CURVES IN PROJECTIVE SPACES AND THEIR INDEX OF REGULARITY

Edoardo BALLICO

(Received August 27, 2004, revised April 20, 2005)

Abstract

For all integers $n \geq 3$ we show the existence of many triples (d, g, ρ) such that there is a smooth non-degenerate curve $C \subset \mathbf{P}^{n}$ with degree d, genus g and index of regularity ρ. The curve C lies in a smooth $K 3$ surface $S \subset \mathbf{P}^{n}$.

1. Index of regularity

Let $C \subset \mathbf{P}^{n}$ be a curve, i.e. a locally Cohen-Macaulay pure one-dimensional closed subscheme. Set $\rho(C):=\min \left\{t: h^{1}\left(\mathbf{P}^{n}, \mathcal{I}_{C}(x)\right)=0\right.$ for every $\left.x \geq t\right\}$. We will call $\rho(C)$ the index of regularity of C. Since the old works of Castelnuovo, the integer $\rho(C)$ is considered a fundamental invariant of C ([5], [2]). In all cases we will consider in this paper we will have $h^{1}\left(C, \mathcal{O}_{C}(\rho-1)\right)=0$ and hence by CastelnuovoMumford lemma in this case the integer $\rho(C)$ will be also the regularity index of the minimal free resolution of C ([2]): another very good reason to consider it a fundamental invariant of C. Thus for any fixed integer $n \geq 3$ it seems nice to show the existence of many triples (d, g, ρ) such that there is a smooth non-degenerate curve $C \subset \mathbf{P}^{n}$ with degree d, genus g and index of regularity ρ. A weaker, but very important problem, classical problems is to find at least "almost all" pairs (d, g) that may appear as (degree, genus) of a smooth non-degenerate curve $C \subset \mathbf{P}^{n}$. For this classical problem (when $n=3$) S . Mori used a $K 3$ surface ([4]). Later, A.L. Knutsen extended Mori's idea to the case $n \geq 4$. Using Knutsen's paper it was possible to construct curves C such that certain cohomology groups $h^{1}\left(\mathbf{P}^{n}, \mathcal{I}_{C}(x)\right)$ vanish ([1]). Here we adapt the proofs in [1] to get results on the index of regularity.

Theorem 1. Fix integers d, g, n such that $n \geq 3$ and $0 \leq d-n<g<d^{2} /(4 n-$ $4)-(n-1) / 4$. Set $r:=\left\lfloor\left(d-\sqrt{d^{2}-(4 n-4) g} /(2 n-2)\right\rfloor, d_{0}:=d-(2 n-2) r\right.$ and $g_{0}:=$ $(n-1) r^{2}-d r+g$. Then $r \geq 1$ and $0 \leq g_{0} \leq d_{0}-n$. There is a smooth and arithmetically Cohen-Macaulay degree $2 n-2 K 3$ surface $S \subset \mathbf{P}^{n}$ with the following properties. Set $H:=\mathcal{O}_{S}(1)$. There is a smooth and connected curve $C_{0} \subset S$ such that $\operatorname{deg}\left(C_{0}\right)=d_{0}$, $p_{a}\left(C_{0}\right)=g_{0}, h^{1}\left(C_{0}, \mathcal{O}_{C_{0}}(1)\right)=0, h^{0}\left(S, \mathcal{O}_{S}\left(H-C_{0}\right)\right)=h^{0}\left(S, \mathcal{O}_{S}\left(C_{0}-H\right)\right)=0, \operatorname{Pic}(S)$
is freely generated by the classes of H and C_{0}, and the general element of $\left|C_{0}+r H\right|$ is a smooth and connected non-degenerate curve with degree d and genus g. We have $e\left(C_{0}\right)=0$ if $g_{0}>0$ and $e\left(C_{0}\right)=-1$ if $g_{0}=0$. Take any $C \in\left|C_{0}+r H\right|$. Then $\rho(C)=\rho\left(C_{0}\right)+r$ and $e(C)=e\left(C_{0}\right)+r . C$ is arithmetically normal if and only if C_{0} is projectively normal and this is the case if and only if $d_{0}=g_{0}+n$ and $h^{1}\left(\mathbf{P}^{n}, \mathcal{I}_{C_{0}}(2)\right)=$ 0 . If $d_{0}=g_{0}+n$ and $n>g_{0}$, then C_{0} is projectively normal.

Remark 1. Use the notation of Theorem 1. The existence of S was proved in [1], proof of Th.1.4. By [1], Th.1.4, we have $h^{1}\left(\mathbf{P}^{n}, \mathcal{I}_{C}(r+1)\right)=d_{0}-g_{0}-n$ and $h^{1}\left(\mathbf{P}^{n}, \mathcal{I}_{C}(t)\right)=0$ for every integer t such that $0 \leq t \leq r$.

By Theorem 1 the computation of the index of regularity $\rho(C)$ of C is reduced to the computation of the integer $\rho\left(C_{0}\right)$. Since $d \gg d_{0}$, the following remark may be useful.

REmark 2. Let $C \subset \mathbf{P}^{m}$ be an integral degree d non-degenerate curve. If $m=2$, then $\rho(C)=0$. However, if $m=2$, then $h^{1}\left(C, \mathcal{O}_{C}(t)\right)=0$ if and only if $t \geq d-2$. Now assume $m \geq 3$. By [2] we have $\rho(C) \leq d+1-m$ and $\rho(C)=d+1-m$ if and only if C is smooth and rational and either $d \leq m+1$ or $d \geq m+2$ and C has a $(d+2-m)$-secant line. Furthermore, $h^{1}\left(C, \mathcal{O}_{C}(z)\right)=0$ for all $z \geq d-m$.

We work over an algebraically closed field \mathbb{K} such that $\operatorname{char}(\mathbb{K})=0$.

Proof of Theorem 1. The existence of the pair (S, C_{0}) was checked in [1], proof of Th.1.4 (see in particular the last two lines of that proof for the critical condition $\left.h^{1}\left(C_{0}, \mathcal{O}_{C_{0}}(1)\right)=0\right)$. Since $h^{1}\left(C_{0}, \mathcal{O}_{C_{0}}(1)\right)=0$, we have $e\left(C_{0}\right) \leq 0$. Hence $e\left(C_{0}\right)=0$ if $g_{0}>0$ and $e\left(C_{0}\right) \in\{-2,-1\}$ if $g_{0}=0$. Since $h^{0}\left(S, \mathcal{O}_{S}\left(H-C_{0}\right)\right)=0, C_{0}$ is not a line and hence $e\left(C_{0}\right)=-1$ if $g_{0}=0$. The construction of the pair $\left(S, C_{0}\right)$ used in an essential way the construction of many curves in suitable $K 3$ surfaces due to S . Mori ([4]) for $n=3$ and to A.L. Knutsen ([3]) for arbitrary n. Fix an integer $a \geq 0$ and any $T \in\left|C_{0}+a H\right|$. For all integers t we have the following exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{S}\left((t-a) H-C_{0}\right) \rightarrow \mathcal{O}_{S}(t H) \rightarrow \mathcal{O}_{T}(t) \rightarrow 0 \tag{1}
\end{equation*}
$$

If $t \geq a$ and $(t, a) \neq(0,0)$, then $h^{1}\left(S, \mathcal{O}_{S}(t H)\right)=h^{2}\left(S, \mathcal{O}_{S}(t H)\right)=0$ and hence $h^{1}\left(T, \mathcal{O}_{T}(t)\right)=h^{2}\left(S, \mathcal{O}_{S}\left((t-a) H-C_{0}\right)\right)=h^{0}\left(S, \mathcal{O}_{S}\left(C_{0}+(a-t) H\right)\right)$. From this relation for $a=0$ and $a=r$ we get $e(C)=e(T)=e\left(C_{0}\right)+r$. Since this relation is obvious for $r=0$, we do not need the case $(t, a)=(0,0)$. By [1], Th.1.4, (its proof does not require the smoothness of C) we have $h^{1}\left(\mathbf{P}^{n}, \mathcal{I}_{T}(t)\right)=0$ if $0 \leq t \leq r$ and $h^{1}\left(\mathbf{P}^{n}, \mathcal{I}_{T}(r+1)\right)=d_{0}-g_{0}-n$. Now assume $a \in\{0, r\}$ and take an arbitrary integer $t \geq r+2$. Since S is projectively normal, $h^{1}\left(\mathbf{P}^{n}, \mathcal{I}_{T}(t)\right)=h^{1}\left(S, \mathcal{O}_{S}\left((t-a) H-C_{0}\right)\right)$. Hence $\rho(C)=\rho\left(C_{0}\right)+r$. The projective normality of a degree d_{0} linearly normal em-
bedding of C_{0} if $d_{0} \geq 2 g_{0}+1$ was proved by D. Mumford ([5], Cor. at p.55).

Remark 3. The proof of Theorem 1 shows that $\rho(C)$ is the minimal integer t such that $h^{1}\left(S, \mathcal{O}_{S}\left((t-r-1) H-C_{0}\right)\right) \neq 0$.

References

[1] E. Ballico, N. Chiarli and S. Greco: On the existence of k-normal curves of given degree and genus in projective spaces, Collect. Math. 55 (2004), 269-277.
[2] L. Gruson, R. Lazarsfeld and C. Peskine: On a theorem of Castenuovo, and the equations defining space curves, Invent. Math. 72 (1983), 491-506.
[3] A.L. Knutsen: Smooth curves on projective K3 surfaces, Math. Scand. 90 (2000), 215-231.
[4] S. Mori: On degree and genera of curves on smooth quartic surfaces in \mathbf{P}^{3}, Nagoya Math. J. 96 (1984), 127-132.
[5] D. Mumford: Varieties defined by quadratic equations; in Questions on Algebraic Varieties, Cremonese, Rome, 1970, 30-100.

Dept. of Mathematics University of Trento 38050 Povo (TN), Italy
e-mail: ballico@science.unitn.it

