*}
S^{2(m-k)+1} \rightarrow V_{k}\left(\boldsymbol{C}^{m}\right) \xrightarrow{\pi} V_{k-1}\left(\boldsymbol{C}^{m}\right), \tag{1}
\end{equation*}
$$

where π is the projection on the first $k-1$ coordinates. Consider the sequence

$$
\begin{equation*}
\mathbf{Z}_{2} \rightarrow\left(\mathbf{Z}_{2}\right)^{k} \rightarrow\left(\mathbf{Z}_{2}\right)^{k-1} \tag{2}
\end{equation*}
$$

where \boldsymbol{Z}_{2} injects on the last coordinate and $\left(\boldsymbol{Z}_{2}\right)^{k}$ projects on the first $k-1$ coordinates. Dividing out the action of (2) on (1), we obtain

$$
\boldsymbol{R} P^{2(m-k)+1} \rightarrow V_{k}\left(\boldsymbol{C}^{m}\right) /\left(\mathbf{Z}_{2}\right)^{k} \rightarrow V_{k-1}\left(\boldsymbol{C}^{m}\right) /\left(\mathbf{Z}_{2}\right)^{k-1}
$$

We then have an induced diagram of fibrations

where the $\alpha_{i, j}$ are classifying maps. Recall that our coefficients are \boldsymbol{Z}_{2}, and since i_{∞}^{*} and $\alpha_{m-k+1,1}^{*}$ are surjective, $i_{m}^{*}: H^{*}\left(V_{k}\left(\boldsymbol{C}^{m}\right) /\left(\mathbf{Z}_{2}\right)^{k}\right) \rightarrow H^{*}\left(\boldsymbol{R} P^{2(m-k)+1}\right)$ is surjective.

Thus, the Leray-Hirsch theorem applies and we have a diagram

$$
\left.\begin{array}{ccc}
H^{*}\left(V_{k-1}\left(\boldsymbol{C}^{m}\right) /\left(\boldsymbol{Z}_{2}\right)^{k-1}\right)
\end{array}\right) \otimes H^{*}\left(\boldsymbol{R} P^{2(m-k)+1}\right) \xrightarrow{\varphi_{m}} H^{*}\left(V_{k}\left(\boldsymbol{C}^{m}\right) /\left(\mathbf{Z}_{2}\right)^{k}\right)
$$

with φ_{m} and φ_{∞} isomorphisms. Then

$$
\begin{aligned}
& \alpha_{m, k}^{*}\left[t_{1}^{2(m-1)+1} t_{2}^{2(m-2)+1} \cdots t_{k}^{2(m-k)+1}\right] \\
= & \alpha_{m, k}^{*} \circ \varphi_{\infty}\left[t_{1}^{2(m-1)+1} t_{2}^{2(m-2)+1} \cdots t_{k-1}^{2(m-k+1)+1} \otimes t_{k}^{2(m-k)+1}\right] \\
= & \varphi_{m}\left[\alpha_{m, k-1}^{*}\left(t_{1}^{2(m-1)+1} t_{2}^{2(m-2)+1} \cdots t_{k-1}^{2(m-k+1)+1}\right) \otimes \alpha_{m-k+1,1}^{*}\left(t_{k}^{2(m-k)+1}\right)\right] .
\end{aligned}
$$

But $\alpha_{m-k+1,1}^{*}\left(t_{k}^{2(m-k)+1}\right) \neq 0$ and assuming by induction that

$$
\alpha_{m, k-1}^{*}\left(t_{1}^{2(m-1)+1} t_{2}^{2(m-2)+1} \cdots t_{k-1}^{2(m-k+1)+1}\right) \neq 0
$$

we have

$$
\alpha_{m, k}^{*}\left[\left[_{1}^{2(m-1)+1} t_{2}^{2(m-2)+1} \cdots t_{k}^{2(m-k)+1}\right] \neq 0 .\right.
$$

Thus $t_{1}^{2(m-1)+1} t_{2}^{2(m-2)+1} \cdots t_{k}^{2(m-k)+1}$ is not in $\operatorname{ker} \alpha_{m, k}^{*}$.
When p is an odd prime, $H^{*}\left(B\left(\boldsymbol{Z}_{p}\right)^{k} ; \boldsymbol{Z}_{p}\right)=\boldsymbol{Z}_{p}\left[x_{1}, x_{2}, \ldots, x_{k}\right] \otimes E\left(y_{1}, y_{2}, \ldots, y_{k}\right)$, where $\boldsymbol{Z}_{p}\left[x_{1}, x_{2}, \ldots, x_{k}\right]$ denotes the \boldsymbol{Z}_{p}-polynomial algebra on 2-dimensional generators x_{i} and $E\left(y_{1}, y_{2}, \ldots, y_{k}\right)$ denotes the \boldsymbol{Z}_{p}-exterior algebra on 1-dimensional generators y_{i}. The ring is graded-commutative, i.e. $x y=(-1)^{\operatorname{deg}(x) \operatorname{deg}(y)} y x$. We next show that $x_{1}^{m-1} y_{1} x_{2}^{m-2} y_{2} \cdots x_{k}^{m-k} y_{k}$ is not in $\operatorname{Ind}^{\left(\boldsymbol{Z}_{p}\right)^{k}}\left(V_{k}\left(\boldsymbol{C}^{m}\right) ; \boldsymbol{Z}_{p}\right)$ by induction on k. Consider the sequence

$$
\begin{equation*}
\boldsymbol{Z}_{p} \rightarrow\left(\boldsymbol{Z}_{p}\right)^{k} \rightarrow\left(\boldsymbol{Z}_{p}\right)^{k-1} \tag{3}
\end{equation*}
$$

where \boldsymbol{Z}_{p} injects on the last coordinate and $\left(\boldsymbol{Z}_{p}\right)^{k}$ projects on the first $k-1$ coordinates. Dividing out the action of (3) on (1), we obtain

$$
S^{2(m-k)+1} / \boldsymbol{Z}_{p} \rightarrow V_{k}\left(\boldsymbol{C}^{m}\right) /\left(\boldsymbol{Z}_{p}\right)^{k} \rightarrow V_{k-1}\left(\boldsymbol{C}^{m}\right) /\left(\boldsymbol{Z}_{p}\right)^{k-1}
$$

We then have an induced diagram of fibrations

where the orbit space $L_{p}^{2(m-k)+1}=S^{2(m-k)+1} / \boldsymbol{Z}_{p}$ is the lens space and the $\alpha_{i, j}$ are classifying maps. Recall that our coefficients are \boldsymbol{Z}_{p}, and since i_{∞}^{*} and $\alpha_{m-k+1,1}^{*}$ are surjective, $i_{m}^{*}: H^{*}\left(V_{k}\left(\boldsymbol{C}^{m}\right) /\left(\boldsymbol{Z}_{p}\right)^{k}\right) \rightarrow H^{*}\left(L_{p}^{2(m-k)+1}\right)$ is surjective. Thus, the Leray-Hirsch theorem applies and we have a diagram

$$
\begin{array}{ccc}
H^{*}\left(V_{k-1}\left(\boldsymbol{C}^{m}\right) /\left(\boldsymbol{Z}_{p}\right)^{k-1}\right) \otimes H^{*}\left(L_{p}^{2(m-k)+1}\right) & \xrightarrow{\varphi_{m}} H^{*}\left(V_{k}\left(\boldsymbol{C}^{m}\right) /\left(\boldsymbol{Z}_{p}\right)^{k}\right) \\
\alpha_{m, k-1}^{*} \otimes \alpha_{m-k+1,1}^{*} \uparrow & & \alpha_{m, k}^{*} \uparrow \\
H^{*}\left(B\left(\boldsymbol{Z}_{p}\right)^{k-1}\right) \otimes H^{*}\left(B \boldsymbol{Z}_{p}\right) & \xrightarrow{\varphi_{\infty}} & H^{*}\left(B\left(\boldsymbol{Z}_{p}\right)^{k}\right)
\end{array}
$$

with φ_{k} and φ_{∞} isomorphisms. Then

$$
\begin{aligned}
& \alpha_{m, k}^{*}\left[x_{1}^{m-1} y_{1} x_{2}^{m-2} y_{2} \cdots x_{k}^{m-k} y_{k}\right] \\
= & \alpha_{m, k}^{*} \circ \varphi_{\infty}\left[x_{1}^{m-1} y_{1} x_{2}^{m-2} y_{2} \cdots x_{k-1}^{m-k+1} y_{k-1} \otimes x_{k}^{m-k} y_{k}\right] \\
= & \varphi_{m}\left[\alpha_{m, k-1}^{*}\left(x_{1}^{m-1} y_{1} x_{2}^{m-2} y_{2} \cdots x_{k-1}^{m-k+1} y_{k-1}\right) \otimes \alpha_{m-k+1,1}^{*}\left(x_{k}^{m-k} y_{k}\right)\right] .
\end{aligned}
$$

But $\alpha_{m-k+1,1}^{*}\left(x_{k}^{m-k} y_{k}\right) \neq 0$ and assuming by induction that

$$
\alpha_{m, k-1}^{*}\left(x_{1}^{m-1} y_{1} x_{2}^{m-2} y_{2} \cdots x_{k-1}^{m-k+1} y_{k-1}\right) \neq 0,
$$

we have

$$
\alpha_{m, k}^{*}\left[x_{1}^{m-1} y_{1} x_{2}^{m-2} y_{2} \cdots x_{k}^{m-k} y_{k}\right] \neq 0
$$

Therefore $x_{1}^{m-1} y_{1} x_{2}^{m-2} y_{2} \cdots x_{k}^{m-k} y_{k}$ is not in $\operatorname{ker} \alpha_{m, k}^{*}$. Thus we have the following result.

Proposition 2.3. (1) The monomial $t_{1}^{2(m-1)+1} t_{2}^{2(m-2)+1} \cdots t_{k}^{2(m-k)+1}$ does not belong to $\operatorname{Ind}^{\left(\boldsymbol{Z}_{2}\right)^{k}}\left(V_{k}\left(\boldsymbol{C}^{m}\right) ; \boldsymbol{Z}_{2}\right)$.

In particular, since $\operatorname{dim} V_{k}\left(\boldsymbol{C}^{m}\right)=2 m k-k^{2}$, we can assert

$$
\left.\operatorname{Ind}_{\operatorname{dim}}^{\left(\boldsymbol{Z}_{2} V_{k}\right.} \boldsymbol{C}^{m}\right)\left(V_{k}\left(\boldsymbol{C}^{m}\right) ; \boldsymbol{Z}_{2}\right) \neq H^{\operatorname{dim} V_{k}\left(\boldsymbol{C}^{m}\right)}\left(B\left(\boldsymbol{Z}_{2}\right)^{k} ; \boldsymbol{Z}_{2}\right) .
$$

(2) When p is an odd prime, the monomial $x_{1}^{m-1} y_{1} x_{2}^{m-2} y_{2} \cdots x_{k}^{m-k} y_{k}$ does not belong to $\operatorname{Ind}^{\left(\boldsymbol{Z}_{p}\right)^{k}}\left(V_{k}\left(\boldsymbol{C}^{m}\right) ; \boldsymbol{Z}_{p}\right)$.

In particular, since $\operatorname{dim} V_{k}\left(\boldsymbol{C}^{m}\right)=2 m k-k^{2}, \operatorname{dim} x_{i}=2$ and $\operatorname{dim} y_{i}=1$, we can assert

$$
\operatorname{Ind}_{\operatorname{dim}^{\left(\boldsymbol{Z}_{p}\right)} V_{k}\left(\boldsymbol{C}^{m}\right)}\left(V_{k}\left(\boldsymbol{C}^{m}\right) ; \boldsymbol{Z}_{p}\right) \neq H^{\operatorname{dim} V_{k}\left(\boldsymbol{C}^{m}\right)}\left(B\left(\boldsymbol{Z}_{p}\right)^{k} ; \boldsymbol{Z}_{p}\right) .
$$

3. Borsuk-Ulam type theorems on Stiefel manifolds

Let G be a compact Lie group and X be a free G-CW complex. We denote by X / G the orbit space of X. Note that the orbit map $p: X \rightarrow X / G$ is a fiber bundle with fiber G. Following [4], we define the transfer $p_{!}: H^{n}(X ; \Gamma) \rightarrow H^{n-\operatorname{dim} G}(X / G ; \Gamma)$ where Γ is a commutative group. Then we have the following.

Lemma 3.1 ([4]). Let X, Y be G-CW complexes and $f: X \rightarrow Y$ a G-map. Let $p_{X}: E G \times X \rightarrow E G \times{ }_{G} X$ and $p_{Y}: E G \times Y \rightarrow E G \times{ }_{G} Y$ denote the orbit maps. Then the commutativity holds in the diagram:

where $\bar{f}=\operatorname{id} \times_{G} f: E G \times_{G} X \rightarrow E G \times_{G} Y$ is the induced map from a G-map id $\times f: E G \times X \rightarrow E G \times Y$.

Let M be a smooth closed connected oriented G-manifold of dimension n. Suppose that the G-action on M is free. Note that the orbit space M / G is also a manifold of dimension $n-\operatorname{dim} G$ in this case. Let $p: M \rightarrow M / G$ be the orbit map. Suppose that M / G is orientable over \boldsymbol{K}. Then the transfer $p_{!}$of the p is described as $p_{!}=$ $D_{M / G}^{-1} \circ p_{*} \circ D_{M}$ where D is the Poincaré duality isomorphism. Then $p_{!}: H^{n}(M ; \boldsymbol{K}) \rightarrow$ $H^{n-\operatorname{dim} G}(M / G ; \boldsymbol{K})$ is an isomorphism.

The following theorem has been essentially proved in [4].
Theorem 3.2 ([4]). Let G be a compact Lie group and let M and N be smooth closed connected G-free manifolds of dimension n which are orientable over \boldsymbol{K}. Assume that the orbit space M / G and N / G are also orientable. Then we have the following.
(1) Suppose $\operatorname{Ind}_{n-\operatorname{dim} G}^{G}(M ; \boldsymbol{K})$ is not equal to $H^{n-\operatorname{dim} G}(B G ; \boldsymbol{K})$. Then for any G-map $f: M \rightarrow N, f^{*}: H^{n}(N ; \boldsymbol{K}) \rightarrow H^{n}(M ; \boldsymbol{K})$ is non-trivial.
(2) Suppose that $\operatorname{Ind}_{n-\operatorname{dim} G}^{G}(N ; \boldsymbol{K})$ is not equal to $\operatorname{Ind}_{n-\operatorname{dim} G}^{G}(M ; \boldsymbol{K})$. Then for any G-map $f: M \rightarrow N, f^{*}: H^{n}(N ; \boldsymbol{K}) \rightarrow H^{n}(M ; \boldsymbol{K})$ is not injective.

Proof. (1) Assume that there exists a G-map $f: M \rightarrow N$ such that $f^{*}: H^{n}(N ; \boldsymbol{K}) \rightarrow H^{n}(M ; \boldsymbol{K})$ is trivial. By Lemma 3.1, $\left(p_{M}\right)_{!} \circ f^{*}=\bar{f}^{*} \circ\left(p_{N}\right)_{!}$.

Therefore $\bar{f}^{*}: H_{G}^{n-\operatorname{dim} G}(N ; \boldsymbol{K}) \rightarrow H_{G}^{n-\operatorname{dim} G}(M ; \boldsymbol{K})$ is trivial, because $\left(p_{M}\right)$! and $\left(p_{N}\right)!$ are isomorphism and f^{*} is the trivial homomorphism. Since $c_{M}=c_{N} \circ f$,

$$
\operatorname{Ind}_{n-\operatorname{dim} G}^{G}(M ; \boldsymbol{K})=\left(\bar{c}_{M}^{*}\right)^{-1}(0)=\left(\bar{c}_{N}^{*}\right)^{-1}\left(\left(\bar{f}^{*}\right)^{-1}(0)\right)=H^{n-\operatorname{dim} G}(M ; \boldsymbol{K}) .
$$

(2) Assume that there exists a G-map $f: M \rightarrow N$ such that $f^{*}: H^{n}(N ; \boldsymbol{K}) \rightarrow$ $H^{n}(M ; \boldsymbol{K})$ is injective. Then $\bar{f}^{*}: H_{G}^{n-\operatorname{dim} G}(N ; \boldsymbol{K}) \rightarrow H_{G}^{n-\operatorname{dim} G}(M ; \boldsymbol{K})$ is injective, using Lemma 3.1 again. Hence

$$
\begin{aligned}
\operatorname{Ind}_{n-\operatorname{dim} G}^{G}(N ; \boldsymbol{K}) & =\operatorname{ker} \bar{c}_{N}^{*}=\left(\bar{c}_{N}^{*}\right)^{-1}(0)=\left(\bar{c}_{N}^{*}\right)^{-1}\left(\left(\bar{f}^{*}\right)^{-1}(0)\right)=\left(\bar{c}_{M}^{*}\right)^{-1}(0) \\
& =\operatorname{Ind}_{n-\operatorname{dim} G}^{G}(M ; \boldsymbol{K})
\end{aligned}
$$

As a consequence of Proposition 2.2 and Theorem 3.2 (1) we get the following theorem.

Theorem 3.3. Let $f: V_{k}\left(\boldsymbol{R}^{m}\right) \rightarrow V_{k}\left(\boldsymbol{R}^{m}\right)$ be a $\left(\boldsymbol{Z}_{2}\right)^{k}$-map. Then the degree of f is odd.

Proof. Set $n=\operatorname{dim} V_{k}\left(\boldsymbol{R}^{m}\right)$. By Proposition 2.2, $\operatorname{Ind}_{n}^{\left(\boldsymbol{Z}_{2}\right)^{k}}\left(V_{k}\left(\boldsymbol{R}^{m}\right) ; \boldsymbol{Z}_{2}\right)$ is not equal to $H^{n}\left(B\left(\boldsymbol{Z}_{2}\right)^{k} ; \boldsymbol{Z}_{2}\right)$. Hence $f^{*}: H^{n}\left(N ; \boldsymbol{Z}_{2}\right) \rightarrow H^{n}\left(M ; \boldsymbol{Z}_{2}\right)$ is non-trivial from assertion (1) of Theorem 3.2.

This theorem implies the following.

Corollary 3.4. If there exists a $\left(\boldsymbol{Z}_{2}\right)^{k}$-map $f: V_{k}\left(\boldsymbol{R}^{m}\right) \rightarrow V_{k}\left(\boldsymbol{R}^{n}\right)$, then $m \leq n$.

Proof. Let $f: V_{k}\left(\boldsymbol{R}^{m}\right) \rightarrow V_{k}\left(\boldsymbol{R}^{n}\right)$ be a $\left(\boldsymbol{Z}_{2}\right)^{k}$-map. Assume that $m>n$. The canonical inclusion $i: V_{k}\left(\boldsymbol{R}^{n}\right) \rightarrow V_{k}\left(\boldsymbol{R}^{m}\right)$ is a $\left(\boldsymbol{Z}_{2}\right)^{k}$-map. Since $i \circ f: V_{k}\left(\boldsymbol{R}^{m}\right) \rightarrow V_{k}\left(\boldsymbol{R}^{m}\right)$ is a $\left(\boldsymbol{Z}_{2}\right)^{k}$-map, the degree of $i \circ f$ is not even. Otherwise, because $(i \circ f)^{*}=f^{*} \circ i^{*}$ and $H^{\operatorname{dim} V_{k}\left(\boldsymbol{R}^{m}\right)}\left(V_{k}\left(\boldsymbol{R}^{n}\right) ; \boldsymbol{Z}_{2}\right)=0,(i \circ f)^{*}: H^{\operatorname{dim} V_{k}\left(\boldsymbol{R}^{m}\right)}\left(V_{k}\left(\boldsymbol{R}^{m}\right)\right) \rightarrow H^{\operatorname{dim} V_{k}\left(\boldsymbol{R}^{m}\right)}\left(V_{k}\left(\boldsymbol{R}^{m}\right)\right)$ is trivial. This is a contradiction.

Next if $l<k$, then we regard $\left(\boldsymbol{Z}_{p}\right)^{l}$ as any subgroup of $\left(\boldsymbol{Z}_{p}\right)^{k}$. We get a commutative diagram

Then we have

Theorem 3.5. If $\operatorname{dim} V_{k}\left(\boldsymbol{R}^{m}\right)=\operatorname{dim} V_{l}\left(\boldsymbol{R}^{n}\right)$, then for any $\left(\boldsymbol{Z}_{2}\right)^{l}$-map $f: V_{k}\left(\boldsymbol{R}^{m}\right) \rightarrow$ $V_{l}\left(\boldsymbol{R}^{n}\right)$ the degree of f is even.

Proof. We set $d=\operatorname{dim} V_{k}\left(\boldsymbol{R}^{m}\right)=\operatorname{dim} V_{l}\left(\boldsymbol{R}^{n}\right)$. Then $\pi^{*}: H_{\left(\boldsymbol{Z}_{2}\right)^{k}}^{d}\left(V_{k}\left(\boldsymbol{R}^{m}\right) ; \boldsymbol{Z}_{2}\right) \rightarrow$ $H_{\left(\boldsymbol{Z}_{2}\right)^{l}}^{d}\left(V_{k}\left(\boldsymbol{R}^{m}\right) ; \boldsymbol{Z}_{2}\right)$ is trivial. Since $\rho^{*}: H^{*}\left(B\left(\boldsymbol{Z}_{2}\right)^{k} ; \boldsymbol{Z}_{2}\right) \rightarrow H^{*}\left(B\left(\boldsymbol{Z}_{2}\right)^{l} ; \boldsymbol{Z}_{2}\right)$ is surjective, ${\overline{c^{\prime *}}}^{\prime *}: H^{d}\left(B\left(\boldsymbol{Z}_{2}\right)^{l} ; \boldsymbol{Z}_{2}\right) \quad \rightarrow \quad H_{\left(\mathbf{Z}_{2}\right)^{l}}^{d}\left(V_{k}\left(\boldsymbol{R}^{m}\right) ; \boldsymbol{Z}_{2}\right) \quad$ is \quad also trivial. Therefore we have $\operatorname{Ind}_{d}^{\left(\boldsymbol{Z}_{2}\right)^{l}}\left(V_{k}\left(\boldsymbol{R}^{m}\right) ; \boldsymbol{Z}_{2}\right)=H^{d}\left(B\left(\boldsymbol{Z}_{2}\right)^{l} ; \boldsymbol{Z}_{2}\right)$.

Otherwise $\operatorname{Ind}_{d}^{\left(\boldsymbol{Z}_{2}\right)^{l}}\left(V_{l}\left(\boldsymbol{R}^{n}\right) ; \boldsymbol{Z}_{2}\right) \neq H^{d}\left(B\left(\boldsymbol{Z}_{2}\right)^{l} ; \boldsymbol{Z}_{2}\right)$ from Proposition 2.2. Therefore it follows from Theorem 3.2 (2) that for any $\left(\boldsymbol{Z}_{2}\right)^{l}$-map $f: V_{k}\left(\boldsymbol{R}^{m}\right) \rightarrow V_{l}\left(\boldsymbol{R}^{n}\right)$ the degree of f is even.

Still continuing our complex analogue of the propositions above, we get the following.

Theorem 3.6. Let $f: V_{k}\left(\boldsymbol{C}^{m}\right) \rightarrow V_{k}\left(\boldsymbol{C}^{m}\right)$ be a $\left(\boldsymbol{Z}_{p}\right)^{k}$-map. Then the degree of f is not congruent to zero modulo p.

From this theorem, the following corollary is proved in the same way as Corollary 3.4.

Corollary 3.7. If there exists $a\left(\boldsymbol{Z}_{p}\right)^{k}$-map $f: V_{k}\left(\boldsymbol{C}^{m}\right) \rightarrow V_{k}\left(\boldsymbol{C}^{n}\right)$, then $m \leq n$.

Next if $l<k$, then we regard $\left(\boldsymbol{Z}_{p}\right)^{l}$ as any subgroup of $\left(\boldsymbol{Z}_{p}\right)^{k}$. Hence $V_{k}\left(\boldsymbol{C}^{m}\right)$ is a free $\left(\boldsymbol{Z}_{p}\right)^{l}$-manifold. Then we get the following in the same way as Theorem 3.5.

Theorem 3.8. If $\operatorname{dim} V_{k}\left(\boldsymbol{C}^{m}\right)=\operatorname{dim} V_{l}\left(\boldsymbol{C}^{n}\right)$, then for any $\left(\boldsymbol{Z}_{p}\right)^{l}$-map $f: V_{k}\left(\boldsymbol{C}^{m}\right) \rightarrow$ $V_{l}\left(\boldsymbol{C}^{n}\right)$ the degree of f is congruent to zero modulo p.

Remark. If k is even, then $\operatorname{dim} V_{k}\left(\boldsymbol{C}^{m}\right)$ is even. Hence there does not exist a free \boldsymbol{Z}_{p}-action on $S^{\operatorname{dim} V_{k}\left(\boldsymbol{C}^{m}\right)}$.

Corollary 3.9. If $\operatorname{dim} V_{k}\left(\boldsymbol{C}^{m}\right)=\operatorname{dim} V_{l}\left(\boldsymbol{C}^{n}\right)$, then for any $\left(S^{1}\right)^{l}$-map $f: V_{k}\left(\boldsymbol{C}^{m}\right) \rightarrow$ $V_{l}\left(\boldsymbol{C}^{n}\right)$ the degree of f is zero.

References

[1] H. Cartan and S. Eilenberg: Homological Algebra, Princeton University Press, 1956.
[2] E. Fadell and S. Husseini: An ideal-valued cohomological index theory with applications to Borsuk-Ulam and Bourgin-Yang theorems, Ergodic Theory Dynamical Systems 8 (1988), 73-85.
[3] E. Fadell: Ideal-valued generalizations of Ljusternik-Schnierlmann category, with applications; in Topics in Equivariant Topology, (eds. E. Fadell, et al.), Sém. Math. Sup. 108, Press Univ. Montréal, Montréal, 1989, 11-54.
[4] Y. Hara: The degree of equivariant maps, Topology Appl. 148 (2005), 113-121.
[5] J. Jaworowski: Maps of Stiefel manifolds and a Borsuk-Ulam theorem, Proc. Edinb. Math. Soc. 32 (1989), 271-279.
[6] K. Komiya: Borsuk-Ulam theorem and Stiefel manifolds, J. Math. Soc. Japan 45 (1993), 611-626.
[7] E. Spanier: Algebraic Topology, McGraw-Hill, New York, 1966.

Department of Mathematics Graduate School of Science Osaka University
Toyonaka 560-0043, Japan

