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SEMICLASSICAL ORTHOGONAL POLYNOMIAL
SYSTEMS ON NONUNIFORM LATTICES,

DEFORMATIONS OF THE ASKEY TABLE, AND
ANALOGUES OF ISOMONODROMY

N. S. WITTE

Abstract. A D-semiclassical weight is one which satisfies a particular linear,
first-order homogeneous equation in a divided-difference operator D. It is known
that the system of polynomials, orthogonal with respect to this weight, and the
associated functions satisfy a linear, first-order homogeneous matrix equation
in the divided-difference operator termed the spectral equation. Attached to
the spectral equation is a structure which constitutes a number of relations
such as those arising from compatibility with the three-term recurrence rela-
tion. Here this structure is elucidated in the general case of quadratic lattices.
The simplest examples of the D-semiclassical orthogonal polynomial systems
are precisely those in the Askey table of hypergeometric and basic hypergeo-
metric orthogonal polynomials. However within the D-semiclassical class it is
entirely natural to define a generalization of the Askey table weights which
involve a deformation with respect to new deformation variables. We com-
pletely construct the analogous structures arising from such deformations and
their relations with the other elements of the theory. As an example we treat the
first nontrivial deformation of the Askey–Wilson orthogonal polynomial sys-
tem defined by the q-quadratic divided-difference operator, the Askey–Wilson
operator, and derive the coupled first-order divided-difference equations char-
acterizing its evolution in the deformation variable. We show that this system

is a member of a sequence of classical solutions to the E
(1)
7 q-Painlevé system.
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§1. Background and motivation

We propose a method for constructing systems of linear divided-difference

equations which are analogues of isomonodromic linear differential equations

and therefore isomonodromic interpretations or Lax pairs of the known q-

Painlevé and difference Painlevé equations, such as those in the Sakai scheme

(see [86]). What is meant by an analogue of a monodromy matrix turns out

to be a connection matrix, appropriate to the class of lattices defining the

divided-difference operators under consideration. In essence, our method

constructs a particular isomonodromic analogue system from an orthogonal

polynomial system, orthogonal with respect to a generalization or deforma-

tion of a weight with discrete or countable support on a class of nonuniform

quadratic lattices. We then deduce a number of linear divided-difference

equations that this system satisfies and show that their pairwise compat-

ibility holds provided the coefficients of the linear system obey evolution

equations of the difference or q-Painlevé type. This is a very natural exten-

sion of the Fokas–Its–Kitaev construction (see [49], [23], [24]) at the heart

of Riemann–Hilbert techniques.

Our method is independent of and distinct from other approaches which

we briefly recount here. The first studies to construct Lax pairs for the q-

Painlevé equations were those of Jimbo and Sakai [50] and Sakai [87], [88],

using the Birkhoff theory of linear q-difference equations Y (qx) =A(x)Y (x)

and imposing the condition that the connection matrix was independent of

the zeros of detA(x). However this approach has not been extended beyond

the D
(1)
5 or E

(1)
6 cases (the latter case only found from a degeneration of

the two-variable extension of the former). Another distinct approach which

is founded upon the notion of the τ -function of a rational d-connection

is the Arinkin–Borodin theory (see [17], [2], [3]), which has been applied

to the difference Painlevé equations. Our approach is similar in spirit to

that of Rains [85], who has treated the master elliptic Painlevé equation, in

that an explicit construction is made of the solution to the linear problem

which contains a multiple integral representation of the orthogonal ratio-

nal function. However, we will not make direct contact with this theory

because it requires us to consider orthogonal rational functions on elliptic

lattices, which is a generalization beyond the class of lattices considered

here. In addition, we believe that the discrete Riemann–Hilbert approach,

as formulated by Borodin in [16] and applied to two examples and extended

to further cases in [18], shares many features with the present study, and
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one should be able to construct a Riemann–Hilbert formulation of our own

theory. Recently Yamada has constructed Lax pairs for the q-Painlevé equa-

tions for the systems with symmetries E
(1)
8 ,E

(1)
7 ,E

(1)
6 by a reduction from

the elliptic form of the E
(1)
8 Painlevé equation (see [98], [99]); however, no

theoretical construction from first principles was proposed in the individual

cases.

The approach we propose here has been successfully employed for the

isomonodromic systems and Painlevé equations (see, e.g., [66], [64], [61],

[13], [49], [19], [21], [26], [93], [27], [94]), and while most of the findings are

reproductions of known ones, they have led to novel results hitherto not

found using other treatments, such as the discrete Garnier systems in [95].

An important feature of our approach is that it is strongly motivated by

a probabilistic setting, namely, that of the theory of random matrices and

more generally determinantal point processes where the classical weights in

the Askey table appear in the one-body factors of the eigenvalue probabil-

ity density functions (see [25]). Some preliminary exploration of the pro-

gram we propose here has already been initiated but not carried through

to its logical conclusion, and we will delay citing this work until the body

of our paper where it is directly relevant. However, we should point out

that we are most indebted to the pioneering work of Magnus in [60] and

[62].

The essential elements of our approach are the following.

(A) The classification of special nonuniform lattices (SNUL) of quadratic

type (see [60]), their associated divided-difference operators Dx and Mx,

and their rules of calculus, which applies to orthogonal or bi-orthogonal

polynomial systems. Of significance is the fact that in general these lattices

possess two fixed points which we denote xL, xR.

(B) The notion of a D-semiclassical weight w(x) which is characterized

by an analogue of the Pearson equation (see Definition 4.1; see also [60],

[62])

(1.1) Dxw(x) =
2V (x)

W (x)
Mxw(x),

where W (x), V (x) are polynomials in C[x].

(C) The orthogonal polynomial system (OPS) defined by such a weight on

the SNUL Yn(x) ∈C
2×2 satisfies a three-term recurrence relation, which in
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our context is a particular Schlesinger transformation n �→ n+1 (see (3.29))

(1.2) Yn+1(x) =Kn(x)Yn(x).

(D) The semiclassical character implies, under fairly weak conditions, a

spectral structure on the “isomonodromic” system Yn(x) (see [60], [62]; see

also Proposition 4.4), namely, that it satisfies the linear divided-difference

equation

(1.3) DxYn(x) =An(x)MxYn(x).

Here An(x) is rational in x and the degrees of its numerator and denomi-

nator with respect to x are independent of n.

(E) Parallel to the spectral structure is a deformation structure, whereby

the weight and the system acquires a u dependence, constrained by another

Pearson relation (see Definition 6.1)

(1.4) Duw(x;u) =
2S(x;u)

R(x;u)
Muw(x;u),

where R(x;u), S(x;u) are polynomials in C[x].

(F) This also has a direct consequence for the “isomonodromic” system

Yn(x;u), a deformation structure (see Proposition 6.6), and a second asso-

ciated linear divided-difference equation

(1.5) DuYn(x;u) =Bn(x;u)MuYn(x;u),

where Bn(x;u) is also rational in x.

(G) The compatibility relations implied by this overdetermined “isomon-

odromic” system Yn(x;u) then lead to a number of conclusions—the defor-

mation matrixBn(x;u) is expressible in terms of the spectral matrixAn(x;u)

at neighboring lattice nodes which we refer to as closure (see Proposi-

tion 7.8), and furthermore relations exist between components of the spec-

tral matrix at two consecutive nodes on the u-lattice which, given a suitable

parameterization of this matrix by appropriate coordinates, is a recurrence

relation on the deformation lattice. Our key results for such recurrence rela-

tions are given in Propositions 7.9, 7.10, 7.11, and 7.12.

(H) In our approach we derive a preservation property for the connection

matrix defined as

(1.6) P (x;u) :=
(
YR(x;u)

)−1
YL(x;u),
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where YL,R(x;u) are local fundamental solutions of the spectral equation

about xL,R. Specifically this implies that

(1.7) DxP (x;u) = 0, DuP (x;u) = 0

as a consequence of our assumptions.

In our approach we can sidestep a number of issues, which are important

to be sure, but do not affect the outcome. So we postpone deeper considera-

tions of an analytic or algebraic theory of linear systems of divided-difference

operators on these lattices for subsequent studies; however our present work

will provide concrete illustrative examples for such an investigation. We are

referring to, for example, issues of a Galois theory for D-difference equa-

tions, a Birkhoff theory for the local character of the solutions to systems of

linear first-order D-difference equations, and analogues of monodromy for

D-difference equations.

Our approach poses the question concerning a correspondence between

the system of hypergeometric and basic hypergeometric orthogonal polyno-

mial systems generalizing the classical systems, known as the Askey table,

as represented in reference work [56], and the most complete system of

elliptic, q-difference and difference analogues of the Painlevé equations, the

Sakai scheme (see [86]). A correspondence between the Sakai scheme and

the Askey table would explain the occurrence of many features that have

been discovered recently, such as the appearance of basic hypergeometric

functions in their classical solutions. We have already referred to the corre-

spondence between the classical OPS Hermite, Laguerre, and Jacobi and the

classical solutions to Painlevé IV, V, and VI, respectively. Among the differ-

ence and q-difference OPS, the current evidence for such a correspondence

can be summarized in Table 1.

The layout of this work loosely follows the plan given above.

In Section 2 we describe the classification of the quadratic lattices and

their divided-difference calculus, with special emphasis on the example of

the master class, the q-quadratic lattice. Section 3 is devoted to the reformu-

lation of orthogonal polynomial system theory necessary for systems with

a weight having support on a general quadratic lattice, and some analyti-

cal results for the q-quadratic lattice. The spectral structures are laid out

in Section 4 for a general quadratic lattice, starting with the definition of

a D-semiclassical weight and developing the consequences of this for the

OPS. We also describe the compatibility relations of this structure with

the three-term recurrence relations, and this leads to a generalization of the
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Table 1: The Askey table—Sakai scheme correspondence ranked according

to the degeneration pathway from the master case. The affine Weyl group

refers to the symmetry group of Bäcklund transformations for the integrable

system. Only the discrete lattices are included here.

Base OPS Integrable system Reference

little q-Jacobi D
(1)
5 , full q−PVI [79]

Pastro [80] D
(1)
5 , full q−PVI [14]

little q-Jacobi D
(1)
5 , special q−PVI [18]

q-Krawtchouk D
(1)
5 , special q−PVI [18]

q-Charlier D
(1)
5 , degenerate q−PVI [18]

q-Freud A
(1)
4 , degenerate q−PV [15]

Meixner, Krawtchouk d−PV [18]

Charlier d−PIV [18]

Laguerre–Freud equations. An explicit example of the foregoing theory is the

lowest case—and from our point of view, the trivial case—of the q-quadratic

lattice which is denoted by the label M = 2. This is dealt with in Section 5.

We recover the Askey–Wilson OPS and demonstrate that every aspect of

this system can be derived in an efficient manner using the theoretical tools

developed in the previous section.

In Section 6 we introduce an (or many) auxiliary variable and demand

that the weight satisfies an analogous D-semiclassical relation to the spec-

tral relation, on a general lattice not necessarily the same as that for the

spectral variable. This constitutes a deformation of the weight which leaves

it having the same structure as the original. From this we develop a parallel

theoretical analysis of the orthogonal polynomial system with respect to

this deformation. We now have two compatibility relations with this defor-

mation structure—one with the three-term recurrence and the other with

the spectral structure. For the present purposes, this completes our task for

the general theory.

In Section 7 we treat a natural deformation of the Askey–Wilson weight,

but not by any means the only one, to the q-quadratic lattice. Here we

construct parameterizations of the spectral and deformation matrices, the

closure relations between the two structures, determine the coordinate trans-

formations to a set of variables, and derive the evolution equations for this
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system (see Propositions 7.9, 7.10, 7.11, and 7.12). Finally, we offer evidence

that our system is a classical solution of the E
(1)
7 q-Painlevé system.

§2. Divided-difference calculus of the quadratic lattices

Divided-difference operators associated with the special nonuniform lat-

tices have appeared in many studies of orthogonal polynomials of a discrete

variable (see, e.g., the early studies by Hahn [36], [35], [37], [38], the foun-

dational work by Askey and Wilson [4], and the monograph of Nikiforov,

Suslov, and Uvarov [78]). The employment of divided-difference operators

such as the Askey–Wilson and Wilson operators has been commonplace in

studies of the Askey table of hypergeometric orthogonal polynomial sys-

tems too numerous to cite here (see the monographs by Ismail [43] and

Lesky [59]).

Let Πn[x] denote the linear space of polynomials in x over C with degree

at most n ∈ Z≥0. In pioneering investigations, Magnus [60], [62] provided

a geometrical understanding of these lattices and their divided-difference

operators which we relate here briefly. If we define the divided-difference

operator (DDO) Dx by

(2.1) Dxf(x) =
f(ι+(x))− f(ι−(x))

ι+(x)− ι−(x)
,

then a simple consequence of the condition that Dx : Πn[x]→ Πn−1[x] for

all n ∈N is that ι±(x) are the two y-roots of the quadratic equation

(2.2) Ay2 + 2Bxy+ Cx2 + 2Dy+ 2Ex+F = 0.

The functions ι±(x) satisfy

ι+(x) + ι−(x) =−2
Bx+D

A ,(2.3)

ι+(x)ι−(x) =
Cx2 + 2Ex+F

A ,(2.4)

and their inverse functions ι−1
± are defined by ι−1

± (ι±(x)) = x. For a given y-

value, the quadratic (2.2) defines two x-roots if C �= 0, which are consecutive

points on the x-lattice, xs := x(s), xs+1 := x(s + 1) parameterized by the

variable s, and therefore defines a map xs �→ xs+1. Conversely, for a given

x-value the quadratic defines two y-roots if A �= 0, which are consecutive

points on a dual lattice, the y-lattice, ys := y(s) = ι−(x(s)), ys+1 := y(s+1) =
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ι+(x(s)), which generally is distinct from the x-lattice. We will employ an

operator notation for the mappings from points on the direct lattice to the

dual lattice E±
x f(x) := f(ι±(x)) so that

(2.5) Dxf(x) :=
f(ι+(x))− f(ι−(x))

ι+(x)− ι−(x)
=

E+
x f −E−

x f

E+
x x−E−

x x
,

for arbitrary functions f(x). The inverse functions ι−1
± (x) define operators

(E±)−1 which map points on the dual lattice to the direct lattice and also

an adjoint to the divided-difference operator Dx

(2.6) D
∗
xf(x) :=

f(ι−1
+ (x))− f(ι−1

− (x))

ι−1
+ (x)− ι−1

− (x)
=

(E+
x )

−1f − (E−
x )

−1f

(E+
x )−1x− (E−

x )−1x
.

The composite operators Ex := (E−
x )

−1E+
x and E−1

x = (E+
x )

−1E−
x map

between consecutive points on the direct lattice.

However in the situation of a symmetric quadratic equation A = C and

D = E , which entails no loss of generality, then we have (E+
x )

−1 =E−
x and

(E−
x )

−1 = E+
x . Consequently, there is no distinction between the divided-

difference operator and its adjoint, and hereafter we adopt this simplifica-

tion. For example, one useful consequence of this choice is that the ratio

(2.7)
(x−E+u)(x−E−u)

(E−x− u)(E+x− u)
=

Ax2 + 2Bxu+ Cu2 + 2Dx+ 2Eu+F
Au2 + 2Bux+ Cx2 + 2Du+ 2Ex+F = 1,

for all x,u. A companion operator to the divided-difference operator Dx is

the mean or average operator Mx defined by

(2.8) Mxf(x) =
1

2

[
f
(
ι+(x)

)
+ f

(
ι−(x)

)]
,

so that the property Mx : Πn[x] → Πn[x] is ensured by the condition we

imposed upon Dx.

Definition 2.1. Henceforth we use the shorthand for the difference in

consecutive y points Δy(x) := ι+(x) − ι−(x). We introduce the notion of

fixed points, whereby Δy2(xF ) = 0, or ι+(xF ) = ι−(xF ) and are given as the

roots of (B2 −AC)x2F + 2(BD−AE)xF +D2 −AF = 0.

Assuming AC �= 0, one can classify these nonuniform quadratic lattices

(or SNUL) according to two parameters: the discriminant B2 −AC and
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Table 2: The nonuniform lattices of quadratic type.

B2 −AC Θ Conic Lattice Canonical DDO Notes

0 0 parallel lines linear forward difference

>0 0 intersecting lines q-linear q-difference

0 <0 parabola quadratic Wilson

>0 <0 hyperbola q-quadratic Askey–Wilson q real

<0 <0 ellipse q-quadratic Askey–Wilson |q|= 1

(2.9) Θ = det

⎛
⎝A B D
B C E
D E F

⎞
⎠ ,

or AΘ= (B2−AC)(D2−AF)−(BD−AE)2. There are four primary classes:

the linear lattice, the linear q-lattice, the quadratic lattice, and the

q-quadratic lattice, which are given in Table 2. The q-quadratic lattice,

in its general nonsymmetrical form, is the most general case and the other

lattices can be found from this by limiting processes.

This classification of lattices for polynomial systems can be extended to

rational function systems (see [89], [90], [63]), and in this case one has a

lattice characterized by a biquadratic relation and parameterized by elliptic

functions (see [39]; see also [12, Section 15.10]). However, for the purposes

of studying the Askey table, we will not pursue this direction.

For the quadratic class of lattices the parameterization on s can be made

explicit through the trigonometric/hyperbolic functions or their degener-

ations so we can employ a parameterization such that ι−(x(s)) = y(s) =

x(s− 1/2) and ι+(x(s)) = y(s+ 1) = x(s+ 1/2). We denote the totality of

lattice points by G[x] := {x(s) : s ∈ Z} with the point x(0) = x as the basal

point, and of the dual lattice by G̃[x] := {x(s) : s ∈ Z+ 1
2}.

Having established the basic properties of the divided-difference opera-

tors, we can deduce key elements of their calculus. A consequence of the

general definition of the divided-difference operators are the following iden-

tities:

(i) the product or Leibniz formulas

Dxfg =DxfMxg+MxfDxg,(2.10)

Mxfg =MxfMxg+
1

4
Δy2DxfDxg,(2.11)
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(ii) the inverse formulas

(2.12) Mx
1

f
=

Mxf

E+
x fE

−
x f

, Dx
1

f
=− Dxf

E+
x fE

−
x f

,

(iii) and the commutativity formulas

(2.13) MuMx =MxMu, MuDx =DxMu, DuDx =DxDu.

The other side of our divided-difference calculus concerns the definition

and properties of analogues to integrals. We define the D-Integral of a func-

tion defined on the x-lattice f :G[x]→ C with basal point x0 by the Rie-

mann sum over the lattice points

I[f ](x0) =

∫
G
Dxf(x)

:=
∑
s∈Z

(
ι+(s)− ι−(s)

)
f
(
x(s)

)

=
∑
s∈Z

Δy(xs)f(xs),

(2.14)

where the sum is either a finite subset of Z, namely, {0, . . . ,N}, or Z≥0,

Z. This definition reduces to the usual definition of the difference integral

and the Thomae–Jackson q-integrals in the canonical forms of the linear

and q-linear lattices, respectively. A number of properties flow from this

definition:

(i) an analogue of the fundamental theorem of calculus

(2.15)

∫
x0≤xs≤xN

DxDxf(x) = f(E+
x xN)− f(E−

x x0),

(ii) an analogue of integration by parts for two functions f(x), g(x)∫
x0≤xs≤xN

Dxf(x)Dxg(x)

=−
∫
x0≤xs≤xN

D(E+
x x)Dxf(E

+
x x)g(E

+
x x)(2.16)

+ f(E+2
x xN)g(E

+
x xN)− f(x0)g(E

−
x x0),
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(iii) and the parameterization “invariance” property

∫
x0≤xs≤xN

Dxf(x)

=

∫
x0≤xs≤xN

D(E+2
x x)f(E+2

x x)

(2.17)
+Δy(x0)f(x0)−Δy(E+2

x xN)f(E
+2
x xN)

=

∫
x0≤xs≤xN

D(E−2
x x)f(E−2

x x)

(2.18)
−Δy(E−2

x x0)f(E
−2
x x0) +Δy(xN)f(xN).

We will apply our theory to the case of the q-quadratic lattice and

the Askey–Wilson divided-difference calculus, and in order to simplify the

description and to conform to convention we will employ the canonical,

that is to say, the centered and symmetrized forms of the lattice and the

divided-difference operators. Let us define the base q = exp(2iη), although

we will not restrict ourselves to q-domains such as 0 < �(q) < 1 except

to avoid special degenerate cases and to ensure convergence. Consider the

projection map from the unit circle z = eiθ, θ ∈ [−π,π) onto [−1,1] by

x= 1
2(z+ z−1) = cosθ ∈ [−1,1]. We denote the unit circle by T and the unit

open disk by D. The inverse of the projection map defines a two-sheeted Rie-

mann surface, one of which corresponds to the interior of the unit circle, and

the other to the exterior. Thus we take the x-plane to be cut along [−1,1]

and will usually give results for the second sheet, that is, when |x| → ∞
as z →∞. In the symmetrized and canonical form of the lattice we have

A= C, arbitrary and nonzero, B =− cosηA, D = E = 0, F =− sin2 ηA, and

θ = 2sη. Define the shift operators E±
x by E±

x f(x) = f(12 [q
1/2z+ q−1/2z−1]),

and set y± =E±
x x. This implies that

y+ + y− = (q1/2 + q−1/2)x= 2cosηx,(2.19)

Δy := y+ − y− =
1

2
(q1/2 − q−1/2)(z − z−1) =−2 sinη sinθ,(2.20)

Δy2 = (q1/2 − q−1/2)2(x2 − 1),(2.21)

y+y− = x2 +
1

4
(q1/2 − q−1/2)2 = x2 − sin2 η.(2.22)
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The Askey–Wilson divided-difference operators are defined as

Dxf(x) =
f(12 [q

1/2z + q−1/2z−1])− f(12 [q
−1/2z + q1/2z−1])

1
2(q

1/2 − q−1/2)(z − z−1)
,

Mxf(x) =
1

2

[
f
(1
2
[q1/2z + q−1/2z−1]

)
+ f

(1
2
[q−1/2z + q1/2z−1]

)]
.

(2.23)

There is an explicit parameterization of the q-quadratic lattice

x(s) =
1

2
(qs + q−s) = cos(2ηs),(2.24)

y±(s) =
1

2
(qs±1/2 + q−s∓1/2) = cos

(
2η

[
s± 1

2

])
.(2.25)

Here the direct lattice is G[x= 1
2(a+a−1)] = {1

2(q
r/2a+q−r/2a−1) : r ∈ 2Z}.

For |q|= 1 and η not a rational multiple of π, then the lattice densely fills

the interval [−1,1]. If η is a rational multiple of π, then one has the root of

unity case qN = 1 and a finite lattice. In the generic case, we will assume

that we are dealing with functions f(x) in the class where

(2.26)

∫
Dxf(x) =

sinη

η

∫ 1

−1
dxf(x)

is applicable. The reader should note that we will not distinguish a function

of x, f(x), from the function of z, f̌(z) = f(12 [z + z−1]) as done by some

authors, and it should be clear from the context which is meant.

§3. Orthogonal polynomial systems on the nonuniform lattice

3.1. General orthogonal polynomial systems

Our study requires the revision of a number of standard results in orthog-

onal polynomial theory (see [92], [30], [43]), so we recount our formula-

tion. Let {ln(x;a)}∞n=0 be a polynomial basis of L2(w(x)Dx,G), where ln
is of exact degree n and the support is G = {E+k

x x : k ∈ 2Z} or if finite

G= {x0, . . . , xN}, and where a denotes the set of parameters characterizing

the lattice. The appropriate canonical basis is dependent on the lattice type

through the general requirements that

(i) ln is of precise degree n so that ln(x;a) = gn(a)x
n+O(xn−1) with gn �= 0,

(ii) Dx is an exact lowering operator in this basis
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(3.1) Dxln(x;a) = cn(a)ln−1(x;a
′),

where cn is constant with respect to x and the transformed parameter

set a′ is related to the original a depending on the lattice type.

We will also require the linearization formula xln(x;a) = dn(a)ln+1(x;a) +

en(a)ln(x;a). A general solution to the two requirements above is the fol-

lowing product expression

(3.2) ln(x;a) = gn(a)
n−1∏
k=0

[
x− (E+

x )
2kx(a)

]
,

where the basal point x(a) is parameterized by a. We note that for some

lattices the limit limn→∞ ln(x;a) exists and in this case we denote it by

l∞(x;a). For the classes of quadratic nonuniform lattices the basis choices

are tabulated in Table 3.

Consider the general orthogonal polynomial system {pn(x)}∞n=0 defined

by the orthogonality relations

(3.3)

∫
G
Dxw(x)pn(x)lm(x; b) =

{
0 0≤m<n,

hn(b) m= n,
n≥ 0,

with G denoting the support of the weight w(x). Our system of orthog-

onal polynomials and their associated functions (to be defined in (3.21))

have a distinguished singular point at x=∞ and possess expansions about

this point which can characterize solutions uniquely. This is related to the

fact that orthogonal polynomials are the denominators of single-point Padé

approximants and that point is conventionally set at x=∞. We give special

notation for the coefficients of xn and xn−1 in pn(x),

(3.4) pn(x) = γnx
n + γn,1x

n−1 + · · · , n≥ 0.

The correspondingmonic polynomials are then πn(x) = γ−1
n pn(x) given that

n≥ 0. A consequence of the orthogonality relation is the three-term recur-

rence relation

(3.5) an+1pn+1(x) = (x− bn)pn(x)− anpn−1(x), n≥ 0,

and we consider the set of orthogonal polynomials with initial values p−1 = 0

and p0 = γ0. The three-term recurrence coefficients are related to the leading

and subleading polynomial coefficients by [92] and [30]

(3.6) an =
γn−1

γn
, bn =

γn,1
γn

− γn+1,1

γn+1
, n≥ 1.
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Table 3: Canonical bases for the nonuniform lattices of quadratic type.

DDO Lattice type Basis lr Notes

d

dx
continuous xr cr = r

Δx linear x(r) =

r−1∏
k=0

(x− k) =
Γ(x+ 1)

Γ(x− r+ 1)
cr = r

Dq q-linear

(ax; q)r =

r−1∏
k=0

(1− aqkx)

=
(ax; q)∞
(aqrx; q)∞

cr =−1− aqr

q− 1

a′ = qa

W quadratic

r−1∏
k=0

[
x+ (k+ a)2

]

=
Γ(r+ a− i

√
x)Γ(r+ a+ i

√
x)

Γ(a− i
√
x)Γ(a+ i

√
x)

cr = r

a′ = a+
1

2

Dx q-quadratic

(az, az−1; q)r

=
(az, az−1; q)∞

(aqrz, aqrz−1; q)∞

cr =−2a
qr − 1

q− 1

a′ = q1/2a

gr = (−2a)rq
1
2 r(r−1)

dr =− 1

2aqr

er =
1

2
(aqr + a−1q−r)

The initial values of the recurrence coefficients are

(3.7) b0 =−γ1,1
γ1

, γ0,1 = 0,

where a0 is not fixed by the initial polynomials but rather by the initial

associated functions (see after (3.22)).
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The orthogonality relation (3.3) is derived from the linear functional on

the space of polynomials L : p ∈Π �→C, and we employ our basis polynomi-

als as an expansion basis although not necessarily with the same parameter

as above

(3.8) pn(x) =
n∑

k=0

cn,k(a)lk(x;a) n≥ 0.

Consequently, we define the moments {mj,k}j,k=0,1,...,∞ of the weight as the

action of this functional on products of the basis polynomials, defined as

(3.9) mj,k(b, a) :=

∫
G
Dxw(x)lj(x; b)lk(x;a), j, k ≥ 0.

Central objects in our theory are the moment determinants

(3.10) Δn := det[mj,k]j,k=0,...,n−1, n≥ 1,Δ0 := 1,

and

Σn,j := det

⎛
⎜⎝

m0,0 · · · m0,j−1 [] m0,j+1 · · · m0,n
...

...
...

...
... · · ·

...

mn−1,0 · · · mn−1,j−1 [] mn−1,j+1 · · · mn−1,n

⎞
⎟⎠ ,

(3.11)
n≥ 1, j = 0, . . . , n− 1

defined in terms of the moments above. Obviously Δn = Σn,n, and we set

Σ0,0 := 0. The expansion coefficients are given in terms of these determi-

nants

(3.12) cn,j(a) = (−)n+jhn(b)
Σn,j

Δn+1
, cn,n(a) = hn(b)

Δn

Δn+1
.

It follows from (3.3) that∫
G
Dxw(x)

[
pn(x)

]2
= cn,n(b)hn(b), n≥ 0,

and thus for pn(x) to be normalized as well as orthogonal, we set

cn,n(a)hn(a) = 1. We have moment determinant representations of the poly-

nomials
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pn(x)

(3.13)

=
cn,n(a)

Δn
det

⎛
⎜⎜⎜⎝

m0,0 · · · m0,j · · · m0,n
...

...
... · · ·

...

mn−1,0 · · · mn−1,j · · · mn−1,n

l0 · · · lj · · · ln

⎞
⎟⎟⎟⎠ , n≥ 0.

The three-term recurrence coefficients are related to these determinants

a2n = dn−1(a)dn−1(b)
Δn+1Δn−1

Δ2
n

, n≥ 1,(3.14)

bn = en(a) + dn(a)
Σn+1,n

Δn+1
− dn−1(a)

Σn,n−1

Δn
, n≥ 0,(3.15)

γ2n = gn(a)gn(b)
Δn

Δn+1
, n≥ 0,(3.16)

where each coefficient is independent of the choices of a, b as can be easily

verified from their determinantal definitions given previously.

Another set of polynomial solutions to the three-term recurrence relation

are the associated polynomials {p(1)n (x)}∞n=0, defined by

(3.17) p
(1)
n−1(x) :=

∫
G
Dyw(y)

pn(y)− pn(x)

y− x
, n≥ 0.

In particular, these polynomials satisfy

(3.18) an+1p
(1)
n (x) = (x− bn)p

(1)
n−1(x)− anp

(1)
n−2(x),

with the initial conditions p
(1)
−1(x) = 0, p

(1)
0 (x) =m0,0γ1. Note the shift by

one decrement in comparison to the three-term recurrence (3.5) for the

polynomials {pn(x)}∞n=0. We also need the definition of the Stieltjes function

(3.19) f(x)≡
∫
G
Dy

w(y)

x− y
, x /∈G,

which is a moment-generating function in the sense

(3.20) f(x) =
f∞(x;a)

l∞(x;a)
+

∞∑
n=0

m0,n(a)

dn(a)ln+1(x;a)
, x /∈G,x→∞,

and that splits into two parts—one part being a series with inverse basis

polynomials and the other part a remainder, which may be absent for some
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lattices. We define nonpolynomial associated functions or functions of the

second kind {qn(x)}∞n=0 by

(3.21) qn(x) := f(x)pn(x)− p
(1)
n−1(x), n≥ 0,

which also satisfy the three-term recurrence relation (3.5), namely,

(3.22) an+1qn+1(x) = (x− bn)qn(x)− anqn−1(x), n≥ 0,

subject to the initial values q−1(x) = 1/a0γ0, q0(x) = γ0f(x). The initial

value of a0 is irrelevant and therefore arbitrary in so far as the polynomials

are concerned, however many relations for the whole system extend from

n≥ 1 to include n= 0 if we allow this to be finite, nonzero, and satisfying the

above initial condition. The associated functions also have a determinantal

representation

qn(x)

=
cn,n(a)

Δn
det

⎛
⎜⎜⎜⎝

m0,0 · · · m0,j · · · m0,n
...

...
... · · ·

...

mn−1,0 · · · mn−1,j · · · mn−1,n

f0 · · · fj · · · fn

⎞
⎟⎟⎟⎠ , n≥ 0,

(3.23)

where

(3.24) fj(x;a) :=

∫
G
Dyw(y)

lj(y;a)

x− y
, j ≥ 1, f0 = g0f.

Likewise, this function has an expansion analogous to (3.20)

(3.25) fj(x; b) =
f∞,j(x; b)

l∞(x;a)
+

∞∑
n=0

mj,n(b, a)

dn(a)ln+1(x;a)
, x /∈G,x→∞.

The polynomials and their associated functions satisfy the Casoratian

relation

(3.26) pn(x)qn−1(x)− pn−1(x)qn(x) =
1

an
, n≥ 0.

Central to our analysis is a composite of polynomial and nonpolynomial

solutions of (3.5), the 2× 2 matrix variable

(3.27) Yn(x) =

(
pn(x)

qn(x)
w(x)

pn−1(x)
qn−1(x)
w(x)

)
, n≥ 0.
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We will refer to this as the orthogonal polynomial system (OPS). From

(3.26) we note that

(3.28) detYn(x) =
1

anw(x)
, n≥ 0.

The three-term recurrence is then recast as the matrix equation

(3.29) Yn+1(x) =KnYn(x), n≥ 0,

with the recurrence matrix given by

(3.30) Kn(x) =
1

an+1

(
x− bn −an
an+1 0

)
, detKn =

an
an+1

, n≥ 0.

A well-known consequence of (3.5) are the Christoffel–Darboux summa-

tion formulas

n−1∑
j=0

pj(x)pj(y)

(3.31)

= an
[pn(x)pn−1(y)− pn−1(x)pn(y)]

x− y
, n≥ 0,

n−1∑
j=0

qj(x)pj(y)

(3.32)

= an
[qn(x)pn−1(y)− qn−1(x)pn(y)]

x− y
+

1

x− y
, n≥ 0,

n−1∑
j=0

qj(x)qj(y)

(3.33)

= an
[qn(x)qn−1(y)− qn−1(x)qn(y)]

x− y
− f(x)− f(y)

x− y
, n≥ 0.

If one is only interested in the leading orders of the large x expansion

rather than a systematic expansion, then it is convenient to employ an

expansion in monomials rather than in basis functions. Extending (3.4) we
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have expansions about the fixed singularity at x=∞

pn(x) = γn

[
xn −

(n−1∑
i=0

bi

)
xn−1

+
( ∑
0≤i<j<n

bibj −
n−1∑
i=1

a2i

)
xn−2 +O(xn−3)

]
,

(3.34)

valid for n≥ 1, while for the associated functions

qn(x) = γ−1
n

[
x−n−1 +

( n∑
i=0

bi

)
x−n−2

+
( ∑
0≤i≤j≤n

bibj +
n+1∑
i=1

a2i

)
x−n−3 +O(x−n−4)

]
,

(3.35)

valid for n≥ 0.

3.2. q-Quadratic lattice

In Sections 5 and 7 we intend to apply our theory to the q-quadratic

lattice and will draw upon numerous properties of the corresponding basis,

which we discuss here. First, we recall the analytic continuation of φn(x;a),

which is

(3.36) φr(x;a) =
(az, az−1; q)∞

(aqrz, aqrz−1; q)∞

for all r ∈C but subject to |q|< 1. We will employ the shorthand notation

(az±1; q)∞ = (az, az−1; q)∞. Implicit in the above formula is the elliptic-like

function φ∞(x;a) which has meaning for all a,x ∈C for |q|< 1. The actions

of the divided-difference operators are

Dxφr(x;a) = 2a
1− qr

q− 1
φr−1(x; q

1/2a),(3.37)

Mxφr(x;a) =
1

2
(1 + q−r)φr(x; q

1/2a)

(3.38)

+
1

2
(1− q−r)(1− a2q2r−1)φr−1(x; q

1/2a),

Dxφ∞(x;a) =
2a

q− 1
φ∞(x; q1/2a),(3.39)
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Mxφ∞(x;a) = φ∞(x; q−1/2a).(3.40)

The expansion theorem of Ismail [40, Theorem 1.3] (see also [41]) states the

following.

Proposition 3.1. Let p be a polynomial of degree n. Then

(3.41) p(x) =
n∑

k=0

pkφk(x;a)

for any a ∈C, where

(3.42) pk =
(q− 1)k

(2a)k(q; q)k
q−k(k−1)/4(Dk

xp)(xk)

with xk =
1
2(q

k/2a+ q−k/2a−1).

In these works (see (2.2) and [40, Proof of Theorem 1.1]), we also have

the change of base formula

(3.43) φn(x; b) =
n∑

k=0

[
n

k

]
q

(abqk, b/a; q)n−k

( b

a

)k
φk(x;a),

where we use the standard definition of the q-binomial coefficient. This

result allows us to derive the following linearization formula.

Lemma 3.1. The product of two basis polynomials with the same base a

has the following expansion in terms of the same basis

φk(x;a)φl(x;a)

= (−)k+lq−kl
k+l∑

m=max(k,l)

(−)m(a2qm; q)k+l−m(3.44)

× (q; q)l(q; q)k
(q; q)k+l−m(q; q)m−k(q; q)m−l

φm(x;a),

for all k, l ∈N.

Lastly, we have the Cauchy expansion formula of Ismail and Stanton [47,

Theorem 2.1].
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Proposition 3.2. The Cauchy kernel has the expansion

(3.45)
1

y− x
=

1

y− x

φ∞(x;a)

φ∞(y;a)
− 2a

∞∑
n=0

φn(x;a)

φn+1(y;a)
qn

for all y such that y �= x and φ∞(y;a) �= 0. The expansion also holds for

y = y0 with φ∞(y0;a) = 0 but y0 �= x in the sense that the left-hand side

(y0 − x)−1 equals the limit of the right-hand side as y→ y0.

This implies the following expansion of the Stieltjes function.

Corollary 3.1. The Stieltjes function has the following expansion as

x→∞ with x �= xk(a), with k ∈ 2Z (i.e., φ∞(x;a) �= 0)

(3.46) f(x) =
f∞(x)

φ∞(x;a)
− 2a

∞∑
n=0

qn

φn+1(x;a)
m0,n(a),

where

(3.47) f∞(x) =

∫
G
Dyw(y)

φ∞(y;a)

x− y
.

Conforming with standard notation (see [31]), we define the basic hyper-

geometric function r+1ϕr by the series

(3.48) r+1ϕr

[
a1, a2, . . . , ar+1

b1, b2, . . . , br
; q, z

]
=

∞∑
n=0

(a1, a2, . . . , ar+1; q)n
(q, b1, b2, . . . , br; q)n

zn,

which is convergent for |z|< 1. The very-well-poised basic hypergeometric

function r+1Wr is a specialization of the above

r+1Wr(a1;a4, a5, . . . , ar+1; q, z)

= r+1ϕr

[
a1, q

√
a1, −q

√
a1, a4, . . . , ar+1√

a1, −√
a1, qa1/a4, . . . , qa1/ar+1

; q, z

](3.49)

so that qa1 = a2b1 = a3b2 = · · · = ar+1br and a2 = q
√
a1, a3 = −q

√
a1. The

r+1ϕr or r+1Wr functions may also be balanced, whereby z = q and
∏r

j=1 bj =

q
∏r+1

j=1 aj .
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§4. Spectral differences

In this section we lay out the structures of the spectral divided-difference

operator in the context of the orthogonal polynomial system for a general

lattice type. Our starting point is the notion of the D-semiclassical weight,

as given by the following definition of Magnus.

Definition 4.1 ([60, (2.7)]). Let the D-semiclassical weight satisfy

(4.1) WDxw = 2VMxw,

or equivalently

(4.2)
w(y+)

w(y−)
=

W +ΔyV

W −ΔyV
(x),

for W (x), V (x) irreducible polynomials, which we will call spectral data

polynomials. Furthermore, we assume that W ± ΔyV �= 0 for all x ∈ G.

For minimal degrees of W,V , this is the analogue of the Pearson equa-

tion.

Remark 4.1. On the finite lattice x ∈ {x0, . . . , xN} we naturally require

w(x) �= 0, however we will impose upper and lower terminating conditions

(4.3) w(E+2
x xN) =w(E−2

x x0) = 0,

respectively. These are the conditions analogous to Nikiforov, Suslov, and

Uvarov [78, (2.3.2), (3.3.3)]. To be consistent with (4.2), this implies that

(4.4) (W +ΔyV )(E+
x xN) = (W −ΔyV )(E−

x x0) = 0.

Remark 4.2. In a series of works, Suslov and collaborators (see [5], [91],

[6], [84], [83]) have studied the Pearson equation for all of the lattices admis-

sible in the classification, and sought solutions for the weight functions given

suitable polynomials for W,V . However, they limited their choices to exam-

ples of minimal degree for W,V which made contact with those weights

found in the Askey table. In terms of our own variables, those found in [91]

are given by

σ =E−
x (W −ΔyV ),

τ =
E+

x (W +ΔyV )(x)−E−
x (W −ΔyV )(x)

Δy
.

(4.5)

From (3.20) we recognize f(x) as a moment-generating function, and

a key element in our theory are the systems of linear divided-difference
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equations satisfied by the moments. Before we state such systems, we need

to note the following result.

Lemma 4.1. Let lk(x;a) be a canonical basis polynomial. For any k ∈ Z≥0

and a ∈C, the weight satisfies the integral equation∫
x0≤x≤xN

Dx
w(x)

Δy(x)

{(
lk[W +ΔyV ]

)
(E+

x x)

−
(
lk[W −ΔyV ]

)
(E−

x x)
}
= 0.

(4.6)

Proof. We will prove this statement accounting for the boundary terms

explicitly. We establish two preliminary identities first, namely∫
x0≤x≤xN

Dxw(x)
{ 1

E+
x Δy

E+
x

(
lk[W +ΔyV ]

)
(4.7)

− E−2
x Δy

Δy(E−
x Δy)

E−
x

(
lk[W −ΔyV ]

)}
= 0,

∫
x0≤x≤xN

Dxw(x)
{ E+2

x Δy

Δy(E+
x Δy)

E+
x

(
lk[W +ΔyV ]

)
(4.8)

− 1

E−
x Δy

E−
x

(
lk[W −ΔyV ]

)}
= 0,

with lk := lk(x;a). Taking the first of these, we compute

0 =

∫
x0≤x≤xN

Dxlk(E
+
x x)(WDxw− 2VMxw)(E

+
x x)

=
∑

0≤s≤N

Δy(xs)lk(E
+
x xs)W (E+

x xs)
w(E+2

x xs)−w(xs)

Δy(E+
x xs)

−
∑

0≤s≤N

Δy(xs)lk(E
+
x xs)V (E+

x xs)
[
w(E+2

x xs) +w(xs)
]

=
∑

0≤s≤N

Δy(E−2
x xs)

Δy(E−
x xs)

lk(E
−
x xs)W (E−

x xs)w(xs)

−
∑

0≤s≤N

Δy(xs)

Δy(E+
x xs)

lk(E
+
x xs)W (E+

x xs)w(xs)

+
Δy(xN)

Δy(E+
x xN)

lk(E
+
x xN)W (E+

x xN)w(E
+2
x xN)
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− Δy(E−2
x x0)

Δy(E−
x x0)

lk(E
−
x x0)W (E−

x x0)w(x0)

−
∑

0≤s≤N

Δy(E−2
x xs)lk(E

−
x xs)V (E−

x xs)w(xs)

−
∑

0≤s≤N

Δy(xs)lk(E
+
x xs)V (E+

x xs)w(xs)

−Δy(xN)lk(E
+
x xN)V (E+

x xN)w(E
+2
x xN)

+Δy(E−2
x x0)lk(E

−
x x0)V (E−

x x0)w(x0)

=
∑

0≤s≤N

Δy(xs)w(xs)
{
−
(
lk

[ W
Δy

+ V
])

(E+
x xs)

+
Δy(E−2

x xs)

Δy(xs)

(
lk

[ W
Δy

− V
])

(E−
x xs)

}

+
Δy(xN)

Δy(E+
x xN)

lk(E
+
x xN)w(E

+2
x xN)[W −ΔyV ](E+

x xN)

− Δy(E−2
x x0)

Δy(E−
x x0)

lk(E
−
x x0)w(x0)[W −ΔyV ](E−

x x0),

where the boundary terms arise from using the integration by parts and

the change of variables xs �→E±2
x xs formulas. Both boundary terms are in

fact zero due to the upper and lower terminating conditions. The second

formula (4.8) is just a variation of the first with the integrand evaluated at

E−
x xs instead. Now for a general quadratic lattice

Δy+E±2
x Δy

E±
x Δy

=−2
B
A ,

so we simply add (4.7) and (4.8) and note that a common, constant factor

appears in the integrand of precisely this form. Then (4.6) immediately

follows.

Remark 4.3. An equivalent system for general lattices has been derived

by Suslov [91] in the special case of k = 0 of (4.6).
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We also need to express W ±ΔyV in terms of canonical basis polynomials

and formulate the following definitions for the coefficients κN,l(a), δN,l(a):

E+
x (W +ΔyV )(x) +E−

x (W −ΔyV )(x) =: 2
N∑
k=0

κN,k(a)lk(x;a),(4.9)

E+
x (W +ΔyV )(x)−E−

x (W −ΔyV )(x) =: Δy
N−1∑
k=0

δN,k(a)lk(x;a).(4.10)

Here N is the cutoff determined by the degrees of W,V and the lattice type.

Corollary 4.1. Let us assume that b′ �= a, where b, b′ are related as a,a′

are by (3.1). For all k ∈ Z≥0, the moments mk,l(b
′, a) are characterized by

the linear, homogeneous recurrence relations

[
dk(b)ck+1(b) +

B
Adk−1(b

′)ck(b)
]N−1∑

l=0

δN,l(a)mk,l(b
′, a)

+ ck(b)
N∑
l=0

[
κN,l(a) +

(
ek(b) +

B
Aek−1(b

′) +
D
A
)
δN,l(a)

]
(4.11)

×mk−1,l(b
′, a) = 0.

For k = 0, the last term is absent and therefore b, b′ do not appear.

Proof. We start with the integral formula (4.6) and employ the resolutions

of E+
x (W + ΔyV ) and E−

x (W − ΔyV ) as given by (4.9) and (4.10). In

addition, we require expressions for Dxlk(x; b) and Mxlk(x; b), and so we

use (3.1) for the former and

Mxlk(x; b)

=
(
dk(b)ck+1(b) +

B
Adk−1(b

′)ck(b)
)
lk(x; b

′)(4.12)

+ ck(b)
(
ek(b) +

B
Aek−1(b

′) +
D
A
)
lk−1(x; b

′)

for the latter.

If a specialization of the parameters b′, a is made to effect some cancella-

tion with corresponding factors in the weight, then the moments are given

by an integral whose integrand has the same structure, and (4.11) is now
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a linear divided-difference equation with respect to the internal parameters

of the weight.

Now we continue to develop the consequences of the D-semiclassical

weight on the orthogonal polynomial system, and in particular for the Stielt-

jes function. The following result will be crucial for our approach.

Proposition 4.1. Given a D-semiclassical class of an orthogonal poly-

nomial system fulfilling (4.1) and the conditions therein, then the Stieltjes

function satisfies

(4.13) WDxf = 2VMxf +U,

where U(x) in (4.13) is a polynomial in x (as are V (x) and W (x)).

Proof. Starting with the definition (3.19), we compute

Dxf =

∫
u0≤u≤uN

Duw(u)Dx
1

x− u
,

and make the evaluation of the factor

Dx
1

x− u
=− 1

(E+
x x− u)(E−

x x− u)
.

However, we note that

Du
1

x− u
=

1

(x−E+
u u)(x−E−

u u)
,

so that

Dx
1

x− u
=−(x−E+

u u)(x−E−
u u)

(E+
x x− u)(E−

x x− u)
Du

1

x− u
=−Du

1

x− u
,

where we have assumed a symmetric quadratic lattice for simplicity, but

point out that our argument could be extended to the general case. We

deduce then that

Dxf =−
∫
u0≤u≤uN

Duw(u)Du
1

x− u

=

∫
u0≤u≤uN

D(E+
u u)

1

x−E+
u u

Duw(E
+
u u)−

w(E+2
u uN)

x−E+
u uN

+
w(u0)

x−E−
u u0

,
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after employing the formula for integration by parts. We next use the def-

inition of the D-semiclassical weight (4.1) and perform a sequence of sub-

tractions in the numerator of the integrand

W (x)Dxf(x)

=

∫
u0≤u≤uN

D(E+
u u)

1

x−E+
u u

Muw(E
+
u u)

2V (E+
u u)

W (E+
u u)

W (x)

− w(E+2
u uN)

x−E+
u uN

W (x) +
w(u0)

x−E−
u u0

W (x)

= 2V (x)Mxf(x) + 2V (x)
{∫

u0≤u≤uN

D(E+
u u)

Muw(E
+
u u)

x−E+
u u

−Mxf(x)
}

+ 2

∫
u0≤u≤uN

D(E+
u u)

Muw(E
+
u u)

W (E+
u u)

V (E+
u u)W (x)− V (x)W (E+

u u)

x−E+
u u

+ ”.

Since the third term on the right-hand side of the previous equation is clearly

a polynomial in x, we will focus next on the second term. The last factor of

this latter term can be written as

Mxf(x)−
∫
u0≤u≤uN

D(E+
u u)

Muw(E
+
u u)

x−E+
u u

=

∫
u0≤u≤uN

Duw(u)
1

2

{ 1

E+
x x− u

+
1

E−
x x− u

}

− 1

2

∫
u0≤u≤uN

D(E+
u u)

w(E+2
u u)

x−E+
u u

− 1

2

∫
u0≤u≤uN

D(E+
u u)

w(u)

x−E+
u u

.

The last two terms of the above equation are∫
u0≤u≤uN

D(E+
u u)

w(E+2
u u)

x−E+
u u

+

∫
u0≤u≤uN

D(E+
u u)

w(u)

x−E+
u u

=
∑

0≤s≤N

[us −E−2
u us]

w(us)

x−E−
u us

+
∑

0≤s≤N

[E+2
u us − us]

w(us)

x−E+
u us

+Δy(E+
u uN)

w(E+2
u uN)

x−E+
u uN

−Δy(E−
u u0)

w(u0)

x−E−
u u0

=
∑

0≤s≤N

w(us)
{E+2

u us − us

x−E+
u us

+
us −E−2

u us

x−E−
u us

}
+ ”,



154 N. S. WITTE

where we have used the identity for integrals under the reparameterization

of the lattice u �→ E−2
u u and introducing the additional boundary terms.

Combining these results, we have

Mxf(x)−
∫
u0≤u≤uN

D(E+
u u)

Muw(E
+
u u)

x−E+
u u

=
1

2

∑
0≤s≤N

w(us)
{
(E+

u us −E−
u us)

( 1

E+
x x− us

+
1

E−
x x− us

)

− E+2
u us − us

x−E+
u us

− us −E−2
u us

x−E−
u us

}

− 1

2
Δy(E+

u uN)
w(E+2

u uN)

x−E+
u uN

+
1

2
Δy(E−

u u0)
w(u0)

x−E−
u u0

=
1

2

∑
0≤s≤N

w(us)
{
(E+

u us −E−
u us)

(E+
x +E−

x )x− 2us

(x−E+
u us)(x−E−

u us)

− E+2
u us − us

x−E+
u us

− us −E−2
u us

x−E−
u us

}
+ ”,

where we have used the ratio identity again. We observe that the summand

appears to have two sets of simple poles at x = E±us, however when we

compute their residues they vanish identically, implying that the summand

is in reality a polynomial in x. This leaves us with the two sets of boundary

terms to account for. We find that their combination is

−w(E+2
u uN)

x−E+
u uN

[
W (x)−Δy(E+

u uN)V (x)
]

+
w(u0)

x−E−
u u0

[
W (x)−Δy(E−

u u0)V (x)
]
.

The first term vanishes under the upper terminating condition, while the

second is a polynomial in x due to the lower terminating condition. In

summary, this leads us to conclude that W (x)Dxf(x)− 2V (x)Mxf(x) is a

polynomial in x.

We offer the following analogue to the concept of a regular semiclassical

weight.

Definition 4.2. A generic or regular D-semiclassical weight has two

properties:
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(i) strict inequalities in the degrees of the spectral data polynomials, that

is, degxW =M , degx V =M − 1, and degxU =M − 2, and

(ii) the lattice generated by any zero of (W 2−Δy2V 2)(x) does not coincide

with the lattice generated by another zero; that is, for any x̃ such that

(W 2 −Δy2V 2)(x̃) = 0, then (W 2 −Δy2V 2)(E2Z
x x̃) �= 0.

Conversely, any weight with data not satisfying these conditions will be

termed an irregular D-semiclassical weight. Note that the zeros of W are

not relevant and that no interpretation as a singularity can be placed upon

a zero of (W 2 −Δy2V 2)(x).

Proposition 4.2 ([62, (12)], [63, Theorem 1]). The spectral coefficients

Wn(x), Θn(x), and Ωn(x) are defined in terms of bilinear formulas of the

polynomials and associated functions

2

an

(
2Wn(x)−W (x)

)
= (W +ΔyV )

[
pn(y+)qn−1(y−)− pn−1(y+)qn(y−)

]
(4.14)

+ (W −ΔyV )
[
pn(y−)qn−1(y+)− pn−1(y−)qn(y+)

]
, n≥ 0,

ΔyΘn(x)

= (W +ΔyV )pn(y+)qn(y−)(4.15)

− (W −ΔyV )pn(y−)qn(y+), n≥ 0,

2Δy

an

(
Ωn(x) + V (x)

)
= (W +ΔyV )

[
pn(y+)qn−1(y−) + pn−1(y+)qn(y−)

]
(4.16)

+ (W −ΔyV )
[
−pn(y−)qn−1(y+)− pn−1(y−)qn(y+)

]
, n≥ 0.

For the D-semiclassical class of weights, these coefficients are polynomials

in x.

Proof. Our proof will be an extension of Laguerre’s reasoning for the

differential case. However, we first need to appreciate one important fact.

Any polynomial in y− and y+ is an element of the ring C[x] + ΔyC[x]

because y± =Mxx± 1
2Δy, and Mxx is a linear polynomial in x and Δy2 is

a quadratic polynomial in x. The starting point will be the definition for

qn, but inverted to solve for the Stieltjes function

(4.17) f =
qn + p

(1)
n−1

pn
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for arbitrary n≥ 0. Now consider the formulation of (4.13) using this expres-

sion

0 = (W −ΔyV )f(y+)− (W +ΔyV )f(y−)−ΔyU

=
(W −ΔyV )qn(y+)pn(y−)− (W +ΔyV )qn(y−)pn(y+)

pn(y+)pn(y−)

+
(W −ΔyV )p

(1)
n−1(y+)pn(y−)− (W +ΔyV )p

(1)
n−1(y−)pn(y+)

pn(y+)pn(y−)

− ΔyUpn(y+)pn(y−)

pn(y+)pn(y−)
.

So now we have (W −ΔyV )p
(1)
n−1(y+)pn(y−)− (W +ΔyV )p

(1)
n−1(y−)pn(y+)

−ΔyUpn(y+)pn(y−) ∈ C[x] + ΔyC[x], and furthermore, because it is odd

under y+ ↔ y−, this quantity is actually an element of ΔyC[x] only. Con-

sequently (W −ΔyV )qn(y+)pn(y−) − (W + ΔyV )qn(y−)pn(y+) ∈ ΔyC[x],

and we define the polynomial Θn(x) by

(4.18) ΔyΘn(x) = (W +ΔyV )qn(y−)pn(y+)− (W −ΔyV )qn(y+)pn(y−),

which is (4.15). To find the other relations, we employ the alternative form

of Θn(x)

ΔyΘn = (W −ΔyV )p
(1)
n−1(y+)pn(y−)

− (W +ΔyV )p
(1)
n−1(y−)pn(y+)−ΔyUpn(y+)pn(y−),

(4.19)

andmultiply the left-hand side of (4.19) by the Casoratians 1 = an[pn−1(y±)×
p
(1)
n−1(y±)− pn(y±)p

(1)
n−2(y±)] so that upon reorganizing we have

pn(y+)
[
(W +ΔyV )p

(1)
n−1(y−) +ΔyUpn(y−)−ΔyanΘnp

(1)
n−2(y+)

]
= p

(1)
n−1(y+)

[
(W −ΔyV )pn(y−)−ΔyanΘnpn−1(y+)

](4.20)

and

pn(y−)
[
(W −ΔyV )p

(1)
n−1(y+)−ΔyUpn(y+) +ΔyanΘnp

(1)
n−2(y−)

]
= p

(1)
n−1(y−)

[
(W +ΔyV )pn(y+) +ΔyanΘnpn−1(y−)

]
.

(4.21)



SEMICLASSICAL ORTHOGONAL POLYNOMIAL SYSTEMS 157

Relation (4.20) implies that there must exist polynomials π1, π2 ∈C[x] such

that

pn(y+)p
(1)
n−1(y+)(π1 +Δyπ2)

= pn(y+)
[
(W +ΔyV )p

(1)
n−1(y−)(4.22)

+ΔyUpn(y−)−ΔyanΘnp
(1)
n−2(y+)

]
= p

(1)
n−1(y+)

[
(W −ΔyV )pn(y−)−ΔyanΘnpn−1(y+)

]
,(4.23)

while (4.21) implies an identical relation with y+ ↔ y− and Δy �→ −Δy.

Therefore we have the pair of relations

p
(1)
n−1(y+)(π1 +Δyπ2)

(4.24)

= (W +ΔyV )p
(1)
n−1(y−) +ΔyUpn(y−)−ΔyanΘnp

(1)
n−2(y+),

pn(y+)(π1 +Δyπ2)
(4.25)

= (W −ΔyV )pn(y−)−ΔyanΘnpn−1(y+),

and an analogous pair with y+ ↔ y−.We form the combination of pn−1(y+)×
(4.24)−p

(1)
n−2(y+)×(4.25), and by employing the Casoratian and eliminating

the associated polynomials we arrive at the solution

π1 +Δyπ2 =−an(W +ΔyV )pn−1(y+)qn(y−)

+ an(W −ΔyV )pn(y−)qn−1(y+).
(4.26)

A similar procedure on the other pair yields the partner relation

π1 −Δyπ2 = an(W +ΔyV )pn(y+)qn−1(y−)

− an(W −ΔyV )pn−1(y−)qn(y+).
(4.27)

The sum and difference of these are simply (4.14) and (4.16) with the iden-

tifications π1 = 2Wn −W and π2 =−Ωn − V .

Knowledge of the large x expansions of the spectral coefficients will be

important in the ensuing analysis.

Proposition 4.3 ([62, (14), (22)]). The spectral coefficients have termi-

nating expansions about x=∞ with leading order terms
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Wn(x) =
1

2
W +

1

4
[W +ΔyV ]

(y+
y−

)n

(4.28)

+
1

4
[W −ΔyV ]

(y−
y+

)n
+O(xM−1), n≥ 0,

Θn(x) =
1

y−Δy
[W +ΔyV ]

(y+
y−

)n

(4.29)

− 1

y+Δy
[W −ΔyV ]

(y−
y+

)n
+O(xM−3), n≥ 0,

Ωn(x) + V (x) =
1

2Δy
[W +ΔyV ]

(y+
y−

)n

(4.30)

− 1

2Δy
[W −ΔyV ]

(y−
y+

)n
+O(xM−2), n≥ 0.

Proof. These expansions follow from the substitution of the expansions

for the polynomials (3.34) and associated functions (3.35) into the formulas

(4.14)–(4.16). One should note that y+/y− =O(1) as x→∞.

Corollary 4.2 ([62, p. 220], [63, Theorem 1]). In the generic or regu-

lar D-semiclassical case Wn,Θn,Ωn are polynomials in x with fixed degrees

independent of n, specifically degxWn =M , degxΩn =M−1 and degxΘn =

M − 2.

Proof. This follows from the Proposition 4.3 after recalling that y± =

O(x) as x→∞.

The expressions for the spectral coefficients (4.14)–(4.16) can be inverted

yielding a system of coupled first-order linear divided-difference equations

for the polynomials and associated functions with respect to x.

Proposition 4.4 ([63, Theorem 1], [62, p. 221]). The polynomials with

a D-semiclassical weight satisfy

(4.31) WnDxpn =ΩnMxpn − anΘnMxpn−1, n≥ 0,

for certain spectral coefficients, Wn(x),Θn(x),Ωn(x). The partner equation

to (4.31) is

(4.32) WnDxpn−1 =−(Ωn + 2V )Mxpn−1 + anΘn−1Mxpn, n≥ 0.

The associated functions satisfy divided-difference equations

WnDxqn = (Ωn + 2V )Mxqn − anΘnMxqn−1, n≥ 0,(4.33)
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WnDxqn−1 =−ΩnMxqn−1 + anΘn−1Mxqn, n≥ 0,(4.34)

identical in structure to (4.31) and (4.32), respectively. The coupled system

in (4.31), (4.32), (4.33), and (4.34) can be written in matrix form as the

spectral divided-difference equation

DxYn(x)

:=AnMxYn(x)

=
1

Wn(x)

(
Ωn(x) −anΘn(x)

anΘn−1(x) −Ωn(x)− 2V (x)

)
MxYn(x), n≥ 0,

(4.35)

with An termed the spectral matrix.

Proof. Our derivation of the spectral divided-difference equations will

employ a simple method—that of inversion of the relations for the spectral

coefficients (4.14)–(4.16). Consider the following equivalent forms of those

relations

2Wn −W +Δy(Ωn + V )

= an
[
(W +ΔyV )pn(y+)qn−1(y−)(4.36)

− (W −ΔyV )pn−1(y−)qn(y+)
]
,

2Wn −W −Δy(Ωn + V )

= an
[
−(W +ΔyV )pn−1(y+)qn(y−)(4.37)

+ (W −ΔyV )pn(y−)qn−1(y+)
]
,

ΔyΘn
(4.38)

= (W +ΔyV )pn(y+)qn(y−)− (W −ΔyV )pn(y−)qn(y+).

For our first task, that of deriving (4.31), we construct the combination

pn(y+)× (4.37)− pn(y−)× (4.36)+ (pn−1(y+)+ pn−1(y−))an× (4.38). After

effecting some initial cancellation we can then employ the Casoratian rela-

tion (3.26) to make further simplification, and our final result is precisely

(4.31) in finite-difference form. The approach taken for the other relations

(4.32)–(4.34) is the same. For (4.32) we use the combination pn−1(y+) ×
(4.36)− pn−1(y−)× (4.37)− (pn(y+) + pn(y−))an × (4.38)|n
→n−1, while for

(4.33) we use qn(y+)× (4.37)− qn(y−)× (4.36)+ (qn−1(y+)+ qn−1(y−))an×
(4.38), and for (4.34) we use qn−1(y+) × (4.36) − qn−1(y−) × (4.37) −
(qn(y+) + qn(y−))an × (4.38)|n
→n−1.
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The initial values of the spectral coefficients are specified by the weight

data W,V,U and the initial norm γ0:

W−1 = 0, W0 =W, Θ−1 = 0, Θ0 =−γ20U,

Ω0 = 0, Ω1 =−2V − γ20(Mxx− b0)U.
(4.39)

Remark 4.4. An alternative line of reasoning to achieve the above

results—and in fact to generalize them beyond the D-semiclassical class—is

the following. By positing an explicit quadrature formula for the nonlin-

ear lattice, one upon which the orthogonality condition is founded, one can

derive (4.31), (4.32), and (4.35), assuming the existence of certain moments

of “log-derivative” of the weight Dxw/Mxw. A by-product of this approach

is that one also constructs an explicit quadrature formula for the spectral

coefficients, albeit one which involves the polynomials themselves.

The spectral structure in Proposition 4.4 has been derived before for

OPS with respect to general classes of weights on the linear lattice by [29],

[67], [44], and [68], and on the q-linear lattice by [55], [67], [42], [54], [20],

[32], [46], [70], and [79]. This has also been done for specific weights on the

q-linear lattice in [72] and [15], and for OPS on the unit circle subject to q-

difference relations in [48] and [14]. In addition to the studies by Magnus, the

works [9] and [28] have investigated the spectral structures for general SNUL

and arbitrary degxW,degx V . Characterization theorems for the classical

OPS of the Askey table have been made by [22], [1], and others using an

equivalent formulation to the spectral structures on general SNUL, but of

course restricted to the degxW = 2,degx V = 1 case.

The compatibility relation between the matrix recurrence relation and

the spectral divided-difference equation imposes the following conditions.

The Cayley transform (1− 1
2ΔyA)−1(1 + 1

2ΔyA) will figure prominently in

the ensuing analysis.

Proposition 4.5. The spectral matrix and the recurrence matrix satisfy

An+1 ·MxKn −MxKn ·An

=DxKn −
1

4
Δy2An+1 ·DxKn ·An, n≥ 0,

(4.40)
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or equivalently

Kn(y+)
(
1− 1

2
ΔyAn

)−1(
1 +

1

2
ΔyAn

)

=
(
1− 1

2
ΔyAn+1

)−1(
1 +

1

2
ΔyAn+1

)
Kn(y−), n≥ 0.

(4.41)

Proof. The finite-difference form of (4.35) is

(4.42)
(
1− 1

2
ΔyAn

)
Yn(y+) =

(
1 +

1

2
ΔyAn

)
Yn(y−),

which demonstrates why the Cayley transform arises. The second relation

(4.41) is found by computing Yn+1(y+) in two different ways from Yn(y−)
corresponding to the different orders of the operations n �→ n+1 and y− �→
y+. The first relation (4.40) is derived by computing DxYn+1 in terms of

MxYn in two different orders.

Compatibility of the three-term recurrence relation and the spectral

divided-difference equation implies the following result.

Proposition 4.6 ([60, (3.2)], [62, (16), (19)]). The spectral coefficients

arising in Proposition 4.4 satisfy recurrence relations in n,

Wn+1 =Wn +
1

4
Δy2Θn, n≥ 0,(4.43)

Ωn+1 +Ωn + 2V = (Mxx− bn)Θn, n≥ 0,(4.44)

(WnΩn+1 −Wn+1Ωn)(Mxx− bn)

=−1

4
Δy2Ωn+1Ωn +WnWn+1 + a2n+1WnΘn+1(4.45)

− a2nWn+1Θn−1, n≥ 0.

Proof. We offer a proof in the spirit of our previous proofs. For the first

relation (4.43), we construct 2Wn+1 − 2Wn − 1
2Δy2Θn and substitute the

expressions (4.14) and (4.15) for Wn and Θn, respectively. After collecting

terms proportional to W ±ΔyV , we observe that the coefficients of these

terms separate into two parts, in which the three-term recurrence relation

can be employed. The result we find is that they identically vanish. The

second relation (4.44) can be found in an identical manner starting with

Δy[Ωn+1 +Ωn + 2V − (Mxx− bn)Θn].
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The relations of Proposition 4.6 constitute the analogues of the Laguerre–

Freud equations and have been studied in the special case of linear lattices

by [29], [65], [44], and [68], and in the q-linear case by [55], [54], [70], and

[32]. For the situation of OPS on the unit circle with q-difference operators,

some of these relations can be found in [48]. Following on from the Magnus

studies, the works [9] and [28] have investigated these compatibility con-

ditions for general SNUL. Together with Proposition 4.4 this result allows

for the construction of ladder (or raising and lowering) operators and these

have been found in the q-linear lattice by [20] and [46].

A consequence of Proposition 4.6 is the following.

Proposition 4.7 ([60, Remark 3.2]). The spectral coefficients satisfy the

bilinear

recurrence relation

Wn(Wn −W ) =
1

4
Δy2

[
Ωn(Ωn + 2V )− a2nΘn−1Θn

]
(4.46)

=−1

4
Δy2 det

(
Ωn −anΘn

anΘn−1 −Ωn − 2V

)
, n≥ 0.

Proof. Two methods of proof are available here. The first method starts

from the observation that the above bilinear relation can be expressed as[
2Wn −W +Δy(Ωn + V )

][
2Wn −W −Δy(Ωn + V )

]
+ a2nΔy2ΘnΘn−1

=W 2 −Δy2V 2.

(4.47)

Now we have evaluations of the factors appearing in the left-hand side of

the preceding equation from the proof of Proposition 4.2, namely, (4.26),

(4.27), and (4.18), in terms of products of a polynomial and the associated

function. Substituting these evaluations into the left-hand side, effecting

considerable cancellation of terms, and employing the Casoratian relation

(3.26), the final result simplifies to the right-hand side.

The second method uses the compatibility relations (4.43)–(4.45) and

constructs an integral for this coupled system. First, one multiplies the

left-hand side of (4.44) by the left-hand side of (4.45) and cancels out the

common factor of Mx − bn in the resulting equation. By judicious use of

(4.43), one can effect the cancellation of four terms in this equation and a
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recasting of the terms linear in Θn. Consequently, we arrive at the following

equation

(Ωn+1 + V )2

Wn+1
− (Ωn + V )2

Wn

=
4

Δy2
(Wn+1 −Wn) + V 2

[ 1

Wn+1
− 1

Wn

]

+ a2n+1

Θn+1Θn

Wn+1
− a2n

ΘnΘn−1

Wn
,

(4.48)

which is manifestly a perfect difference equation in n. By summing this and

employing the initial value evaluations (4.39), we have (4.46).

The above proposition must be augmented with the following matrix

identities.

Corollary 4.3. The matrix factor appearing in Proposition 4.5 has the

determinant evaluation

(4.49) det
(
1± 1

2
ΔyAn

)
=

W ∓ΔyV

Wn
, n≥ 0,

and its inverse is(
1± 1

2
ΔyAn

)−1

=
1

W ∓ΔyV

(
Wn ∓ 1

2Δy(Ωn + 2V ) ±1
2ΔyanΘn

∓1
2ΔyanΘn−1 Wn ± 1

2ΔyΩn

)
, n≥ 0.

(4.50)

Proof. From the form for the spectral matrix given by (4.35), we have

det
(
1± 1

2
ΔyAn

)
=

1

W 2
n

[(
Wn ±

1

2
ΔyΩn

)(
Wn ∓

1

2
Δy(Ωn + 2V )

)
+

1

4
Δy2a2nΘnΘn−1

]

=
1

W 2
n

[
W 2

n ∓ΔyV Wn −
1

4
Δy2

[
Ωn(Ωn + 2V )− a2nΘnΘn−1

]]

=
W ∓ΔyV

Wn
,

where we have employed the previous corollary in the last step. Construct-

ing the matrix inverse given on the left-hand side of (4.50) and using our

determinant formula, we find (4.50).
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Consequent to the results of Corollary 4.3, we require the matrix product

found in (4.41).

Corollary 4.4. The matrix product appearing in (4.41) has the evalu-

ation (
1− 1

2
ΔyAn

)−1(
1 +

1

2
ΔyAn

)
=

1

W +ΔyV

×
(
2Wn −W +Δy(Ωn + V ) −ΔyanΘn

ΔyanΘn−1 2Wn −W −Δy(Ωn + V )

)
,

(4.51)
n≥ 0,

= an

(
pn(y+)

pn−1(y+)

)
⊗

(
qn−1(y−), −qn(y−)

)

− an
W −ΔyV

W +ΔyV

(
qn(y+)

qn−1(y+)

)
⊗

(
pn−1(y−), −pn(y−)

)
.

Proof. Using (4.50), we multiply out the matrix product and employ the

bilinear identity (4.46) to simplify the diagonal elements, resulting in (4.51).

This result motivates the following definitions:

W± := 2Wn −W ±Δy(Ωn + V ), n≥ 1,(4.52)

T+ := ΔyanΘn, T− := ΔyanΘn−1, n≥ 1,(4.53)

while for n= 0, we have W±(n= 0) :=W ±ΔyV , T+(n= 0) :=−Δya0γ
2
0U ,

T−(n= 0) := 0 together with

(4.54) A∗
n :=

(
W+ −T+

T− W−

)
.

The variables W± are essentially the variables Un,Xn employed by Magnus

in [62], respectively, while the variables T± are directly related to his Yn,Zn

variables. In these new variables the bilinear relation (4.46) becomes

(4.55) detA∗
n =W+W− +T+T− =W 2 −Δy2V 2,

which will be the more useful form.
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It is of advantage to write out recurrence-spectral compatibility equa-

tions in terms of W±,n,T±,n, where we append a subscript to indicate the

dependence on the index n.

Corollary 4.5. Solving (4.41) for A∗
n+1, we deduce

anan+1T+,n+1 =−an(y+ − bn)W+,n + an(y− − bn)W−,n
(4.56)

+ (y+ − bn)(y− − bn)T+,n + a2nT−,n,

anT−,n+1 = an+1T+,n,(4.57)

anW+,n+1 = anW−,n + (y+ − bn)T+,n,(4.58)

anW−,n+1 = anW+,n − (y− − bn)T+,n.(4.59)

A significant result follows from the observation that the right-hand side

of (4.55) is a polynomial in x with fixed degree independent of n, and in fact

contains no dependence on n. If we denote one of the zeros of the spectral

polynomial W 2−Δy2V 2 as xj , then we can apply the equality for n �→ n+1

and use (4.57) to deduce

(4.60) W+,n+1(xj)W−,n+1(xj) +
an+1

an
T+,n+1(xj)T+,n(xj) = 0.

This then allows us to draw the following conclusion.

Proposition 4.8. The variable T+,n+1(xj), when written in terms of the

variables at n, factorizes in the following way:

−anan+1T+,n+1(xj)T+,n(xj)

=
[
anW−,n(xj) + (y+,j − bn)T+,n(xj)

]
(4.61)

×
[
anW+,n(xj)− (y−,j − bn)T+,n(xj)

]
.

The coupled pair of first-order divided-difference equations (4.31) and

(4.32) imply a second-order equation for one of the components, say pn.

Proposition 4.9 ([60, Theorem 6.1], [8]). The D-semiclassical orthogo-

nal polynomials or associated functions satisfy a second-order divided-

difference equation in the following two equivalent forms: either
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[
Mx

(Wn

Θn

)
+

1

4
Δy2Dx

(Ωn + 2V

Θn

)]
D
2
xpn

+
[
Dx

(Wn

Θn

)
+Mx

(2V
Θn

)
+Δy2Mx

(W −Wn

Δy2Θn

)]
MxDxpn(4.62)

+
[
Mx

(
4
W −Wn

Δy2Θn

)
−Dx

(Ωn

Θn

)]
M

2
xpn = 0,

or alternatively

E+
x

(W +ΔyV

ΔyΘn

)
(E+

x )
2pn +E−

x

(W −ΔyV

ΔyΘn

)
(E−

x )
2pn

+
{
−E+

x

(2Wn −W +Δy(Ωn + V )

ΔyΘn

)
(4.63)

−E−
x

(2Wn −W −Δy(Ωn + V )

ΔyΘn

)}
E+

x E
−
x pn = 0.

Proof. Starting with (4.31) and (4.32), we can employ (4.46) to write an

equation for each of Mxpn−1 and Dxpn−1 in terms of linear combinations of

Mxpn and Dxpn. Then utilizing the fact that MxDxpn−1 = DxMxpn−1, we

arrive at (4.62). The equation (4.63) is the nodal equivalent of the former.

This concludes our discussion of the spectral structures for a general

quadratic lattice, and we now turn to the simplest explicit example on the

q-quadratic lattice.

§5. The M = 2,L= 0 cases and the Askey–Wilson polynomials

Here we will employ the theory of Section 4 and explicitly compute the

spectral coefficients for the Askey–Wilson system itself because it serves as

an instructive example for the theory of the previous section and clarifies

some confusion present in the literature. Virtually all of our results presented

here have been found by earlier studies: first, by Askey and Wilson [4], then

most notably by the Soviet school of Nikiforov, Suslov, and Uvarov [76],

[73], [77], [74], [75] who were primarily concerned with hypergeometric type

OPS on nonuniform lattices, and in the 1988 work of Magnus [60], whose

approach and intent are most similar to the spirit of our own.
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We recall that the Askey–Wilson [4] weight itself has degrees 2N = 4 or

M = 2 and L= 0 with

w(x) =w
(
x;{a1, . . . , a4}

)
=

(z±2; q)∞

sin(θ)
∏4

j=1(ajz
±1; q)∞

,

G= (−1,1).

(5.1)

Let the jth elementary symmetric polynomial of a1, . . . , a4 be denoted by

σj for j = 0, . . . ,4.

Proposition 5.1. Assume that q �= 1 and |q−1/2aj | �= 1 for j = 1, . . . ,4.

The spectral coefficients for the Askey–Wilson OPS are

Wn(x) = (1 + q−n)(1 + σ4q
n−2)(x2 − 1)

(5.2)
− [q−1/2σ1 + q−3/2σ3]x+ 1+ q−1σ2 + q−2σ4,

Ωn(x) + V (x) = 2
qn−2σ4 − q−n

q1/2 − q−1/2
x

+
q−n−1/2σ1 + (−2 + q−n)q−3/2σ3
(q1/2 − q−1/2)(q−n − qn−2σ4)

(5.3)

+
(−2 + qn)q−5/2σ1σ4 + qn−7/2σ3σ4

(q1/2 − q−1/2)(q−n − qn−2σ4)
,

Θn(x) = 4
qn−3/2σ4 − q−n−1/2

q1/2 − q−1/2
,(5.4)

valid for n≥ 0. The three-term recurrence coefficients are found to be given

by the standard expressions (see [56], [58])

(5.5) a2n =
1

4

(1− qn)(1− σ4q
n−2)

∏
k>j(1− ajakq

n−1)

(1− σ4q2n−3)(1− σ4q2n−2)2(1− σ4q2n−1)
,

and

bn =
[
σ1

(
q+ σ4(q

2n − qn − qn−1)
)
+ σ3(1− qn − qn+1 + σ4q

2n−1)
]

× qn−1

2(1− σ4q2n)(1− σ4q2n−2)
,

(5.6)

for n≥ 0, where we assume that a0 = 0.
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Proof. From the weight (5.1), we compute the spectral data

(5.7) W ±ΔyV = z∓2
4∏

j=1

(1− ajq
−1/2z±1),

from which we deduce

W (x) = 2(1 + σ4q
−2)x2 − [q−1/2σ1 + q−3/2σ3]x− 1 + q−1σ2 − q−2σ4,(5.8)

V (x) = 2
q−2σ4 − 1

q1/2 − q−1/2
x+

q−1/2σ1 − q−3/2σ3
q1/2 − q−1/2

.(5.9)

We will see that W 2−Δy2V 2 will play a significant role and therefore define

another set of elementary symmetric polynomials by

(5.10) W 2 −Δy2V 2 =K2[x4 − e1x
3 + e2x

2 − e3x+ e4].

We note the evaluation K = 4qμ = 4q−1√σ4. We parameterize the spectral

coefficients in the following way:

2Wn −W =w2x
2 +w1x+w0,(5.11)

Θn =
+, Θn−1 =
−,(5.12)

Ωn + V = v1x+ v0,(5.13)

where we know from (4.28)–(4.30) that the leading coefficients are

w2 =
K

2
(qn+μ + q−n−μ), v1 =

K

2

qn+μ − q−n−μ

q1/2 − q−1/2
,


+ =K
qn+μ+1/2 − q−n−μ−1/2

q1/2 − q−1/2
.

(5.14)

From the fundamental bilinear relation (4.46), we get a system of quadratic

polynomial equalities

w2
2 −Δv21 =K2,(5.15)

2w1w2 − 2Δv0v1 =−K2e1,(5.16)

2w0w2 +w2
1 −Δ(v20 − v21) + a2nΔ
+
− =K2e2,(5.17)

2w0w1 + 2Δv0v1 =−K2e3,(5.18)
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w2
0 +Δv20 − a2nΔ
+
− =K2e4,(5.19)

where Δ := (q1/2 − q−1/2)2. Now (5.15), (5.17), and (5.19) imply w2
1 +

(w0+w2)
2 =K2(1+ e2+ e4), while (5.18) and (5.16) imply 2w1(w0+w2) =

−K2(e1+ e3). Forming the sum and difference of these two latter relations,

we conclude that

(5.20) w1 =
W (1)−W (−1)

2
, w0 =−w2 +

W (1) +W (−1)

2
.

Using (5.16), for example, along with the above solutions, we find that

(5.21) v0 =
K2e1 +w2(W (1)−W (−1))

2Δv1
.

Therefore, we have succeeded in relating the subleading coefficients in terms

of explicitly known quantities, and after simplification we arrive at (5.2)–

(5.3). Finally, using (5.19), we can solve for a2n and, after observing that e4
can be expressed as

e4 =
[qμ + q−μ

2
− W (1) +W (−1)

2K

]2
+

1

(qμ − q−μ)2

[
e1 +

qμ + q−μ

2

W (1)−W (−1)

K

]2
,

(5.22)

we can factorize the resulting four terms and arrive at (5.5). To find (5.6),

we start with (4.44) and use our previous results for (5.4) and (5.3). We

note that the terms linear in x cancel identically, as they must, and after

some factorization we deduce (5.6).

It is the coefficients (5.2)–(5.3) along with first-order divided-difference

equation (4.31) that constitutes the structural relation for the Askey–Wilson

polynomials, that is, the analogue of first-order difference or differential

relations for the classical orthogonal polynomials. The divided-difference

relations reported in [58] are all of second order.

It is an easy task to evaluate the Askey–Wilson integral (see [4], [56]) as a

q-factorial and therefore compute the moments. The Askey–Wilson integral

is defined by

(5.23) I2(a1, a2, a3, a4) :=

∫
T

dz

2πiz

(z±2; q)∞∏4
j=1(ajz

±1; q)∞
,

with |aj |< 1 for j = 1, . . . ,4.
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Our method is to apply the general system of moment recurrences to the

case M = 2, and we find that it coincides with the recurrence of Kalnins

and Miller [53] and Koelink and Koornwinder [57].

Proposition 5.2 ([97, Section 3.2]). The Askey–Wilson integral satisfies

the two-term linear recurrence

(σ4 − 1)I2(qa1, a2, a3, a4)

= (a1a2 − 1)(a1a3 − 1)(a1a4 − 1)I2(a1, a2, a3, a4),
(5.24)

which is solved by

(5.25) I2(a1, a2, a3, a4) = 2
(σ4; q)∞

(q; q)∞
∏

k>j(ajak; q)∞
.

Consequently, the moments are given by

m0,n(a1) = π
(a1a2, a1a3, a1a4; q)n

(σ4; q)n
I2(a1, a2, a3, a4)(5.26)

= 2π
(qnσ4; q)∞

(qna1a2, qna1a3, qna1a4, a2a3, a2a4, a3a4, q; q)∞
.(5.27)

Proof. We only require the k = 0 case of (4.11) with a = a1, and from

(5.7) we compute the relevant coefficients as δ2,1(a) = q−1a−1(1− σ4) and

δ2,0(a) = q−1(a+a−1)(σ4−1)+ q−1(σ1−σ3). The solution of the recurrence

(5.24) follows from the arguments given in [57].

The specialization of the second-order divided-difference equation (4.63)

with the M = 2 spectral coefficients of Proposition 5.1 is given by

∏4
j=1(1− ajz)

qz2 − 1

[
(E+

x )
2pn − pn

]

+

∏4
j=1(z − aj)

z2 − q

[
(E−

x )
2pn − pn

]
(5.28)

+ q−n−1(1− qn)(qnσ4 − q)(z2 − 1)pn = 0.

This is soluble in terms of basic hypergeometric functions, and their poly-

nomial solutions have been given by [60] or using factorization methods in
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[7], [11], and [10] as Askey–Wilson polynomials. The Askey–Wilson polyno-

mials have an explicit form as a balanced 4ϕ3 function (see [56]) with the

manifest symmetry under z ↔ z−1 and are given in the monic form by

(5.29) πn(x) =
(a1a2, a1a3, a1a4; q)n
(2a1)n(qn−1σ4; q)n

4ϕ3

(
q−n, σ4q

n−1, a1z, a1z
−1

a1a2, a1a3, a1a4
; q, q

)
,

or the alternative form (see [34]) which is manifestly symmetric under per-

mutations of a1, a2, a3, a4

πn(x) = (2z)−n (a1z, a2z, a3z, a4z,σ4q
−1; q)n

(z2; q)n(σ4q−1; q)2n

× 8W7

(
q−nz−2; q−n, a1z

−1, a2z
−1, a3z

−1, a4z
−1;

q2−n

σ4

)
.

(5.30)

From [82, (2.6)], or equivalently from [45, (4.18)] with α = 0, and [31,

(III.23)] we deduce the expression for the Stieltjes function as a very-well-

poised 8W7

f(x) =
4π(q−1σ4; q)∞

(q; q)∞
∏

k>j(ajak; q)∞

(1− qz−2)

z
∏

1≤j≤4(1− ajz−1)
(5.31)

× 8W7

(
qz−2;

q

a1
z−1,

q

a2
z−1,

q

a3
z−1,

q

a4
z−1, q; q, q−1σ4

)
,

which exhibits the parameter symmetry. This expression is the one valid on

the second Riemann sheet of the cut x-plane or exterior to the unit circle

in z, |z|> 1. There are evaluations of qn(x) in [82] and [45] that are simple

generalizations of the above formulas, but we do not need to discuss them

here.

Having an explicit form for the Stieltjes function means that we have two

tasks at hand—to verify that is satisfies both the inhomogeneous divided-

difference equation (4.13) and the large x expansion formula (3.46).

Proposition 5.3. The Stieltjes function given by equation (5.31) satis-

fies the inhomogeneous divided-difference equation (4.13) with the constant

(5.32) U =
8π

q− 1

(q−1σ4; q)∞
(q; q)∞

∏
k>j(ajak; q)∞

.
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Proof. We require an alternative form

f(x) = 4π
qa1
σ4

1

( q
a2a3

, q
a2a4

, q
a3a4

; q)∞

×
{
−

( q
a2z

, q
a3z

, q
a4z

, σ4
qa1z

, q
2a1z
σ4

; q)∞

(a2a3, a2a4, a3a4, a1z−1, a2z−1, a3z−1, a4z−1, a1z; q)∞
(5.33)

+
(q−1σ4, q

a1
a2
, q a1

a3
, q a1

a4
, q

2

σ4
; q)∞

(q, qa21; q)∞
∏

k>j(ajak; q)∞(1− a1z)(1− a1z−1)

× 8W7

(
a21;a1z, a1z

−1, a1a2, a1a3, a1a4;
q2

σ4

)}
,

which makes the z ↔ z−1 symmetry manifest in the second term only. This

is derived from the previous expression by utilizing [31, (III.37)] combined

with [31, (III.23)], and [31, (III.36)] for the term which specializes. We are

now in a position to verify that (5.33) satisfies (4.13). This relies on the

fact that (4.13) with the data (5.7) is precisely the contiguous relation, [45,

(2.2)], which in our context states

z2
∏

j=2,3,4(1− q−1/2ajz
−1)

1− q1/2a1z

× 8W7

(
a21; q

1/2a1z, q
−1/2a1z

−1, a1a2, a1a3, a1a4;
q2

σ4

)

− z−2

∏
j=2,3,4(1− q−1/2ajz)

1− q1/2a1z−1

(5.34)

× 8W7

(
a21; q

−1/2a1z, q
1/2a1z

−1, a1a2, a1a3, a1a4;
q2

σ4

)
= q−3/2a2a3a4

(
1− q

σ4

)
(z − z−1)

× 8W7

(
a21; q

1/2a1z, q
1/2a1z

−1, a1a2, a1a3, a1a4;
q

σ4

)
.

We have also used the specialization formula when aq = bc

(5.35) 8W7

(
a; b, c, d, e, f ; q,

q2a2

bcdef

)
=

(aq, aq/de, aq/df, aq/ef ; q)∞
(aq/d, aq/e, aq/f, aq/def ; q)∞

,
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which applies to the right-hand side of the previous equation. A consequence

one can draw from this calculation is the explicit evaluation of the constant

spectral coefficient.

Remark 5.1. The constant U can be found in another way. This is by

noting that the initial condition for Φ0 is given by (4.39) and that Φn is given

purely by the leading order term in (5.4), so that knowing the normalization

γ20 allows us to make the evaluation.

Proposition 5.4. The Stieltjes function possesses the explicit large x

moment-generating function formula

f(x) =− 4πa1(σ4; q)∞
(q; q)∞

∏
k>j(ajak; q)∞(1− a1z)(1− a1z−1)

× 4ϕ3

(
q, a1a2, a1a3, a1a4
qa1z, qa1z

−1, σ4
; q, q

)
(5.36)

− 4π(a2a3a4z
−1, qz−2; q)∞

z(a2a3, a2a4, a3a4, a2z−1, a3z−1, a4z−1; q)∞

1

φ∞(x;a1)

× 3ϕ2

(
a2z

−1, a3z
−1, a4z

−1

a2a3a4z
−1, qz−2 ; q, q

)
.

Proof. By applying the transformation formula of [31, (III.36)] to the 8W7

function in (5.33), we get a sum of two 4ϕ3 functions one of which reduces

to a 3ϕ2 function. After some simplification, we get (5.36). We observe that

the 4ϕ3 term is precisely the second term of (3.46) given our formula for the

moments (5.26). This allows us to conclude that

f∞(x) =− 4π(a2a3a4z
−1, qz−2; q)∞

z(a2a3, a2a4, a3a4, a2z−1, a3z−1, a4z−1; q)∞

× 3ϕ2

(
a2z

−1, a3z
−1, a4z

−1

a2a3a4z
−1, qz−2 ; q, q

)
.

(5.37)

§6. Deformation differences

In this section we discuss the deformation structures based upon a nonlin-

ear lattice in the u variable (or any number of variables for that matter) and

the corresponding divided-difference operators. We emphasize that many of

the results for the spectral structure have a parallel result in the deformation

structure, although there will be crucial differences in the details. Denote the
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deformation variable u and its forward and backward shifts by v± = E±
u u

and their difference by Δv := v+− v−. The reader should be aware that the

deformation lattice does not have to be the same type as the spectral lattice.

Our D-semiclassical weight w, defined by Definition 4.1, acquires an addi-

tional dependence on a deformation variable u, and furthermore satisfies a

deformation divided-difference equation with respect to u.

Definition 6.1. The deformed D-semiclassical weight satisfies

(6.1) RDuw = 2SMuw,

or equivalently

(6.2)
w(x;v+)

w(x;v−)
=

R+ΔvS

R−ΔvS
(x;u),

for polynomials S(x;u),R(x;u) irreducible in x and u ∈ J . In addition, we

assume that R±ΔvS �= 0 for all x ∈G,u ∈ J and that the deformed OPS

exists, that is, that γn(v±) �= 0 for all n ∈ Z≥0. We also require the condition

that γ0(v+)(R−ΔvS) + γ0(v−)(R+ΔvS) �= 0.

There is a very simple motivation for this relation. In the process of

extending the weights beyond those of the classical cases in the Askey table

by increasing the degrees degxW ≥ 3,degx V ≥ 2, the weights acquire addi-

tional parameters which if suitably chosen sit in a completely reflexive or

symmetric way to the spectral variable, and therefore will satisfy an analo-

gous linear, homogeneous, and first-order divided-difference equation in any

of these new parameters.

There are conditions imposed on the weight given that it satisfies both

(4.1) or (4.2) and (6.1) or (6.2).

Proposition 6.1. The spectral data polynomials W (x;u), V (x;u) and

the deformation data polynomials R(x;u), S(x;u) satisfy the compatibility

relations

[
Dx

2S

R
−Du

2V

W

][
1− 1

16
Δy2Δv2Dx

2S

R
Du

2V

W

]

=
1

4
Δy2Dx

2S

R

(
Mu

2V

W

)2
− 1

4
Δv2Du

2V

W

(
Mx

2S

R

)2
,

(6.3)
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or alternatively

W +ΔyV

W −ΔyV
(x;v+)

R+ΔvS

R−ΔvS
(y−;u)

=
W +ΔyV

W −ΔyV
(x;v−)

R+ΔvS

R−ΔvS
(y+;u).

(6.4)

Proof. From the fact that the weight satisfies the overdetermined system

of first-order divided-difference equations (4.1) and (6.1), we first compute

that [
1− 1

16
Δy2Δv2Dx

2S

R
Du

2V

W

]
MuDxw

(6.5)

=
[
Mu

2V

W
+

1

4
Δv2Du

2V

W
Mx

2S

R

]
MuMxw,[

1− 1

16
Δy2Δv2Dx

2S

R
Du

2V

W

]
MxDuw

(6.6)

=
[
Mx

2S

R
+

1

4
Δy2Dx

2S

R
Mu

2V

W

]
MxMuw,

using (2.11). Now we compute

DuDxw =Du
2V

W
MuMxw+Mu

2V

W
DuMxw,(6.7)

DxDuw =Dx
2S

R
MxMuw+Mx

2S

R
DxMuw,(6.8)

using (2.10), and we use the results of the previous set of equations to derive

two independent relations linking DuDxw and MuMxw. A comparison of

these two latter relations leads to (6.3).

To establish (6.4), we note that

w(y+;v+) =
W +ΔyV

W −ΔyV
(x;v+)w(y−;v+)

(6.9)

=
W +ΔyV

W −ΔyV
(x;v+)

R+ΔvS

R−ΔvS
(y−;u)w(y−;v−),

whereas

w(y+;v+) =
R+ΔvS

R−ΔvS
(y+;u)w(y+;v−)

(6.10)

=
R+ΔvS

R−ΔvS
(y+;u)

W +ΔyV

W −ΔyV
(x;v−)w(y−;v−).
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Proposition 6.2. As a consequence of Definition 6.1, the Stieltjes trans-

form satisfies the inhomogeneous equation

(6.11) RDuf = 2SMuf + T.

The deformed D-semiclassical class of orthogonal polynomial systems are

characterized by the property that R(x;u), S(x;u) and T (x;u) in (6.11) are

polynomials in x.

Proof. From the definition (3.19) and (6.1), we compute

(6.12) Duf(x;u) =

∫
Dy

Muw(y;u)

x− y

2S(y;u)

R(y;u)
.

Now we observe that the rational function 2S(y;u)/[(x− y)R(y;u)] has the

partial fraction expansion

(6.13)
2S(y;u)

(x− y)R(y;u)
=

2S(x;u)

(x− y)R(x;u)
+

∑
j,R(xj)=0

2S(xj ;u)

R′(xj ;u)(x− xj)

1

y− xj
.

Consequently,

Duf(x;u) =
2S(x;u)

R(x;u)

∫
Dy

Muw(y;u)

x− y
(6.14)

+
∑

j,R(xj)=0

2S(xj ;u)

R′(xj ;u)(x− xj)

∫
Dy

Muw(y;u)

y− xj

=
2S(x;u)

R(x;u)
Muf(x;u)−

∑
j,R(xj)=0

2S(xj ;u)

R′(xj ;u)(x− xj)
Muf(xj ;u).(6.15)

We conclude that (6.11) follows with degx T ≤ degxR− 1.

Proposition 6.3. The compatibility of (6.11) and (4.13) implies the fol-

lowing identity on U and T :

Δy
[(W +ΔyV )(x;v+)

(W +ΔyV )(x;v−)
(R+ΔvS)(y−;u)U(x;v−)

− (R−ΔvS)(y−;u)U(x;v+)
]

(6.16)

=Δv
[
(W +ΔyV )(x;v+)T (y−;u)

− (W −ΔyV )(x;v+)
(R−ΔvS)(y−;u)

(R−ΔvS)(y+;u)
T (y+;u)

]
.
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Proof. We begin by defining the ratio

χ≡ (W +ΔyV )(x;v+)

(W +ΔyV )(x;v−)

(R+ΔvS)(y−;u)

(R+ΔvS)(y+;u)

=
(W −ΔyV )(x;v+)

(W −ΔyV )(x;v−)

(R−ΔvS)(y−;u)

(R−ΔvS)(y+;u)
,

(6.17)

by virtue of (6.4). Consider (4.13) in the form

(W −ΔyV )(x;u)f(y+;u)

− (W +ΔyV )(x;u)f(y−;u)−ΔyU(x;u) = 0,
(6.18)

and construct the combination (W +ΔyV )(x;v+)/(W +ΔyV )(x;v−)(R+

ΔvS)(y−;u)× (6.18)(u �→ v−)− (R−ΔvS)(y−;u)× (6.18)(u �→ v+). Using

the above identity, we find that the two terms containing f possess the

factors (R+ΔvS)(y−;u)f(y−;v−)− (R−ΔvS)(y−;u)f(y−;v+) and (R +

ΔvS)(y+;u)f(y+;v−)−(R−ΔvS)(y+;u)f(y+;v+), into which we can apply

(6.11) in the form

(6.19) (R−ΔvS)(x;u)f(x;v+)−(R+ΔvS)(x;u)f(x;v−)−ΔvT (x;u) = 0.

Then (6.16) immediately follows.

We can extend the notion of a generic or regular D-semiclassical weight,

given in Definition 4.2, to the deformed situation by the following definition.

Definition 6.2. A regular, deformed D-semiclassical weight is one that

satisfies the requirements of Definition 4.2 and degxR = degx S = L and

degx T = degxR−1. Clearly M in Definition 4.2 and L are related, depend-

ing on the specific case on hand.

The analogue of Proposition 4.2 is the following.

Proposition 6.4. Let the deformation coefficients Rn(x;u), Γn(x;u),

Ξn(x;u), Φn(x;u), Ψn(x;u) be defined in terms of bilinear formulas involv-

ing products of the polynomials and associated functions by

2

Hn
Rn = (R+ΔvS)

[
− 1

an(v−)
+ pn−1(;v+)qn(;v−)− pn(;v+)qn−1(;v−)

]

+ (R−ΔvS)
[
− 1

an(v+)
+ pn−1(;v−)qn(;v+)(6.20)
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− pn(;v−)qn−1(;v+)
]
,

Δv

Hn
Γn = (R+ΔvS)

[ 1

an(v−)
− pn−1(;v+)qn(;v−)− pn(;v+)qn−1(;v−)

]

+ (R−ΔvS)
[
− 1

an(v+)
+ pn−1(;v−)qn(;v+)(6.21)

+ pn(;v−)qn−1(;v+)
]
,

Δv

Hn
Ξn = (R+ΔvS)

[ 1

an(v−)
+ pn−1(;v+)qn(;v−) + pn(;v+)qn−1(;v−)

]

+ (R−ΔvS)
[
− 1

an(v+)
− pn−1(;v−)qn(;v+)(6.22)

− pn(;v−)qn−1(;v+)
]
,

Δv

2Hn
Φn = (R+ΔvS)pn(;v+)qn(;v−)

(6.23)
− (R−ΔvS)pn(;v−)qn(;v+),

and

Δv

2Hn
Ψn =−(R+ΔvS)pn−1(;v+)qn−1(;v−)

+ (R−ΔvS)pn−1(;v−)qn−1(;v+),

(6.24)

for n≥ 0 and where the decoupling factor Hn(u) has degxHn = 0. Then the

deformation coefficients of the deformed D-semiclassical class are polyno-

mials in x.

Proof. We offer a proof in the spirit of that for Proposition 4.2, using

Laguerre’s method, and apply it to (6.23) first. From (6.11) and (3.21), we

have

0 = (R−ΔvS)f(;v+)− (R+ΔvS)f(;v−)−ΔvT

= (R−ΔvS)
qn + p

(1)
n−1

pn
(;v+)− (R+ΔvS)

qn + p
(1)
n−1

pn
(;v−)−ΔvT

=
(R−ΔvS)pn(;v−)p

(1)
n−1(;v+)− (R+ΔvS)pn(;v+)p

(1)
n−1(;v−)

pn(;v+)pn(;v−)
(6.25)
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− ΔvTpn(;v+)pn(;v−)

pn(;v+)pn(;v−)

+
(R−ΔvS)pn(;v−)qn(;v+)− (R+ΔvS)pn(;v+)qn(;v−)

pn(;v+)pn(;v−)
.

In this last expression, the numerator of the first two terms is clearly a poly-

nomial in x which implies that the numerator of the third term is likewise.

This latter numerator is an odd function under the exchange v+ ↔ v− and

we denote it by ΔvΦn(x;u)/(2Hn), thus deriving (6.23). The relation (6.24)

is simply the case of (6.23) under n �→ n− 1.

The remaining relations may now be derived from the following argument.

From the workings of the previous paragraph, we know that

ΔvΦn

2Hn
= (R−ΔvS)pn(;v−)p

(1)
n−1(;v+)

− (R+ΔvS)pn(;v+)p
(1)
n−1(;v−)−ΔvTpn(;v+)pn(;v−).

(6.26)

By multiplying the left-hand side of this relation by the Casoratian an(v+)×
[pn−1p

(1)
n−1 − pnp

(1)
n−2](;v+) = 1, we observe that the resulting equation sepa-

rates into two terms with the factorization

pn(;v+)
[
−an(v+)

ΔvΦn

2Hn
p
(1)
n−2(;v+)

+ (R+ΔvS)p
(1)
n−1(;v−) +ΔvTpn(;v−)

]
(6.27)

= p
(1)
n−1(;v+)

[
−an(v+)

ΔvΦn

2Hn
pn−1(;v+) + (R−ΔvS)pn(;v−)

]
,

which implies that this expression contains the polynomial factors pn(;v+)×
p
(1)
n−1(;v+) and therefore can be written as pn(;v+)p

(1)
n−1(;v+)π1, where π1

is a polynomial in x. Given that the two factors pn(;v+), p
(1)
n−1(;v+) are

nonzero, this then leads to two evaluations for π1, which by constructing a

suitable combination of these and employing the Casoratian once more we

find, upon some simplification,

π1 = an(v+)
[
−(R+ΔvS)pn−1(;v+)qn(;v−)

+ (R−ΔvS)pn(;v−)qn−1(;v+)
]
.

(6.28)
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Alternatively, we could have multiplied the left-hand side of (6.26) by the

Casoratian an(v−)[pn−1p
(1)
n−1 − pnp

(1)
n−2](;v−) = 1 and deduced the factoriza-

tion

pn(;v−)
[
−an(v−)

ΔvΦn

2Hn
p
(1)
n−2(;v−)

− (R−ΔvS)p
(1)
n−1(;v+) +ΔvTpn(;v+)

]
(6.29)

= p
(1)
n−1(;v−)

[
−an(v−)

ΔvΦn

2Hn
pn−1(;v−)− (R+ΔvS)pn(;v+)

]
.

This fact then allows us to conclude that either of these expressions can be

written as pn(;v−)p
(1)
n−1(;v−)π2, where π2 is another polynomial in x. Using

an identical procedure to that employed above, we can infer that

π2 = an(v−)
[
−(R+ΔvS)pn(;v+)qn−1(;v−)

+ (R−ΔvS)pn−1(;v−)qn(;v+)
]
.

(6.30)

Relations (6.20) and (6.21) then follow from the definitions

2Rn −ΔvΓn + 2Hn
R+ΔvS

an(v−)
=− 2Hn

an(v+)
π1,

2Rn +ΔvΓn + 2Hn
R−ΔvS

an(v+)
=

2Hn

an(v−)
π2,

(6.31)

whereas (6.22) follows from Δv(Γn+Ξn)/2Hn = (R+ΔvS)/an(v−)− (R−
ΔvS)/an(v+).

Analogous to the large x expansions of the spectral coefficients, we have

the following expansions for the deformation coefficients.

Proposition 6.5. Let L=max(degxR,degxS). As x→∞, we have the

leading orders of the terminating expansions of the deformation coefficients

2

Hn
Rn =−

(
γn(v+) + γn(v−)

)[R−ΔvS

γn−1(v+)
+

R+ΔvS

γn−1(v−)

]

+
n−1∑
i=0

(
bi(v+)− bi(v−)

)[
(R+ΔvS)

γn(v+)

γn−1(v−)
(6.32)

− (R−ΔvS)
γn(v−)

γn−1(v+)

]
x−1 +O(xL−2), n≥ 0,
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Δv

2Hn
Φn =

[
(R+ΔvS)

γn(v+)

γn(v−)
− (R−ΔvS)

γn(v−)

γn(v+)

]
x−1

+
(
(R+ΔvS)

γn(v+)

γn(v−)

[ n∑
i=0

bi(v−)−
n−1∑
i=0

bi(v+)
]

(6.33)

+ (R−ΔvS)
γn(v−)

γn(v+)

[n−1∑
i=0

bi(v−)−
n∑

i=0

bi(v+)
])

x−2

+O(xL−3), n≥ 0,

Δv

2Hn
Ψn =−

[
(R+ΔvS)

γn−1(v+)

γn−1(v−)
− (R−ΔvS)

γn−1(v−)

γn−1(v+)

]
x−1

−
(
(R+ΔvS)

γn−1(v+)

γn−1(v−)

[n−1∑
i=0

bi(v−)−
n−2∑
i=0

bi(v+)
]

(6.34)

+ (R−ΔvS)
γn−1(v−)

γn−1(v+)

[n−2∑
i=0

bi(v−)−
n−1∑
i=0

bi(v+)
])

x−2

+O(xL−3), n≥ 0,

Δv

Hn
Γn =

(
γn(v−)− γn(v+)

)[R+ΔvS

γn−1(v−)
+

R−ΔvS

γn−1(v+)

]

+

n−1∑
i=0

(
bi(v+)− bi(v−)

)[
(R+ΔvS)

γn(v+)

γn−1(v−)
(6.35)

+ (R−ΔvS)
γn(v−)

γn−1(v+)

]
x−1 +O(xL−2), n≥ 0,

and

Δv

Hn
Ξn =

(
γn(v−) + γn(v+)

)[R+ΔvS

γn−1(v−)
− R−ΔvS

γn−1(v+)

]

−
n−1∑
i=0

(
bi(v+)− bi(v−)

)[
(R+ΔvS)

γn(v+)

γn−1(v−)
(6.36)

+ (R−ΔvS)
γn(v−)

γn−1(v+)

]
x−1 +O(xL−2), n≥ 0.

Proof. These formulas follow from the substitution of the expansions

(3.34) and (3.35) into the definitions (6.20)–(6.24).
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Remark 6.1. Unlike the case of the spectral coefficients (see Proposi-

tion 4.3), the leading terms of the deformation coefficients are not deter-

mined by the weight data alone but depend nontrivially upon the three-term

recurrence coefficients.

Corollary 6.1. In the regular, deformed D-semiclassical case the defor-

mation coefficients Rn,Γn,Φn,Ψn,Ξn are polynomials in the spectral vari-

able x with degrees independent of n, degxRn = degxΓn = degxΞn =

max(degxR,degxS) and degxΦn = degxΨn =max(degxR,degxS)− 1.

The expressions for the deformation coefficients (6.24)–(6.24) can be

inverted yielding a system of linear divided-difference equations in the defor-

mation variable for the polynomials and associated functions.

Proposition 6.6. The OPS corresponding to a deformed D-semiclassical

weight satisfies the deformation divided-difference equation

(6.37) DuYn :=BnMuYn =
1

Rn

(
Γn Φn

Ψn Ξn

)
MuYn, n≥ 0.

Proof. The essence of this result involves the inversion of Proposition 6.4

which is carried out in a manner analogous to the proof of Proposition 4.4.

Of the four coefficients Γn,Φn,Ψn,Ξn, only two are independent because

of the following relations.

Proposition 6.7. The deformation coefficients satisfy the linear identity

(6.38) Ψn =− an
an−1

Φn−1, n≥ 1,

and the trace identity

(6.39) Δv(Γn +Ξn) = 2Hn

[R+ΔvS

an(v−)
− R−ΔvS

an(v+)

]
, n≥ 0.

Proof. The first relation follows by comparison of (6.24) with (6.23) and

setting Hn/Hn−1 = an/an−1. The second identity is easily seen from the

expressions (6.21) and (6.22) and has already been observed in the conclu-

sions of the workings for the proof of Proposition 6.4.
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The initial values of the deformation coefficients are

R0 =−1

2
H0

[
γ0(v−) + γ0(v+)

]( R+ΔvS

a0(v−)γ0(v−)
+

R−ΔvS

a0(v+)γ0(v+)

)
,(6.40)

Γ0 =
1

Δv
H0

[
γ0(v−)− γ0(v+)

]( R+ΔvS

a0(v−)γ0(v−)
+

R−ΔvS

a0(v+)γ0(v+)

)
,(6.41)

Ξ0 =
1

Δv
H0

[
γ0(v−) + γ0(v+)

]( R+ΔvS

a0(v−)γ0(v−)
− R−ΔvS

a0(v+)γ0(v+)

)
,(6.42)

Φ−1 = 0, Φ0 =−2H0γ0(v−)γ0(v+)T,(6.43)

Ψ0 = 0.(6.44)

Compatibility between the matrix recurrence relation and the deforma-

tion divided-difference equation implies the next result.

Proposition 6.8. The recurrence matrix and the deformation matrix

satisfy

Bn+1 ·MuKn −MuKn ·Bn

=DuKn −
1

4
Δv2Bn+1 ·DuKn ·Bn, n≥ 0,

(6.45)

or equivalently

Kn(;v+)
(
1− 1

2
ΔvBn

)−1(
1 +

1

2
ΔvBn

)

=
(
1− 1

2
ΔvBn+1

)−1(
1 +

1

2
ΔvBn+1

)
Kn(;v−), n≥ 0.

(6.46)

Proof. The first form of the compatibility relation is deduced by compar-

ing

DuYn+1 =Bn+1MuYn+1

=Bn+1Mu(KnYn)

=Bn+1

(
MuKn ·MuYn +

1

4
Δv2DuKn ·DuYn

)
=Bn+1

(
MuKn +

1

4
Δv2DuKn ·Bn

)
MuYn

and

DuYn+1 =DuKnYn = (DuKn ·MuYn +MuKn ·DuYn)

= (DuKn +MuKn ·Bn)MuYn.
(6.47)
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The second form is found by computing Yn+1(x;v+) in terms of Yn(x;v−)
in the two possible ways corresponding to the orders of the operations n �→
n+ 1 and v− �→ v+.

Compatibility of the three-term recurrence relation and the deformation

divided-difference equation implies the following result, which can be found

by considering the representations of the deformation coefficients given in

Proposition 6.4.

Proposition 6.9. The deformation coefficients Rn,Γn,Φn satisfy recur-

rence relations in n,

an+1(v−)

Hn+1
(−2Rn+1 +ΔvΓn+1) +

an(v−)

Hn
(2Rn +ΔvΓn)

=−
[
x− bn(v−)

]Δv

Hn
Φn(6.48)

+ 2an(v−)
(R+ΔvS

an(v−)
− R−ΔvS

an(v+)

)
, n≥ 0,

an+1(v+)

Hn+1
(2Rn+1 +ΔvΓn+1) +

an(v+)

Hn
(−2Rn +ΔvΓn)

=−
[
x− bn(v+)

]Δv

Hn
Φn(6.49)

+ 2an(v+)
(R+ΔvS

an(v−)
− R−ΔvS

an(v+)

)
, n≥ 0.

Recurrences (6.48) and (6.49) are the analogues of combinations of (4.43)

and (4.44).

Proof. The simplest proof of these relations is the one employing the

definitions (6.20), (6.21), and (6.23) of Proposition 6.4. Taking the first

relation, we deduce

an+1(v−)

Hn+1
(−2Rn+1 +ΔvΓn+1)

+
an(v−)

Hn
(2Rn +ΔvΓn) +

[
x− bn(v−)

]Δv

Hn
Φn

= 2(R+ΔvS)
[
1− pn(;v+)

(
an+1(v−)qn+1(;v−)

+ bn(v−)qn(v−) + an(v−)qn−1(v−)− xqn(v−)
)]
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− 2(R−ΔvS)
[an(v−)
an(v+)

− qn(;v+)
(
an+1(v−)pn+1(;v−)

+ bn(v−)pn(v−) + an(v−)pn−1(v−)− xpn(v−)
)]

= 2an(v−)
(R+ΔvS

an(v−)
− R−ΔvS

an(v+)

)
,

where essential use of the three-term recurrence relations (3.5) and (3.22)

has been made. The second relation can be found in an identical manner.

We find bilinear identities for the deformation matrix analogous to those

of Proposition 4.7.

Proposition 6.10. The deformation coefficients satisfy the bilinear or

determinantal identity

R2
n +

1

4
Δv2[ΓnΞn −ΦnΨn]

=−HnRn

[R+ΔvS

an(v−)
+

R−ΔvS

an(v+)

]
, n≥ 0.

(6.50)

Proof. A direct method of proof is possible substituting the expressions

for the deformation coefficients Rn,Γn,Ξn,Φn,Ψn in terms of products of

polynomials and associated functions as given by (6.20)–(6.24) into the left-

hand side of (6.50). After expansion and considerable cancellation, we rec-

ognize the form for the right-hand side.

From the above result, we can deduce matrix identities analogous to

Corollary 4.3.

Corollary 6.2. The matrix factor appearing in (6.46) has the determi-

nant evaluation

(6.51) det
(
1± 1

2
ΔvBn

)
=−2Hn(R∓ΔvS)

Rnan(v±)
, n≥ 0,

and its inverse is(
1± 1

2
ΔvBn

)−1

=− an(v±)

2Hn(R∓ΔvS)

(
Rn ± 1

2ΔvΞn ∓1
2ΔvΦn

∓1
2ΔvΨn Rn ± 1

2ΔvΓn

)
, n≥ 0.

(6.52)
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Proof. We note from the matrix formula for Bn (6.37) that

det
(
1± 1

2
ΔvBn

)
=

1

R2
n

{
R2

n +
1

4
Δv2[ΓnΞn −ΦnΨn]±

1

2
ΔvRn(Γn +Ξn)

}

=−2Hn

Rn

R∓ΔvS

an(v±)
,

where we have used (6.50) and (6.39) in the last step. The inversion formula

follows from this last result and the standard formula for an inverse.

Consequent to the results of Corollary 6.2, we have the following expres-

sion for the matrix product appearing in (6.46).

Corollary 6.3. The matrix product (6.46) has the evaluation

(
1− 1

2
ΔvBn

)−1(
1 +

1

2
ΔvBn

)

=
an(v−)

2Hn(R+ΔvS)

×
(
2Rn + 2Hn

R−ΔvS
an(v+) +ΔvΓn ΔvΦn

ΔvΨn 2Rn + 2Hn
R+ΔvS
an(v−) −ΔvΓn

)
,

(6.53)
n≥ 0,

=−an(v−)

(
pn(;v+)

pn−1(;v+)

)
⊗

(
qn−1(;v−), −qn(;v−)

)

+ an(v−)
R−ΔvS

R+ΔvS

(
qn(;v+)

qn−1(;v+)

)
⊗

(
pn−1(;v−), −pn(;v−)

)
.

Proof. Using the inverse (6.52), we form the matrix product and employ

(6.50) to simplify the diagonal elements, with the result given by (6.53).

This result also motivates the following definitions

R+ := 2Rn + 2Hn
R−ΔvS

an(v+)
+ΔvΓn,(6.54)

R− := 2Rn + 2Hn
R+ΔvS

an(v−)
−ΔvΓn,(6.55)

P+ :=−ΔvΦn, P− := ΔvΨn,(6.56)
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valid for n≥ 1, and for n= 0 we have

R+(n= 0) :=−2
H0

a0(v−)

γ0(v+)

γ0(v−)
(R+ΔvS),(6.57)

R−(n= 0) :=−2
H0

a0(v+)

γ0(v−)

γ0(v+)
(R−ΔvS),(6.58)

P+(n= 0) := 2ΔvH0γ0(v+)γ0(v−)T, P−(n= 0) := 0,(6.59)

together with

(6.60) B∗
n :=

(
R+ −P+

P− R−

)
.

In these variables the deformation bi-linear relation (6.50) takes the form

(6.61) detB∗
n =R+R− +P+P− =

4H2
n

an(v+)an(v−)
(R2 −Δv2S2).

It is of advantage to write out recurrence-deformation compatibility equa-

tions in terms of R±,n,P±,n, where again we append a subscript to indicate

the dependence on the index n. We will henceforth denote variables eval-

uated at the advanced and retarded deformation variable by ân = an(v+),

ǎn = an(v−).

Corollary 6.4. Solving (6.46) for B∗
n+1, we deduce

Hn

Hn+1
ân+1ǎn+1P+,n+1

=−ǎn(x− b̂n)R+,n + ân(x− b̌n)R−,n(6.62)

+ (x− b̂n)(x− b̌n)P+,n + ânǎnP−,n,

Hn

Hn+1
P−,n+1 =P+,n,(6.63)

Hn

Hn+1
R+,n+1 =

ân
ân+1

R−,n +
x− b̂n
ân+1

P+,n,(6.64)

Hn

Hn+1
R−,n+1 =

ǎn
ǎn+1

R+,n −
x− b̌n
ǎn+1

P+,n.(6.65)

The compatibility relation between the spectral and deformation divided-

difference equations takes the following form.
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Proposition 6.11. The spectral matrix An(x;u) and the deformation

matrix Bn(x;u) satisfy the D-Schlesinger equation

DuAn −DxBn +MuAn ·MxBn −MxBn ·MuAn

=
1

4
Δv2MxBn ·DuAn ·

(
1− 1

16
Δy2Δv2DxBn ·DuAn

)−1

×
(
MxBn +

1

4
Δy2DxBn ·MuAn

)
(6.66)

− 1

4
Δy2MuAn ·DxBn ·

(
1− 1

16
Δy2Δv2DuAn ·DxBn

)−1

×
(
MuAn +

1

4
Δv2DuAn ·MxBn

)
,

or the equivalent form

(
1− 1

2
ΔyAn(;v+)

)−1(
1 +

1

2
ΔyAn(;v+)

)

×
(
1− 1

2
ΔvBn(y−; )

)−1(
1 +

1

2
ΔvBn(y−; )

)
(6.67)

=
(
1− 1

2
ΔvBn(y+; )

)−1(
1 +

1

2
ΔvBn(y+; )

)

×
(
1− 1

2
ΔyAn(;v−)

)−1(
1 +

1

2
ΔyAn(;v−)

)
.

Proof. The first form follows from DxDuYn = DuDxYn and the Leibniz

formulas of (2.10) and (2.11), from which we deduce

[
1− 1

16
Δy2Δv2DuAn ·DxBn

]
DxMuY

=
[
MuAn +

1

4
Δv2DuAn ·MxBn

]
MuMxY,[

1− 1

16
Δy2Δv2DxBn ·DuAn

]
DuMxY

=
[
MxBn +

1

4
Δy2DxBn ·MuAn

]
MxMuY.

Using equivalent forms of the spectral and deformation divided-difference

equations (4.35) and (6.37), we see that
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Y (y+;v+) =
(
1− 1

2
ΔyAn(;v+)

)−1(
1 +

1

2
ΔyAn(;v+)

)
Y (y−;v+)

=
(
1− 1

2
ΔyAn(;v+)

)−1(
1 +

1

2
ΔyAn(;v+)

)

×
(
1− 1

2
ΔvBn(y−; )

)−1(
1 +

1

2
ΔvBn(y−; )

)
Y (y−;v−),

whereas

Y (y+;v+) =
(
1− 1

2
ΔvBn(y+; )

)−1(
1 +

1

2
ΔvBn(y+; )

)
Y (y+;v−)

=
(
1− 1

2
ΔvBn(y+; )

)−1(
1 +

1

2
ΔvBn(y+; )

)

×
(
1− 1

2
ΔyAn(;v−)

)−1(
1 +

1

2
ΔyAn(;v−)

)
Y (y−;v−).

This gives us the form (6.67).

Remark 6.2. Let us denote the two fixed points of the x-lattice by xL
and xR. By analogy with the linear lattices, let us conjecture the existence

of fundamental solutions to (4.35) about x = xL, xR which we denote by

YL, YR, respectively. Furthermore, let us define the connection matrix

(6.68) P (x;u) :=
(
YR(x;u)

)−1
YL(x;u).

From (4.35) it is clear that P is a D-constant function with respect to x,

that is to say,

P (y+;u) = P (y−;u).

In addition, it is clear from (6.37) that this type of deformation is also a

connection preserving deformation in the sense that

(6.69) P (x;v+) = P (x;v−).

The compatibility relation (6.67) χB∗
n(y+;u)A

∗
n(x;v−) =A∗

n(x;v+)B
∗
n(y−;

u) may be written componentwise in the new variables in the more practical

form as

χ
[
W+(x;v−)R+(y+;u)−T−(x;v−)P+(y+;u)

]
(6.70)

=W+(x;v+)R+(y−;u)−T+(x;v+)P−(y−;u),
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χ
[
T+(x;v−)R+(y+;u) +W−(x;v−)P+(y+;u)

]
(6.71)

= T+(x;v+)R−(y−;u) +W+(x;v+)P+(y−;u),

χ
[
T−(x;v−)R−(y+;u) +W+(x;v−)P−(y+;u)

]
(6.72)

= T−(x;v+)R+(y−;u) +W−(x;v+)P−(y−;u),

χ
[
W−(x;v−)R−(y+;u)−T+(x;v−)P−(y+;u)

]
(6.73)

=W−(x;v+)R−(y−;u)−T−(x;v+)P+(y−;u),

where χ is defined by (6.17). The real content of (6.70)–(6.73) lies in the

case n≥ 1 as the n= 0 evaluations of (6.72) are trivially satisfied, whereas

that of (6.70) and (6.73) are identically satisfied due to the definition (6.17),

and (6.71) is equivalent to the consistency identity (6.16).

Having assembled all the ingredients of our theory, we have to draw them

together and perform three tasks. The first is to parameterize the spectral

coefficients in a minimal way consistent with the constraints of the spectral

structures, namely, (4.46). The second task is to close this system, that is

to say, relate the deformation coefficients to the spectral coefficients, prefer-

ably with the parameterization found in the first step. The third task is to

derive the dynamical equations for this parameterization with respect to the

deformation variable. There are two avenues of approach to the problem of

extracting useful information from the above compatibility relations (6.70)–

(6.73). One way is to clear the denominators on both sides and resolve the

resulting expressions in terms of
⊕

k≥0 x
k +Δy

⊕
k≥0 x

k. This is useful for

certain results, as we will see in the application. The other method is to work

with the evaluation of the spectral and deformation coefficients at certain

key ordinates and construct a parameterization based upon these variables.

A fundamental and crucial role will be played by the zeros of the polyno-

mials W 2 −Δy2V 2, Θn and χ as these ordinates, however these cannot be

interpreted as singularities in the spectral plane.

Remark 6.3. The compatibility relations (6.70)–(6.73) are satisfied iden-

tically at the common zeros of (W 2−Δy2V 2)(x̃;v±) in the sense that both

sides of the relations are identically zero, that is to say, at those fixed zeros

independent of u. In addition, one can show that the left-hand side of

the bilinear relation (6.61) vanishes at the movable zeros in either of the

two above cases. This implies that when (W 2 −Δy2V 2)(x̃;v±) = 0, then

(R2 −Δv2S2)(ỹ±;u) = 0.
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§7. The M = 3,L= 1 cases and deformation of the Askey–Wilson

OPS

The previous sections treated the D-semiclassical orthogonal polynomial

system with general divided-difference operators D, M and arbitrary degrees

M , L for the spectral and deformation coefficients, respectively. Here we

apply the foregoing theory to the symmetrized form of the q-quadratic lat-

tice in the elliptic subcase, which singles out the Askey–Wilson weight and

the nontrivial examples of deformations of this weight. We will consider the

situation of the deformation variable also on this subcase of the q-quadratic

lattice. The deformation variable is u = (t + t−1)/2 with t = eiφ, and the

analogous relations for the nodes on the deformation lattice are

v+ + v− = (q1/2 + q−1/2)u,(7.1)

v+ − v− =
1

2
(q1/2 − q−1/2)(t− t−1),(7.2)

Δv2 = (q1/2 − q−1/2)2(u2 − 1),(7.3)

v+v− = u2 +
1

4
(q1/2 − q−1/2)2.(7.4)

7.1. Moments and integrals

Our starting point is the simplest extension of the M = 2 case

(7.5) W ±ΔyV = z∓3
6∏

j=1

(1− ajq
−1/2z±1),

which is a minimal, natural extension of the Askey–Wilson case given by

(5.7). The reader should appreciate that all of the conclusions we are going

to draw will follow entirely from (7.5), so that any valid solution of the

Pearson equation (4.2) for the weight with this data is as acceptable as

any other. The most important consideration in selecting a solution is the

support for the weight and existence of the moment data. As we will see

(i.e., in Propositions 7.2 and 7.7), the only place where a specific choice

for the weight enters is in determining the initial values of recurrences or

divided-difference equations. The four fixed parameters a1, . . . , a4 appear

in the same form as they do in the Askey–Wilson weight (M = 2), and

so the weight constitutes the base expression, and we seek to introduce

an extra parameter and its associated deformation variable. We set a5 = αt,

a6 = αt−1, and we designate α, t as the deformation parameter and variable,

respectively.
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Remark 7.1. One might entertain the possibility of a weight with the

spectral data

(7.6) W ±ΔyV = z∓2
4∏

j=1

(1− q−1/2ajz
±1)(1− q−1/2tz±1)(1− qα−1/2z∓1),

which is an M = 3 case on a q-quadratic spectral lattice, however it is q-

linear in either of the deformation variables t, qα. This is in fact the spectral

data for the weight in the integral representation of the very-well-poised

8W7 basic hypergeometric function (see [81, (1.13)]). This function is the

classical seed solution for the E
(1)
7 q-Painlevé system as constructed by [52].

Our first undertaking is to derive linear recurrences for the moments

which will be required in the verification of key identities from Sections 4 and

6, to make contact with the n= 0 seed solutions of the evolution equations

derived later, and for checking purposes. Through suitable choices of param-

eters k, b, a, the moment recurrences can be recast as q-difference equations

for an integral I3(a1, . . . , a6) which is a generalization of the Askey–Wilson

integral (5.24).

Proposition 7.1 ([97]). Let σk denote the kth elementary symmetric

polynomial in a1, . . . , a4 or a1, . . . , a6, depending on the context. The integral

I3(a1, . . . , a6) satisfies a three-term recurrence in one variable, which we take

without loss of generality with respect to a1,

0 =
∏
j �=1

(a1aj − 1)I3(a1, . . .)

+
[
1 + q−1 − a1

(∑
j �=1

aj − qa1

)
(7.7)

+

6∏
1

aj

(
a1

5∑
k �=1

a−1
k − q−1 − (q+ 1)a21

)]
I3(qa1, . . .)

+ q−1
( 6∏

1

aj − 1
)
I3(q

2a1, . . .).

In addition, the integral I3(a1, . . . , a6) satisfies a three-term recurrence in

two variables, taken to be with respect to a5, a6, which constitutes a pure



SEMICLASSICAL ORTHOGONAL POLYNOMIAL SYSTEMS 193

recurrence in the deformation variable u

0 = (a5 − qa6)
4∏

j=1

(1− aja6)I3(. . . , q
2a5, a6)

− (a5 − a6)
[
(1 + q)(1 + qa5a6σ2 + q2a25a

2
6σ4)

− (qa5 − a6)(qa6 − a5)(q+ σ4)(7.8)

− q(a5 + a6)(σ1 + qa5a6σ3)
]
I3(. . . , qa5, qa6)

+ (qa5 − a6)
4∏

j=1

(1− aja5)I3(. . . , a5, q
2a6).

Proof. The first recurrence can be read off from (4.11) specialized to

k = 0, after evaluating the expansion coefficients

δ3,2(a) =
σ6 − 1

q5/2a2
,

δ3,1(a) =
1

q5/2a2
[
qa(σ5 − σ1)− (1 + q)(1 + qa2)(σ6 − 1)

]
,

δ3,0(a) =
1

q3/2a2
[
(1 + a2 + a4)(σ6 − 1)− (a+ a3)(σ5 − σ1) + a2(σ4 − σ2)

]
.

The second recurrence follows from combining the first with the general

identity

akI(qaj , . . . , ak)− ajI(aj , . . . , qak) = (ak − aj)(1− ajak)I(aj , . . . , ak),

which applies to any integral with products of φ∞(x;aj)φ∞(x;ak) in the

denominator of the integrand and any distinct pair aj �= ak.

Remark 7.2. A particular solution of (7.8) which serves as a concrete

example of a moment sequence is one taken from [97, Proposition 3.4]

m0,0(t) = t1/2(qαt,α−1t−1, q1/2αt, q1/2α−1t−1; q)∞

× (a−1
1 σ4αt, a

−1
2 σ4αt, a

−1
3 σ4αt, a

−1
4 σ4αt; q)∞

(a1αt, a2αt, a3αt, a4αt, t−2, σ4α2t2; q)∞
(7.9)

× 8W7(q
−1σ4α

2t2; q−1σ4α
2, a1αt, a2αt, a3αt, a4αt; qα

−2)

+ (t �→ t−1),

although this is not a general solution of the q-difference equation, given

subsequently as (7.78).
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Henceforth we denote σ̃j as the jth elementary symmetric function of the

parameters q−1/2a1, . . . , q
−1/2a6. If σk denotes the kth elementary symmet-

ric function of a1, a2, a3, a4, then

σ̃1 = q−1/2(σ1 + 2αu),(7.10)

σ̃2 = q−1(σ2 + α2 + 2ασ1u),(7.11)

σ̃3 = q−3/2(σ3 + α2σ1 + 2ασ2u),(7.12)

σ̃4 = q−2(σ4 + α2σ2 + 2ασ3u),(7.13)

σ̃5 = q−5/2(α2σ3 + 2ασ4u),(7.14)

σ̃6 = q−3α2σ4.(7.15)

We will find it advantageous to define two “analogues” of the integers or

half-integers s by [s] := qsσ̃6 − q−s and {s} := qsσ̃6 + q−s. For convenience,

we employ the notations w± for the evaluations w± ≡W (±1) =±1− σ̃1 ±
σ̃2− σ̃3± σ̃4− σ̃5± σ̃6. We also require the coordinates xj and x̃j defined in

terms of the parameters by xj =
1
2(aj +a−1

j ) and x̃j =
1
2(q

−1/2aj + q1/2a−1
j ).

Finally, let us define the polynomial w(z) :=
∏4

j=1(1− q−1/2ajz), which is

not to be confused with the weight w(x;u).

Definition 7.1. Note that we have six free parameters at our disposal,

a1, . . . , a4, α ∈ C, n ∈ Z≥0 and one variable t subject henceforth to the fol-

lowing generic conditions :

(i) q �= 1,

(ii) |q−1/2aj | �= 1 so that x̃j /∈ (−1,1) for j = 1, . . . ,4,

(iii) |q−1/2α| �= 1 so that q−1/2α+ q1/2α−1 /∈ (−1,1),

(iv) α �= 0,±q1/2,

(v) t �=±1,

(vi) [n], [n+ 1
2 ] �= 0.

Situations where one or more of the above conditions are violated have to

be treated separately, which we refrain from doing here.

As a consequence of (7.5), we have

W (x) = 4(1 + σ̃6)x
3 − 2(σ̃1 + σ̃5)x

2

(7.16)
+ (σ̃2 + σ̃4 − 3− 3σ̃6)x+ σ̃1 − σ̃3 + σ̃5,
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V (x) =
1

q1/2 − q−1/2

[
−4(1− σ̃6)x

2 + 2(σ̃1 − σ̃5)x

(7.17)
+ 1− σ̃2 + σ̃4 − σ̃6

]
.

The theory detailed in Section 4 allows us to evaluate the third spectral

data polynomial.

Proposition 7.2 ([97]). The polynomial U(x) is given by

U(x) =
4

(q1/2 − q−1/2)

[
m0,0

(
−2

[1
2

]
x+ q1/2σ̃5 − q−1/2σ̃1

)

− [1](m0,+ +m0,−)
]
,

(7.18)

where m0,± =
∫
Dxw(x;u)z±.

Proof. We start with

(7.19) ΔyU(x) = (W −ΔyV )f(y+)− (W +ΔyV )f(y−),

and employ the proof in [97]. Having achieved the task of expanding the

right-hand side of (7.19) in canonical basis polynomials, all we require are

explicit expressions for the coefficients given below:

κ3,2(a) =
1

2q9/2a3
[
(1 + q+ q2)(1 + q2a2)(1 + σ6)− q2a(σ1 + σ5)

]
,(7.20)

κ3,3(a) =− 1 + σ6
2q9/2a3

.(7.21)

The result is (7.18).

7.2. Spectral structure

Our next task is to construct a minimal parameterization of the spectral

matrix An(x;u), which is the subject of the following proposition. We also

recall the large x expansions for the spectral data and coefficients of a more

explicit nature which will be of importance:

W ±ΔyV ∼
[
w± (q1/2 − q−1/2)v

]
xM + · · · ,(7.22)

Wn ∼ 1

4

[
(1 + qn)(1 + q−n)w

(7.23)
+ (q1/2 − q−1/2)(qn − q−n)v

]
xM + · · · ,



196 N. S. WITTE

Θn ∼
[qn+1/2 − q−n−1/2

q1/2 − q−1/2
w

(7.24)

+ (qn+1/2 + q−n−1/2)v
]
xM−1 + · · · ,

Ωn + V ∼ 1

2

[ qn − q−n

q1/2 − q−1/2
w+ (qn + q−n)v

]
xM−2 + · · · ,(7.25)

for some constants w,v independent of n,x.

Proposition 7.3. Let one of our free variables, λn(u), be the zero of

Θn(x;u) with respect to x. Also define the other independent variables for

n≥ 0 by

νn(u)≡ 2Wn(λn;u)−W (λn;u),
(7.26)

μn(u)≡Ωn(λn;u) + V (λn;u),

which are related by the spectral conic equation

(7.27) ν2n −W 2(λn) =Δ(λ2
n − 1)

[
μ2
n − V 2(λn)

]
,

again valid for n ≥ 0. Let us assume that λn(u) �= ±1 for all n,u. The

spectral coefficients for the M = 3 deformed Askey–Wilson OPS are param-

eterized by λn, and either νn or μn, through the expressions

2Wn(x;u)−W (x;u)

=
x2 − 1

λ2
n − 1

νn + (x− λn)
[
4{n}(x2 − 1)(7.28)

+
1

2
w+

x+ 1

1− λn
+

1

2
w−

x− 1

1 + λn

]
,

Ωn(x;u) + V (x;u)

= μn + 4
[n]

q1/2 − q−1/2
x(x− λn)

+
16

q1/2 − q−1/2

σ̃6
[n]

[ σ̃1σ̃6 + σ̃5
4σ̃6

− λn

]
(x− λn)(7.29)

+
1

q1/2 − q−1/2

{n}
[n]

(x− λn)

×
[ νn
λ2
n − 1

+
1

2
w+

1

1− λn
+

1

2
w−

1

1 + λn

]
,
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and

(7.30) Θn(x;u) = 8
[n+ 1

2 ]

q1/2 − q−1/2
(x− λn),

for n≥ 0.

Proof. First, we recall the spectral data polynomials given by (7.5), (7.16),

and (7.17). The product W 2−Δy2V 2 plays a significant role, and therefore

we define another set of elementary symmetric polynomials by

W 2 −Δy2V 2 =C∞

6∏
j=1

(x− x̃j)

(7.31)
=C∞[x6 − e1x

5 + e2x
4 − e3x

3 + e4x
2 − e5x+ e6],

where C∞ = 64σ̃6. We parameterize the spectral coefficients in the following

way:

2Wn −W =w3x
3 +w2x

2 +w1x+w0,(7.32)

Θn =
+(x− λn), Θn−1 =
−(x− λn−1),(7.33)

Ωn + V = v2x
2 + v1x+ v0,(7.34)

where the leading order coefficients in each are trivial and given by using

(7.16) and (7.17) in the expansions (4.28), (4.29), and (4.30):

(7.35) w3 = 4{n}, 
+ = 8
[n+ 1

2 ]

q1/2 − q−1/2
, v2 = 4

[n]

q1/2 − q−1/2
.

From the fundamental bilinear relation (4.46), we get a system of quadratic

polynomial equalities

w2
3 −Δv22 =C∞,(7.36)

2w2w3 − 2Δv1v2 =−C∞e1,(7.37)

2w1w3 +w2
2 −Δ(v21 − v22 + 2v0v2) + a2nΔ
+
− =C∞e2,(7.38)

2w1w2 + 2w0w3 − 2Δ(v0v1 − v1v2)
(7.39)

− a2nΔ
+
−(λn + λn−1) =−C∞e3,
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w2
1 + 2w0w2 −Δ(v20 − v21 − 2v0v2)

(7.40)
+ a2nΔ
+
−(λnλn−1 − 1) =C∞e4,

2w0w1 + 2Δv0v1 + a2nΔ
+
−(λn + λn−1) =−C∞e5,(7.41)

w2
0 +Δv20 − a2nΔ
+
−λnλn−1 =C∞e6,(7.42)

where Δ is, again, defined as (q1/2− q−1/2)2. Now (7.42), (7.40), (7.38), and

(7.36) imply (w0 +w2)
2 + (w1 +w3)

2 = C∞(1 + e2 + e4 + e6), while (7.41),

(7.39), and (7.37) imply 2(w0+w2)(w1+w3) =−C∞(e1+ e3+ e5). Forming

the sum and difference of these two later relations, we conclude that

w1 +w3 =
εW (1) + ε′W (−1)

2
,

w0 +w2 =
εW (1)− ε′W (−1)

2
,

(7.43)

where ε, ε′ = ±1 and are yet to be determined. Using (7.43) along with

the above definition we can solve for w0,w2, which only leaves the signs

ε, ε′ unresolved. These can be fixed by requiring that the n= 0 evaluation

of 2Wn − W precisely reproduces W . This is identically true for all free

parameters a1, . . . , a6 provided that ε = +1, ε′ = −1, and yields (7.46) and

(7.44). The above coefficients are given by

w2 =
νn

λ2
n − 1

−w3λn −
1

2
W (1)

1

λn − 1
+

1

2
W (−1)

1

λn + 1
,(7.44)

w1 =−w3 +
1

2
W (1)− 1

2
W (−1),(7.45)

w0 =− νn
λ2
n − 1

+w3λn +
1

2
W (1)

λn

λn − 1
+

1

2
W (−1)

λn

λn + 1
.(7.46)

We observe that this condition also gives ν0 =W (λ0), as it must. Through

knowledge of w2 and utilizing (7.37) we can determine v1, which is given in

(7.47):

Δv2
w3

v1 =
νn

λ2
n − 1

−w3λn +
1

2

C∞e1
w3

(7.47)

− 1

2
W (1)

1

λn − 1
+

1

2
W (−1)

1

λn + 1
.
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However to find the remaining coefficient v0 we require μn, and this result

is given by (7.48):

Δv2
w3

v0 =
Δv2
w3

μn −
λn

λ2
n − 1

νn +
C∞
w3

λ2
n −

1

2

C∞e1
w3

λn

(7.48)

+
1

2
W (1)

λn

λn − 1
− 1

2
W (−1)

λn

λn + 1
.

When we examine Ωn+V at n= 0 (recall that Ω0 = 0), we find in addition

to previously found relations the equality μ0 = V (λ0), again confirming our

definition. Therefore, we have succeeded in relating the subleading coeffi-

cients explicitly in terms of two independent variables.

We now address the question of representations for the three-term recur-

rence coefficients. We will find that another set of variables, although equiv-

alent to νn and μn, will lead to the simplest forms for the relations we seek:

w2,n :=
νn

λ2
n − 1

− 4{n}λn −
1

2
W (1)

1

λn − 1
+

1

2
W (−1)

1

λn + 1
,(7.49)

v0,n := (q1/2 − q−1/2)μn − 4[n]λ2
n

(7.50)

− 1

[n]
λn

(
{n}w2,n + 4(σ̃1σ̃6 + σ̃5)

)
.

To achieve this outcome, we require the following recurrence relations.

Proposition 7.4. The dynamical variables w2,n(u) and v0,n(u) satisfy

the following system of first-order coupled recurrence relations in n

w2,n+1 −w2,n =−4(q1/2 − q−1/2)
[
n+

1

2

]
λn,(7.51)

v0,n+1 + v0,n =−
[n+ 1

2 ]

[n+ 1][n]

×
(
2
{
n+

1

2

}
λnw2,n + 8

[
n+

1

2

]
[n]λ2

n(7.52)

+ 4(q1/2 + q−1/2)(σ̃1σ̃6 + σ̃5)λn

)
,

and are valid for n ≥ 0 and subject to the initial conditions U(λ0;u) = 0,

w2,0 =−2(σ̃1 + σ̃5), and v0,0 = 1− σ̃2 + σ̃4 − σ̃6.
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Proof. For the first recurrence, we employ our expressions (7.28) and

(7.30) in (4.43) and equate the coefficients. The coefficients of x3 and x are

identically satisfied whereas that of either x2 or x0 yields (7.51). The second

recurrence follows from the examination of the x0 terms in (4.44) and the

employment of the first recurrence. We note that the terms in x2 cancel

identically, as they must.

Explicit evaluations of the three-term recurrence coefficients can be given

in terms of this alternative set of variables.

Proposition 7.5. The three-term recurrence coefficients are found to be

given by

16
[
n+

1

2

]
[n]2

[
n− 1

2

]
a2n

= σ̃6w
2
2,n + 2(σ̃1σ̃6 + σ̃5){n}w2,n + 2[n]3v0,n

(7.53)
+ 2[n]2

(
4σ̃6 + 2σ̃4 + 2σ̃2σ̃6 + 2σ̃1σ̃5

− {n}(1 + σ̃2 + σ̃4 + σ̃6) + 2[n]2
)
+ 4(σ̃1σ̃6 + σ̃5)

2,

for n≥ 0 assuming a20 = 0, and

[n+ 1][n]bn =−1

4

{
n+

1

2

}
w2,n −

[
n+

1

2

]
[n]λn

− 1

2
(q1/2 + q−1/2)(σ̃1σ̃6 + σ̃5),

(7.54)

again valid for n≥ 0.

Proof. Using (7.38), we can solve for a2n. Observe that the right-hand side

of this equation is independent of n whereas individual terms on the left-

hand side are. If we assume that a20 = 0, then the right-hand side is equal

to that of the left-hand side evaluated at n = 0, which we know because

we can express it simply in terms of the parameters. This means that a2n
is expressible as a sum of differences, and after considerable simplification

we arrive at the expression (7.53). To find (7.54), we start with (4.44) and

use our previous results for (7.30) and (7.29). Examining the terms in x, we

find an expression for bn in terms of λn, νn and λn+1, νn+1, or equivalently
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in terms of λn,w2,n and λn+1,w2,n+1. Using (7.51), we can eliminate the

w2,n+1 term and after some factorization we arrive at (7.54).

We will not pursue the theory for the n �→ n+ 1 recurrences any further

here but refer the reader to [96]. Consequently, we will drop the n subscript

from most variables until Section 7.4.

The foregoing parameterization of our system given in Proposition 7.3 is

not useful in the investigations of the u- or t-evolution of our system and

we require an alternative construction. In conformance with this, we define

the auxiliary variables l(t) and z±(t) by

λ :=
1

2
(l+ l−1),(7.55)

z± := ν ± 1

2
(q1/2 − q−1/2)[l− l−1]μ,(7.56)

where, in the first case, the inversion is given by the branch whereby l→∞
when λ→∞, and an identical choice is made for the second case.

Proposition 7.6. The spectral matrix elements have an alternative

parameterization

(7.57) T+(z; t) = 2an

[
n+

1

2

]
(z − z−1)(z − l)(1− l−1z−1),

and

[n]W+(z; t)

= z+
(z − z−1)(z − l−1)(qnσ̃6 − q−nlz−1)

(l− l−1)2

+ z−
(z − z−1)(z − l)(qnσ̃6 − q−nl−1z−1)

(l− l−1)2

+ [n](z − z−1)(z − l)(1− l−1z−1)(qnσ̃6z − q−nz−1)(7.58)

+
[
σ̃6σ̃1 + σ̃5 − 2σ̃6(l+ l−1)

]
(z − z−1)(z − l)(1− l−1z−1)

+
1

2
w+

(z + 1)(z − l)(z−1 − l)(qnσ̃6 − q−nz−1)

(l− 1)2

− 1

2
w−

(z − 1)(z − l)(z−1 − l)(qnσ̃6 + q−nz−1)

(l+ 1)2
,
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and

[n]W−(z; t)

= z−
(z − z−1)(z − l−1)(qnσ̃6lz

−1 − q−n)

(l− l−1)2

+ z+
(z − z−1)(z − l)(qnσ̃6l

−1z−1 − q−n)

(l− l−1)2

− [n](z − z−1)(z − l)(1− l−1z−1)(qnσ̃6z
−1 − q−nz)(7.59)

−
[
σ̃6σ̃1 + σ̃5 − 2σ̃6(l+ l−1)

]
(z − z−1)(z − l)(1− l−1z−1)

+
1

2
w+

(z + 1)(z − l)(z−1 − l)(qnσ̃6z
−1 − q−n)

(l− 1)2

+
1

2
w−

(z − 1)(z − l)(z−1 − l)(qnσ̃6z
−1 + q−n)

(l+ 1)2
.

Proof. These formulas can be viewed as Laurent interpolating polynomi-

als satisfying the following evaluations at the given nodes:

T±(z
−1; t) = −T±(z; t),(7.60)

T+(l
±1; t) = 0,(7.61)

T+(±1; t) = 0,(7.62)

T+(z; t) ∼
z→∞

2an

[
n+

1

2

]
z2,(7.63)

T+(z; t) ∼
z→0

−2an

[
n+

1

2

]
z−2,(7.64)

and

W±(z
−1; t) = W∓(z; t),(7.65)

W±(l; t) = z±,(7.66)

W±(±1; t) = w±,(7.67)

W+(z; t) ∼
z→∞

qnσ̃6z
3,(7.68)

W+(z; t) ∼
z→0

q−nz−3.(7.69)

The above formulas are also a consequence of the parameterization (7.28)–

(7.29).
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Remark 7.3. We note that the eigenvalues of A∗
n(z; t) as z → 0,∞ are

qnσ̃6, q
−n, while those at the fixed points of the lattice, of the matrix

A∗
n(±1; t), are w±. Under the mapping interchanging the interior and exte-

rior of the unit circle in the spectral variable z �→ 1/z, we observe that

T± �→ −T± and W± �→ W∓. As a consequence A∗
n(z; )A

∗
n(z

−1; ) = (W 2 −
Δy2V 2)Id, and therefore the mapping corresponds to a reversal of direction

on the spectral lattice. With respect to the mapping l �→ l−1 we note that

this must be taken with z+ ↔ z−, and conclude that T+,W± are invariant

under this type of transformation. In addition, A∗
n is symmetrical under

t �→ t−1.

7.3. Deformation structure

The deformation data polynomials R(x;u), S(x;u) are computed as

(7.70) R±ΔvS = (1− q−1/2αt±1z)(1− q−1/2αt±1z−1) = φ1(x; q
−1/2αt±1),

which implies

R= 1− α2q−1 − 2αq−1/2xu+ 2α2q−1u2,(7.71)

S = 2
α

q− 1
(αq−1/2u− x),(7.72)

indicating that L= 1. We observe that the polynomial

(7.73) R2 −Δv2S2 = 4q−1α2(x− x̃5)(x− x̃6)

divides

(7.74) W 2 −Δy2V 2 = 64q−3σ4α
2

4∏
j=1

(x− x̃j) · (x− x̃5)(x− x̃6),

in conformity with Remark 6.3. The role of the common zeros x̃5, x̃6 will be

crucial in the ensuing investigations. We also note that these points can be

represented on a u-lattice, thus x̃5 =E−
u x5 and x̃6 =E+

u x6.

We can compute the remaining deformation data polynomial T (x;u),

which will be of degree zero.

Proposition 7.7 ([97, Section 3.2]). The deformation data polynomial

T (x;u) has the evaluation

(7.75) T (x;u) =
4α

q− 1

tm0,0(v−)− t−1m0,0(v+)

t− t−1
.
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Proof. We start from the formula

(7.76) ΔvT (x;u) = (R−ΔvS)f(x;v+)− (R+ΔvS)f(x;v−),

and employ the expansion (3.46) for some parameter a. Setting a to one of

a1, a2, a3, a4 and utilizing the identity

φ1(x; b)

φn+1(x;a)
=

(1− abqn)(1− ba−1q−n)

φn+1(x;a)
+

ba−1q−n

φn(x;a)
,

we find, by equating coefficients, the result (7.75). Note that m0,0 does not

depend on a. If one chooses a from a5, a6, then one requires the additional

identity
1

φn(x; qa)
=

(1− qn)(a2 − q−n)

φn+1(x;a)
+

q−n

φn(x;a)

in order to merge the two series in (7.76). Alternatively, one can compute T

from the initial value (6.43) using the asymptotic expression for Φ0 as given

by (6.33).

As a check, we can verify that the spectral data polynomials W,V,U

and the deformation data polynomials R,S,T satisfy all of the consistency

relations formulated in Section 6.

Corollary 7.1. The spectral data polynomials W,V,U and the defor-

mation data polynomials R,S,T satisfy the consistency relations (6.4) and

(6.16).

Proof. The first task involving W,V and R,S is elementary, whereas the

second requires a moment relation

[1](m0,+ +m0,−)(t)

=
[
q−2α2σ3 − q−1σ1 + q−3(q− α2)(q2α−1t−1 + σ4αt)

]
m0,0(t)(7.77)

− w(q−1/2αt)

αt

q−1/2tm0,0(q
−1t)− q1/2t−1m0,0(t)

q−1/2t− q1/2t−1
,

and the moment q-difference equation in t

(q−1t− qt−1)w(αt−1)m0,0(q
1/2t)

− q−1/2(q−1/2t− q1/2t−1)
[
(1 + q)(1 + q−1α2σ2 + q−2α4σ4)
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+ q−1α2(q+ σ4)(t− t−1)(q−1t− qt−1)(7.78)

− α(q−1/2t+ q1/2t−1)(σ1 + q−1α2σ3)
]
m0,0(q

−1/2t)

+ (t− t−1)w(q−1αt)m0,0(q
−3/2t) = 0,

which is just (7.8) with a5 �→ q−3/2αt, a6 �→ q−1/2αt−1.

We know for L= 1 that the deformation coefficients can be parameter-

ized, thus

R± = r1±x+ r0±,(7.79)

P± = p±.(7.80)

Furthermore, we know from the large x expansions (6.32)–(6.36) what the

leading terms are, however in contrast to those of the spectral coefficients,

these are related to the three-term recurrence coefficients an, γn in a non-

trivial way.

Corollary 7.2. The leading order terms of the elements of the matrix

B∗
n are given by

r1+ = 4αq−1/2Hn
tγn(v+)

γn−1(v−)
,(7.81)

r1− = 4αq−1/2Hn
γn(v−)

tγn−1(v+)
,(7.82)

p+ = 4αq−1/2Hn

[ tγn(v+)
γn(v−)

− γn(v−)

tγn(v+)

]
,(7.83)

p− = 4αq−1/2anHn−1

an−1

[ tγn−1(v+)

γn−1(v−)
− γn−1(v−)

tγn−1(v+)

]
,(7.84)

for n≥ 1, while for n= 0 one can use γ−1 = a0γ0.

Up to this point we have not exercised a choice regarding the decoupling

factor Hn, but one can take Hn = 1
2an henceforth.

Remark 7.4. We note that the eigenvalues of B∗
n(z; t) as z → 0,∞ are

r1±. By construction, B∗
n is symmetrical with respect to z �→ z−1. Under

the mapping interchanging the interior and exterior of the unit circle in the
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deformation variable t �→ 1/t, we observe (see (6.54), (6.55), and (6.56)) that

P± �→ −P± and R± �→R∓. As a consequence

(7.85) B∗
n(; t)B

∗
n(; t

−1) =
4H2

n

an(v−)an(v+)
(R2 −Δv2S2)Id,

and therefore this mapping corresponds to a reversal of direction on the

deformation lattice.

As part of an efficient methodology, we will require formulas which relate

the lower order terms, with respect to x, of the deformation coefficients to

the leading order term.

Proposition 7.8. The trailing terms of the deformation coefficients are

related to each other and to the spectral parameterization by

p+ = r1+an(v−)− r1−an(v+),(7.86)

p− = r1+an(v+)− r1−an(v−),(7.87)

r0+ =
r1+
Δv2

[
−w2(v+) +w2(v−)

(7.88)
− 2

√
Δ(q−1/2α+ q1/2α−1)(σ̃6q

nt− q−nt−1)
]
,

r0− =
r1−
Δv2

[
w2(v+)−w2(v−)

(7.89)
− 2

√
Δ(q−1/2α+ q1/2α−1)(σ̃6q

nt−1 − q−nt)
]
.

Proof. The formulas given above are ones which involve both shifts up and

down on the u-lattice of the spectral variables, and these are easily derived

by resolving the compatibility relation (6.67) as a Laurent polynomial in z.

Such a polynomial is constructed in our application by substituting the ele-

ments (7.57)–(7.59) and (7.79) and (7.80) into (6.67) and collecting terms.

For the (1,2) component, we find that the leading order nonzero contri-

butions occur at z±7 and the coefficients of both these terms will vanish

if (7.86) holds. In the case of the (2,1) component, the z±7 terms are the

leading nontrivial ones and these both vanish when (7.87) holds. The two

latter relations (7.88) and (7.89) follow from the requirement that the coef-

ficients of the z7 terms of the (1,1) and (2,2) elements vanish, respectively.

Finally, we observe that an independent way of verifying (7.86) and (7.87)

is through a trivial combination of the formulas (7.81)–(7.84).
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A vital part of our analysis consists of resolving the compatibility relations

(6.70)–(6.73) with respect to the zeros and poles of χ(z; t).

Corollary 7.3. The residues of the compatibility relation given in

Proposition 6.11 consist of the following equations:

(i) at the advanced coordinate z = z5 = αt

r1−E
−
u x5 + r0− =−W+(z5; q

1/2t)

T+(z5; q1/2t)
p+,(7.90)

r1+E
−
u x5 + r0+ =−W−(z5; q1/2t)

T−(z5; q1/2t)
p−,(7.91)

(ii) at the advanced coordinate z =E2+
u z6 = q−1αt−1

r1−E
+
u x6 + r0− =

W−(E2+
u z6; q

1/2t)

T+(E
2+
u z6; q1/2t)

p+,(7.92)

r1+E
+
u x6 + r0+ =

W+(E
2+
u z6; q

1/2t)

T−(E
2+
u z6; q1/2t)

p−,(7.93)

(iii) at the retarded coordinate z =E2−
u z5 = q−1αt

r1+E
−
u x5 + r0+ =−W−(E2−

u z5; q
−1/2t)

T+(E
2−
u z5; q−1/2t)

p+,(7.94)

r1−E
−
u x5 + r0− =−W+(E

2−
u z5; q

−1/2t)

T−(E
2−
u z5; q−1/2t)

p−,(7.95)

(iv) and at the retarded coordinate z = z6 = αt−1

r1+E
+
u x6 + r0+ =

W+(z6; q
−1/2t)

T+(z6; q−1/2t)
p+,(7.96)

r1−E
+
u x6 + r0− =

W−(z6; q−1/2t)

T−(z6; q−1/2t)
p−.(7.97)

All the deformation parameters are evaluated at t, u, that is, p±(t), r1±(t),
r0±(t).

Proof. The multiplicative factor (6.17) is given, in this case, by

(7.98) χ(z; t) =
(1− q−1αt−1z)(1− αtz−1)

(1− q−1αtz−1)(1− αt−1z)
.
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At the zeros of χ the right-hand sides of (6.70), (6.71), (6.72), and (6.73)

must vanish, whereas at the poles the left-hand factors must vanish. Thus

for the zero z = z5 = αt applied to (6.70), we deduce (7.90). For the other

zero at z = 1/E2+
u z6 = qα−1t applied to (6.70), we make additional use of

the symmetries of A∗
n and B∗

n with respect to inversion of z to derive (7.92).

At the pole z = E2−
u z5 = q−1αt the residue of (6.70) yields (7.94), whereas

at the other pole z = 1/z6 = α−1t we have to apply the additional symme-

tries to the residue to arrive at (7.96). However we have further relations,

which are equivalent to the four relations derived above, by specializing

the spectral variable in these ways due to the fact that (W 2 −Δy2V 2)(z =

αt, q−1αt−1; q1/2t) = 0, (W 2 −Δy2V 2)(z = q−1αt,αt−1; q−1/2t) = 0, (R2 −
Δv2S2)(z = q−1/2αt; t) = 0, and (R2 −Δv2S2)(z = q−1/2αt−1; t) = 0, which

implies

(W+W− +T+T−)(z = αt, q−1αt−1; q1/2t) = 0,(7.99)

(W+W− +T+T−)(z = q−1αt,αt−1; q−1/2t) = 0,(7.100)

(R+R− +P+P−)(z = q−1/2αt; t) = 0,(7.101)

(R+R− +P+P−)(z = q−1/2αt−1; t) = 0.(7.102)

This means that each of the identities (7.90), (7.92), (7.94), and (7.96) can

take four forms and that the remaining relations (7.91), (7.93), (7.95), and

(7.97) are examples of just one of those forms. This equivalence also ensures

that if the residue condition is satisfied by (6.70), then it is automatically

satisfied by (6.71), (6.72), and (6.73) as well.

Corollary 7.4. The following product relation holds among the spectral

coefficients evaluated at the zeros of the spectral determinant

W+(z5; q
1/2t)

T+(z5; q1/2t)

W−(E2−
u z5; q

−1/2t)

T+(E
2−
u z5; q−1/2t)

=
W+(z6; q

−1/2t)

T+(z6; q−1/2t)

W−(E2+
u z6; q

1/2t)

T+(E
2+
u z6; q1/2t)

.

(7.103)

Proof. By comparing the right-hand sides of the pairs (7.90) and (7.95),

(7.92) and (7.97), (7.94) and (7.91), and (7.96) and (7.93), we see that

W+(z5; q
1/2t)

T+(z5; q1/2t)
p+ =

W+(E
2−
u z5; q

−1/2t)

T−(E
2−
u z5; q−1/2t)

p−,(7.104)
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W−(E2+
u z6; q

1/2t)

T+(E
2+
u z6; q1/2t)

p+ =
W−(z6; q−1/2t)

T−(z6; q−1/2t)
p−,(7.105)

W−(E2−
u z5; q

−1/2t)

T+(E
2−
u z5; q−1/2t)

p+ =
W−(z5; q1/2t)

T−(z5; q1/2t)
p−,(7.106)

W+(z6; q
−1/2t)

T+(z6; q−1/2t)
p+ =

W+(E
2+
u z6; q

1/2t)

T−(E
2+
u z6; q1/2t)

p−.(7.107)

By forming the cross products of the first and second relations, or equiv-

alently the third and fourth, we can establish (7.103), assuming p+p− �= 0.

Taking cross products of the first and third, or second and fourth leads to

the identities that are trivial consequences of the determinantal relation.

Definition 7.2. In conformity with the remark made immediately pre-

ceding Corollary 6.4, let us define the variables with deformation arguments

evaluated at the advanced and retarded coordinates through the notation

l̂= l(q1/2t), ľ= l(q−1/2t), and so on.

Lemma 7.1. One solution for the component p+ is given by

q1/2α−1(t−1 − t)
[
n+

1

2

]r1−ân
p+

=− qtl̂

(l̂− l̂−1)2

[
ẑ+

(αt− l̂)(qt− αl̂)
+

ẑ−

(−α+ qtl̂)(−1 + αtl̂)

]
(7.108)

− 1

αt
(q−n + qn+1t2σ6) +

1

4
w(1)

1

λ̂− 1
+

1

4
w(−1)

1

λ̂+ 1
.

A second solution for the component p+ is

q1/2α−1(t−1 − t)
[
n+

1

2

]r1+ǎn
p+

=
qtľ

(ľ− ľ−1)2

[
ž+

(q− αtľ)(−α+ tľ)
+

ž−
(t− αľ)(−αt+ qľ)

]
(7.109)

− 1

αt
(q−nt2 + qn+1σ6) +

1

4
w(1)

1

λ̌− 1
+

1

4
w(−1)

1

λ̌+ 1
.

Proof. The first relation (7.108) follows from the subtraction of (7.92)

from (7.90) and simplifying. The second relation (7.109) follows from similar

reasoning applied to (7.94) and (7.96).
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Remark 7.5. A profound difference between the expressions (7.108) and

(7.109) and the corresponding formulas in the case of the q-linear spectral

lattice is the presence of both ẑ± (or ž±), whereas in the latter case only

one of these variables is present, which significantly complicates the ensuing

analysis.

Definition 7.3. We define the following sequence of coordinate trans-

formations

z+ = l−2w(l)(1− q−1/2αtl−1)(1− q−1/2αt−1l)
lf − 1

f − l
,(7.110)

z− = l2w(l−1)(1− q−1/2αtl)(1− q−1/2αt−1l−1)
f − l

lf − 1
,(7.111)

where the new variable f(t) is introduced. Clearly, it is apparent that under

the mapping l �→ l−1 we have the interchange z+ ↔ z− and that the product

satisfies the relation (7.27), that is, z+z− =
∏6

j=1(1− q−1/2ajl
±). Let σ4 =

q2s24. In addition, we define the further variable ρ(t) so that

r1+ǎn
p+

:=
1

q1/2[n+ 1
2 ]

2αs4ρ̂− q−nt− qnα2s24t
−1

t− t−1
,(7.112)

r1−ân
p+

:=
1

q1/2[n+ 1
2 ]

2αs4ρ̂− qnα2s24t− q−nt−1

t− t−1
.(7.113)

Together these relations ensure that (7.86) is automatically satisfied. We

further define g(t) by 2ρ := g + g−1. We will find that f, l, g will be our

primary variables.

A consequence of these definitions and Lemma 7.1 is the following trans-

formation formula.

Corollary 7.5. Let us assume that f �= 0,∞, f �= l±1, and w(f) �= 0.

There exists an invertible mapping between ρ(t) and λ(t) with the form

(7.114) −2s4fρ+ 1+ s24f
2 =

w(f)

f2 + 1− 2fλ
.

Proof. Employing the definitions (7.113), (7.110), and (7.111) in (7.108),

we compute the relation

(7.115) 2s4ρ= q−3/2σ3 − s24[l+ l−1] +
w(l)

(l2 − 1)(l− f)
+

l3w(l−1)

(l2 − 1)(lf − 1)
,
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where we have shifted the arguments t �→ q−1/2t of all variables. The rela-

tion (7.114) then follows by performing a partial fraction expansion of the

above equation with respect to the variable l(t) (the former equation can be

thought of as an expansion with respect to f(t)). We also have an alternative

form of the above expression

λ= q1/2
σ3
2σ4

− 1

2s4
(g+ g−1)

− 1

2(g2 − 1)

w(s−1
4 g)

f − s−1
4 g

+
g2

2(g2 − 1)

w(s−1
4 g−1)

f − s−1
4 g−1

.

(7.116)

Remark 7.6. What is surprising about this result in comparison to the

situation with the q-linear lattice is that instead of a linear transformation

between ρ and f , we find one between ρ and λ with f being an intermediary.

Given (7.115), it is clear that there is no linear inversion possible for f .

Our next task is to compute expressions for the four independent evalua-

tions of the spectral matrix elements given on the left-hand sides of (7.104)–

(7.107) in terms of the variables introduced above. We will carry this out in

stages of successive refinement.

Lemma 7.2. The ratios of the evaluated spectral matrix elements satisfy

the relations

ân
ǎn

2αs4ρ̂− q−nt− qnα2s24t
−1

2αs4ρ̂− qnα2s24t− q−nt−1

=
W+(z6; q

−1/2t)

T+(z6; q−1/2t)

T+(z5; q
1/2t)

W+(z5; q1/2t)
(7.117)

=
W−(E2−

u z5; q
−1/2t)

T+(E
2−
u z5; q−1/2t)

T+(E
2+
u z6; q

1/2t)

W−(E
2+
u z6; q1/2t)

.

Proof. Subtracting (7.90) from (7.92) gives

(7.118) r1−(E
+
u x6 −E−

u x5) =
(
W−(E2+

u z6; q
1/2t)

T+(E
2+
u z6; q1/2t)

+
W+(z5; q

1/2t)

T+(z5; q1/2t)

)
p+,

while subtracting (7.94) from (7.96) gives

(7.119) r1+(E
+
u x6 −E−

u x5) =
(
W+(z6; q

−1/2t)

T+(z6; q−1/2t)
+

W−(E2−
u z5; q

−1/2t)

T+(E
2−
u z5; q−1/2t)

)
p+.
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Taking ratios of these two gives

r1+
r1−

=
T+(z5; q

1/2t)T+(E
2+
u z6; q

1/2t)

T+(z6; q−1/2t)T+(E
2−
u z5; q−1/2t)

(7.120)

× T+(z6; q
−1/2t)W−(E

2−
u z5; q

−1/2t) +T+(E
2−
u z5; q

−1/2t)W+(z6; q
−1/2t)

T+(z5; q
1/2t)W−(E

2+
u z6; q

1/2t) +T+(E
2+
u z6; q

1/2t)W+(z5; q
1/2t)

.

Likewise, subtracting (7.91) from (7.93) yields

r1+(E
+
u x6 −E−

u x5)

=−
(
T+(E

2+
u z6; q

1/2t)

W−(E
2+
u z6; q1/2t)

+
T+(z5; q

1/2t)

W+(z5; q1/2t)

)
p−,

(7.121)

and (7.95) from (7.97)

r1−(E
+
u x6 −E−

u x5)
(7.122)

=−
(
T+(z6; q

−1/2t)

W+(z6; q−1/2t)
+

T+(E
2−
u z5; q

−1/2t)

W−(E
2−
u z5; q−1/2t)

)
p−.

Taking the ratio of these latter two equations gives

r1+
r1−

=
W+(z6; q

−1/2t)W−(E2−
u z5; q

−1/2t)

W+(z5; q1/2t)W−(E
2+
u z6; q1/2t)

(7.123)

× T+(z5; q
1/2t)W−(E2+

u z6; q
1/2t) +T+(E2+

u z6; q
1/2t)W+(z5; q

1/2t)

T+(z6; q
−1/2t)W−(E2−

u z5; q
−1/2t) +T+(E2−

u z5; q
−1/2t)W+(z6; q

−1/2t)
.

The factors appearing on the right-hand sides of these two ratios as con-

structed have simple evaluations, the first factor being

T+(z5; q
1/2t)T+(E

2+
u z6; q

1/2t)

T+(z6; q−1/2t)T+(E
2−
u z5; q−1/2t)

=
â2n
ǎ2n

(q2t2 − α2)(α2t2 − 1)(αt− l̂)

(t2 − α2)(α2t2 − q2)(αt− qľ)
(7.124)

× (αt− l̂−1)(qt− αl̂−1)(qt− αl̂)

(αt− qľ−1)(t− αľ−1)(t− αľ)
.
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Employing this evaluation in the first ratio (7.120) yields the evaluation for
the second factor

T+(z6; q
−1/2t)W−(E

2−
u z5; q

−1/2t) +T+(E
2−
u z5; q

−1/2t)W+(z6; q
−1/2t)

T+(z5; q1/2t)W−(E2+
u z6; q1/2t) +T+(E2+

u z6; q1/2t)W+(z5; q1/2t)

=
ǎn

ân

(t2 − α2)(α2t2 − q2)

(q2t2 − α2)(α2t2 − 1)
(7.125)

× (αt− qľ)(αt− qľ−1)(t− αľ−1)(t− αľ)

(αt− l̂)(αt− l̂−1)(qt− αl̂−1)(qt− αl̂)

× 2αs4ρ̂− q−nt− qnα2s24t
−1

2αs4ρ̂− qnα2s24t− q−nt−1
.

Employing this latter factor in the second ratio (7.123), we can construct

two relations involving perfect squares, upon using (7.103). After taking the

square roots, we need to resolve the sign ambiguity. The final result is then

(7.117).

Remark 7.7. In fact, we can make separate evaluations of the numerator

and denominator of the last ratio, which gives us

T+(z5; q
1/2t)W−(E

2+
u z6; q

1/2t) +T+(E
2+
u z6; q

1/2t)W+(z5; q
1/2t)

=
2ân[n+ 1

2 ]

q3α5t4
(q2t2 − α2)(α2t2 − 1)(α2 − q)

(7.126)
× (αt− l̂)(αt− l̂−1)(qt− αl̂)(qt− αl̂−1)

× [2αs4ρ̂− qnα2s24t− q−nt−1]

and

T+(z6; q
−1/2t)W−(E

2−
u z5; q

−1/2t)

+T+(E
2−
u z5; q

−1/2t)W+(z6; q
−1/2t)

=
2ǎn[n+ 1

2 ]

q3α5t4
(t2 − α2)(α2t2 − q2)(α2 − q)(7.127)

× (αt− qľ)(αt− qľ−1)(t− αľ)(t− αľ−1)

× [2αs4ρ̂− q−nt− qnα2s24t
−1].
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In order to proceed any further, we will require representations of the indi-

vidual evaluated spectral coefficients which we give as two distinct partial

fraction expansions. We offer these without proofs as they are the outcome

of straightforward (though lengthy) computations.

Lemma 7.3. The evaluated spectral coefficients possess the rational func-

tion forms in the f, l variables

2t[n]
[
n+

1

2

]
ân

W+(z5; q
1/2t)

T+(z5; q1/2t)

=−q−1f̂−2(qt− αf̂)(qnαtσ̃6 − q−nf̂)
w(f̂)

(f̂ − l̂)(f̂ − l̂−1)

+ α−1σ̃6f̂
−1(αt− q−nf̂)(qnαt− f̂)(l̂+ l̂−1)

+ α−1f̂−2(qnαt− f̂)
[
−q−nσ̃6(f̂

2 − 1)(7.128)

× (qnαt+ f̂)− q−1/2αtσ̃6σ1f̂

+ q−n−5/2α2σ3f̂
2 + (q−n+2 + qn−2α4σ4)

× f̂(−q−n−2 + q−4αtσ4f̂)
]
,

2t[n]
[
n+

1

2

]
ǎn

W+(z6; q
−1/2t)

T+(z6; q−1/2t)

=−q−1f̌−2 (t− αf̌)(αt− qf̌)(qnασ̃6 − q−ntf̌)

(α− tf̌)

w(f̌)

(f̌ − ľ)(f̌ − ľ−1)

+ α−1σ̃6f̌
−1(αt− q−n+1f̌)(qn−1αt− f̌)(ľ+ ľ−1)

− [n](q− t2)t3

q

(t− αf̌)

(α− tf̌)

w(αt−1)

(α− tľ)(α− tľ−1)
(7.129)

+ α−1t−1f̌−2(qn−1αt− f̌)
[
−q−ntσ̃6(f̌

2 − 1)

× (qnαt+ qf̌)− q−n(q− t2)σ̃6f̌(q
nt+ αf̌)

+ q−2−2nt2f̌(−q2t+ qnασ4f̌)− q−1/2αt2σ̃6σ1f̌

+ q−
3
2
−nα2tσ3f̌

2 − α2σ̃6f̌(t− qn−2ασ4f̌)
]
,

2t[n]
[
n+

1

2

]
ân

W−(E2+
u z6; q

1/2t)

T+(E
2+
u z6; q1/2t)
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= q−1/2f̂−2(αt− f̂)(qn+1/2tσ̃6 − q−n−1/2αf̂)

× w(f̂)

(f̂ − l̂)(f̂ − l̂−1)
− α−1σ̃6f̂

−1(αt− q−nf̂)

× (qnαt− f̂)(l̂+ l̂−1)(7.130)

+ f̂−2(qnαt− f̂)
[
q−3−n(qn − 1)ασ4f̂(1 + αtf̂)

+ q−1/2tσ̃6σ1f̂ − q−n−5/2ασ3f̂
2

− (qn+1/2tσ̃6 − q−n−1/2αf̂)(q−n−1/2 + q−5/2σ4f̂
2)
]
,

2t[n]
[
n+

1

2

]
ǎn

W−(E2−
u z5; q

−1/2t)

T+(E
2−
u z5; q−1/2t)

= q−1/2f̌−2 (t− αf̌)(αt− qf̌)(qn+1/2σ̃6 − q−n−1/2αtf̌)

(q− αtf̌)

× w(f̌)

(f̌ − ľ)(f̌ − ľ−1)

− α−1σ̃6f̌
−1(αt− q−n+1f̌)(qn−1αt− f̌)(ľ+ ľ−1)

+
[n](q− t2)α4t3

q2
(αt− qf̌)

(q− αtf̌)

w(qα−1t−1)

(q− αtľ)(q− αtľ−1)
(7.131)

+ t−1f̌−2(qn−1αt− f̌)
[
q1−nα−1tσ̃6(f̌

2 − 1)(qn−1αt+ f̌)

+ q−4−n(q− t2)σ4f̌(q
nα3t+ q2f̌)

+ q−1/2t2σ̃6σ1f̌ − q−n−3/2αtσ3f̌
2

− q−4−2nα(qt2 + q2nσ4)f̌(−q2t+ qnασ4f̌)
]
.

In addition, the evaluations at the advanced coordinate have alternative

forms.

Lemma 7.4. The advanced evaluated spectral coefficients are rational

functions in the g, f variables

2t[n]
[
n+

1

2

]
ân

W+(z5; q
1/2t)

T+(z5; q1/2t)

=−q−n−1αs4
(qntαs4ĝ

−1 − 1)2

ĝ− ĝ−1

w(s4
−1ĝ)

f̂ − s4−1ĝ
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+ q−n−1αs4
(qntαs4ĝ− 1)2

ĝ− ĝ−1

w(s4
−1ĝ−1)

f̂ − s4−1ĝ−1

− q−n−1α(ĝ2 + ĝ−2)− q−n−6s4
−1

(7.132)
×

[
−q7/2ασ3 + tσ4(q

4 − 2qn+3α2 + q2nα4σ4)
]
(ĝ+ ĝ−1)

+ q−2n−6α−1
[
q6 + t2q4nα6σ2

4

− t2q3n+1α4σ4(q
2 + σ4) + q2n+2α2(t2q2 + α2)σ4

− qn+4α2(2q+ σ2) + q2n+5/2α3t(−qσ3 + σ1σ4)
]

and

2t[n]
[
n+

1

2

]
ân

W−(E2+
u z6; q

1/2t)

T+(E
2+
u z6; q1/2t)

= q−n−1αs4
(qntαs4ĝ

−1 − 1)2

ĝ− ĝ−1

w(s4
−1ĝ)

f̂ − s4−1ĝ

− q−n−1αs4
(qntαs4ĝ− 1)2

ĝ− ĝ−1

w(s4
−1ĝ−1)

f̂ − s4−1ĝ−1

+ q−n−1α(ĝ2 + ĝ−2)− q−n−15/2αs4
−1

(7.133)
×

[
q5σ3 − tασ4(q

9/2 − 2qn+9/2 + q2n+5/2σ4)
]
(ĝ+ ĝ−1)

+ q−2n−11/2α
[
−q9/2 − q4n+1/2α2t2σ2

4

+ q3n+1/2α2t2σ4(q
2 + σ4)− q2n+5/2(1 + α2t2)σ4

+ qn+7/2(2q+ σ2)− q2n+2αt(−qσ3 + σ1σ4)
]
.

At this stage, we have accumulated enough results to deduce the dynam-

ical equations for our system on the deformation lattice.

Proposition 7.9. The t-evolution of our system in the variables ρ,λ, f

is given by a pair of coupled first-order equations, the first of which is

2qs4ρ̂− t2f̌−1 − q2t−2s24f̌

2s4ρ̌− f̌−1 − s24f̌

=
q(t− αf̌)(qf̌ − αt)

(tf̌ − α)(q− αtf̌)
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+
α4t2(q− t2)

(q− α2)

(qf̌ − αt)

(q− αtf̌)
(7.134)

× f̌2w(qα−1t−1)

qαtw(f̌)− (qf̌ − αt)(q− αtf̌)f̌ [2s4ρ̌− f̌−1 − s24f̌ ]

− qt2(q− t2)

(q− α2)

(t− αf̌)

(tf̌ − α)

× f̌2w(αt−1)

αtw(f̌)− (tf̌ − α)(t− αf̌)f̌ [2s4ρ̌− f̌−1 − s24f̌ ]
.

The auxiliary equation for the leading coefficient of the polynomial is

(7.135) t2
γ̂2n
γ̌2n

=
t2 + q2nα2s24 − 2qnαts4ρ̂

1 + q2nα2t2s24 − 2qnαts4ρ̂
.

Proof. The first of these equations is derived utilizing the following steps.

We substitute the expression for r1+ǎn/p+ given by (7.112) and the trans-

formation formulas for ž± as given in (7.110) and (7.111) into the solution

at the retarded coordinate (7.109). This yields an equation involving ρ̂ on

the one hand, and ľ, f̌ on the other hand. Now we perform a partial frac-

tion expansion of this with respect to ľ, and this produces the following

expression

2s4ρ̂= q−1t2f̌−1 + qt−2s24f̌

− (t− αf̌)(qf̌ − αt)

f̌(tf̌ − α)(q− αtf̌)

w(f̌)

f̌2 + 1− 2f̌ λ̌
(7.136)

− α4t2(q− t2)(qf̌ − αt)

q(q− α2)(q− αtf̌)

w(qα−1t−1)

q2 + α2t2 − 2qαtλ̌

+
t2(q− t2)(t− αf̌)

(q− α2)(tf̌ − α)

w(αt−1)

α2 + t2 − 2αtλ̌
,

which is a simple function of λ̌. Then one substitutes for λ̌ using the inver-

sion of the transformation (7.114) at the retarded time, and the result is

(7.134). Alternatively, one can prove this formula by substituting (7.129)

and (7.131) into (7.127).

We employ the variable transformation (7.112) and note that the left-

hand side of this expression has been evaluated in (7.81) and (7.83). Equat-

ing these two forms gives (7.135).
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Remark 7.8. The right-hand side of formula (7.134) exhibits apparent

poles at α = tf̌ and q = αtf̌ . However, this is not the case, as the for-

mer is cancelled by opposing contributions from the first and third terms,

while the latter is cancelled by contributions from the first and second

terms.

Clearly (7.134) is not manifestly invertible for ρ̌, however it is possible to

construct a linear equation for the retarded variables by switching from ρ

to λ.

Proposition 7.10. The inverse to (7.134) is given as a relation for λ̌,

which we give in two alternative forms

λ̌=
(f̂ − qnαt)(t− qnαs24f̂)

(tf̂ − qnα)(1− qnαts24f̂)

[
λ̂− 1

2
(f̂ + f̂−1)

]
+

t4 + f̂2

2t2f̂

+
t2(t2 − 1)s34

2qn+1/2[n+ 1
2 ]

(7.137)

×
[
−s34

(f̂ − qnαt)

(1− qnαts24f̂)

q4nα4w(q−nα−1t−1s−2
4 )

1 + q2nα2t2s24 − 2qnαts4ρ̂

+ s−3
4

(t− qnαs24f̂)

(tf̂ − qnα)

w(qnαt−1)

t2 + q2nα2s24 − 2qnαts4ρ̂

]

or

λ̌=− (ĝ− qnαts4)(t− qnαs4ĝ)

2(ĝ2 − 1)(1− qnαts4ĝ)(tĝ− qnαs4)

w(s−1
4 ĝ)

f̂ − s−1
4 ĝ

+
ĝ2(1− qnαts4ĝ)(tĝ− qnαs4)

2(ĝ2 − 1)(ĝ− qnαts4)(t− qnαs4ĝ)

w(s−1
4 ĝ−1)

f̂ − s−1
4 ĝ−1

+
1

2αt3σ4

[
q1/2αtσ3 + q5/2(t2 − 1)

{
n+

1

2

}]
− 1

2t2s4
[ĝ+ ĝ−1](7.138)

+
α2t(t2 − 1)s34
2q1/2[n+ 1

2 ]

[
q2nαs4

w(q−nα−1t−1s−2
4 )

(1− qnαts4ĝ)(1− qnαts4ĝ−1)

− α−1s−1
4

w(qnαt−1)

(t− qnαs4ĝ)(t− qnαs4ĝ−1)

]
.
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Proof. One can solve the compatibility relation (6.67) for the (1,2) com-

ponent of A∗
n(z; q

−1/2t) and find T+(z; q
−1/2t):

T+(z; q
−1/2t) =

1

χ(z, t)

ǎnân
4H2

n(R+ΔvS)(q1/2z; t)(R−ΔvS)(q1/2z; t)

×
[
R−(q

1/2z; t)R−(q
−1/2z; t)T+(z; q

1/2t)

+P+(q
1/2z; t)P+(q

−1/2z; t)T−(z; q
1/2t)(7.139)

+R−(q
1/2z; t)P+(q

−1/2z; t)W+(z; q
1/2t)

−P+(q
1/2z; t)R−(q

−1/2z; t)W−(z; q
1/2t)

]
.

To simplify the calculations of the spectral matrix elements, we employ an

alternative parameterization to that of (7.57), (7.58), and (7.59):

W+(z; q
1/2t)

=− αt(z2 − 1)(qt− αz)(q2n+1tσ̃6z − α)

z2(1− α2t2)(q− α2)(q2n+1t2σ̃6 − 1)
W+(αt; q

1/2t)

+
q2αt(z2 − 1)(z − αt)(q2nαtσ̃6z − 1)

z2(q2t2 − α2)(q− α2)(q2n+1t2σ̃6 − 1)
W−(q

−1αt−1; q1/2t)

+
(z + 1)(z − αt)(qt− αz)(q2 − q2nα2t2σ4z)

2qtz2(q2 − q2nα2t2σ4)
w(1)

(7.140)

− (z − 1)(z − αt)(qt− αz)(q2 + q2nα2t2σ4z)

2qtz2(q2 − q2nα2t2σ4)
w(−1)

+
q−n−3(z2 − 1)(z − αt)(qt− αz)

αt2z3(q2 − q2nα2t2σ4)

×
[
q4 + q4nα4t4σ2

4z
2

+ q2n+3/2α2t2
(
qσ3z + σ1σ4z − q1/2(1 + z2)

)]
,

W−(z; q
1/2t)

=
αt(z2 − 1)(qtz − α)(q2n+1tσ̃6 − αz)

z2(1− α2t2)(q− α2)(q2n+1t2σ̃6 − 1)
W+(αt; q

1/2t)

+
q2αt(z2 − 1)(1− αtz)(z − q2nαtσ̃6)

z2(q2t2 − α2)(q− α2)(q2n+1t2σ̃6 − 1)
W−(q

−1αt−1; q1/2t)
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+
(z + 1)(1− αtz)(qtz − α)(q2z − q2nα2t2σ4)

2qtz2(q2 − q2nα2t2σ4)
w(1)

(7.141)

+
(z − 1)(1− αtz)(qtz − α)(q2z + q2nα2t2σ4)

2qtz2(q2 − q2nα2t2σ4)
w(−1)

− q−n−3(z2 − 1)(1− αtz)(qtz − α)

αt2z3(q2 − q2nα2t2σ4)

×
[
q4z2 + q4nα4t4σ2

4

+ q2n+3/2α2t2
(
qσ3z + σ1σ4z − q1/2(1 + z2)

)]
,

and

T+(z; q
1/2t)

=− αt(z − z−1)

(q− α2)(qt2 − 1)
p+

(7.142)

×
[(qtz − α)(qtz−1 − α)

(α2t2 − 1)

W+(αt; q
1/2t)

r1,−
1
2(q

−1/2αt+ q1/2α−1t−1) + r0,−

+ q2
(z − αt)(z−1 − αt)

(α2 − q2t2)

W−(q−1αt−1; q1/2t)

r1,−
1
2(q

−1/2αt−1 + q1/2α−1t) + r0,−

]
,

T−(z; q
1/2t)

=
αt(z − z−1)

(q− α2)(qt2 − 1)

1

p+

×
[(qtz − α)(qtz−1 − α)

(α2t2 − 1)

×
(
r1,−

1

2
(q−1/2αt+ q1/2α−1t−1) + r0,−

)
W−(αt; q

1/2t)(7.143)

+ q2
(z − αt)(z−1 − αt)

(α2 − q2t2)

×
(
r1,−

1

2
(q−1/2αt−1 + q1/2α−1t) + r0,−

)
×W+(q

−1αt−1; q1/2t)
]
.
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This particular parameterization implies that the numerator of the right-

hand side of (7.139) manifestly contains a factor of (z−z−1)(qtz−α)(qtz−1−
α)(z−αt)(z−1−αt) which is present in the denominator. This ensures that

the ratio is linear in x, as it must. Finding the zero of this linear polynomial

then gives λ̌, which after further substantial manipulation and simplification

yields (7.138) and (7.137).

A crucial fact enabling further progress is the following factorization for-

mula for a quantity that will subsequently figure prominently in certain

discriminants.

Lemma 7.5. The biquadratic in ρ̂, λ̌

16σ4(ρ̂
2λ̌2 − ρ̂2 − λ̌2)− 8s4(q

2 + qσ2 + σ4)ρ̂λ̌

+ 8q1/2s4(qσ1 + σ3)ρ̂
(7.144)

+ 8q−1/2(σ1σ4 + qσ3)λ̌+ (q− σ2)
2

− 4σ1σ3 + 2σ4 − 2q−1σ2σ4 + q−2σ2
4

is a perfect square which can be given in either of two ways. In the first way

this is the square of

qt2f̂−2 − q1/2t2σ1f̂
−1 + q−1/2t−2σ3f̂

− q−1t−2σ4f̂
2 + qt−2 − q−1t2σ4

+ q3/2
{
n+

1

2

}
α−1t−3(t2 − 1)(f̂ + t4f̂−1)

− 2qs4(t
−2f̂ − t2f̂−1)ρ̂

− q
(1− s24f̂

2)(f̂ − qnαt)(t− qnαs24f̂)

f̂2(tf̂ − qnα)(1− qnαts24f̂)

w(f̂)

1 + s24f̂
2 − 2s4f̂ ρ̂

(7.145)

+
q1/2αt(t2 − 1)s34

[n+ 1
2 ]

×
[q2nα2s34(1− q2nα2t2s24)(f̂ − qnαt)w(q−nα−1t−1s−2

4 )

(1− qnαts24f̂)(1 + q2nα2t2s24 − 2qnαts4ρ̂)

+
q−2nα−2s−3

4 (t2 − q2nα2s24)(t− qnαs24f̂)w(q
nαt−1)

(tf̂ − qnα)(t2 + q2nα2s24 − 2qnαts4ρ̂)

]
,
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and in the second way this is the square of

q1/2σ3t
−2f̌ − q−1/2σ1t

2f̌−1

− (t2f̌−2 + q2t−2s24)
[
f̌2 − 1 + q−1(q+ α2)α−1t−1(q− t2)f̌

]
+ 2λ̌(t2f̌−1 − q2t−2s24f̌)

(7.146)

+
q(f̌2 − 1)(qf̌ − αt)(t− αf̌)

f̌2(tf̌ − α)(q− αtf̌)

w(f̌)

f̌2 + 1− 2f̌ λ̌

+
t(q− t2)

qα(q− α2)

[ t− αf̌

tf̌ − α

q2(t2 − α2)w(αt−1)

α2 + t2 − 2αtλ̌

+
qf̌ − αt

q− αtf̌

α4(q2 − α2t2)w(qα−1t−1)

q2 + α2t2 − 2qαtλ̌

]
.

Proof. In the first way we substitute (7.138) into (7.144), whereas in the

second way we substitute (7.136) into (7.144). After considerable simplifi-

cation we arrive at the two results.

We are now in a position to derive the evolution equations for the f -

variable, first in the advanced direction.

Proposition 7.11. Assuming that f̌ �= 0, tf̌ − α �= 0, and q − αtf̌ �= 0,

we have the forward evolution for f

f̂ =
{ 2t2(t2 − 1)s24
qn−1/2[n+ 1

2 ]

[
−q4nα4s44w(q

−nα−1t−1s−2
4 )

1 + q2nα2t2s24 − 2qnαts4ρ̂

+
w(qnαt−1)

t2 + q2nα2s24 − 2qnαts4ρ̂

]
− σ2 − q−1(1− 2t2)σ4 − q(1− 2t−2)

+ 2λ̌[2qs4ρ̂− t2f̌−1 + q2t−2s24f̌ ]

− q1/2σ3t
−2f̌ + q−1/2σ1t

2f̌−1

+ (t2f̌−2 + q2t−2s24)
[
f̌2 − 1 + q−1(q+ α2)α−1t−1(q− t2)f̌

]
− q(f̌2 − 1)(qf̌ − αt)(t− αf̌)

f̌2(tf̌ − α)(q− αtf̌)

w(f̌)

f̌2 + 1− 2f̌ λ̌
(7.147)

− t(q− t2)

qα(q− α2)

[ t− αf̌

tf̌ − α

q2(t2 − α2)w(αt−1)

α2 + t2 − 2αtλ̌
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+
qf̌ − αt

q− αtf̌

α4(q2 − α2t2)w(qα−1t−1)

q2 + α2t2 − 2qαtλ̌

]}

×
{2q1/2t(t2 − 1)

[n+ 1
2 ]

[
−q2nα3s64w(q

−nα−1t−1s−2
4 )

1 + q2nα2t2s24 − 2qnαts4ρ̂

+
αs44w(q

nαt−1)

t2 + q2nα2s24 − 2qnαts4ρ̂

]

− 2q3/2α−1t−3
{
n+

1

2

}
(t2 − 1)

− 2q−1t−2(q1/2σ3 − 2t2σ4λ̌) + 4qt−2s4ρ̂
}−1

,

where ρ̂ is given by (7.134).

Proof. While (7.138) can be primarily viewed as a linear equation for λ̌,

it can also be viewed as a quadratic equation for f̂ , and, as such, possesses a

discriminant which contains, apart from explicit squared factors, the factor

(7.144). By substituting for ρ̂ using (7.136), we can employ the result (7.146)

and effect a factorization of the quadratic into linear factors. The choice

of the factors can be settled by consideration of the known solution for

n= 0, and it transpires that the negative branch is appropriate. This yields

(7.147).

Our last task is to derive the inverse to (7.147) and complete the system

of evolution equations.

Proposition 7.12. The inverse of the evolution for f is given by

f̌ =
{2t2(q− t2)

q− α2

[ w(αt−1)

α2 + t2 − 2αtλ̌
− q−1α4 w(qα−1t−1)

q2 + α2t2 − 2qαtλ̌

]
+ 4s4ρ̂λ̌+ 2s4(t

−2f̂ − t2f̂−1)ρ̂− t2f̂−2 + q−1/2t2σ1f̂
−1

− q−1σ2 − q−3/2t−2σ3f̂ + q−2t−2σ4f̂
2

− q−2t−2(−2q+ t2 − t4)σ4 − q−1t−2
(
q(1 + t2)− 2t4

)
− q1/2

{
n+

1

2

}
α−1t−3(t2 − 1)(f̂ + t4f̂−1)

+
(1− s24f̂

2)(f̂ − qnαt)(t− qnαs24f̂)

f̂2(tf̂ − qnα)(1− qnαts24f̂)

w(f̂)

1 + s24f̂
2 − 2s4f̂ ρ̂
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− αt(t2 − 1)s34
q1/2[n+ 1

2 ]
(7.148)

×
[q2nα2s34(1− q2nα2t2s24)(f̂ − qnαt)w(q−nα−1t−1s−2

4 )

(1− qnαts24f̂)(1 + q2nα2t2s24 − 2qnαts4ρ̂)

+
q−2nα−2s−3

4 (t2 − q2nα2s24)(t− qnαs24f̂)w(q
nαt−1)

(tf̂ − qnα)(t2 + q2nα2s24 − 2qnαts4ρ̂)

]}

×
{2αt(q− t2)

q− α2

[ w(αt−1)

α2 + t2 − 2αtλ̌
− α2w(qα−1t−1)

q2 + α2t2 − 2qαtλ̌

]
− 2q−1/2t−2σ3 + 2q−2α−1t−3(q− t2)(q+ α2)σ4

+ 4s4ρ̂+ 4q−1t−2σ4λ̌
}−1

,

where λ̌ is given by (7.138).

Proof. In a similar manner to the previous proof we can solve (7.136)

for f̌ . On appearance this polynomial should be a quintic in f̌ , however

in line with Remark 7.8, we observe that this contains a factor of f̌(tf̌ −
α)(q − αtf̌) and we only have to deal with a quadratic. Upon examining

this quadratic, we find that the discriminant contains, again, the factor

(7.144) as the only manifestly square-free factor. Upon substituting for λ̌

using (7.138), we can now employ (7.145) and factorize the quadratic. As

in the previous case, consideration of the n = 0 solution resolves the sign

ambiguity in favor of the negative root, yielding (7.148).

7.4. Seed solution

We can now make contact with the earlier theory characterizing the

moments, as given in Section 7.1, through a study of the classical “seed”

solutions to the coupled recurrence system given above. We now append a

subscript on the variables to indicate the n-value.

Proposition 7.13. The recurrence relations (7.134) and (7.147) admit

the classical “seed” solution at n= 0

(7.149) f0(t) = q−1/2αt,

and

2qs4ρ0(t)

=
C(q1/2α−1t+ σ4q

−1/2αt−1)m(t) +D(q3/2α−1t−1 + σ4q
−3/2αt)m(q−1t)

Cm(t) +Dm(q−1t)
,

(7.150)
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where m(t) is the general solution to the second-order q-difference equation

(t2 − q2)t4w(αt−1)m(q1/2t)

+
D̂

Ĉ

[
(t2 − q2)t4w(αt−1)

+ q3(t2 − 1)w(q−1αt)− q−3(q− α2)(7.151)

× (q2 − σ4α
2)(t2 − 1)(t2 − q)(t2 − q2)

]
m(q−1/2t)

+
D̂Ď

ĈČ
q3(t2 − 1)w(q−1αt)m(q−3/2t) = 0.

Proof. It is clear that both (7.130) and (7.131) vanish when (7.149) holds

at n= 0, therefore together they satisfy (7.117). Given (7.149), we observe

that two terms vanish in (7.134) and that ρ0(t) satisfies the discrete Riccati

equation

2s4ρ̂0 − α−1t− αt−1s24

=
qt4w(αt−1)[2qs4ρ̌0 − q2α−1t−1 − αts24]

αt(q− t2)(q− α2)[2qs4ρ̌0 − q2α−1t−1 − αts24] + q4w(q−1αt)
.

(7.152)

Alternatively, we can derive this relation by specializing (7.137) under

(7.149) which yields

(7.153) t2 + α2 − 2αtλ̌0 =
t4w(αt−1)

t2 + α2s24 − 2αts4ρ̂0
,

and then using (7.114) to substitute for λ̌0. Making the standard linearizing

transformation

(7.154) 2qs4ρ0(t) =
Am(t) +Bm(q−1t)

Cm(t) +Dm(q−1t)
,

we find, in our solution for the decoupling factors, that Â= (qα−1t+ σ4×
q−1αt−1)Ĉ and B̌ = (q2α−1t−1 + σ4q

−2αt)Ď and arrive at (7.151).

Remark 7.9. Our explicit initial orthogonal polynomial variables are

one specialization of the classical solutions given above. As remarked in the

proof of Proposition 7.3, we have μ0 = V (λ0) and ν0 = W (λ0) at n = 0,

where λ0 is the unique zero of the right-hand side of (7.18)

(7.155) 2
[1
2

]
λ0 =−q−1/2σ̃1 + q1/2σ̃5 − [1]

m0,+ +m0,−
m0,0

.
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We easily see that z±,0(t) = l∓3
0

∏6
j=1(1−q−1/2ajl

±1
0 ), and from the transfor-

mations (7.110) and (7.111) we deduce that f0(t) = q−1/2αt. The elements

of the spectral matrix A∗
0 are

W+,0(z; t) = z−3w(z)(1− q−1/2αtz)(1− q−1/2αt−1z)
(7.156)

=W +ΔyV,

W−,0(z; t) = z3w(z−1)(1− q−1/2αtz−1)(1− q−1/2αt−1z−1)
(7.157)

=W −ΔyV,

T+,0(z; t) = 2a0

[1
2

]
(z − z−1)(z − l0)(1− l−1

0 z−1),(7.158)

T−,0(z; t) = 0,(7.159)

while those of the deformation matrix B∗
0 are

R+,0(z; t) =−a0γ̂0
ǎ0γ̌0

(1− q−1/2αtz)(1− q−1/2αtz−1),(7.160)

R−,0(z; t) =−a0γ̌0
â0γ̂0

(1− q−1/2αt−1z)(1− q−1/2αt−1z−1),(7.161)

P+,0(z; t) = 2q−1/2αa0

[
t
γ̂0
γ̌0

− t−1 γ̌0
γ̂0

]
,(7.162)

P−,0(z; t) = 0.(7.163)

We also note from (7.135), (3.16), and (3.10) that

(7.164) 2αs4ρ0(t) =
(1 + q−1α2s24t

2)m0,0(q
−1t)− (1 + qα2s24t

−2)m0,0(t)

q−1/2tm0,0(q−1t)− q1/2t−1m0,0(t)
,

which is precisely the case of (7.150) with D =−q−1t2C. With this solution,

we also deduce that the moment recurrence (7.78) for m0,0 coincides with

(7.151).

At the beginning of this section, in Remark 7.2, we noted that some

explicit solutions to the moment recurrences were given in [97]. This knowl-

edge enables the possibility of checking any aspect of the foregoing theory—

either symbolically or numerically—with essentially unlimited precision. We

wish to report that extensive checking of all the key relations for the cases

n = 0 and n = 1 has been carried out employing Mathematica code and
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utilities, where possible by exact symbolic means (or if not by numerical

means) to a level of one part in 1020 → 1030 or better at random exact

values of the input parameters. These checks have also utilized a body of

unreported work [96] covering the system of Laguerre–Freud recurrences

under n �→ n+ 1 for general n ∈ Z≥0.

We now come to the question regarding the identity of this system in

the Sakai scheme. While not providing an explicit transformation from our

parameters and variables to those appearing in the canonical coupled q-

difference system (see [33], [86]), we offer unambiguous evidence that it is one

of the classical yet full parameter set cases of the E
(1)
7 q-Painlevé system as

can be seen from the following inspection of their classical solutions (see [71],

[51], [52]), and the recent systematic study of two-Casorati determinantal

forms of their classical solutions (see [69]). Clearly, the τ -functions of our

construction, given by (3.10) and (3.11), are of the two-Casorati determinant

form because if we choose b= ar, a= as with r, s ∈ {1,2,3,4}, say, and this

is employed in the definition (3.9), we have a moment determinant with

elements m0,0(q
jar, q

kas), j, k ∈ Z≥0, where m0,0 is given by any q-constant

linear combination of the two 8W7 solutions appearing in (7.9).

Several tasks that have arisen in the course of our study remain unfinished

and we conclude by detailing them and the issues involved. Clarification of

the explicit relationship of the evolution system in (7.134), (7.137), (7.147),

and (7.148) with the canonical q-difference equations as, say, given in [51]

and [52], is required. It remains to complete the construction of the n→
n+1 recurrence relations which occupy a special place in our approach, but

figure as Schlesinger transformations in the integrable theory. In fact our

framework can easily treat the Schlesinger transformations of this example

(or any other for that matter), and in particular the n→ n+1 recurrences, or

the aj , α �→ qaj , qα, j = 1, . . . ,4 mappings. These latter transformations are

manifested in our context as specialized Christoffel–Uvarov transformations,

however we will postpone this undertaking.

Significant progress has been made in finding the analogue of an isomon-

odromic system for the elliptic Painlevé courtesy of a preprint by Eric Rains

[85], and in the work by Yamada [98]. The approach taken in this former

work is very much in the spirit of the present study, and it would be natural

to expect that a limiting case of the results reported there would correspond

our own. Very recently, Yamada [99] has given Lax pairs for the E
(1)
8 , E

(1)
7 ,

and E
(1)
6 q-Painlevé equations by reformulating the E

(1)
8 elliptic Painlevé



228 N. S. WITTE

Lax pair system and taking limits E
(1)
8 → E

(1)
7 → E

(1)
6 . One would expect

that a gauge transformation and coordinate transformations would link our

Lax pair with his.
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[35] W. Hahn, Beiträge zur Theorie der Heineschen Reihen. Die 24 Integrale der Hyper-
geometrischen q-Differenzengleichung. Das q-Analogon der Laplace-Transformation,
Math. Nachr. 2 (1949), 340–379. MR 0035344.
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(1)
7 ,

SIGMA Symmetry Integrability Geom. Methods Appl. 5 (2009), Paper 035.
MR 2506177. DOI 10.3842/SIGMA.2009.035.

[70] M. Mejri, q-extension of some symmetrical and semi-classical orthogonal polyno-
mials of class one, Appl. Anal. Discrete Math. 3 (2009), 78–87. MR 2499310.
DOI 10.2298/AADM0901078M.

[71] M. Murata, H. Sakai, and J. Yoneda, Riccati solutions of discrete Painlevé equa-
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orthogonal polynomials, Lett. Math. Phys. 30 (1994), 327–336. MR 1271093.
DOI 10.1007/BF00751068.

[73] A. F. Nikiforov and S. K. Suslov, Systems of classical orthogonal polynomials of a
discrete variable on nonuniform grids (in Russian), Akad. Nauk SSSR Inst. Prikl.
Mat. Preprint 1985, no. 8. MR 0794000.

[74] , “Classical orthogonal polynomials of a discrete variable on nonuniform lat-
tices” in Group Theoretical Methods in Physics, Vol. I (Yurmala, 1985), VNU Sci.,
Utrecht, 1986, 505–511. MR 0919767.

[75] , Classical orthogonal polynomials of a discrete variable on nonuniform lat-
tices, Lett. Math. Phys. 11 (1986), 27–34. MR 0824673. DOI 10.1007/BF00417461.

[76] A. F. Nikiforov, S. K. Suslov, and V. B. Uvarov, Construction of particular solutions
for a difference equation of hypergeometric type (in Russian), Akad. Nauk SSSR Inst.
Prikl. Mat. Preprint 1984, no. 142. MR 0792163.

[77] , Classical orthogonal polynomials of a discrete variable on nonuniform grids
(in Russian), Dokl. Akad. Nauk SSSR 291, no. 5 (1986), 1056–1059; English trans-
lation in Soviet. Math. Dokl. 34, no. 3 (1987), 576–579. MR 0872153.

[78] , Classical Orthogonal Polynomials of a Discrete Variable (in Rus-
sian), Springer Ser. Comput. Phys., Springer, Berlin, 1991. MR 1149380.
DOI 10.1007/978-3-642-74748-9.

http://www.ams.org/mathscinet-getitem?mr=1379135
http://dx.doi.org/10.1016/0377-0427(95)00114-X
http://dx.doi.org/10.1016/0377-0427(95)00114-X
http://www.ams.org/mathscinet-getitem?mr=2506174
http://dx.doi.org/10.3842/SIGMA.2009.038
http://dx.doi.org/10.3842/SIGMA.2009.038
http://arxiv.org/abs/arXiv:math/9409228v1
http://www.ams.org/mathscinet-getitem?mr=1665164
http://dx.doi.org/10.1080/10236199808808156
http://dx.doi.org/10.1080/10236199808808156
http://www.ams.org/mathscinet-getitem?mr=0803215
http://www.ams.org/mathscinet-getitem?mr=1941732
http://dx.doi.org/10.1016/S0168-9274(01)00180-5
http://dx.doi.org/10.1016/S0168-9274(01)00180-5
http://www.ams.org/mathscinet-getitem?mr=2457103
http://dx.doi.org/10.1007/s11075-008-9170-2
http://dx.doi.org/10.1007/s11075-008-9170-2
http://dx.doi.org/10.1007/s11075-008-9170-2
http://www.ams.org/mathscinet-getitem?mr=2506177
http://dx.doi.org/10.3842/SIGMA.2009.035
http://dx.doi.org/10.3842/SIGMA.2009.035
http://www.ams.org/mathscinet-getitem?mr=2499310
http://dx.doi.org/10.2298/AADM0901078M
http://dx.doi.org/10.2298/AADM0901078M
http://www.ams.org/mathscinet-getitem?mr=1958273
http://dx.doi.org/10.1063/1.1531216
http://dx.doi.org/10.1063/1.1531216
http://www.ams.org/mathscinet-getitem?mr=1271093
http://dx.doi.org/10.1007/BF00751068
http://dx.doi.org/10.1007/BF00751068
http://www.ams.org/mathscinet-getitem?mr=0794000
http://www.ams.org/mathscinet-getitem?mr=0919767
http://www.ams.org/mathscinet-getitem?mr=0824673
http://dx.doi.org/10.1007/BF00417461
http://dx.doi.org/10.1007/BF00417461
http://www.ams.org/mathscinet-getitem?mr=0792163
http://www.ams.org/mathscinet-getitem?mr=0872153
http://www.ams.org/mathscinet-getitem?mr=1149380
http://dx.doi.org/10.1007/978-3-642-74748-9
http://dx.doi.org/10.1007/978-3-642-74748-9


SEMICLASSICAL ORTHOGONAL POLYNOMIAL SYSTEMS 233

[79] C. M. Ormerod, N. S. Witte, and P. J. Forrester, Connection preserving defor-

mations and q-semi-classical orthogonal polynomials, Nonlinearity 24 (2011), 2405–

2434. MR 2819929. DOI 10.1088/0951-7715/24/9/002.

[80] P. I. Pastro, Orthogonal polynomials and some q-beta integrals of

Ramanujan, J. Math. Anal. Appl. 112 (1985), 517–540. MR 0813618.

DOI 10.1016/0022-247X(85)90261-6.

[81] M. Rahman, An integral representation of a 10ϕ9 and continuous bi-orthogonal

10ϕ9 rational functions, Canad. J. Math. 38 (1986), 605–618. MR 0845667.

DOI 10.4153/CJM-1986-030-6.

[82] , q-Wilson functions of the second kind, SIAM J. Math. Anal. 17 (1986),

1280–1286. MR 0853530. DOI 10.1137/0517089.

[83] M. Rahman and S. K. Suslov, Barnes and Ramanujan-type integrals on the

q-linear lattice, SIAM J. Math. Anal. 25 (1994), 1002–1022. MR 1271323.

DOI 10.1137/S0036141092233676.

[84] , The Pearson equation and the beta integrals, SIAM J. Math. Anal. 25 (1994),

646–693. MR 1266583. DOI 10.1137/S003614109222874X.

[85] E. M. Rains, An isomonodromy interpretation of the hypergeometric solution of the
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Symmetry Integrability Geom. Methods Appl. 5 (2009), Paper 042. MR 2506170.
DOI 10.3842/SIGMA.2009.042.
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