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GLOBAL WELL-POSEDNESS FOR A SYSTEM OF
KDV-TYPE EQUATIONS WITH COUPLED

QUADRATIC NONLINEARITIES

JERRY L. BONA, JONATHAN COHEN, and GANG WANG

Abstract. In this paper, coupled systems

ut + uxxx + P (u, v)x = 0,

vt + vxxx +Q(u, v)x = 0

of Korteweg–de Vries type are considered, where u = u(x, t), v = v(x, t) are
real-valued functions and where x, t ∈ R. Here, subscripts connote partial dif-
ferentiation and

P (u, v) =Au2 +Buv+Cv2 and Q(u, v) =Du2 +Euv+ Fv2

are quadratic polynomials in the variables u and v. Attention is given to the
pure initial-value problem in which u(x, t) and v(x, t) are both specified at
t= 0, namely,

u(x,0) = u0(x) and v(x,0) = v0(x),

for x ∈ R. Under suitable conditions on P and Q, global well-posedness of
this problem is established for initial data in the L2-based Sobolev spaces
Hs(R)×Hs(R) for any s >−3/4.
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§1. Introduction

Considered here is a coupled system

(1.1)

{
ut + uxxx +A(u2)x +B(uv)x +C(v2)x = 0,

vt + vxxx +D(u2)x +E(uv)x + F (v2)x = 0

of two Korteweg–de Vries (KdV)-type equations, posed for x ∈R and t≥ 0,

with specified initial data

(1.2) u(x,0) = u0(x) and v(x,0) = v0(x).

Here, A,B, . . . ,F are constants, and the abbreviations

P (u, v) =Au2 +Buv+Cv2,

Q(u, v) =Du2 +Euv+ Fv2
(1.3)

will be employed when convenient. Such systems arise as models for wave

propagation in physical systems where both nonlinear and dispersive effects

are important (see, e.g., [5], [6], and [25]). Here u and v are real-valued

functions of (x, t), and subscripts connote partial differentiation. The goal of

this article is to give conditions on the coefficients A,B, . . . ,F implying that

the initial-value problem (1.1)–(1.2) is globally well posed in the L2-based

Sobolev classes Hs(R)×Hs(R). The outcome of our analysis is conditions

on the coefficients A,B, . . . ,F which, when satisfied, imply that the initial-

value problem for (1.1) is globally well posed for any s >−3/4.

The work improves in several ways upon the global existence results in

[3] and [8] pertaining to the Gear–Grimshaw system of equations (see [17])

which arise in the study of the interaction of internal waves on neighboring

pycnoclines. Our theory also extends the results obtained by Oh in [26,

Theorem 1.5] for the Majda–Biello system (see [25]):

(1.4)

{
ut + uxxx +

1
2(v

2)x = 0,

vt + αvxxx + (uv)x = 0

in the case α = 1. (This system arises as a model for the interaction of

barotropic and baroclinic equatorial Rossby waves. The parameter α depends

upon the Rossby wave in question. It typically has a value near 1.)

Oh [26, Section 3] showed global existence for the system (1.4) with ini-

tial data in the Sobolev space Hs(R)×Hs(R), for 0> s >−3/4. The sys-

tem (1.4) with α = 1 is a special case of the general system (1.1) with
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A= 0,B = 0,C = 1/2,D = 0,E = 1, F = 0. Oh also obtained results in the

periodic case where α �= 1 for a different range of s, but those systems are

not specializations of the systems considered in this paper.

To be more precise about the conditions on the coefficients that come to

the fore in our global well-posedness theory, define the matrix M in terms

of A,B, . . . ,F to be

(1.5) M =

[
2B E − 2A −4D

4C 2F −B −2E

]
.

Then for s >−3/4, the KdV system with initial values in Hs(R)×Hs(R)

has global solutions if rank M = 2 and

2EC(E − 2A)2 + 2BD(2F −B)2

− [4CD+BE](E − 2A)(2F −B)> (4CD−BE)2,
(1.6)

or rank M = 1 and either

(1.7) (2A−E)2 + 8BD > 0 or (2F −B)2 + 8EC > 0.

Substitution of the coefficients of the Majda–Biello system in the matrix

M yields

M =

[
0 1 0

2 0 −2

]
.

In this case, the rank of M is 2, and the inequality (1.6) becomes the valid

statement 1> 0. So, for the case α= 1, there is global existence of solutions

to the Majda–Biello system corresponding to data in Hs(R) ×Hs(R) for

any s >−3/4.

It is interesting to note that global existence for systems of the form (1.1)

is not assured. Indeed, the system

(1.8)

{
ut + uxxx + (12u

2 − 1
2v

2)x = 0,

vt + vxxx + (uv)x = 0

possesses solutions corresponding to smooth data that are exponentially

decaying to zero at ±∞ that blow up in finite time (see [12]). In this case,

A= 1/2,B = 0,C =−1/2,D = 0,E = 1, F = 0, so that the associated matrix

M =

[
0 0 0

−2 0 −2

]
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is a matrix of rank 1. Substituting the coefficients into the criterion (1.7),

we find that

(2A−E)2 + 8BD = 0 and (2F −B)2 + 8EC =−4.

Thus, neither of the criteria in (1.7) is satisfied. This example might lead

one to conjecture that the sufficient conditions for global well-posedness are

in fact necessary. This is also not the case. The example

(1.9)

{
ut + uxxx + (12u

2)x,

vt + vxxx + (uv)x = 0

yields a matrix M that has rank 1 with both

(2A−E)2 + 8BD = 0 and (2F −B)2 + 8EC = 0.

Thus, this is a system that fails the test in (1.7). However, the first equation

is simply the KdV equation, and substitution of the solution of the first

equation into the second yields a linear equation for v that is clearly globally

well posed.

As is common in such endeavors, our theory consists of a local well-

posedness result together with the derivation of a priori bounds. The local

theory relies upon the bilinear estimates of Kenig, Ponce, and Vega in [20]

and [21]. The global theory for s≥ 0 makes use of energy-type inequalities,

nonlinear operator interpolation, and commutator estimates. For rough data

where −3/4< s < 0, the proof of global well-posedness owes its inspiration

to the I-method of Colliander, Keel, Staffilani, Takaoka, and Tao in [16] that

was used in their analysis of the initial-value problem for the KdV equation

itself.

Several interesting points arise in the forthcoming development. First, it

will be noted that the system (1.1) always has a Hamiltonian structure, no

matter what the values of the parameters. This structure does not necessar-

ily provide the a priori bounds that are so helpful in the analysis of a single

KdV equation and some of its relatives. The first step in the global theory

is to deduce conditions on the coefficients A,B, . . . ,F so that the Hamil-

tonian structure does indeed yield helpful a priori bounds on solutions.

For parameter values A,B, . . . ,F that satisfy either (1.6) or (1.7), global

well-posedness when s = 0 does not present especial difficulty because the

restrictions on the coefficients imply that the (L2(R)×L2(R))-norm of the
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solution to (1.1)–(1.2) is uniformly bounded in time as long as the solution

exists. This allows the local theory to be iterated indefinitely to produce a

global solution.

However, for other values of s, the (Hs(R)×Hs(R))-norm is not neces-

sarily uniformly bounded as a function of time, though this is certainly true

if s= 1. For s≥ 2, time-dependent differential inequalities are deduced by

use of commutator estimates. The resulting bounds show solutions to be

bounded in Hs(R)×Hs(R) on bounded time intervals and hence lead to

a result of global well-posedness in this range of s. When 0< s < 2, s �= 1,

nonlinear interpolation theory together with the bounds in L2, H1, and H2

and the Lipschitz estimates provided by the local theory are used to deduce

global existence.

For−3/4< s< 0, the smoothing and approximate energy argument devel-

oped in [15] and [16] proves to be telling, and global well-posedness follows.

In our adaptation of this energy argument, the aforementioned multilin-

ear functionals that appear involve both u and v. These functionals do

not possess the same symmetries that were so useful in the attack on the

KdV equation. This has no bearing upon the arguments in favor of local

well-posedness but has significant implications for the global well-posedness

theory. In addition to developing techniques applicable to this more com-

plicated situation, we present a detailed, and perhaps more transparent,

argument to pass from local to global well-posedness in these large spaces.

The fundamental argument of the I-method revolves around a set of

inequalities involving several parameters. These inequalities suffice to show

that for any size initial data, a solution to the initial-value problem (1.1)–

(1.2) exists at least on the time interval [0,1]. The trick is to choose the

parameters so that the inequalities can be simultaneously satisfied. The

parameters involved are a threshold parameter ε0 for the initial data that

guarantees the existence of a solution for a time duration of at least 1, a scal-

ing parameter λ that is used to replace initial data of any size with a scaled

version that is below the threshold, and a positive number N that is used

to split the Fourier transform of the solution into a smooth L2-piece and

a rougher Hs-piece. These inequalities are all dependent on the value of s.

The present development incorporates the precise dependence of the various

estimates on the value of s. If one keeps track of how things depend upon

s, it is seen that a choice of parameters ε0, λ, and N that satisfies the full

set of inequalities can hold only if either s <−3/2 or −9/10< s < 0. This

restriction on s is an artifact of the I-method. In particular, this means that
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the modified energies utilized in this paper, and also in the original paper

[16], have nothing to say about the global well-posedness for s ≥ 0. (This

point is elucidated in more detail in Remark 8 in Section 4.)

For s≤−3/4, the local well-posedness theory of Kenig, Ponce, and Vega

[21] no longer obtains via a contraction-mapping argument applied in the

Bourgain spaces defined in Section 2. Hence, no conclusion about global

well-posedness is warranted for this range of s, despite the fact that the

conditions for inferring a priori bounds still hold. Note, however, that both

local and global well-posedness for the original KdV equation at the critical

regularity s = −3/4 has been established by Guo [18] and Kishimoto [22]

by different methods.

It is worth emphasizing that the basic I-method is not an iteration of

a local energy estimate. Indeed, thinking of it that way can cause confu-

sion since growth would be compounded, resulting in a sufficiently rapidly

increasing bound that the method would not reach time 1. A crucial part

of the proof of global well-posedness is that if the solution starts out below

the threshold, it can be continued on an interval of length N−5s without the

size of the solution exceeding the threshold. This argument differs from that

of the original paper [16] in that it makes explicit the dependence of the size

of the interval on the Sobolev index s, and it also explains the estimate of

the size as a telescoping of the evolution of a quintilinear term rather than

an iteration of the local theory.

The plan of the paper is as follows. Section 2 is concerned with local

well-posedness, explication of the conservation laws, and the global well-

posedness for s≥ 0. In particular, persistence of regularity is established for

the system (1.1) via an H1 conservation law, a Gronwall-type inequality

for H2, commutator estimates for Hs when s > 2, and nonlinear interpo-

lation for s ∈ (0,1) ∪ (1,2). The estimates for the systems considered in

this paper do not follow from similar estimates for the single KdV equation

because they need the full strength of the coefficient conditions described

in Section 2. Section 3 introduces a modified energy, defines the relevant

multilinear functionals, states the important inequalities for these func-

tionals, and concludes with the statement of the main result for the case

−3/4 < s < 0. This result is proved in Section 4, subject to the proofs of

technical points concerning the multilinear functionals. Section 5 is devoted

to finding explicit formulas for trilinear and quadrilinear correction terms

that, when subtracted from the modified energy, yield a functional whose

time derivative is controlled by N5s times a quintilinear term. An explicit
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formula for the symbol in the quintilinear functional is also found in this sec-

tion. Section 6 is devoted to a pointwise estimate for the symbol of the quin-

tilinear functional. The results of this section overlap with similar results

obtained by Oh [26] for the specific case of the Majda–Biello system. An

independent proof of the pointwise estimates for the symbol of the rele-

vant functional is included. In Section 7, the estimate for the quintilinear

functional is obtained from the pointwise estimates of Section 6, and this

concludes the proof of the main theorem.

§2. Local and global well-posedness: The case s≥ 0

In the present section, a local well-posedness theory for (1.1)–(1.2) is

sketched following what are, by now, standard lines using Bourgain-type

spaces (see [13] and [14]). The initial data (u0, v0) are presumed to lie in

Hs(R)×Hs(R), where s >−3/4. Interest lies primarily in the case s < 0, but

all values of s >−3/4 fall within the range of the local theory. Such results

have in fact been obtained previously in similar contexts, for example, in the

works of Kenig, Ponce, and Vega (see [20] or [21]) and Alvarez-Samaniego

and Carvajal [2]. Consequently, we content ourselves with a very brief outline

of the details, as some of them will be relevant to the subsequent analysis.

A conservation law will then be derived which plays a critical role in the

further developments.

2.1. Notation

The notation used is more or less standard. The usual L2-norm of a

function of one variable is denoted |f |L2 or sometimes just |f |2, and the

(L2 ×L2)-norm of a pair (f, g) of such functions is written ‖(f, g)‖L2×L2 =

|f |2 + |g|2. When the distinction needs to be made, we use the notation

L2
ξ ,L

2
τ , and so forth, to denote the L2-norm taken with respect to the vari-

ables ξ, τ , and so on. As already mentioned,Hs =Hs(R) is the usual Sobolev

class of Schwartz distributions f whose Fourier transform f̂(ξ) is a measur-

able function, square integrable with respect to the measure (1 + |ξ|)2s dξ.
We will usually use simply Hs rather than Hs(R) unless emphasis on the

domain of definition of the functions is needed. The norm in Hs is denoted

‖ · ‖Hs or simply ‖ · ‖s.
For s, b ∈ R, the Bourgain space Xs,b is the completion of the Schwartz

space S(R2)×S(R2) of infinitely differentiable, rapidly decreasing functions
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with respect to the norm∥∥(u, v)∥∥2
Xs,b

=

∫ ∞

−∞

∫ ∞

−∞

(∣∣û(ξ, τ)∣∣2 + ∣∣v̂(ξ, τ)∣∣2)(1 + |ξ|
)2s(

1 + |τ − ξ3|
)2b

dξ dτ,
(2.1)

where

û= û(ξ, τ) =

∫ ∞

−∞

∫ ∞

−∞
u(x, t)e−i(xξ+tτ) dxdt

is the Fourier transform of u. For α < β, the function class X
[α,β]
s,b is the

space of restrictions to [α,β] of the elements of Xs,b with its usual quotient

norm

(2.2)
∥∥(u, v)∥∥

X
[α,β]
s,b

= inf
{∥∥(u1, v1)∥∥Xs,b

: (u1, v1)|[α,β] = (u, v)|[α,β]
}
.

When the interval [α,β] = [0, δ], this restriction space is denoted simply by

Xδ
s,b. These are Cartesian products of the spaces used by Kenig, Ponce, and

Vega [20] in their analysis of the generalized KdV equations. If X is any

Banach space, and I ⊂ R is a closed bounded interval, then C(I;X) is the

set of continuous maps of I into X with the sup-norm

‖u‖C(I;X) = sup
t∈I

∥∥u(t)∥∥
X
.

A fundamental result is that if b > 1/2, then XI
s,b is continuously embedded

in C(I;Hs(R)) (see, e.g., [29, Corollary 2.10, p. 101]).

For the convenience of the readers and the authors, we often write∫
f for

∫ ∞

−∞
f(x)dx

when no confusion is likely to result.

2.2. Local well-posedness

The local well-posedness theory consists of applying the bilinear estimates

in [20] and [21] to the system (1.1)–(1.2). Here is the principal result.

Theorem 1. For any s >−3/4, there exists b ∈ (1/2,1) such that the fol-

lowing holds. For any (u0, v0) ∈Hs(R)×Hs(R), there exists a δ > 0 and a

solution (u, v) of the system (1.1) on the interval [0, δ] with (u0, v0) as initial

data such that (u, v) ∈C([0, δ] :Hs×Hs), and, moreover, the solution (u, v)

also lies in Xδ
s,b. This solution, which is unique within Xδ

s,b, depends con-

tinuously in this function class on variations of (u0, v0) in Hs(R)×Hs(R).
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Proof. The proof follows the arguments in [20] and [21]. Introducing the

notation

U =

[
u

v

]
, U0 =

[
u0
v0

]
, and

M(u, v) =

[
A(u2)x +B(uv)x +C(v2)x
D(u2)x +E(uv)x + F (v2)x

]
,

equations (1.1) can be written in the form

Ut +Uxxx =−M,

U(x,0) = U0(x).

If M = 0, the system is a linear homogeneous system whose solution is

W (t)U0 =

∫ ∞

−∞
ei(tξ

3+xξ)Û0(ξ)dξ.

A distributional solution of (1.1)–(1.2) on the time interval [0, T ] is thus

supplied by a function in the space XT
s,b satisfying the integral equation

(2.3) U(t) =W (t)U0 −
∫ t

0
W (t− τ)M(x, τ)dτ

obtained by applying Duhamel’s formula. To solve this equation in the space

Xs,b, introduce C
∞ cutoff functions θ and ψ mapping R into [0,1], such that

θ is supported in (−2,2) and is identically 1 on the interval [−1,1] and ψ

is supported in (−2,2) and is identically 1 on the support of θ. Define an

operator Φ by

(2.4) Φ(U) = θ(t)W (t)U0 − θ(t)

∫ t

0
W (t− τ)ψ2(τ)M(x, τ)dτ.

The question of local existence is thus reduced to showing the existence

of a fixed point of Φ, and this in turn follows, for sufficiently small initial

data, from the inequalities in [21, Theorems 1.1, 1.5] and the contraction

mapping principle. As the details are nearly identical to those in [21], they

are omitted here. The outcome of the analysis is that there is an r > 0 such

that if ‖(u0, v0)‖Hs×Hs ≤ r, then Φ is a contraction mapping of the ball

Bs,b(2r) of radius 2r about 0 in Xs,b into itself. This implies that there is
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a point U ∈ Bs,b(2r) such that Φ(U) = U for t ∈ [−1,1]. For t ∈ [0,1], the

cutoff functions θ and ψ are identically 1, and so the solution of (2.4) is also

a solution of (2.3). Using a straightforward scaling argument as in the proof

of [21, Theorem 1.5] yields a local solution corresponding to any initial value

in Hs ×Hs, albeit with a possibly reduced time interval [0, δ] of inferred

existence. In the case s = 0, this argument already appears in [3] for the

initial-value problem (1.1)–(1.2).

2.3. Hamiltonian structure and conservation laws

The local well-posedness theory does not depend on assumptions about

the coefficients A,B, . . . ,F . However, to pass to a theory that is global in

time, the techniques developed here require a priori information about the

growth of spatial norms of the solutions as a function of time. When systems

of the form (1.1) arise in practice, they often have a Hamiltonian structure

which may then imply helpful further information about solutions. It will

turn out that (1.1) always has a Hamiltonian structure. The goal of the

present section is to introduce hypotheses on A,B, . . . ,F which imply that

the Hamiltonian structure yields information helpful to establishing global

well-posedness.

There are several ways one can approach this issue. As what is ultimately

central in our theory is a temporal bound on solutions in the space L2×L2,

we pursue this property directly, noting that the outcome is indeed the

existence of a helpful Hamiltonian structure for the system.

Remark 1. It should be noted that one can make a preliminary, unitary

change of the dependent variables to effect what appears to be a simpler

system of equations. The subsequent analysis of the initial-value problem

is not especially aided by this transformation, and so we have eschewed it

here. When contemplating questions about the stability or lack thereof of

traveling-wave solutions, such changes of variables are much more helpful.

Introduce the quadratic functional

(2.5) Ω(u, v) =

∫
(au2 + buv+ cv2)dx,

where the real numbers a, b, c will be determined presently. A formal calcu-

lation made assuming that u and v are solutions and that we may integrate

by parts with impunity with no contribution from the boundary terms at
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x=±∞ yields the formula

− d

dt
Ω=−

∫
(2auut + butv+ buvt + 2cvvt)dx

=

∫ [
2auuxxx + b(uvxxx + vuxxx) + 2cvvxxx

]
dx

+

∫ [
u2ux(4aA+ 2bD) + v2vx(2bC + 4cF )

]
dx

+

∫ [
vuux(2aB + bE + 2bA+ 4cD) + u2vx(2aB + bE)

]
dx

+

∫ [
uvvx(4aC + 2bF + 2cE + bB) + v2ux(2cE + bB)

]
dx

= I + II + III + IV .

(2.6)

The integrals I and II have integrands that are x-derivatives, and hence,

for smooth solutions tending to zero at ±∞, they vanish without further

assumptions. The integrals III and IV vanish without recourse to further

assumptions on (u, v) if and only if

(2.7) 2aB + bE = 2bA+ 4cD

and

(2.8) bB + 2cE = 2bF + 4aC.

Equations (2.7) and (2.8) can be restated as a matrix equation:

[
2B E − 2A −4D

4C 2F −B −2E

]⎡⎣ab
c

⎤⎦=

⎡⎣00
0

⎤⎦ .

As this comprises two equations in three unknowns, it always possesses a

nontrivial solution.

Suppose that the coefficient matrix

(2.9) M =

[
2B E − 2A −4D

4C 2F −B −2E

]
of the set of equations (2.7)–(2.8) has rank equal to 2, the generic case. Then,

the solution space for (2.7)–(2.8) is 1-dimensional, and, up to an arbitrary



78 J. L. BONA, J. COHEN, AND G. WANG

nonzero scalar multiple,

(2.10)

⎛⎝a

b

c

⎞⎠=

⎛⎝E(E − 2A)− 2D(2F −B)

8CD− 2BE

2C(E − 2A)−B(2F −B)

⎞⎠ .

If instead the rank of M is 1, then the solutions (a, b, c) of (2.7)–(2.8)

comprise the 2-dimensional space which is the orthogonal complement W =

V ⊥ in R3 of the vector V = V1 or V = V2, where

(2.11) V1 =

⎛⎝ 2B

E − 2A

−4D

⎞⎠ and V2 =

⎛⎝ 4C

2F −B

−2E

⎞⎠ ,

one of which could be the zero vector, in which case W is the orthogonal

complement of the other one. (The remaining case where M has rank 0 can

occur only when all the coefficients A,B, . . . ,F are zero, a linear, uncoupled

situation of no interest to the present discussion.) Indeed, it transpires that

even the rank 1 case has trivial aspects, but this will not concern us here.

Presuming now that a nontrivial triple a, b, c has been chosen so that

(2.7)–(2.8) holds for the given values of A,B, . . . ,F , (2.6) then implies that

(2.12) Ω
(
u(·, t), v(·, t)

)
=Ω(u0, v0)

for sufficiently smooth solutions (u, v) of (1.1), which, along with their first

couple of partial derivatives with respect to x, vanish at ±∞. Thus, if (u, v)

lies in C([0, T ];H3(R)×H3(R)), for example, then (2.12) is valid at least

for t ∈ [0, T ].

For any s≥ 0, the quadratic functional Ω :Hs×Hs →R is continuous. It

thus follows from the continuous dependence result in Theorem 1 that for

s≥ 0, the conservation property (2.12) continues to hold for the (Hs(R)×
Hs(R))-solutions (u, v) whose existence was proven in Theorem 1, and not

only for smooth solutions. Thus, the functional Ω(u, v) is a constant of the

motion generated by (1.1).

Once a, b, and c are chosen so that (2.7)–(2.8) holds, it appears that the

quadratic form

(2.13) q(X,Y ) = aX2 + bXY + cY 2

is well adapted to the system (1.1).
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Assuming once again that we may integrate by parts with impunity with-

out contributions at x=±∞, it is determined that

d

dt
Ω(ux, vx) =

d

dt

∫ ∞

−∞
(au2x + buxvx + cv2x)dx

=

∫ ∞

−∞

(
2aP (u, v) + bQ(u, v)

)
ut(2.14)

+

∫ ∞

−∞

(
bP (u, v) + 2cQ(u, v)

)
vt.

The restrictions (2.7) and (2.8) are exactly the conditions implying that

(2.15)
∂

∂v
(2aP + bQ) =

∂

∂u
(bP + 2cQ).

It follows from (2.15) that there is a cubic polynomial R(u, v) such that

∂R

∂u
= 2aP + bQ and

∂R

∂v
= bP + 2cQ.

Thus, (2.14) may be written

d

dt

∫ ∞

−∞
(au2x + buxvx + cv2x)dx=

∫ ∞

−∞

(∂R
∂u

ut +
∂R

∂v
vt

)
dx

=
d

dt

∫ ∞

−∞
R(u, v)dx

or, what is the same,

d

dt

∫ ∞

−∞

[
au2x + buxvx + cv2x −R(u, v)

]
dx= 0.

Thus, the functional

(2.16) Θ(u, v) =

∫ ∞

−∞

[
au2x + buxvx + cv2x −R(u, v)

]
dx

is also an invariant of the temporal evolution of smooth solutions of (1.1).

Indeed, Θ serves as a Hamiltonian for the system (1.1), but this point is

not pursued here. However, it is worth emphasizing again that (1.1) always

possesses a Hamiltonian structure. Indeed, as long as

4ac− b2 �= 0,
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then the system (1.1) may be written in the Hamiltonian form

∂

∂t
∇(u,v)Ω(u, v) =

∂

∂x
∇(u,v)Θ(u, v),

where ∇(u,v) connotes the Euler derivative.

The conserved quantities Ω in (2.5) and Θ in (2.16) are useful for obtain-

ing a priori bounds on solutions of (1.1) when the quadratic form q in (2.13)

vanishes only at the origin, and this is the case precisely when

(2.17) 4ac− b2 > 0.

The inequality (2.17) implies that both a and c are nonzero; without loss of

generality, we may take it that a > 0 so that c > 0 and the quadratic form

q is positive definite.

In case the matrix M in (2.9) has rank 2, the conditions (2.7)–(2.8) and

(2.17) are all satisfied when a, b, and c are chosen as in (2.10) (or chosen as

any nonzero scalar multiple of this vector) and the inequality[
E(E − 2A)− 2D(2F −B)

][
2C(E − 2A)−B(2F −B)

]
= 2EC(E − 2A)2 − [4CD+BE](E − 2A)(2F −B)

+ 2BD(2F −B)2

> (4CD−BE)2

(2.18)

is satisfied. If M has rank 1 and B =C =D =E = 0, the system is uncou-

pled, and one can choose b= 0 and a= c= 1 to obtain an Ω that is positive

definite and invariant under the flow generated by (1.1). If, for example, M

has rank 1 and B �= 0, one quickly deduces that a, b, and c can be chosen

satisfying (2.7), (2.8), and the discriminant inequality (2.17) if and only if

(2A−E)2 >−8BD.

In this situation, the choices

a= 2(2A−E)2 + 8BD,

b= 4(2A−E)B,

c= 4B2

satisfy (2.7), (2.8), and (2.17) and yield a positive definite quadratic form

q as in (2.13). (This choice is not unique, however.) Similar conditions can
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be given if C �= 0,D �= 0, or E �= 0 in the rank 1 case. Once a, b, and c are

found satisfying (2.7) and (2.8), it is straightforward to determine that the

cubic polynomial R(u, v) is

(2.19) R(u, v) =
α

3
u3 + βu2v+ γuv2 +

δ

3
v3,

where

α= 2aA+ bD, β = bA+ 2cD,

γ = 2aC + bF, δ = bC + 2cF.
(2.20)

The polynomial R will appear again in the next section.

2.4. A priori estimates and global well-posedness of smooth

solutions

Assuming conditions (2.7), (2.8), and (2.17), the quadratic form in the

integrand defining Ω is positive definite, and hence there is a λ > 0 such

that ∫ ∞

−∞

[
u(x, t)2 + v(x, t)2

]
dx≤ λ

∫ ∞

−∞
[au2 + buv+ cv2]dx

= λΩ(u0, v0) =M2
0 .

(2.21)

Thus, the (L2 × L2)-norm of solution pairs (u(·, t), v(·, t)) of (1.1) is uni-

formly bounded in time, and hence the local well-posedness result for s= 0

can be extended to conclude existence of globally defined solutions which,

for each T > 0, lie in XT
0,b. Within these Bourgain classes, the solutions are

unique, and they depend continuously there on variations of the initial data

in L2 ×L2.

2.4.1. H1-bounds. Suppose now that (u0, v0) ∈H1 ×H1, and let (u(·, t),
v(·, t)) be the local solution of (1.1)–(1.2) corresponding to these initial data.

It follows from the calculations in Section 2.2 for smooth solutions together

with the continuous dependence result that the Hamiltonian Θ(u(·, t), v(·, t))
is constant in time as long as the solution exists. In consequence, it is seen
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that ∫ ∞

−∞
[u2x + v2x]dx≤ λΩ

(
ux(·, t), vx(·, t)

)
= λΘ

(
u(·, t), v(·, t)

)
+ λ

∫ ∞

−∞
R
(
u(x, t), v(x, t)

)
dx

= λΘ(u0, v0) + λ

∫ ∞

−∞
R
(
u(x, t), v(x, t)

)
dx,

(2.22)

where λ > 0 is related to the quadratic form q as in (2.21). Clearly,

(2.23) λΘ(u0, v0)≤ c2
(
1 + |u0|2 + |v0|2

)(
‖u0‖2H1 + ‖v0‖2H1

)
for some constant c2. Moreover, there is a constant c3 depending only on

A,B, . . . ,F and a, b, c such that∫ ∞

−∞
R(u, v)dx≤ c3

∫ ∞

−∞

(
|u|3 + |v|3

)
dx

≤ c3
(
|u|L∞ |u|2L2 + |v|L∞ |v|2L2

)
≤ c3

(
|u|5/2

L2 |ux|1/2L2 + |v|5/2
L2 |vx|1/2L2

)
≤ c3M

5/2
0

(
|ux|1/2L2 + |vx|1/2L2

)
,

(2.24)

where M0 is the time-independent bound on the (L2 × L2)-norm of solu-

tions put forward in (2.21). Combining (2.21), (2.22), (2.23), and (2.24), it is

concluded that the (H1 ×H1)-norm of (u(·, t), v(·, t)) is bounded, indepen-
dently of t. Consequently, the local solution (u(·, t), v(·, t)) emanating from

(u0, v0) may be continued indefinitely, thereby obtaining globally defined

solutions lying in XT
1,b, for each T > 0, as just explained for the case when

the initial data lie in L2 × L2. A point that will find use presently is that

(2.22)–(2.24) imply that for any T > 0,

(2.25)
∥∥(u, v)∥∥

C(0,T ;H1×H1)
≤ c1

(∣∣(u0, v0)∣∣2)∥∥(u0, v0)∥∥H1×H1 ,

where c1 :R
+ →R+ may be taken to be a continuous, nondecreasing func-

tion which, in this case, is independent of T .
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2.4.2. H2-bounds. Let (u, v) again be a solution of (1.1) whose first few

partial derivatives lie in L2 ×L2. Consider the real-valued function

Ω
(
uxx(·, t), vxx(·, t)

)
of time, where Ω is as in (2.5) with a, b, c determined by (2.7)–(2.8), and

suppose that (2.17) holds. Differentiate this function with respect to t. After

suitable integrations by parts, and using the equations to evaluate temporal

derivatives as before, it is found that

d

dt
Ω(uxx, vxx) =

∫
[2aP + bQ]uxxxxx + [bP + 2cQ]vxxxxx

= α

∫
u2uxxxxx + β

∫
u2vxxxxx + 2uvuxxxxx

+ γ

∫
v2uxxxxx + 2uvvxxxxx + δ

∫
v2vxxxxx,

where α,β, γ, δ are the coefficients of the cubic polynomial R(u, v) in (2.20).

Integrations by parts then leads to the equation

d

dt
Ω(uxx, vxx) =−5α

∫
uxu

2
xx − 5β

∫
vxu

2
xx − 10β

∫
uxuxxvxx

− 5γ

∫
uxv

2
xx − 10γ

∫
vxvxxuxx − 5δ

∫
vxv

2
xx.

(2.26)

By itself, the latter equation does not provide global H2-bounds on u

and v. (A local bound may be inferred on a time interval of the form

T ≤ C

‖u0‖1/2H2 + ‖v0‖1/2H2

,

but this can be improved upon, as we shall see.)

Because (2.26) is not definitive on its own, further ruminations are indi-

cated. Guided by the computations made in [19] and [1] for the generalized

KdV equation, we enter into a series of calculations, the upshot of which is

the collection of formulas

d

dt

∫
u2xu=−3

∫
uxu

2
xx +

∫
[2uxxuPx − u2xPx],

d

dt

∫
v2xv =−3

∫
vxv

2
xx +

∫
[2vxxvQx − v2xQx],
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d

dt

∫
v2xu=−3

∫
v2xxux −

∫
[Pxv

2
x − 2uxvxQx − 2uvxxQx],

(2.27)
d

dt

∫
u2xv =−3

∫
u2xxvx −

∫
[Qxu

2
x − 2uxvxPx − 2vuxxPx],

d

dt

∫
uxvxu=−3

∫
vxxuxxux −

∫
[uxvxPx + uvxPxx + uxuQxx],

d

dt

∫
uxvxv =−3

∫
vxxuxxvx −

∫
[uxvxQx + uxvQxx + vxvPxx].

These formulas are obtained by using the equations (1.1) to evaluate tem-

poral derivatives followed by suitable integrations by parts.

Define h :R4 →R by

h(u, v,ux, vx) = αu2xu+ βu2xv+ 2βuxvxu+ δv2xv+ γv2xu+ 2γuxvxv.

Combining (2.26) and (2.27) gives rise to the formula

d

dt

∫ [
q(uxx, vxx)−

5

3
h(u, v,ux, vx)

]
=

5

3

∫ {
α[−u2xPx − 2uxxuPx]

+ β[u2xQx − 2vuxxPx + 2uvxPxx + 2uxuQxx](2.28)

+ γ[v2xPx − 2uvxxQx + 2vuxQxx + 2vxvPxx]

+ δ[−v2xQx − 2vxxvQx]
}
.

While (2.28) does not yield a conservation law, as in (2.12) and (2.16),

there is nevertheless sufficient information to conclude that the H2-norms

of u and v are bounded on bounded time intervals, as is now indicated.

Integrating (2.28) with respect to t over the time interval [0, T ] yields

Ω
(
uxx(·, T ), vxx(·, T )

)
=Ω

(
uxx(·,0), vxx(·,0)

)
+

5

3

∫
h
(
u(·, T ), v(·, T ), ux(·, T ), vx(·, T )

)
− 5

3

∫
h
(
u(·,0), v(·,0), ux(·,0), vx(·,0)

)
+

5

3

∫ T

0

∫
L(x, t)dxdt,

(2.29)
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where L(x, t) is the integrand on the right-hand side of (2.28). The function

L is a polynomial in its four variables. The general monomial term in L has

one of the two forms rwyxzxx or rwxyxzx, where r,w, y, z stand for u or v.

If M0 and M1 denote the previously derived time-independent bounds

(2.30)
∣∣u(·, t)∣∣

2
+
∣∣v(·, t)∣∣

2
≤M0 and

∥∥u(·, t)∥∥
H1 +

∥∥v(·, t)∥∥
H1 ≤M1,

respectively, where M0 depends only on |u0|2 + |v0|2 and M1 depends only

on ‖u0‖H1 + ‖v0‖H1 , then it is clear that∣∣∣∫ rwyxzxx

∣∣∣≤ |r|∞|w|∞|yx|2|zxx|2

≤ |r|1/22 |w|1/22 |rx|1/22 |wx|1/22 |yx|2|zxx|2(2.31)

≤M0M
2
1 |zxx|2

and ∣∣∣∫ rwxyxzx

∣∣∣≤ |r|∞|wx|∞|yx|2|zx|2

≤ |r|1/22 |rx|1/22 |wx|1/22 |wxx|1/22 |yx|2|zx|2(2.32)

≤M
1/2
0 M3

1 |wxx|1/22 .

The inequalities (2.31) and (2.32), when applied to (2.29), imply that

1

λ

(∣∣uxx(·, T )∣∣22 + ∣∣vxx(·, T )∣∣22)≤Ω
(
uxx(·, T ), vxx(·, T )

)
≤Ω

(
uxx(·,0), vxx(·,0)

)
+

5

3

∫
h
(
u(·, T ), v(·, T ), ux(·, T ), vx(·, T )

)
− 5

3

∫
h
(
u(·,0), v(·,0), ux(·,0), vx(·,0)

)
+C0 +C1

∫ T

0

(
|uxx|2 + |vxx|2

)
dt,

where λ > 0 is as in (2.21), associated to the positive definiteness of the

quadratic form q in (2.13), and C0,C1 depend only on M0 and M1. The

monomials that make up h have the form rsxwx, where r, s, and w are
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either u or v. Because of the already established H1-bound on u and v,

(2.33)
∣∣∣∫ rsxwx dx

∣∣∣≤M
1/2
0 M

5/4
1 ,

where M0 and M1 are as before (see again (2.30)). As a consequence of

these calculations, it must be the case that

(2.34)
∣∣uxx(·, T )∣∣22 + ∣∣vxx(·, T )∣∣22 ≤ C̃0 +C1

∫ T

0

(∣∣uxx(·, t)∣∣2 + ∣∣vxx(·, t)∣∣2) dt
for suitable time-independent constants C̃0 and C1. Solving the integral

inequality (2.34) leads to the a priori bound

(2.35)
∣∣uxx(·, T )∣∣2 + ∣∣vxx(·, T )∣∣2 ≤D0

(∣∣uxx(·,0)∣∣2 + ∣∣vxx(·,0)∣∣2)+D1T,

where D0 and D1 depend only on C̃0 and C1 and hence only on the (H1 ×
H1)-norm of the initial data on account of (2.30). Thus, while the (H2×H2)-

norm of solutions of (1.1) is not necessarily uniformly bounded, it grows no

faster than linearly with time t.

Presently, we will need a bound on the (H2 ×H2)-norm of the solution

(u, v) with a slightly different structure. The result in view is straightfor-

wardly obtained by revisiting the inequalities (2.31) and (2.32). Instead of

estimating as above, proceed as follows:∣∣∣∫ rwyxzxx

∣∣∣≤ |r|∞|w|∞|yx|2|zxx|2

≤ |r|1/22 |rx|1/22 |w|1/22 |wx|1/22 |yx|2|zxx|2
(2.36)

≤ |r|1/22 |r|1/42 |rxx|1/42 |w|1/22 |w|1/42 |wxx|1/42 |y|1/22 |yxx|1/22 |zxx|2
≤M2

0

(
|rxx|22 + |wxx|22 + |yxx|22 + |zxx|22

)
and ∣∣∣∫ rwxyxzx

∣∣∣≤ |r|∞|wx|∞|yx|2|zx|2

≤ |r|1/22 |rx|1/22 |wx|1/22 |wxx|1/22 |y|1/22 |yxx|1/22 |z|1/22 |zxx|1/22
(2.37)

≤ |r|3/42 |rxx|1/42 |w|1/42 |wxx|3/42 |y|1/22 |yxx|1/22 |z|1/22 |zxx|1/22

≤M2
0

(
|rxx|22 + |wxx|22 + |yxx|22 + |zxx|22

)
.
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The elementary inequality

|fx|22 ≤ |f |2|fxx|2

has been used repeatedly in these estimates.

Using the inequalities (2.36) and (2.37) rather than (2.31) and (2.32)

leads to the integral inequality∣∣uxx(·, T )∣∣22 + ∣∣vxx(·, T )∣∣22
≤C2 +C3

∫ T

0

(∣∣uxx(·, t)∣∣22 + ∣∣vxx(·, t)∣∣22) dt,(2.38)

where C2 depends onM0,M1, and |uxx(·,0)|22+ |vxx(·,0)|22, while C3 depends

only on M0. A Gronwall-type argument then implies immediately that∣∣uxx(·, T )∣∣22 + ∣∣vxx(·, T )∣∣22
≤
(∣∣uxx(·,0)∣∣22 + ∣∣vxx(·,0)∣∣22)eC3T +

C2

C3
(eC3T − 1).

(2.39)

From this inequality, the inequality (2.33), and the previously deduced

bounds on (u, v) in H1 ×H1, it follows that for any T > 0,∥∥u(·, T )∥∥
H2 +

∥∥v(·, T )∥∥
H2

≤ cT2
(∥∥u(·,0)∥∥

H1 +
∥∥v(·,0)∥∥

H1

)(∥∥u(·,0)∥∥
H2 +

∥∥v(·,0)∥∥
H2

)
,

(2.40)

where the function cT2 (z) is a continuous function that may grow exponen-

tially in both z and T . This version of an H2-bound, while inferior to that

derived in (2.35) in terms of its growth rate, will find use in the next section.

2.4.3. Hs-bounds, s≥ 0. First, it is shown using standard commutator

estimates that as soon as H2-bounds are in hand, bounds on Sobolev norms

of all higher orders follow. To see this, fix an s > 2 and calculate formally

as indicated below.

For nonnegative real numbers s, the operator Ds is defined by its action

D̂sf(ξ) = |ξ|sf̂

on any tempered distribution f , where the circumflex adorning a distribu-

tion connotes that distribution’s Fourier transform. Of course, Ds is self-

adjoint as an unbounded operator on the Sobolev spaces Hr, and, for s≥ 0,
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the Hs-norm of a function f is equivalent to |f |2+ |Dsf |2. A straightforward

calculation using the equations (1.1) reveals that

d

dt
Ω(Dsu,Dsv)

=

∫
(2aP + bQ)D2sux + (bP + 2cQ)D2svx

= α

∫
Ds(u2)Dsux + β

∫ [
Ds(u2)Dsvx + 2DsuxD

s(vu)
]

(2.41)

+ γ

∫ [
Ds(v2)Dsux + 2Ds(uv)Dsvx

]
+ δ

∫
Ds(v2)Dsvx

=−α

∫
2Ds(uxu)D

su− β

∫
2
[
Ds(uxu)D

sv+DsuDs(uxv+ vxu)
]

− γ

∫
2
[
Ds(vxv)D

su+Ds(uxv+ vxu)D
sv
]
− δ

∫
2Ds(vxv)D

sv,

where α,β, γ, δ are, as before, the coefficients of the cubic polynomial R(u, v)

in (2.20). Write the integrand in the first integral on the right-hand side of

the last formula in the form

Ds(uxu)D
su=

[
Ds(uxu)− uDsux

]
Dsu+ uDsuxD

su

=Dsu[Ds, u]ux +
1

2
u
(
(Dsu)2

)
x
,

(2.42)

where the commutator [Ds, u] is defined via its action on a function v by

[Ds, u]v =Ds(uv)− uDsv.

Upon integrating by parts, the first integral on the right-hand side of (2.41)

is expressed in the form

(2.43)

∫
Ds(uxu)D

su=

∫
Dsu[Ds, u]ux −

∫
1

2
ux(D

su)2.

The standard commutator estimate

(2.44)
∣∣[Ds, f ]g

∣∣
2
=
∣∣Ds(fg)− fDsg

∣∣
2
≤C

(
‖f ′‖A‖g‖s−1 + ‖f ′‖s−1‖g‖A

)
,

where C is a constant dependent only upon the value of s ≥ 1, comes to

our rescue in trying to estimate the right-hand side of the last integral (see,
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e.g., Kato [19, Appendix A]). Here, the A-norm is simply the L1-norm of

the Fourier transform, namely,

‖f‖A = ‖f̂‖L1 .

Elementary considerations reveal that (2.44) implies the further inequality

(2.45)
∣∣[Ds, u]ux

∣∣
2
≤C‖u‖2‖u‖s

provided that s > 3/2. Applying (2.45) to (2.43) yields∣∣∣∫ Ds(uxu)D
su
∣∣∣≤C

(
‖u‖2‖u‖2s + |ux|∞|Dsu|22

)
≤C‖u‖2s,

with the constant C depending only on the already established H2-bound

on solutions. For the second integral, a reorganization of terms combined

with two integrations by parts leads to the formula∫
Ds(uxu)D

sv+DsuDs(uxv+ vxu)

=

∫
[Ds, u]uxD

sv+

∫
[Ds, u]vxD

su

+

∫
[Ds, v]uxD

su−
∫

uxD
suDsv− 1

2

∫
vx(D

su)2.

Applying the commutator estimate (2.44) repeatedly, it transpires that the

latter integral is bounded above by the quantity C(‖u‖2s + ‖v‖2s), where C

again depends only on the H2-norms of u and v. The third integral has the

same structure as the second, and the fourth integral is handled as was the

first. The upshot of all this is the differential inequality

d

dt

[
Ω(Dsu,Dsv) +Ω(u, v)

]
≤C

(
‖u‖2s + ‖v‖2s

)
≤C1

(
Ω(Dsu,Dsv) +Ω(u, v)

)
,

where the constant C depends only on s and the H2-norms of u and v, while

C1 depends on C and the value of the parameter λ introduced in (2.21) that

derives from the positive definiteness of the quadratic form q. As the H2-

norm of the solution pair is bounded on bounded time intervals, it follows
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from Gronwall’s lemma that |Dsu|2 + |Dsv|2 is bounded on bounded time

intervals.

These bounds and those in the preceding section imply that if the initial

data (u0, v0) lie in Hs ×Hs, where s≥ 2, then the solution (u, v) emanat-

ing therefrom, obtained via Theorem 1, can be extended globally in time.

Moreover, the problem is well posed in that, for any T > 0, the solution

depends in XT
s,b continuously on variations of (u0, v0) in Hs ×Hs, and it is

unique in XT
s,b.

Next, nonlinear interpolation together with the already established bounds

in L2 × L2, H1 ×H1, and H2 ×H2 is shown to yield a priori bounds in

Hs ×Hs for 0< s < 2 and hence to lead to global well-posedness in these

spaces.

The principal ingredient in the analysis to follow is an interpolation the-

orem, taken from [10] and [30]. The relevant result is quoted here for the

reader’s convenience. In the original statements of this result, B0 and B1

are two Banach spaces such that B1 ⊂B0, with the inclusion mapping being

continuous. For values (θ, p) such that 0< θ < 1 and 1≤ p <∞,

[B0,B1]θ,p =Bθ,p

is the K-method interpolation space between B0 and B1 (see, e.g., [23], [24],

and [27]). Thus, B1 ⊂Bθ,p ⊂B0 with continuous inclusions. If (θ1, p1) and

(θ2, p2) are two pairs as above, then

(θ1, p1)� (θ2, p2)

means

θ1 < θ2 or θ1 = θ2 and p1 > p2.

If (θ1, p1)� (θ2, p2), then Bθ1,p1 ⊃Bθ2,p2 with continuous inclusion. A con-

crete example of this situation is that for 0≤ θ ≤ 1, θ �= 1/2, and r > s,

[Hs,Hr]θ,2 =Hμ,

where μ= θr+ (1− θ)s, and similarly, for T > 0 fixed,[
C
(
[0, T ];Hs

)
,C
(
[0, T ];Hr

)]
θ,2

=C
(
[0, T ];Hμ

)
.

While the theory of nonlinear operator interpolation to be used presently

applies to mappings defined on Lp-based Sobolev spaces, where 1 ≤ p <

∞, we find use here only for the theory in the L2-based Hilbert spaces

Hs. In consequence, the proposition quoted below, which is a considerable

specialization of [10, Theorems 1, 2], suffices for the present application.
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Theorem 2. Let r and s, with r > s, be two nonnegative real numbers.

Suppose that for some T > 0, the operator A is defined on both Hr ×Hr

and Hs ×Hs and maps these spaces continuously into C([0, T ];Hr ×Hr)

and C([0, T ];Hs×Hs), respectively. Suppose in addition that A respects the

inequalities,

(i) ‖Af −Ag‖C([0,T ];Hs×Hs) ≤ c0
(
‖f‖Hs×Hs + ‖g‖Hs×Hs

)
‖f − g‖Hs×Hs

and

(ii) ‖Ah‖C([0,T ];Hr×Hr) ≤ c1
(
‖h‖Hs×Hs

)
‖h‖Hr×Hr

for some continuous functions c0 and c1. Then, for any b ∈ [s, r],A maps

Hb ×Hb continuously into C([0, T ];Hb ×Hb) and

‖Af‖C([0,T ];Hb×Hb) ≤ cb
(
‖f‖Hs×Hs

)
‖f‖Hb×Hb

where, for γ > 0, cb(γ) may be taken in the form cb(γ) = 4c0(4γ)
1−θc1(3γ)

θ

with c0 and c1 as in (i) and (ii) and θ = (b− s)/(r− s).

Remark 2. In fact, the theoremabovedoes not apply exactly as announced

at the midpoint b̂ = (1/2)(r + s) corresponding to the index θ taking the

value 1/2. This is because the interpolation space [Hs,Hr]1/2,2 is not the

obvious space (see Lions and Magenes [23]). However, in our case, the inter-

polation is made between L2 and H1 for the values 0< s < 1 and between

H1 and H2 when 1< s< 2. Once the advertised result is in hand for values

of s �= 1/2,3/2, a simple iteration of the interpolation argument settles the

issue for these isolated values as well.

Let A connote the solution map for the system (1.1). That is, A associates

to initial data (u0, v0) the solution (u, v) of the system. The local existence

theory together with the bounds obtained earlier in integer-order Sobolev

classes assures that for any T > 0,

A :Hs ×Hs →C
(
[0, T ];Hs ×Hs

)
,

for, say, s = 0, 1, and 2. Moreover, the solution mapping is Lipschitz in

L2 ×L2, which is to say that for any T > 0, there is a continuous function

cT0 such that ∥∥A(u0, v0)−A(ũ0, ṽ0)
∥∥
C([0,T ];H0×H0)

≤ cT0
(
‖u0‖L2 + ‖v0‖L2 + ‖ũ0‖L2 + ‖ṽ0‖L2

)
×
∥∥(u0 − ũ0, v0 − ṽ0)

∥∥
L2×L2 .

(2.46)



92 J. L. BONA, J. COHEN, AND G. WANG

In the first instance, this result is local and follows directly from the proof

of local well-posedness via the contraction mapping theorem. However, as

the solution evolves in a fixed ball in L2 × L2 on account of the time-

independent bounds, it follows that the Lipschitz bound can be iterated,

thereby establishing (2.46). Of course, the function cT0 may grow as fast as

exponentially in time, but this makes no difference to the issue of global

existence. (It seems likely that the Lipschitz constant grows linearly with

T , in fact; see, e.g., the theory and simulations reported in [9], [7], and [4].)

Exactly the same considerations reveal that A is Lipschitz as a mapping

of H1 ×H1 into C([0, T ];H1 ×H1). That is, given any T > 0, there is a

continuous function cT1 such that∥∥A(u0, v0)−A(ũ0, ṽ0)
∥∥
C([0,T ];H1×H1)

≤ cT1
(
‖u0‖H1 + ‖v0‖H1 + ‖ũ0‖H1 + ‖ṽ0‖H1

)
(2.47)

×
∥∥(u0 − ũ0, v0 − ṽ0)

∥∥
H1×H1 .

Of course, cT1 may grow with T , but T is fixed in the discussion.

Apply Theorem 2, first to A considered as a mapping of L2×L2 into the

space C([0, T ];L2 ×L2) and of H1 ×H1 into C([0, T ];H1 ×H1). Note that

the hypotheses needed to draw the conclusion of the theorem are exactly the

inequalities (2.46) and (2.25). Thus, it follows that for any fixed T > 0 and

s with 0< s< 1, s �= 1/2, A maps Hs ×Hs continuously into C([0, T ];Hs ×
Hs) and respects the inequality∥∥A(u0, v0)

∥∥
C([0,T ];Hs×Hs)

≤ cTs
(
‖u0‖L2 + ‖v0‖L2

)∥∥(u0, v0)∥∥Hs×Hs ,
(2.48)

where cTs (z) = 4cT0 (4z)
1−θc1(3z)

θ and cT0 and c1 are as in formulas (2.46)

and (2.25). Once this result is in hand, the fact that the same conclusion

holds for s = 1/2 follows by reinterpolating between s = 0 and s = 3/4,

for example. The same arguments apply for 1< s < 2 by an application of

Theorem 2 and the inequalities (2.47) and (2.40).

Of course, we already know from the local well-posedness theory in The-

orem 1 that A maps Hs ×Hs continuously into the smaller space XT
s,b, at

least for sufficiently small values of T . What is new are the a priori bounds

in (2.48). These bounds allow the local well-posedness theory to be iterated

at least out to time T . As T > 0 was arbitrary, global well-posedness follows.

The theory thus far extant is summarized here.
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Theorem 3. Let T > 0 be fixed. Suppose that the conditions (2.7), (2.8),

and (2.17) on the coefficients A,B, . . . ,F hold for the system (1.1). Then,

for any s≥ 0 and any (u0, v0) ∈Hs(R)×Hs(R), there is a pair of functions

(u, v) ∈C([0,∞) :Hs(R)×Hs(R)) starting at (u0, v0) when t= 0 that satis-

fies the system (1.1). For any T > 0, there is a b > 1/2 such that this solu-

tion pair (u, v) lies in XT
s,b and is unique within this class. Moreover, (u, v)

depends continuously in XT
s,b on variations of (u0, v0) in Hs(R)×Hs(R),

and hence continuously in C([0,∞) :Hs(R)×Hs(R)), with its Fréchet-space

topology, on such variations.

Remark 3. Indeed, as is apparent from the proofs offered earlier, the

dependence of the solution (u, v) on (u0, v0) is Lipschitz, no matter the

value of s≥ 0.

Remark 4. The results developed in [11] appertaining to the KdV equa-

tion can be carried over without essential change to the present context.

When carried out, this theory provides a stronger version of uniqueness

than that stated above. Roughly speaking, the strengthened theory asserts

uniqueness within the class of functions C(0, T :Hs ×Hs) as soon as solu-

tions in this class can be approximated by smooth solutions. That is to say,

uniqueness holds within the class of mild solutions. We pass over this devel-

opment here. Of course, elementary energy arguments allow us to conclude

uniqueness in C(0, T :Hs ×Hs) whenever s > 3/2 (see, e.g., Saut [28]).

§3. Preliminaries and the theorem for −3/4< s< 0

Attention is now turned to the more challenging case wherein −3/4 <

s< 0. The present section lays out some preliminary, technical results that

will find use in the development of global well-posedness theory in these

larger Hs-spaces. In Section 3.1, the multilinear functionals on which energy

inequalities are based are introduced and studied. Once these functionals

are sufficiently investigated, a modified “energy” is introduced that plays a

central role in the global theory to come in Section 4. It is worth emphasizing

that parts of the theory to follow rely upon the presumption that s < 0. To

provide a clear goal for the remainder of this article, the main theorem for

the case −3/4< s< 0 is stated.

3.1. Multilinear functionals and multipliers

The integrals that appear in the energy-type estimates to follow are all

multilinear functionals. The assertion of “almost conservation of energy”
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depends upon being able to bound these integrals appropriately. This task

will occupy most of the rest of the paper. The following simple fact will be

useful throughout the discussion:∫ ∞

−∞
f1(x)f2(x) · · ·fn(x)dx

= ̂f1f2 · · ·fn(0)

=
( 1

2π

)n−1
f̂1 ∗ f̂2 ∗ · · · ∗ f̂n(0)

=

∫ ∞

−∞
· · ·
∫ ∞

−∞
f̂1(ξ1) · · · f̂n−1(ξn−1)

× f̂n(−ξ1 − · · · − ξn−1)dμ(ξ1) · · ·dμ(ξn−1)

=

∫
ξ1+···+ξn=0

f̂1(ξ1)f̂2(ξ2) · · · f̂n(ξn),

where dμ(ξ) = (1/2π)dξ. From now on, the notation∫
ξ1+···+ξn=0

f(ξ1, ξ2, . . . , ξn)

(3.1)

=

∫ ∞

−∞
· · ·
∫ ∞

−∞
f(ξ1, ξ2, . . . ,−ξ1 − · · · − ξn−1)dμ(ξ1) · · ·dμ(ξn−1)

will be used to denote integration over the hyperplane ξ1 + · · ·+ ξn = 0.

The analysis will also feature weighted multilinear functionals. It is con-

venient to use the notation for these introduced in [16]. Let u and v be

functions of x (eventually, (u, v) will be a solution pair for (1.1) with the tem-

poral variable appearing as a parameter), and let û, v̂ be their Fourier trans-

forms. Let k > 0 be an integer, and for each pair of nonnegative integers (i, j)

with i+ j = k, suppose that fij :R
k →R are given real-valued functions and

that aij are specified real constants. The notation f = {fij(ξ1, ξ2, . . . , ξk) :
i + j = k and i, j ≥ 0} for the whole collection of functions will be used.

Define k-linear functionals Λk(f) by

(3.2) Λk(f) =
∑

i+j=k

aijΛ
k
ij(fij),

where

(3.3) Λk
ij(h) =

∫
ξ1+···+ξk=0

h(ξ1, ξ2, . . . , ξk)û(ξ1) · · · û(ξi)v̂(ξi+1) · · · v̂(ξk).
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Notice that if fij = g, say, for all i, j, then

Λk(f) =
∑

i+j=k

aijΛ
k
ij(g).

In particular, for the special case fij(ξ1, ξ2, . . . , ξk) = 1 for all the relevant

i, j,

Λk(1) =

∫ ∞

−∞
p(u, v)dx,

where

p(u, v) =
∑

i+j=k

aiju(x)
iv(x)j .

3.2. The modified energy H(t)

In this section, we introduce the function Iu, which agrees with u in the

low frequencies but is attenuated by a factor of |ξ|s in the high frequencies.

Specifically, I is a Fourier-multiplier operator defined by Îu(ξ) =m(ξ)û(ξ)

whose symbol m is such that

(3.4) m(ξ) =

{
1 if |ξ| ≤N,

N−s|ξ|s if |ξ| ≥ 2N.

The symbol m is chosen to be smooth, positive, even, monotone decreasing

for ξ > 0 and to satisfy the inequalities

(3.5)
∣∣m′(ξ)

∣∣≤C
m(ξ)

|ξ|

and

(3.6)
∣∣m′′(ξ)

∣∣≤C
m(ξ)

|ξ|2

for some constant C > 0. If it is presumed that N ≥ 1, then it is straight-

forward to ascertain that

(3.7)
∥∥(Iu0, Iv0)∥∥L2

x×L2
x
≤CN−s

∥∥(u0, v0)∥∥Hs×Hs .

For technical reasons arising subsequently, N is taken to be a dyadic number

2r for some integer r ≥ 0.

Note that the function m(ξ) also satisfies the halving condition

(3.8) m(ξ)≤ 2−sm(2ξ),



96 J. L. BONA, J. COHEN, AND G. WANG

which holds for all ξ > 0. This is clear from the definition (3.4) if ξ ≥N or

0≤ ξ ≤N/2. If N/2≤ ξ ≤N , then m(ξ) = 1 = 2−sm(2N)≤ 2−sm(2ξ).

For a pair of real-valued functions (u, v), define the modified energy H(t)

to be

(3.9) H(t) = Ω(Iu, Iv)1/2 =
{∫

a20(Iu)
2 + a11IuIv+ a02(Iv)

2
}1/2

,

where the coefficients a = a20, b = a11, and c = a02 are assumed to satisfy

the equations (2.7) and (2.8), which in the present notation are

(3.10) 2a20B + a11E = 2a11A+ 4a02D

and

(3.11) 4a20C + 2a11F = 2a02E + a11B,

and the positive-definiteness condition (2.17), namely,

(3.12) 4a20a02 − a211 > 0.

As before, it may be assumed without loss of generality that a20 > 0, whence

a02 > 0 as well. Because the integrand is nonnegative, the positive square

root defines H as a nonnegative function. Since u and v are real-valued

functions, it transpires that û(ξ1) = û(−ξ1), v̂(ξ1) = v̂(−ξ1), and thus, by

Plancherel’s formula,

H(t)2 =

∫
a20(Iu)

2 + a11IuIv+ a02(Iv)
2

=
1

2π

∫
a20m(ξ1)û(ξ1)m(ξ1)û(ξ1) + a11m(ξ1)û(ξ1)m(ξ1)v̂(ξ1)

+ a02m(ξ1)v̂(ξ1)m(ξ1)v̂(ξ1)dξ1
(3.13)

=

∫
ξ1+ξ2=0

m(ξ1)m(ξ2)
[
a20û(ξ1)û(ξ2)

+ a11û(ξ1)v̂(ξ2) + a02v̂(ξ1)v̂(ξ2)
]

= a20Λ
2
20(m2) + a11Λ

2
11(m2) + a02Λ

2
02(m2) = Λ2(m2),

where the Λ2
ij are as defined in the last section andM2(ξ1, ξ2) =m(ξ1)m(ξ2) =

m(ξ1)
2 =m(ξ2)

2 because ξ1 =−ξ2 and m is an even function.
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Remark 5. Since H(t)2 =
∫
a20(Iu)

2 + a11IuIv + a02(Iv)
2 ≈

‖(Iu, Iv)‖2L2
x×L2

x
, one can replace ‖(Iu, Iv)‖L2

x×L2
x
by H(t) in (3.7). (The

notation A≈B means that there are positive constants c1 and c2 such that

c1B ≤A≤ c2B.) In particular, ‖(Iu0, Iv0)‖L2
x×L2

x
≈H(0).

3.3. The main theorem

While the modified energy is not preserved as a function of time, its rate

of growth is slow. In fact, it will be shown that by choosing N in (3.4) large

enough, one can iterate Theorem 1 on intervals of length 1 sufficiently often

to obtain solutions defined on intervals of arbitrary length.

Establishing control of the growth of H(t) relies on the following two

lemmas.

Lemma 1. Let the pair (u, v) be a solution of equations (1.1) on some

time interval [t0, t1] in C([t0, t1];H
s × Hs), and let H(t) be the modified

energy defined in (3.13). Then there exist trilinear functionals Λ3 and Λ̃3,

quadrilinear functionals Λ4 and Λ̃4, and a quintilinear functional Λ5 satis-

fying the equations

d

dt
H(t)2 = iΛ3(t),

d

dt

{
H(t)2 − Λ̃3

}
= iΛ4(t),(3.14)

d

dt

{
H(t)2 − Λ̃3 − Λ̃4

}
= iΛ5(t).

Proof. The proof of this lemma is deferred until Section 5, where explicit

expressions for Λ3, Λ̃3,Λ4, and Λ̃4 will be forthcoming.

Lemma 2. (Suppose that the index s lies in (−3/4,0).) For a pair of

functions (u, v) in C([t0, t1];H
s ×Hs), satisfying

(3.15)

{
ut + uxxx +A(u2)x +B(uv)x +C(v2)x = 0,

vt + vxxx +D(u2)x +E(uv)x + F (v2)x = 0

with initial data

(3.16) u(x, t0) = u0(x) and v(x, t0) = v0(x).

Let H(t) be the corresponding modified energy. If Λ̃3 and Λ̃4 are the func-

tionals referred to in Lemma 1, then there are constants c3 and c4 indepen-

dent of t0 and t1 such that for t ∈ [t0, t1],

(3.17)
∣∣Λ̃3(t)

∣∣≤ c3H(t)3 and
∣∣Λ̃4(t)

∣∣≤ c4H(t)4.
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Moreover, there is a 0< δ < t1 − t0 such that for t ∈ [t0, t0 + δ],∣∣∣∫ t

t0

d

dt

{
H(t)2 − Λ̃3 − Λ̃4

}∣∣∣≤CN5s
∥∥(Iu, Iv)∥∥5

X
[t0,t]

0,(1/2)+

(3.18)
≤ c5N

5s
∥∥(Iu0, Iv0)∥∥L2×L2 ,

where C is independent of δ, t0, and t1. The constant c5 in the last inequality

is independent of t.

Remark 6. The estimates of Λ̃3 and Λ̃4 are established in [16, Sec-

tion 6]. In [16, proof of Lemma 6.1, pp. 724–725], the estimate for Λ̃3 in

(3.17) assumes that −3/4< s <−1/2. This leaves a gap in the global exis-

tence theory since the proof of global existence depends on this estimate.

A slight modification of the proof of [16, Lemma 6.1] is provided at the end

of Section 7, which shows that the inequality (3.17) still holds for the full

range −3/4< s< 0.

The first inequality in (3.18) is a more precise version of estimate [16,

(5.6)] and is proved here in Section 7. The second inequality follows from

Proposition 1 in the next section. More precisely,∥∥(Iu, Iv)∥∥
X

[t0,t]

0,(1/2)+

≤
∥∥(Iu, Iv)∥∥

X
[t0,t0+δ]

0,(1/2)+

for t ∈ [t0, t0 + δ], and by Proposition 1,∥∥(Iu, Iv)∥∥
X

[t0,t0+δ]

0,(1/2)+

≤ C̃
∥∥(Iu0, Iv0)∥∥L2×L2 ,

so c5 is a product of C in the lemma and C̃. It is used to estimate the

growth of H(t)2 − Λ̃3 − Λ̃4 (see (4.5) and (4.6) in Section 4).

Here is the principal result of the remainder of the paper. A proof is

provided in the next section, subject to a technical point which will be

discussed in Section 5.

Theorem 4. Fix an s in the range −3/4 < s < 0, and let real numbers

A,B, . . . ,F be given. Define the matrix M by

(3.19) M =

[
2B E − 2A −4D

4C 2F −B −2E

]
.

Then the KdV system

(3.20)

{
ut + uxxx +A(u2)x +B(uv)x +C(v2)x = 0,

vt + vxxx +D(u2)x +E(uv)x + F (v2)x = 0
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posed for x ∈R and t≥ 0, with specified initial data

(3.21) u(x,0) = u0(x) and v(x,0) = v0(x),

in Hs(R)×Hs(R) has global solutions if rank M = 2 and

2EC(E − 2A)2 + 2BD(2F −B)2

− [4CD+BE](E − 2A)(2F −B)> (4CD−BE)2
(3.22)

or rank M = 1 and

(3.23) (2A−E)2 + 8BD > 0 or (2F −B)2 + 8EC > 0.

Moreover, there is a real number b > 1/2 such that for all T > 0, (u, v)

lies in the Bourgain space XT
s,b ×XT

s,b. The solution is unique in this latter

class and depends continuously in this space on variations of (u0, v0) in

Hs(R)×Hs(R).

§4. Global well-posedness: The case −3/4< s< 0

This section indicates how the inequalities in Lemma 2 can be used to

prove that for any s with 0> s>−3/4, T > 0, and any initial data (u0, v0) ∈
Hs(R)×Hs(R), there is a solution (u, v) to equation (1.1) on the interval

[0, T ]. Note that if it can be established that a solution (u, v) to the initial-

value problem (1.1)–(1.2) exists on [0,1] for arbitrarily large initial data

(u0, v0) ∈ Hs(R) ×Hs(R), then this result may be iterated to extend the

solution to the interval [1,2], and so on. Thus, without loss of generality, we

may assume that T = 1.

The proof has two major steps. The first shows there is an H0 > 0 so

that for all initial data (u0, v0) with modified energy H(0) < H0, there

is a solution to the initial-value problem (1.1)–(1.2) valid on the entire

interval [0,1]. The second uses the following scaling argument to complete

the proof. If λ > 0, then (u(x, t), v(x, t)) satisfies the system (1.1) if and

only if λ2(u(λx,λ3t), v(λx,λ3t)) satisfies the system (1.1). Hence, the pair

(u(x, t), v(x, t)) satisfies the initial-value problem (1.1)–(1.2) on [0,1] with

initial data (u0, v0) if there exists (uλ(x, t), vλ(x, t)) satisfying (1.1)–(1.2) on

interval [0, λ3] with (uλ(x,0), vλ(x,0)) = (1/λ2)(u0(x/λ), v0(x/λ)). It will be

shown that no matter how large is (u0, v0), one can choose λ and the param-

eter N appearing in the definition of the multiplier Iu so that the initial

data (1/λ2)(u0(x/λ), v0(x/λ)) has H(0)<H0 and, moreover, that the local
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solution process can be iterated λ3 times without violating the condition

H(t)<H0.

To carry out the first step in the proof, it is useful to reframe the initial-

value problem (1.1)–(1.2) so that the size of the initial condition is expressed

in terms of the modified energy H(t) rather than via the (Hs(R)×Hs(R))-

norm. The following alternative version of local well-posedness is convenient

for this purpose.

Proposition 1. If s > −3/4, the initial-value problem (1.1)–(1.2) is

locally well posed for data (u0, v0) satisfying (Iu0, Iv0) ∈ L2 ×L2. The solu-

tion exists on a time interval [0, δ], and there are positive constants C and α,

independent of N , such that δ respects the lower bound

C
∥∥(Iu0, Iv0)∥∥−α

L2×L2 ≤ δ.

In addition, there is another positive constant C, also independent of N ,

such that for all t ∈ [0, δ],∥∥(Iu, Iv)∥∥
X

[0,t]
0,(1/2)+

≤C
∥∥(Iu0, Iv0)∥∥L2×L2 .

This is [16, Proposition 2], adapted to the system of equations studied

here. The estimates for the Duhamel terms are exactly the same as in the

latter reference because they are all of the form∫ t

0
W (t− t′)

∂

∂x

(
u(x, t′)v(x, t′)

)
dt′.

It is now shown how these local results can be iterated sufficiently often

to infer existence of a solution on the time interval [0,1], provided that the

original data are sufficiently small.

4.1. Energy growth

From Proposition 1, the following remark is evident.

Remark 7. There exists an ε1 > 0 small enough that if the initial data

have H(0) < ε1, then there is a solution to (1.1)–(1.2) defined at least on

the interval [0,1]. The parameter ε1 is independent of N .

The next lemma is useful in controlling the growth of H(t) when H(0) is

sufficiently small.
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Lemma 3. Suppose that (u, v) is a solution of the initial-value problem

(1.1)–(1.2) on at least the time interval [0, t0] and that �t0� + 1 ≤ N−5s.

Let H(t) be the modified energy associated to (u, v). There is a constant ε0
independent of values of t0 ≤N−5s, such that if H(0)< ε0 and H(t)< 2ε0
for t ∈ [0, t0], then (u, v) can be extended to a solution of (1.1)–(1.2) on the

longer time interval [0, t0+1]. In addition, it is still the case that H(t)< 2ε0
for t ∈ [0, t0 + 1].

Proof. To begin with, choose ε0 so that 0< ε0 <min{1, (1/2)ε1}, where
ε1 is defined as in Remark 7. Since H(t0)< 2ε0 ≤ ε1, it follows that if (1.1)–

(1.2) is posed with initial data (u(·, t0), v(·, t0)), then there is a solution

(u1, v1) defined at least for a time interval of length 1. Setting

ũ(x, t) =

{
u(x, t) if 0≤ t≤ t0,

u1(x, t) if t0 ≤ t≤ t0 + 1,

and similarly for v, yields an extension of (u, v) to (ũ, ṽ) defined for t ∈
[0, t0 + 1].

Attention is now turned to providing the bound H(t)< 2ε0 on [0, t0 +1].

This is the crux of the matter, in fact. For convenience, define Γ4 by

(4.1) Γ4(t) =H(t)2 − Λ̃3(t)− Λ̃4(t),

and write

(4.2) H(t)2 = Λ̃3(t) + Λ̃4(t) +
[
Γ4(t)− Γ4(0)

]
−
[
Λ̃3(0) + Λ̃4(0)

]
+H(0)2.

At least on the interval 0≤ t≤ t0 + 1, Lemma 2 implies that

(4.3)
∣∣Λ̃3(t) + Λ̃4(t)

∣∣≤ c3H(t)3 + c4H(t)4

and that

(4.4)
∣∣Λ̃3(0) + Λ̃4(0)

∣∣≤ c3H(0)3 + c4H(0)4.

Furthermore, from Lemma 2 and the fundamental theorem of calculus, if

0≤ t≤ t0 and 0≤ δ ≤ 1, then∣∣Γ4(t+ δ)− Γ4(t)
∣∣

=
∣∣[H(t+ δ)2 − Λ̃3(t+ δ)− Λ̃4(t+ δ)

]
−
[
H(t)2 − Λ̃3(t)− Λ̃4(t)

]∣∣(4.5)

≤ c5N
5sH(t)5.
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This latter inequality can be improved as follows. Since, by assumption,

H(t)< 2ε0 for 0≤ t≤ t0, it transpires that for t0 ≤ t≤ t0 + 1,∣∣Γ4(t)− Γ4(0)
∣∣≤ ∣∣Γ4(t)− Γ4(t0)

∣∣
+

�t0�∑
j=1

∣∣Γ4(t0 − j + 1)− Γ4(t0 − j)
∣∣

+Γ4
(
t0 − �t0�

)
− Γ4(0)(4.6)

≤ c5N
5s(2ε0)

5 +

�t0�∑
j=1

c5N
5s(2ε0)

5 + c5N
5s(ε0)

5

≤ 32c5nN
5sε50,

where n = �t0�+ 2 = �t0�+ 1. Substituting in (4.2) and using inequalities

(4.3), (4.4), and (4.6), it transpires that for t ∈ [t0, t0 + 1],

H(t)2 <H(0)2 + c3H(0)3 + c4H(0)4 + 32c5nN
5sε50 + c3H(t)3 + c4H(t)4.

Because H(0)< ε0 and �t0� ≤N−5s, the right-hand side of the last inequal-

ity can be further bounded above, leading to the inequality

(4.7) H(t)2 < ε20 + c3ε
3
0 + c4ε

4
0 + 32c5ε

5
0 + c3H(t)3 + c4H(t)4,

which applies for all t ∈ [t0, t0 + 1]. As H(t0) < 2ε0 and H is continuous,

either H(t) < 2ε0 for all t ∈ [t0, t0 + 1] or else there is a t∗ > t0 such that

H(t∗) = 2ε0. Evaluating the inequality in the last display at t= t∗ yields

4ε20 < ε20 + c3ε
3
0 + c4ε

4
0 + 32c5ε

5
0 + 8c3ε

3
0 + 16c4ε

4
0

or, since ε0 < 1,

1<
1

3
ε0(9c3 + 17c4 + 32c5).

This plainly cannot occur for small values of ε0.

To recapitulate, if ε0 > 0 is such that

(4.8) ε0 < 1, ε0 <
1

2
ε1 and ε0 <

3

9c3 + 17c4 + 32c5
,

then for initial data (u0, v0) whose energy satisfies H(0) < ε0, it must be

the case that H(t)< 2ε0 on the entire interval [0, t0+1]. The lemma is thus

established.
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4.2. Proof of Theorem 4

Let (u0, v0) ∈Hs ×Hs be arbitrary initial data. As mentioned earlier, it

suffices to show that (1.1)–(1.2) has an (Hs×Hs)-solution emanating from

(u0, v0) that exists at least for t ∈ [0,1]. Let λ≥ 1, and consider the scaled

initial data

(u0λ, v0λ) =
1

λ2

(
u0

(x
λ

)
, v0

(x
λ

))
.

An elementary calculation reveals that the modified energy H =Hλ asso-

ciated to (u0λ, v0λ) is bounded in terms of λ and the energy H1 = H(0),

namely,

Hλ(0) =
(∫

a20(Iuλ,0)
2 + a11Iuλ,0Ivλ,0 + a02(Ivλ,0)

2
)1/2

≤C
∥∥(Iu0λ, Iv0λ)∥∥L2×L2

≤C ′N−s
∥∥(u0λ, v0λ)∥∥Hs×Hs

≤ C̃λ−(3+2s)/2N−s
∥∥(u0, v0)∥∥Hs×Hs ,

(4.9)

provided that s≤ 0 and λ,N ≥ 1, say.

Let s be given with −3/4< s≤ 0. Existence of a solution of (1.1)–(1.2)

in C([0,1];Hs ×Hs) starting at (u0, v0) is equivalent to the existence of a

solution (uλ, vλ) starting at (u0λ, v0λ) on the interval [0, λ3]. Select ε1 > 0 to

satisfy the condition specified in Remark 7, and then select ε0 > 0 satisfying

the strictures of (4.8). Choose N ≥ 1 such that

N−5s ≥N−6s/(3+2s)
[ C̃‖(u0, v0)‖Hs×Hs

ε0

]6/(3+2s)

=
((

N−s
[ C̃‖(u0, v0)‖Hs×Hs

ε0

])2/(3+2s))3
.

This is possible precisely when −5s+ (6s/3 + 2s)> 0, which occurs if and

only if s < −3/2 or −9/10 < s < 0. Since the local theory works only for

s > −3/4, the values of s are restricted to the interval −3/4 < s < 0. In

particular, this argument fails when s≥ 0.

Remark 8. An estimate similar to (3.18) occurs in [16] with the exponent

−15/4+ instead of 5s. If s = −3/4 + ε/5, then 5s = −15/4 + ε. This gives

the impression that the above argument could work for any s >−3/4, which

as just shown fails for s≥ 0. The failure of this argument for s > 0 explains

the use of very different methods for the Hs theory for positive s.



104 J. L. BONA, J. COHEN, AND G. WANG

Once ε0 and N are fixed, let

λ=max
{
1,
(
N−s

[ C̃‖(u0, v0)‖Hs×Hs

ε0

])2/(3+2s)}
,

so that

N−5s ≥ λ3 and C̃λ−(3+2s)/2N−s
∥∥(u0, v0)∥∥Hs×Hs ≤ ε0.

With the above choices of λ and N , we may apply Lemma 3 N−5s times

to obtain a solution (uλ, vλ) of (1.1), with initial data (u0λ, v0λ), on the

time interval [0,N−5s]. A solution pair (u(x, t), v(x, t)) = (λ2uλ(λx,λ
3t),

λ2vλ(λx,λ
3t)) of (1.1) is thereby generated which emanates from the initial

data (u0, v0) and which is defined at least on the interval [0, λ−3N−5s] �
[0,1]. Theorem 4 is proved.

§5. Components of the modified energy

The analysis leading to a proof of Lemma 1 is carried out in Sections 5.1

and 5.2. Recalling the definition of the modified energy (3.4) and using the

Plancherel identity, it is seen that

Λ2(t) =H(t)2

=

∫
a20(Iu)

2 + a11IuIv+ a02(Iv)
2

=

∫
ξ1+ξ2=0

m(ξ1)m(ξ2)
[
a20û(ξ1)û(ξ2) + a11û(ξ1)v̂(ξ2) + a02v̂(ξ1)v̂(ξ2)

]
=Λ2(M2).

Assume that the pair (u, v) satisfies the KdV system (1.1). Given k ≥ 2

and function h, there is an associated vector h = {hrs : r + s = k + 1} of

multipliers such that we have the following useful equation:

d

dt
Λrs(h)

= i

∫
ξ1+···+ξk=0

(ξ31 + · · ·+ ξ3k)h(ξ1, . . . , ξk)

× û(ξ1) · · · û(ξr)v̂(ξr+1) · · · v̂(ξr+s)

+
∑

i+j=k+1

aijΛij(hij)(5.1)
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= i

∫
ξ1+···+ξk=0

αkh(ξ1, . . . , ξk)û(ξ1) · · · û(ξr)v̂(ξr+1) · · · v̂(ξr+s)

+
∑

i+j=k+1

aijΛij(hij)

= iΛrs(αkh) +
∑

i+j=k+1

aijΛij(hij),

where

αk = αk(ξ1, . . . , ξk) = ξ31 + · · ·+ ξ3k

and {aij , hij : i+ j = k+1} depends on h and the coefficients A,B, . . . ,F in

the KdV system (1.1). We will often write simply αk, omitting the explicit

dependence on the independent variables ξ1, . . . , ξk unless they are needed.

In general, finding the exact form of {aij , hij : i+ j = k+1} from h involves

a fair amount of calculation. Explicit formulas for the aij and hij are derived

in the following two sections for the cases k = 3 and k = 4.

5.1. The functional Λ3

Lemma 4. For H(t) defined as in (3.13), we have d
dtH(t)2 = iΛ3, where

(5.2) Λ3 =
∑

i+j=3

aijΛij(M3),

with coefficients aij given by

a30 =
1

3
(2a20A+ a11D), a21 = a11A+ 2a02D,

a12 = a11F + 2a20C, a03 =
1

3
(2a02F + a11C)

(5.3)

and the multiplier M3 defined by

(5.4) M3(ξ1, ξ2, ξ3) =
3∑

i=1

ξim(ξi)
2.

Proof. Recalling the Fourier representation of H(t) in (3.4), namely,

H(t)2 =

∫
ξ1+ξ2=0

m(ξ1)m(ξ2)
[
a20û(ξ1)û(ξ2)+a11û(ξ1)v̂(ξ2)+a02v̂(ξ1)v̂(ξ2)

]
,
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it is straightforward to compute

d

dt
H(t)2 =

∫
ξ1+ξ2=0

m(ξ1)m(ξ2)
[
2a20û(ξ1)ût(ξ2) + a11v̂(ξ1)ût(ξ2)

+ a11û(ξ1)v̂t(ξ2) + 2a02v̂(ξ1)v̂t(ξ2)
]
.

Upon using the equations (1.1) to express the temporal derivatives, this is

seen to equal

−
∫
ξ1+ξ2=0

m(ξ1)m(ξ2)2a20û(ξ1)
[
ûxxx +A(̂u2)x +B(̂uv)x +C (̂v2)x

]
(ξ2)

−
∫
ξ1+ξ2=0

m(ξ1)m(ξ2)a11v̂(ξ1)
[
ûxxx +A(̂u2)x +B(̂uv)x +C (̂v2)x

]
(ξ2)

−
∫
ξ1+ξ2=0

m(ξ1)m(ξ2)a11û(ξ1)
[
v̂xxx +D(̂u2)x +E(̂uv)x + F (̂v2)x

]
(ξ2)

−
∫
ξ1+ξ2=0

m(ξ1)m(ξ2)2a02v̂(ξ1)
[
v̂xxx +D(̂u2)x +E(̂uv)x + F (̂v2)x

]
(ξ2).

Notice that∫
ξ1+ξ2=0

m(ξ1)m(ξ2)û(ξ1)(̂u2)x(ξ2)

(5.5)

=

∫
ξ1+ξ2=0

m(ξ1)m(ξ2)û(ξ1)iξ2

∫
û(ξ2 − ξ3)û(ξ3)dμ(ξ3),

and thus setting τ = ξ2 − ξ3 and then replacing τ by ξ2 and using ξ1 + ξ2 +

ξ3 = 0 to replace ξ2 + ξ3 by −ξ1, the latter integral equals∫
ξ1+ξ2+ξ3=0

i(ξ2 + ξ3)m(ξ1)m(ξ2 + ξ3)û(ξ1)û(ξ2)û(ξ3)

=−i

∫
ξ1+ξ2+ξ3=0

ξ1m(ξ1)
2û(ξ1)û(ξ2)û(ξ3).

In a similar fashion, the identities∫
ξ1+ξ2=0

m(ξ1)m(ξ2)û(ξ1)(̂uv)x(ξ2)

=−i

∫
ξ1+ξ2+ξ3=0

ξ1m(ξ1)
2û(ξ1)û(ξ2)v̂(ξ3),
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ξ1+ξ2=0

m(ξ1)m(ξ2)û(ξ1)(̂v2)x(ξ2)

=−i

∫
ξ1+ξ2+ξ3=0

ξ1m(ξ1)
2û(ξ1)v̂(ξ2)v̂(ξ3),∫

ξ1+ξ2=0
m(ξ1)m(ξ2)v̂(ξ1)(̂u2)x(ξ2)

=−i

∫
ξ1+ξ2+ξ3=0

ξ1m(ξ1)
2v̂(ξ1)û(ξ2)û(ξ3),∫

ξ1+ξ2=0
m(ξ1)m(ξ2)v̂(ξ1)(̂uv)x(ξ2)

=−i

∫
ξ1+ξ2+ξ3=0

ξ1m(ξ1)
2v̂(ξ1)û(ξ2)v̂(ξ3),∫

ξ1+ξ2=0
m(ξ1)m(ξ2)v̂(ξ1)(̂v2)x(ξ2)

=−i

∫
ξ1+ξ2+ξ3=0

ξ1m(ξ1)
2v̂(ξ1)v̂(ξ2)v̂(ξ3),

are seen to hold. These observations allow us to adduce the functionals

J = i

∫
ξ1+ξ2=0

m(ξ1)m(ξ2)
[
2a20ξ

3
1 û(ξ1)û(ξ2) + 2a02ξ

3
1 v̂(ξ1)v̂(ξ2)

]
+ i

∫
ξ1+ξ2=0

m(ξ1)m(ξ2)a11
[
ξ31 û(ξ1)v̂(ξ2) + ξ32 û(ξ1)v̂(ξ2)

]
and

L= iΛ3 = i[a30Λ30 + a21Λ21 + a12Λ12 + a03Λ03],

for which
d

dt
H(t)2 = J +L.

The terms appearing in the definition of L are

a30Λ30 =

∫
ξ1+ξ2+ξ3=0

[2a20A+ a11D]ξ1m
2(ξ1)û(ξ1)û(ξ2)û(ξ3),

a21Λ21 =

∫
ξ1+ξ2+ξ3=0

a11Aξ3m
2(ξ3)û(ξ1)û(ξ2)v̂(ξ3)

+

∫
ξ1+ξ2+ξ3=0

a11Eξ1m
2(ξ1)û(ξ1)û(ξ2)v̂(ξ3)
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+

∫
ξ1+ξ2+ξ3=0

2a20Bξ1m
2(ξ1)û(ξ1)û(ξ2)v̂(ξ3)

+

∫
ξ1+ξ2+ξ3=0

2a02Dξ3m
2(ξ3)û(ξ1)û(ξ2)v̂(ξ3),

a12Λ12 =

∫
ξ1+ξ2+ξ3=0

2a20Cξ1m
2(ξ1)û(ξ1)v̂(ξ2)v̂(ξ3)

+

∫
ξ1+ξ2+ξ3=0

a11Bξ3m
2(ξ3)û(ξ1)v̂(ξ2)v̂(ξ3)

+

∫
ξ1+ξ2+ξ3=0

a11Fξ1m
2(ξ1)û(ξ1)v̂(ξ2)v̂(ξ3)

+

∫
ξ1+ξ2+ξ3=0

2a02Eξ3m
2(ξ3)û(ξ1)v̂(ξ2)v̂(ξ3)

and

a03Λ03 =

∫
ξ1+ξ2+ξ3=0

[2a02F + a11C]ξ1m
2(ξ1)v̂(ξ1)v̂(ξ2)v̂(ξ3).

Notice the symmetrization principles∫
ξ1+ξ2+ξ3=0

ξ1m(ξ1)
2û(ξ1)û(ξ2)û(ξ3)

=

∫
ξ1+ξ2+ξ3=0

ξ2m
2(ξ2)û(ξ1)û(ξ2)û(ξ3)

(5.6)

=

∫
ξ1+ξ2+ξ3=0

ξ3m
2(ξ3)û(ξ1)û(ξ2)û(ξ3)

=

∫
ξ1+ξ2+ξ3=0

ξ1m
2(ξ1) + ξ2m

2(ξ2) + ξ3m
2(ξ3)

3
û(ξ1)û(ξ2)û(ξ3)

and ∫
ξ1+ξ2+ξ3=0

ξ1m
2(ξ1)û(ξ1)û(ξ2)v̂(ξ3)

=

∫
ξ1+ξ2+ξ3=0

ξ2m
2(ξ2)û(ξ1)û(ξ2)v̂(ξ3)

=

∫
ξ1+ξ2+ξ3=0

ξ1m
2(ξ1) + ξ2m

2(ξ2)

2
û(ξ1)û(ξ2)v̂(ξ3).
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Applying these formulas to the terms in J and using the fact that ξ1+ξ2 = 0

implies that ξ31 + ξ32 = 0, it follows that∫
ξ1+ξ2=0

m(ξ1)m(ξ2)
[
2a20ξ

3
1 û(ξ1)û(ξ2) + 2a02ξ

3
1 v̂(ξ1)v̂(ξ2)

]
=

∫
ξ1+ξ2=0

m(ξ1)m(ξ2)
[
a20(ξ

3
1 + ξ32)û(ξ1)û(ξ2) + a02(ξ

3
1 + ξ32)v̂(ξ1)v̂(ξ2)

]
= 0

and ∫
ξ1+ξ2=0

m(ξ1)m(ξ2)a11
[
ξ31 û(ξ1)v̂(ξ2) + ξ32 û(ξ1)v̂(ξ2)

]
=

∫
ξ1+ξ2=0

m(ξ1)m(ξ2)a11[ξ
3
1 + ξ32 ]û(ξ1)v̂(ξ2)

= 0.

Consideration is now given to the trilinear integrals arising from the qua-

dratic terms in the system (1.1). First, it is seen that

a30Λ30 =

∫
ξ1+ξ2+ξ3=0

1

3
(2a20A+ a11D)

×
[
ξ1m

2(ξ1) + ξ2m
2(ξ2) + ξ3m

2(ξ3)
]
û(ξ1)û(ξ2)û(ξ3).

Using the condition (3.10) on the coefficients a02, a11, a20, we conclude

that

a20Λ21 =

∫
ξ1+ξ2+ξ3=0

{
[a11A+ 2a02D]ξ3m

2(ξ3) + [a11E + 2a20B]ξ1m
2(ξ1)

}
× û(ξ1)û(ξ2)v̂(ξ3)

=

∫
ξ1+ξ2+ξ3=0

[a11A+ 2a02D]
[
ξ3m

2(ξ3) + 2ξ1m
2(ξ1)

]
× û(ξ1)û(ξ2)v̂(ξ3)

=

∫
ξ1+ξ2+ξ3=0

[a11A+ 2a02D]
[
ξ1m

2(ξ1) + ξ2m
2(ξ2) + ξ3m

2(ξ3)
]

× û(ξ1)û(ξ2)v̂(ξ3).
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Using the other restriction (3.11) on the coefficients a02, a11, a20 allows us

to derive the formula

a12Λ12 =

∫
ξ1+ξ2+ξ3=0

{
[a11B + 2a02E]ξ3m

2(ξ3) + [a11F + 2a20C]ξ1m
2(ξ1)

}
× û(ξ1)v̂(ξ2)v̂(ξ3)

=

∫
ξ1+ξ2+ξ3=0

[a11F + 2a20C]
[
2ξ3m

2(ξ3) + ξ1m
2(ξ1)

]
× û(ξ1)v̂(ξ2)v̂(ξ3)

=

∫
ξ1+ξ2+ξ3=0

[a11F + 2a20C]
[
ξ1m

2(ξ1) + ξ2m
2(ξ2) + ξ3m

2(ξ3)
]

× û(ξ1)v̂(ξ2)v̂(ξ3).

Finally, note that

a03Λ03 =

∫
ξ1+ξ2+ξ3=0

1

3
[2a02F + a11C]

[
ξ1m

2(ξ1) + ξ2m
2(ξ2) + ξ3m

2(ξ3)
]

× v̂(ξ1)v̂(ξ2)v̂(ξ3).

If M3 is defined by M3(ξ1, ξ2, ξ3) = ξ1m
2(ξ1) + ξ2m

2(ξ2) + ξ3m
2(ξ3), it

appears that

Λ3 = a30Λ30(M3) + a21Λ21(M3) + a12Λ12(M3) + a03Λ03(M3),

where

Λ30 =

∫
ξ1+ξ2+ξ3=0

M3(ξ1, ξ2, ξ3)û(ξ1)û(ξ2)û(ξ3),

Λ21 =

∫
ξ1+ξ2+ξ3=0

M3(ξ1, ξ2, ξ3)û(ξ1)û(ξ2)v̂(ξ3),

Λ12 =

∫
ξ1+ξ2+ξ3=0

M3(ξ1, ξ2, ξ3)û(ξ1)v̂(ξ2)v̂(ξ3),

Λ03 =

∫
ξ1+ξ2+ξ3=0

M3(ξ1, ξ2, ξ3)v̂(ξ1)v̂(ξ2)v̂(ξ3),

with the aij given in (5.3) in the statement of the lemma.
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Remark 9. The calculation provided in (5.5) also shows that∫
ξ1+···+ξr+s=0

mrs(ξ1, . . . , ξr+s)û(ξ1) · · · (̂u2)x(ξl) · · · û(ξr)v̂(ξr+1) · · · v̂(ξr+s)

= i

∫
ξ1+···+ξr+s+1=0

(ξl + ξl+1)mrs(ξ1, . . . , ξl + ξl+1, . . . , ξr+s+1)

× û(ξ1) · · · û(ξl)û(ξl+1) · · · û(ξr+1)v̂(ξr+2) · · · v̂(ξr+s+1),∫
ξ1+···+ξr+s=0

mrs(ξ1, . . . , ξr+s)û(ξ1) · · · (̂uv)x(ξl) · · · û(ξr)v̂(ξr+1) · · · v̂(ξr+s)

= i

∫
ξ1+···+ξr+s+1=0

(ξl + ξl+1)mrs(ξ1, . . . , ξl + ξl+1, . . . , ξr+s+1)

× û(ξ1) · · · û(ξl)v̂(ξl+1) · · · û(ξr+1)v̂(ξr+2) · · · v̂(ξr+s+1)

and∫
ξ1+···+ξr+s=0

mrs(ξ1, . . . , ξr+s)û(ξ1) · · · (̂v2)x(ξl) · · · û(ξr)v̂(ξr+1) · · · v̂(ξr+s)

= i

∫
ξ1+···+ξr+s+1=0

(ξl + ξl+1)mrs(ξ1, . . . , ξl + ξl+1, . . . , ξr+s+1)

× û(ξ1) · · · v̂(ξl)v̂(ξl+1) · · · û(ξr+1)v̂(ξr+2) · · · v̂(ξr+s+1).

If the symbol mrs exhibits suitable symmetry, then the integrals above may

also have equivalent forms based on that symmetry, just as in (5.6).

5.2. The calculation of Λ4

Recall that

M3(ξ1, ξ2, ξ3) = ξ1m(ξ1)
2 + ξ2m(ξ2)

2 + ξ3m(ξ3)
2

and that

α3 = ξ31 + ξ32 + ξ33 .

Define the functionals Λ̃3 and Γ3 by

(5.7) Λ̃3 = a30Λ30

(M3

α3

)
+ a21Λ21

(M3

α3

)
+ a12Λ12

(M3

α3

)
+ a03Λ03

(M3

α3

)
and

(5.8) Γ3 =H(t)2 − Λ̃3.

Note that ξ1 + ξ2 + ξ3 = 0 implies that ξ31 + ξ32 + ξ33 = 3ξ1ξ2ξ3, and so it is

easily seen that the singularity of M3/α3 is removable.
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Lemma 5. For the functional Γ3 defined in (5.8), d
dtΓ

3 = iΛ4, where

Λ4 = ã22Λ22(M
2
4 ) +

∑
i+j=4

aijΛij(M
1
4 ),

with coefficients given by

6a40 =
3a30A+ a21D

3
, 3a31 =

3a30B + a21E

3
=

2a21A+ 2a12D

3
,

4a22 =
2a21B + 2a12E

3
,

ã22 =
3a03D+ a12A

3
− a22 =

3a30C + a21F

3
− a22,

3a13 =
3a03E + a12B

3
=

2a21C + 2a12F

3
,

6a04 =
3a03F + a12C

3
,

and multipliers

M1
4 =

α4

3ξ1ξ2ξ3ξ4

[
m2(ξ1) +m2(ξ2) +m2(ξ3) +m2(ξ4)

−m2(ξ1 + ξ2)−m2(ξ1 + ξ3)−m2(ξ1 + ξ4)
]

−
[m2(ξ1)

ξ1
+

m2(ξ2)

ξ2
+

m2(ξ3)

ξ3
+

m2(ξ4)

ξ4

]
and

M2
4 =

m2(ξ1)

ξ2
+

m2(ξ2)

ξ1
+

m2(ξ3)

ξ4
+

m2(ξ4)

ξ3

− m2(ξ1 + ξ2)

ξ1
− m2(ξ1 + ξ2)

ξ2
− m2(ξ1 + ξ2)

ξ3
− m2(ξ1 + ξ2)

ξ4
.

Proof. It is clear from (5.1) and (3.14) that

d

dt
Γ3 = iΛ3 − iΛ3 + i

∑
r+s=4

arsΛrs(mrs, u, v)

= i
∑

r+s=4

arsΛrs(mrs, u, v).
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The right-hand side of the last formula is composed of a sum of quartics,

namely,

i

∫
ξ1+ξ2+ξ3+ξ4=0

[3a30A+ a21D]
M3(ξ1 + ξ4, ξ2, ξ3)

3ξ2ξ3
û(ξ1)û(ξ2)û(ξ3)û(ξ4)

+ i

∫
ξ1+ξ2+ξ3+ξ4=0

[3a30B + a21E]
M3(ξ1 + ξ4, ξ2, ξ3)

3ξ2ξ3
û(ξ1)û(ξ2)û(ξ3)v̂(ξ4)

+ i

∫
ξ1+ξ2+ξ3+ξ4=0

[2a21A+ 2a12D]
M3(ξ1 + ξ3, ξ2, ξ4)

3ξ2ξ4
û(ξ1)û(ξ2)û(ξ3)v̂(ξ4)

+ i

∫
ξ1+ξ2+ξ3+ξ4=0

[2a21B + 2a12E]
M3(ξ1 + ξ4, ξ2, ξ3)

3ξ2ξ3
û(ξ1)û(ξ2)v̂(ξ3)v̂(ξ4)

+ i

∫
ξ1+ξ2+ξ3+ξ4=0

[3a03D+ a12A]
M3(ξ1 + ξ2, ξ3, ξ4)

3ξ3ξ4
û(ξ1)û(ξ2)v̂(ξ3)v̂(ξ4)

+ i

∫
ξ1+ξ2+ξ3+ξ4=0

[3a30C + a21F ]
M3(ξ1, ξ2, ξ3 + ξ4)

3ξ1ξ2
û(ξ1)û(ξ2)v̂(ξ3)v̂(ξ4)

+ i

∫
ξ1+ξ2+ξ3+ξ4=0

[3a03E + a12B]
M3(ξ1 + ξ4, ξ2, ξ3)

3ξ2ξ3
û(ξ1)v̂(ξ2)v̂(ξ3)v̂(ξ4)

+ i

∫
ξ1+ξ2+ξ3+ξ4=0

[2a21C + 2a12F ]
M3(ξ1, ξ2 + ξ3, ξ4)

3ξ1ξ4
û(ξ1)v̂(ξ2)v̂(ξ3)v̂(ξ4)

+ i

∫
ξ1+ξ2+ξ3+ξ4=0

[3a03F + a12C]
M3(ξ1 + ξ4, ξ2, ξ3)

3ξ2ξ3
v̂(ξ1)v̂(ξ2)v̂(ξ3)v̂(ξ4).

The compatibility equations (3.10) and (3.11) together with the definition

of the trilinear coefficients (5.3) imply that

3a30B + a21E = [2a20A+ a11D]B + [a11A+ 2a02D]E

= 2a20AB + a11AE + 2a02DE + a11DB

= [2a20B + a11E]A+ [2a02E + a11B]D

and

2a21A+ 2a12D = 2[a11A+ 2a02D]A+ 2[a11F + 2a20C]D

= [2a20B + a11E]A+ [2a02E + a11B]D,

from which it is concluded that

3a30B + a21E = 2a21A+ 2a12D.
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We note next that

3a03D+ a12A= [2a02F + a11C]D+ [a11F + 2a20C]A,

whereas

3a30C + a21F = [2a20A+ a11D]C + [a11A+ 2a02D]F

= 2a02DF + a11DC + a11AF + 2a20AC

= [2a02F + a11C]D+ [a11F + 2a20C]A.

It follows that

3a30C + a21F = 3a03D+ a12A.

Finally, it is seen that

3a03E + a12B = [2a02F + a11C]E + [a11F + 2a20C]B

= 2a20CB + a11CE + 2a02FE + a11FB

= [2a20B + a11E]C + [2a02E + a11B]F

and

2a12F + 2a21C = 2[a11F + 2a20C]F + 2[a11A+ 2a02D]C

= [2a20B + a11E]C + [2a02E + a11B]F,

so that

3a03E + a12B = 2a12F + 2a21C.

Since M3(ξ1 + ξ4, ξ2, ξ3) = (ξ1 + ξ4)m
2(ξ1 + ξ4) + ξ2m

2(ξ2) + ξ3m
2(ξ3), it

transpires that on the hyperplane ξ1+ ξ2+ ξ3+ ξ4 = 0, ξ1+ ξ4 =−(ξ2+ ξ3),

and therefore

M3(ξ1 + ξ4, ξ2, ξ3)

ξ2ξ3
=

ξ2m
2(ξ2) + ξ3m

2(ξ3)− (ξ2 + ξ3)m
2(ξ2 + ξ3)

ξ2ξ3
,

a quantity which will be called M23 henceforth.

It is clear that all of the quadrilinear terms involve permutations of the

variables, and it is therefore convenient to define the functions M12,M13,
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M14,M24, and M34 analogously. With this notation, Λ4 is written

Λ4 = 6a40Λ40(M
23) + 3a31Λ31(M

23 +M24)

+ 4a22Λ22(M
23) + (ã22 + a22)Λ22(M

12 +M34)(5.9)

+ 4a13Λ13(M
23 +M14) + 6a04Λ04(M

23),

with coefficients given exactly by the formulas displayed in the statement

of the lemma. Using the symmetrization principles, the functionals can be

represented more usefully as follows:

Λ40(M
23) = Λ40

(M12 +M13 +M14 +M23 +M24 +M34

6

)
,

Λ31(M
23 +M24) = Λ31

(M12 +M13 +M14 +M23 +M24 +M34

3

)
,

Λ22(M
23) = Λ22

(M13 +M23 +M24 +M14

4

)
,

Λ13(M
23 +M14) = Λ13

(M12 +M13 +M14 +M23 +M24 +M34

3

)
,

Λ04(M
23) = Λ04

(M12 +M13 +M14 +M23 +M24 +M34

6

)
.

Defining multipliers M1
4 =M12 +M13 +M14 +M23 +M24 +M34 and

M2
4 =M12 +M34, the Λ22 terms of (5.9) can be rewritten as

4a22Λ22(M
23) + (ã22 + a22)Λ22(M

12 +M34)

= a22Λ22(M
13 +M23 +M24 +M14) + a22Λ22(M

12 +M34)

+ ã22Λ22(M
12 +M34)

= a22Λ22(M
13 +M23 +M24 +M14 +M34 +M12)

+ ã22Λ22(M
12 +M34)

= a22Λ22(M
1
4 ) + ã22Λ22(M

2
4 ).

Convenient pointwise descriptions of M1
4 and M2

4 can be found as follows:

M12 +M13 +M14 +M23 +M24 +M34

=
1

ξ1ξ2ξ3ξ4

{
m2(ξ1)[ξ1ξ3ξ4 + ξ1ξ2ξ4 + ξ1ξ2ξ3]
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+m2(ξ2)[ξ2ξ3ξ4 + ξ1ξ2ξ4 + ξ1ξ2ξ3]

+m2(ξ3)[ξ2ξ3ξ4 + ξ1ξ3ξ4 + ξ1ξ2ξ3] +m2(ξ4)[ξ2ξ3ξ4 + ξ1ξ3ξ4 + ξ1ξ2ξ4]

− (ξ1 + ξ2)m
2(ξ1 + ξ2)ξ3ξ4 − (ξ1 + ξ3)m

2(ξ1 + ξ3)ξ2ξ4

− (ξ1 + ξ4)m
2(ξ1 + ξ4)ξ2ξ3

− (ξ2 + ξ3)m
2(ξ2 + ξ3)ξ1ξ4 − (ξ2 + ξ4)m

2(ξ2 + ξ4)ξ1ξ3

− (ξ3 + ξ4)m
2(ξ3 + ξ4)ξ1ξ2

}
.

Using the facts that m is even and that ξ1+ ξ2+ ξ3+ ξ4 = 0, the latter sum

is seen to equal

1

ξ1ξ2ξ3ξ4

{
m2(ξ1)[ξ1ξ3ξ4 + ξ1ξ2ξ4 + ξ1ξ2ξ3 + ξ2ξ3ξ4 − ξ2ξ3ξ4]

+m2(ξ2)[ξ2ξ3ξ4 + ξ1ξ2ξ4 + ξ1ξ2ξ3 + ξ1ξ3ξ4 − ξ1ξ3ξ4]

+m2(ξ3)[ξ2ξ3ξ4 + ξ1ξ3ξ4 + ξ1ξ2ξ3 + ξ1ξ2ξ4 − ξ1ξ2ξ4]

+m2(ξ4)[ξ2ξ3ξ4 + ξ1ξ3ξ4 + ξ1ξ2ξ4 + ξ1ξ2ξ3 − ξ1ξ2ξ3]

− [ξ1ξ3ξ4 + ξ2ξ3ξ4]m
2(ξ1 + ξ2)− [ξ1ξ2ξ4 + ξ2ξ3ξ4]m

2(ξ1 + ξ3)

− [ξ1ξ2ξ3 + ξ2ξ3ξ4]m
2(ξ1 + ξ4)− [ξ1ξ2ξ4 + ξ1ξ3ξ4]m

2(ξ1 + ξ4)

− [ξ1ξ2ξ3 + ξ1ξ3ξ4]m
2(ξ1 + ξ3)− [ξ1ξ2ξ3 + ξ1ξ2ξ4]m

2(ξ1 + ξ2)
}
.

Since ξ1 + ξ2 + ξ3 + ξ4 = 0, it transpires that α4 = ξ31 + ξ32 + ξ33 + ξ34 =

3(ξ1ξ2ξ3 + ξ1ξ2ξ4 + ξ1ξ3ξ4 + ξ2ξ3ξ4), whence

M12 +M13 +M14 +M23 +M24 +M34

=
α4

3ξ1ξ2ξ3ξ4

[
m2(ξ1) +m2(ξ2) +m2(ξ3) +m2(ξ4)

−m2(ξ1 + ξ2)−m2(ξ1 + ξ3)−m2(ξ1 + ξ4)
]

−
[m2(ξ1)

ξ1
+

m2(ξ2)

ξ2
+

m2(ξ3)

ξ3
+

m2(ξ4)

ξ4

]
=M1

4 .

Then M2
4 is calculated to have the form

M2
4 =M34 +M12

=
M3(ξ1 + ξ2, ξ3, ξ4)

ξ3ξ4
+

M3(ξ1, ξ2, ξ3 + ξ4)

ξ1ξ2
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=
1

ξ1ξ2ξ3ξ4

[
m2(ξ1)ξ1ξ3ξ4 +m2(ξ2)ξ2ξ3ξ4

+m2(ξ3)ξ1ξ2ξ3 +m2(ξ4)ξ1ξ2ξ4

− (ξ1 + ξ2)m
2(ξ1 + ξ2)ξ3ξ4 − (ξ3 + ξ4)m

2(ξ3 + ξ4)ξ1ξ2
]

(5.10)

=
m2(ξ1)

ξ2
+

m2(ξ2)

ξ1
+

m2(ξ3)

ξ4
+

m2(ξ4)

ξ3

− (ξ1ξ2ξ3 + ξ1ξ2ξ4 + ξ1ξ3ξ4 + ξ2ξ3ξ4)m
2(ξ1 + ξ2)

ξ1ξ2ξ3ξ4

=
m2(ξ1)

ξ2
+

m2(ξ2)

ξ1
+

m2(ξ3)

ξ4
+

m2(ξ4)

ξ3

− m2(ξ1 + ξ2)

ξ1
− m2(ξ1 + ξ2)

ξ2
− m2(ξ1 + ξ2)

ξ3
− m2(ξ1 + ξ2)

ξ4
,

where the assumption thatm is an even function and the fact that (ξ3+ξ4) =

−(ξ1 + ξ2) have been used again.

Observe that an estimate for M2
4 proves a similar estimate for M1

4 since

it is simply a sum of three terms having the same structure as M2
4 .

It is clear from (5.1) and Lemma 5 that if we set

Λ̃4 = ã22Λ22

(M2
4

α4

)
+

∑
i+j=4

aijΛij

(M1
4

α4

)
,

then

∂

∂t

{
H(t)2 − Λ̃3 − Λ̃4

}
= iΛ5,

where

Λ5 =
∑

i+j=5

aijΛij(mij)

for certain constants aij and symbols mij . Note that the functional Λ̃4

is well defined since ξ1 + ξ2 + ξ3 + ξ4 = 0 implies that ξ41 + ξ42 + ξ43 + ξ44 =

3(ξ1+ξ2)(ξ1+ξ3)(ξ1+ξ4), and hence the singularity of M4/α4 is removable.

Thus, Lemma 1 is established.
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§6. Estimates of multilinear functionals

In this section a Littlewood–Paley decomposition is used to estimate the

functionals Λ22(M
2
4 ) and Λij(M

1
4 ). These functionals have integral repre-

sentations with integrands of the form

M i
4(ξ1, ξ2, ξ3, ξ4)ŵj1(ξ1)ŵj2(ξ2)ŵj3(ξ3)ŵj4(ξ4),

where i= 1,2 and ŵjk(ξk) can be either ûjk(ξk) or v̂jk(ξk), 1≤ k ≤ 4. The

subscripts jk refer to terms of a Littlewood–Paley decomposition that will

be defined in Section 6.2. Pointwise estimates of M1
4 and M2

4 are obtained

that are the essential ingredient in the establishment of (3.18).

6.1. Pointwise description of M1
4 and M2

4

For 1≤ i≤ 4, let Ni = 2ji be the smallest dyadic number that is greater

than or equal to |ξi| when |ξi| ≥ 1, and let Ni = 1 if |ξi| < 1. Define Nij

similarly in terms of ξi + ξj , where i �= j and 1≤ i, j ≤ 4. It is shown in [16,

Lemma 4.5] that there is a constant c > 0 such that if ξ1 + ξ2 + ξ3 + ξ4 = 0,

then the function M1
4 =M12+M13+M14+M23+M24+M34 satisfies the

inequality

(6.1)
∣∣M1

4 (ξ1, ξ2, ξ3, ξ4)
∣∣≤ c|α4|m2(min{Ni,Njk})

(N +N1)(N +N2)(N +N3)(N +N4)
,

and c does not depend on the ξi or the Ni.

The remainder of this section is devoted to establishing the related esti-

mate

(6.2)
∣∣M2

4 (ξ1, ξ2, ξ3, ξ4)
∣∣≤ c|α4|m2(min{Ni,Njk})

(N +N1)(N +N2)(N +N3)(N +N4)

for M2
4 , where c again does not depend on any of the variables or the

parameters. As noted above, this estimate for M2
4 allows one to deduce the

inequality (6.1) for M1
4 since the latter quantity is simply a sum of three

terms having the same structure as M2
4 .

6.2. Partitioning the Fourier domain

To analyze the integral, a Littlewood–Paley decomposition is used. Define

the functions uj by

ûj(ξ) = û(ξ) for 2j−1 < |ξ| ≤ 2j and zero otherwise,
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for j ≥ 1, and

û0(ξ) = û(ξ) for 0≤ |ξ| ≤ 1 and zero otherwise.

The same decomposition is employed for v. Naturally, it must be that

u=

∞∑
j=0

uj and v =
∞∑
j=0

vj .

The estimate of M2
4 (ξ1, ξ2, ξ3, ξ4) is made by a systematic study of its size

throughout R4 using the following partition of (ξ1, ξ2, ξ3, ξ4) into 16 pieces,

namely,

R>>>> =
{
(ξ1, ξ2, ξ3, ξ4) : |ξ1| ≥N, |ξ2| ≥N, |ξ3| ≥N, |ξ4| ≥N

}
,

R>>>< =
{
(ξ1, ξ2, ξ3, ξ4) : |ξ1| ≥N, |ξ2| ≥N, |ξ3| ≥N, |ξ4|<N

}
,

R>><> =
{
(ξ1, ξ2, ξ3, ξ4) : |ξ1| ≥N, |ξ2| ≥N, |ξ3|<N, |ξ4| ≥N

}
,

...

R<<<< =
{
(ξ1, ξ2, ξ3, ξ4) : |ξ1|<N, |ξ2|<N, |ξ3|<N, |ξ4|<N

}
.

Recall from (5.10) that

M2
4 =

m2(ξ1)

ξ2
+

m2(ξ2)

ξ1
+

m2(ξ3)

ξ4
+

m2(ξ4)

ξ3

− m2(ξ1 + ξ2)

ξ1
− m2(ξ1 + ξ2)

ξ2
− m2(ξ1 + ξ2)

ξ3
− m2(ξ1 + ξ2)

ξ4
.

Thus, ξ1 and ξ2 are interchangeable, and ξ3 and ξ4 are interchangeable.

Because of this symmetry, it may be assumed that |ξ1| ≥ |ξ2|, |ξ3| ≥ |ξ4|,
and |ξ1| ≥ |ξ3|, which implies that N1 ≥N2,N3 ≥N4, and N1 ≥N3. Conse-

quently, it is enough to consider the seven cases

R>>>> =
{
(ξ1, ξ2, ξ3, ξ4) : |ξ1| ≥N, |ξ2| ≥N, |ξ3| ≥N, |ξ4| ≥N

}
,

R>>>< =
{
(ξ1, ξ2, ξ3, ξ4) : |ξ1| ≥N, |ξ2| ≥N, |ξ3| ≥N, |ξ4|<N

}
,

R>><< =
{
(ξ1, ξ2, ξ3, ξ4) : |ξ1| ≥N, |ξ2| ≥N, |ξ3|<N, |ξ4|<N

}
,

R><>> =
{
(ξ1, ξ2, ξ3, ξ4) : |ξ1| ≥N, |ξ2|<N, |ξ3| ≥N, |ξ4| ≥N

}
,

R><>< =
{
(ξ1, ξ2, ξ3, ξ4) : |ξ1| ≥N, |ξ2|<N, |ξ3| ≥N, |ξ4|<N

}
,
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R><<< =
{
(ξ1, ξ2, ξ3, ξ4) : |ξ1| ≥N, |ξ2|<N, |ξ3|<N, |ξ4|<N

}
,

R<<<< =
{
(ξ1, ξ2, ξ3, ξ4) : |ξ1|<N, |ξ2|<N, |ξ3|<N, |ξ4|<N

}
.

Note that m(ξ) = 1 for |ξ| ≤N , so M2
4 = 0 in R<<<<. Thus, inequality (6.2)

is trivial in R<<<<. So, consideration need be given only to the remaining

six cases.

In the following, frequent use will be made of the fact that ξ1 + ξ2 + ξ3 +

ξ4 = 0 implies that

α4 = ξ31 + ξ32 + ξ33 + ξ34

= 3(ξ1ξ3ξ4 + ξ1ξ2ξ4 + ξ1ξ2ξ3 + ξ2ξ3ξ4)(6.3)

= 3(ξ1 + ξ2)(ξ1 + ξ3)(ξ1 + ξ4).

By symmetry, it is also the case that

α4 = 3(ξ1 + ξ2)(ξ1 + ξ3)(ξ1 + ξ4)

= 3(ξ2 + ξ1)(ξ2 + ξ3)(ξ2 + ξ4)
(6.4)

= 3(ξ3 + ξ1)(ξ3 + ξ2)(ξ3 + ξ4)

= 3(ξ4 + ξ1)(ξ4 + ξ2)(ξ4 + ξ3).

For any a, define Ga(ξ) = (ξ + a)m2(ξ). Note that it follows from (3.5)

and (3.6) that ∣∣G′
a(ξ)

∣∣≤C
(
1 +

|a|
|ξ|
)
m2(ξ) and

(6.5) ∣∣G′′
a(ξ)

∣∣≤C
(
1 +

|a|
|ξ|
)m2(ξ)

|ξ| .

When a= 0, we also write G(ξ) =Ga(ξ).

6.3. Pointwise estimates of M2
4

Similar estimates were obtained by Oh [26, Section 3] to handle the spe-

cific version of the modified energy that arises in his study of the Majda–

Biello system of equations.

Case A: The region is of the form

R1 =R>>>> =
{
(ξ1, ξ2, ξ3, ξ4) : |ξ1| ≥N, |ξ2| ≥N, |ξ3| ≥N, |ξ4| ≥N

}
.

In this case, since N ≥ 1, it follows that Ni/2< |ξi| ≤Ni. Use will be made

of the expression
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M2
4 =

m2(ξ1)

ξ2
+

m2(ξ2)

ξ1
+

m2(ξ3)

ξ4
+

m2(ξ4)

ξ3
− α4m

2(ξ1 + ξ2)

3ξ1ξ2ξ3ξ4
,

which follows from (5.10). Note that if (ξ1, ξ2, ξ3, ξ4) ∈R1, then

(6.6)
1

|ξi|
≤ 2

Ni
≤ 4

N +Ni
.

Hence, by the halving property (3.8) of m, there is a constant C > 0, inde-

pendent of the variables and the parameters, such that

(6.7)
∣∣∣α4m

2(ξ1 + ξ2)

ξ1ξ2ξ3ξ4

∣∣∣≤ C|α4|m2(min1≤i,j≤4{Ni,Nij})
(N +N1)(N +N2)(N +N3)(N +N4)

,

where as above, Nij is the smallest power of 2 greater than or equal to

|ξi + ξj |. Since the expression m2(min1≤i,j≤4{Ni,Nij}) occurs frequently in

what follows, the notation

κ= min
1≤i,j≤4

{Ni,Nij}

will be useful. Because of (6.7), attention may be restricted to the sum of

the first four terms in M2
4 , namely,

M̃2
4 =

m2(ξ1)

ξ2
+

m2(ξ2)

ξ1
+

m2(ξ3)

ξ4
+

m2(ξ4)

ξ3
.

Next as ξ1 + ξ2 + ξ3 + ξ4 = 0, we have essentially four possibilities:

Case I : ξ1 > 0, ξ2 < 0, ξ3 < 0, and ξ4 < 0;

Case II : ξ1 > 0, ξ2 > 0, and ξ3 < 0, ξ4 < 0;

Case III : ξ1 > 0, ξ3 > 0, ξ2 < 0, and ξ4 < 0;

Case IV : ξ1 > 0, ξ4 > 0, ξ2 < 0, and ξ3 < 0.

In fact, cases III and IV in most situations are the same, as ξ3 and ξ4 are

interchangeable. We then further partition R1 into four regions according

to the four cases I–IV:

S1
+−−− =

{
(ξ1, ξ2, ξ3, ξ4) ∈R1 : ξ1 > 0, ξ2 < 0, ξ3 < 0, ξ4 < 0

}
,

S1
++−− =

{
(ξ1, ξ2, ξ3, ξ4) ∈R1 : ξ1 > 0, ξ2 > 0, ξ3 < 0, ξ4 < 0

}
,

S1
+−+− =

{
(ξ1, ξ2, ξ3, ξ4) ∈R1 : ξ1 > 0, ξ2 < 0, ξ3 > 0, ξ4 < 0

}
,

S1
+−−+ =

{
(ξ1, ξ2, ξ3, ξ4) ∈R1 : ξ1 > 0, ξ2 < 0, ξ3 < 0, ξ4 > 0

}
.
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Subcase 1. If (ξ1, ξ2, ξ3, ξ4) ∈ S1
+−−−, then ξ1 = −(ξ2 + ξ3 + ξ4) > 0. So

max{|ξ3|, |ξ4|} ≤ |ξ3| + |ξ4| = |ξ1 + ξ2| ≤ |ξ1|, max{|ξ2|, |ξ4|} ≤ |ξ2| + |ξ4| =
|ξ1 + ξ3| ≤ |ξ1|, and max{|ξ2|, |ξ3|} ≤ |ξ2|+ |ξ3|= |ξ1 + ξ4| ≤ |ξ1|. Thus,

1

|ξ1 + ξ2|
≤min

{ 1

|ξ3|
,
1

|ξ4|
}
,

1

|ξ1 + ξ3|
≤min

{ 1

|ξ2|
,
1

|ξ4|
}
,

1

|ξ1 + ξ4|
≤min

{ 1

|ξ2|
,
1

|ξ3|
}
.

It follows that∣∣∣m2(ξ2)

ξ1

∣∣∣= ∣∣∣m2(ξ2)(ξ1 + ξ2)(ξ1 + ξ3)(ξ1 + ξ4)

ξ1(ξ1 + ξ2)(ξ1 + ξ3)(ξ1 + ξ4)

∣∣∣
=
∣∣∣ α4m

2(ξ2)

ξ1(ξ1 + ξ2)(ξ1 + ξ3)(ξ1 + ξ4)

∣∣∣
≤
∣∣∣α4m

2(ξ2)

ξ1ξ2ξ3ξ4

∣∣∣
≤ C|α4|m2(κ)

(N +N1)(N +N2)(N +N3)(N +N4)
.

Moreover, since

2|ξ1|= |ξ1 + ξ2 + ξ1 + ξ3 + ξ1 + ξ4|

= |ξ1 + ξ2|+ |ξ1 + ξ3|+ |ξ1 + ξ4|,

we must have max2≤i≤4{|ξ1 + ξi|} ≥ (2/3)|ξ1|. It then follows that∣∣∣m2(ξ1)

ξ2

∣∣∣= ∣∣∣m2(ξ1)(ξ1 + ξ2)(ξ1 + ξ3)(ξ1 + ξ4)

ξ2(ξ1 + ξ2)(ξ1 + ξ3)(ξ1 + ξ4)

∣∣∣
=
∣∣∣ α4m

2(ξ1)

ξ2(ξ1 + ξ2)(ξ1 + ξ3)(ξ1 + ξ4)

∣∣∣
≤ 3

2

∣∣∣α4m
2(ξ1)

ξ1ξ2ξ3ξ4

∣∣∣
≤ C|α4|m2(κ)

(N +N1)(N +N2)(N +N3)(N +N4)
.
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Similar arguments show that this upper bound is also valid for the terms

(m2(ξ3))/ξ4 and (m2(ξ4))/ξ3 appearing in the expression for M2
4 . Thus, in

this case,∣∣M̃2
4 (ξ1, ξ2, ξ3, ξ4)

∣∣≤ C|α4|m2(κ)

(N +N1)(N +N2)(N +N3)(N +N4)
.

Subcase 2. If (ξ1, ξ2, ξ3, ξ4) ∈ S1
+−−+, then |ξ1 + ξ2| ≤ |ξ1|, |ξ1 + ξ3| ≤ |ξ1|,

and max1≤i≤4{|ξi|} ≤ |ξ2|+ |ξ3|= |ξ1 + ξ4| ≤ 2|ξ1|. Because 0< ξ4 =−ξ2 −
(ξ1 + ξ3)≤−ξ2, and 0< ξ4 =−ξ3 − (ξ1 + ξ2)≤−ξ3, min1≤i≤4 |ξi|= |ξ4|. It
follows that

M̃2
4 (ξ1, ξ2, ξ3, ξ4) =

m2(ξ1)

ξ2
+

m2(ξ2)

ξ1
+

m2(ξ3)

ξ4
+

m2(ξ4)

ξ3

=
ξ1m

2(ξ1) + ξ2m
2(ξ2)

ξ1ξ2
+

ξ3m
2(ξ3) + ξ4m

2(ξ4)

ξ3ξ4

=
ξ1m

2(ξ1) + ξ2m
2(ξ2) + ξ3m

2(ξ3) + ξ4m
2(ξ4)

ξ1ξ2

+
[
ξ3m

2(ξ3) + ξ4m
2(ξ4)

][ 1

ξ3ξ4
− 1

ξ1ξ2

]
= I + II .

Observing that ξ2 =−(ξ1 + ξ3 + ξ4), ξ3 =−(ξ1 + ξ2 + ξ4), and ξ1 + ξ2 +

ξ4 + ξ3 + ξ4 = ξ4, we can rewrite I as

I =
(
ξ1m

2(ξ1)− (ξ1 + ξ3 + ξ4)m
2(ξ1 + ξ3 + ξ4)

− (ξ1 + ξ2 + ξ4)m
2(ξ1 + ξ2 + ξ4) + ξ4m

2(ξ4)
)
/(ξ1ξ2)

=
1

ξ1ξ2
G′′(ξ1 − θ1[ξ1 + ξ2]− θ2[ξ1 + ξ3]

)
[ξ1 + ξ2][ξ1 + ξ3],

where 0< θ1 < 1 and 0< θ2 < 1. The latter follows from the fact that for C2-

functions f and points x,h, and k, f(x+h+k)−f(x+h)−f(x+k)+f(x) =

f ′′(x+ θ1h+ θ2k)hk for some values of θ1, θ2 ∈ (0,1), a consequence of two

applications of the mean-value theorem. Note the values of ξ4+θ1[ξ1+ ξ3]+

θ2[ξ1 + ξ2] when θ1, θ2 ∈ (0,1) are between ξ1 and ξ4. The estimate (6.5)

together with the halving property (3.8) of m yields the estimate∣∣G′′(ξ1 − θ1[ξ1 + ξ2]− θ2[ξ1 + ξ3]
)∣∣≤C

m2(κ)

ξ4
.
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It then follows from (6.7) that

|I| ≤C
∣∣∣m2(κ)

ξ1ξ2ξ4|
(ξ1 + ξ2)(ξ1 + ξ3)

∣∣∣
=C

∣∣∣m2(κ)(ξ1 + ξ2)(ξ1 + ξ3)(ξ1 + ξ4)

ξ1ξ2(ξ1 + ξ4)ξ4

∣∣∣
≤C

∣∣∣α4m
2(κ)

ξ1ξ2ξ3ξ4

∣∣∣
≤ C|α4|m2(κ)

(N +N1)(N +N2)(N +N3)(N +N4)
.

To estimate II , note that since ξ1 + ξ3 + ξ4 + ξ2 = 0,

1

ξ3ξ4
− 1

ξ1ξ2
=−(ξ1 + ξ4)(ξ1 + ξ3)

ξ1ξ2ξ3ξ4

and

ξ3m
2(ξ3) + ξ4m

2(ξ4) =−
[
(ξ3 + ξ1 + ξ2)m

2(ξ3 + ξ1 + ξ2)− ξ3m
2(ξ3)

]
.

Hence, using (6.5), (6.7), and the mean-value theorem, there is a θ ∈ (0,1)

such that

|II |=
∣∣∣[ξ3m2(ξ3) + ξ4m

2(ξ4)
]( 1

ξ3ξ4
− 1

ξ1ξ2

)∣∣∣
≤C

∣∣G′(ξ3 + θ(ξ1 + ξ2)
)
(ξ1 + ξ2)

∣∣∣∣∣(ξ1 + ξ4)(ξ1 + ξ3)

ξ1ξ2ξ3ξ4

∣∣∣
≤ C|α4|m2(κ)

(N +N1)(N +N2)(N +N3)(N +N4)
.

Here we use the fact that values of ξ3 + θ(ξ1 + ξ2))(ξ1 + ξ2) when θ ∈ (0,1)

are between ξ3 and −ξ4. As ξ3 and −ξ4 are of the same sign, the values are

at least κ.

Subcase 3. If (ξ1, ξ2, ξ3, ξ4) ∈ S1
+−+−, then switch ξ3 and ξ4 in the above,

and the same proof applies in this case.

Subcase 4. If (ξ1, ξ2, ξ3, ξ4) ∈ S1
++−−, then |ξ1 + ξ3| ≤ |ξ1|, |ξ1 + ξ4| ≤ |ξ1|,

and max1≤i≤4{|ξi|} ≤ |ξ3|+ |ξ4|= |ξ1 + ξ2| ≤ 2|ξ1|. Because 0< ξ2 =−ξ3 −
(ξ1 + ξ4)≤−ξ3, and 0< ξ2 =−ξ4 − (ξ1 + ξ3)≤−ξ4, min1≤i≤4 |ξi|= |ξ2|. As

ξ3 and ξ4 are interchangeable, we assume that |ξ3| ≥ |ξ4| ≥ |ξ2|.
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Subcase 4.1. (|ξ2| ≤ (1/2)|ξ4|) Then max{|ξ3|, |ξ4|} ≤ |ξ3| + |ξ4| =
|ξ1 + ξ2| ≤ 2|ξ1|, (1/2)max{|ξ2|, |ξ4|} ≤ |ξ2 + ξ4| = |ξ1 + ξ3| ≤ |ξ1|,
and (1/2)max{|ξ2|, |ξ3|} ≤ |ξ2 + ξ3| = |ξ1 + ξ4| ≤ |ξ1|. Also because

max2≤i≤4{|ξ1 + ξi|} = |ξ1 + ξ2| ≥ |ξ1|, it essentially follows from subcase 1

that ∣∣M̃2
4 (ξ1, ξ2, ξ3, ξ4)

∣∣
≤ C|α4|m2(κ)

(N +N1)(N +N2)(N +N3)(N +N4)
.

Subcase 4.2. (|ξ2| ≥ (1/2)|ξ4|) Here it follows that

−M̃2
4 (ξ1, ξ2, ξ3, ξ4)

=−
(m2(ξ1)

ξ2
+

m2(ξ2)

ξ1
+

m2(ξ3)

ξ4
+

m2(ξ4)

ξ3

)
=−

(ξ4m2(ξ2) + ξ1m
2(ξ3)

ξ1ξ4
+

ξ3m
2(ξ1) + ξ2m

2(ξ4)

ξ2ξ3

)
=−

(ξ3m2(ξ1) + ξ4m
2(ξ2) + ξ1m

2(ξ3) + ξ2m
2(ξ4)

ξ1ξ4

)
−
[
ξ3m

2(ξ1) + ξ2m
2(ξ4)

][ 1

ξ2ξ3
− 1

ξ1ξ4

]
=
(
(ξ1 + ξ2 + ξ4)m

2(ξ1)− (−ξ3 − ξ2 − ξ4)m
2(−ξ3)

− (−ξ4 + ξ2 + ξ4)m
2(−ξ4) + (ξ2 − ξ2 − ξ4)m

2(ξ2)
)
/(ξ1ξ4)

+
[
(ξ1 + ξ2 + ξ4)m

2(ξ1)− (−ξ4 + ξ2 + ξ4)m
2(−ξ4)

][ 1

ξ2ξ3
− 1

ξ1ξ4

]
=
(
(ξ1 + ξ2 + ξ4)m

2(ξ1)− (−ξ3 + ξ2 + ξ4)m
2(−ξ3)

− (−ξ4 + ξ2 + ξ4)m
2(−ξ4) + (ξ2 + ξ2 + ξ4)m

2(ξ2)
)
/(ξ1ξ4)

+
[
(ξ1 + ξ2 + ξ4)m

2(ξ1)− (−ξ4 + ξ2 + ξ4)m
2(−ξ4)

][ 1

ξ2ξ3
− 1

ξ1ξ4

]
+ 2

(ξ2 + ξ4)m
2(−ξ3)− (ξ2 + ξ4)m

2(ξ2)

ξ1ξ4

= I + II + III .
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As in subcase 2,

I =
1

ξ1ξ3
G′′

ξ2+ξ4

(
ξ2 − θ1[ξ2 + ξ4]− θ2[ξ2 + ξ3]

)
[ξ2 + ξ3][ξ2 + ξ4]

=
1

ξ1ξ3
G′′

ξ2+ξ4

(
ξ2 − θ1[ξ2 + ξ4]− θ2[ξ2 + ξ3]

)
[ξ1 + ξ3][ξ1 + ξ4],

where 0< θ1 < 1 and 0< θ2 < 1. Note that the values of ξ2 − θ1[ξ2 + ξ4]−
θ2[ξ2 + ξ3] when θ1, θ2 ∈ (0,1) are between ξ1 and ξ2. The estimate (6.5)

together with the halving property (3.8) of m yields the estimate∣∣G′′
ξ2+ξ4

(
ξ2 − θ1[ξ2 + ξ4]− θ2[ξ2 + ξ3]

)∣∣≤C
(
1 +

|ξ2 + ξ4|
|ξ2|

)m2(κ)

|ξ2|

≤ 4C
m2(κ)

|ξ2|

as |ξ2 + ξ4| ≤ 3|ξ2|. It then follows from (6.7) that

|I| ≤C
∣∣∣m2(κ)

ξ1ξ2ξ4|
(ξ1 + ξ3)(ξ1 + ξ4)

∣∣∣
=C

∣∣∣m2(κ)(ξ1 + ξ2)(ξ1 + ξ3)(ξ1 + ξ4)

ξ1ξ2(ξ1 + ξ2)ξ4

∣∣∣
≤C

∣∣∣α4m
2(κ)

ξ1ξ2ξ3ξ4

∣∣∣
≤ C|α4|m2(κ)

(N +N1)(N +N2)(N +N3)(N +N4)
.

To estimate II , observe that since ξ1 + ξ3 + ξ4 + ξ2 = 0,

1

ξ2ξ3
− 1

ξ1ξ4
=−(ξ1 + ξ2)(ξ1 + ξ3)

ξ1ξ2ξ3ξ4
,

and as in subcase 2, there is a θ ∈ (0,1) such that

|II | ≤C
∣∣G′

ξ2+ξ4

(
−ξ4 + θ(ξ1 + ξ4)

)
(ξ1 + ξ4)

∣∣∣∣∣(ξ1 + ξ2)(ξ1 + ξ3)

ξ1ξ2ξ3ξ4

∣∣∣
≤
(
1 +

|ξ2 + ξ4|
|ξ2|

) C|α4|m2(κ)

(N +N1)(N +N2)(N +N3)(N +N4)

≤ 4C|α4|m2(κ)

(N +N1)(N +N2)(N +N3)(N +N4)
.
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Here we use the facts that |ξ2+ξ4| ≤ 3|ξ2| and that values of −ξ4+θ(ξ1+ξ4)

when θ ∈ (0,1) are between ξ1 and −ξ4. As ξ1 and −ξ4 are of the same sign,

the values are at least κ.

Finally, to estimate III , as done in the above, it follows from the mean

value theorem and (6.7) that

|III |= 2
∣∣∣(ξ2 + ξ4)m

2(−ξ3)− (ξ2 + ξ4)m
2(ξ2)

ξ1ξ4

∣∣∣
≤ 2

∣∣∣(ξ2 + ξ4)(ξ2 + ξ3)m
2(κ)

ξ1ξ2ξ4

∣∣∣
= 2

∣∣∣(ξ1 + ξ4)(ξ1 + ξ4)m
2(κ)

ξ1ξ2ξ4

∣∣∣
= 2

∣∣∣(ξ1 + ξ2)(ξ1 + ξ4)(ξ1 + ξ4)m
2(κ)

ξ1ξ2ξ4(ξ1 + ξ2)

∣∣∣
≤ 2

∣∣∣α4m
2(κ)

ξ1ξ2ξ3ξ4

∣∣∣
≤ C|α4|m2(κ)

(N +N1)(N +N2)(N +N3)(N +N4)
.

Remark 10. If the region R1 is replaced by

R̃1 =
{
(ξ1, ξ2, ξ3, ξ4) : |ξ1| ≥

N

C1
, |ξ2| ≥

N

C2
, |ξ3| ≥

N

C3
, |ξ4| ≥

N

C4

}
for some dyadic numbers Ci ≥ 1, i= 1, . . . ,4, then with (6.6) being replaced

by
1

|ξi|
≤ 2

Ni
≤ 2(Ci + 1)

N +Ni

and some other obvious changes in the above arguments, the same proof

shows that inequality (6.2) holds when (ξ1, ξ2, ξ3, ξ4) ∈ R̃1.

Case B : The region has the form

R2 =R><>> =
{
(ξ1, ξ2, ξ3, ξ4) : |ξ1| ≥N, |ξ2|<N, |ξ3| ≥N, |ξ4| ≥N

}
.

In this case, the region is divided into the two subregions

S2
1 =

{
(ξ1, ξ2, ξ3, ξ4) ∈R2 : |ξ2| ≥

N

4

}
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and

S2
2 =

{
(ξ1, ξ2, ξ3, ξ4) ∈R2 : |ξ2| ≤

N

4

}
.

If (ξ1, ξ2, ξ3, ξ4) ∈ S2
1 , then

(ξ1, ξ2, ξ3, ξ4) ∈
{
(η1, η2, η3, η4) : |η1| ≥

N

4
, |η2| ≥

N

4
, |η3| ≥

N

4
, |η4| ≥

N

4

}
,

so inequality (6.2) holds for this region according to Remark 10.

If (ξ1, ξ2, ξ3, ξ4) ∈ S2
2 , then |ξ2| ≤ (1/4)N . Thus, N2 ≤ (1/4)N ≤ Ni, for

i �= 2. For i �= 2, the condition Ni ≥N ≥ 1 implies that |ξi| ≥ (1/2)Ni. These

inequalities have as a consequence that

|ξi + ξ2| ≥ |ξi| − |ξ2| ≥
Ni

2
− N

4
≥ N +Ni

8
,

whence

(6.8)
1

|ξi + ξ2|
≤ 8

N +Ni
, for i �= 2.

As in the previous case,

(6.9)
1

|ξi|
≤ 2

Ni
≤ 4

N +Ni
≤ 4

N +N2
, i= 1,3,4.

Using the formula

M2
4 =

m2(ξ1)

ξ2
+

m2(ξ2)

ξ1
+

m2(ξ3)

ξ4
+

m2(ξ4)

ξ3

− m2(ξ1 + ξ2)

ξ2
− m2(ξ1 + ξ2)

ξ1
− m2(ξ1 + ξ2)

ξ4
− m2(ξ1 + ξ2)

ξ3

=
{m2(ξ1)

ξ2
− m2(ξ1 + ξ2)

ξ2

}
+

m2(ξ2)

ξ1
+

m2(ξ3)

ξ4
+

m2(ξ4)

ξ3

− m2(ξ1 + ξ2)

ξ1
− m2(ξ1 + ξ2)

ξ4
− m2(ξ1 + ξ2)

ξ3
,

we may write

M2
4 = I + II ,

where

I =
m2(ξ1)

ξ2
− m2(ξ1 + ξ2)

ξ2
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and

II =
m2(ξ2)

ξ1
+

m2(ξ3)

ξ4
+

m2(ξ4)

ξ3

− m2(ξ1 + ξ2)

ξ1
− m2(ξ1 + ξ2)

ξ4
− m2(ξ1 + ξ2)

ξ3
.

The mean-value theorem implies that there is a θ ∈ (0,1) such that

I =
m2(ξ1)

ξ2
− m2(ξ1 + ξ2)

ξ2

=
m2(ξ1)−m2(ξ1 + ξ2)

ξ2

=
(m2)′(ξ1 + θξ2)ξ2

ξ2

= (m2)′(ξ1 + θξ2).

Since |ξ2| ≤ (1/4)N ≤ (1/4)|ξ1|, it follows that (3/4)|ξ1| ≤ |ξ1 + θξ2| ≤
(5/4)|ξ1|, and therefore,

|I|=
∣∣∣m2(ξ1)

ξ2
− m2(ξ1 + ξ2)

ξ2

∣∣∣
≤C

m2(ξ1)

|ξ1|

=C
∣∣∣m2(ξ1)(ξ1 + ξ2)(ξ3 + ξ2)(ξ4 + ξ2)

ξ1(ξ1 + ξ2)(ξ2 + ξ3)(ξ2 + ξ4)

∣∣∣
≤ C|α4|m2(κ)

(N +N1)(N +N2)(N +N3)(N +N4)

by (6.8) and (6.9), where we have used the fact that α4 has the representa-

tion α4 = 3(ξ1 + ξ2)(ξ3 + ξ2)(ξ4 + ξ2) (see (6.4)).

To estimate II , note that for i �= 2,∣∣∣ 1
ξi

∣∣∣≤ 2

Ni

=
∣∣∣ 2(ξ1 + ξ2)(ξ3 + ξ2)(ξ4 + ξ2)

Ni(ξ1 + ξ2)(ξ3 + ξ2)(ξ4 + ξ2)

∣∣∣
≤ C|α4|

(N +N1)(N +N2)(N +N3)(N +N4)
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by (6.8) and (6.9). Of course, m2(κ) = 1 since κ=min{Ni,Nij} ≤ (1/4)N ,

and thus,

|II |=
∣∣∣m2(ξ2)

ξ1
+

m2(ξ3)

ξ4
+

m2(ξ4)

ξ3

− m2(ξ1 + ξ2)

ξ1
− m2(ξ1 + ξ2)

ξ4
− m2(ξ1 + ξ2)

ξ3

∣∣∣
≤ C|α4|m2(κ)

(N +N1)(N +N2)(N +N3)(N +N4)
,

as each of the summands is bounded separately by the right-hand side of

the inequality. Therefore, inequality (6.2) holds for this region.

Case C : The region has the form

R3 =R>>>< =
{
(ξ1, ξ2, ξ3, ξ4) : |ξ1| ≥N, |ξ2| ≥N, |ξ3| ≥N, |ξ4|<N

}
.

In this case, as in Case B, the region is divided into the two subregions

S3
1 =

{
(ξ1, ξ2, ξ3, ξ4) ∈R3 : |ξ4| ≥

N

4

}
and

S3
2 =

{
(ξ1, ξ2, ξ3, ξ4) ∈R3 : |ξ4| ≤

N

4

}
.

If (ξ1, ξ2, ξ3, ξ4) ∈ S3
1 , then

(ξ1, ξ2, ξ3, ξ4) ∈
{
(η1, η2, η3, η4) : |η1| ≥

N

4
, |η2| ≥

N

4
, |η3| ≥

N

4
, |η4| ≥

N

4

}
,

so inequality (6.2) holds for this region according to Remark 10.

If (ξ1, ξ2, ξ3, ξ4) ∈ S3
2 , then |ξ4| ≤ (1/4)N . Thus N4 ≤ (1/4)N ≤ Ni, for

i �= 4. For i �= 4, the condition Ni ≥N ≥ 1 implies that |ξi| ≥ (1/2)Ni. These

inequalities have as a consequence that

|ξi + ξ4| ≥ |ξi| − |ξ4| ≥
Ni

2
− N

4
≥ N +Ni

8
,

whence

(6.10)
1

|ξi + ξ4|
≤ 8

N +Ni
, for i �= 4.
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As in the previous case,

(6.11)
1

|ξi|
≤ 2

Ni
≤ 4

N +Ni
≤ 4

N +N4
, i= 1,2,3.

Using the formula

M2
4 =

m2(ξ1)

ξ2
+

m2(ξ2)

ξ1
+

m2(ξ3)

ξ4
+

m2(ξ4)

ξ3

− m2(ξ1 + ξ2)

ξ2
− m2(ξ1 + ξ2)

ξ1
− m2(ξ1 + ξ2)

ξ4
− m2(ξ1 + ξ2)

ξ3

=
{m2(ξ3)

ξ4
− m2(ξ1 + ξ2)

ξ4

}
+

m2(ξ2)

ξ1
+

m2(ξ1)

ξ2
+

m2(ξ4)

ξ3

− m2(ξ1 + ξ2)

ξ1
− m2(ξ1 + ξ2)

ξ2
− m2(ξ1 + ξ2)

ξ3
,

we may write

M2
4 = I + II ,

where

I =
m2(ξ3)

ξ4
− m2(ξ1 + ξ2)

ξ4

=
m2(ξ3)

ξ4
− m2(ξ3 + ξ4)

ξ4

and

II =
m2(ξ2)

ξ1
+

m2(ξ1)

ξ2
+

m2(ξ4)

ξ3

− m2(ξ1 + ξ2)

ξ1
− m2(ξ1 + ξ2)

ξ2
− m2(ξ1 + ξ2)

ξ3
.

The mean-value theorem implies that there is a θ ∈ (0,1) such that

I =
m2(ξ3)

ξ4
− m2(ξ3 + ξ4)

ξ4

=−(m2)′(ξ3 + θξ4)ξ4
ξ2

= (m2)′(ξ3 + θξ4).
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Since |ξ4| ≤ (1/4)N ≤ (1/4)|ξ3|, it follows that (3/4)|ξ3| ≤ |ξ3 + θξ4| ≤
(5/4)|ξ3|, and therefore,

|I|=
∣∣∣m2(ξ3)

ξ4
− m2(ξ3 + ξ4)

ξ4

∣∣∣
≤C

m2(ξ3)

|ξ3|

=C
∣∣∣m2(ξ3)(ξ1 + ξ4)(ξ2 + ξ4)(ξ3 + ξ4)

ξ3(ξ1 + ξ4)(ξ2 + ξ4)(ξ3 + ξ4)

∣∣∣
≤ C|α4|m2(κ)

(N +N1)(N +N2)(N +N3)(N +N4)

by (6.10) and (6.11), where we have used the fact that α4 has the represen-

tation α4 = 3(ξ1 + ξ4)(ξ2 + ξ4)(ξ3 + ξ4) (see (6.4)).

To estimate II , note that for i �= 4,∣∣∣ 1
ξi

∣∣∣≤ 2

Ni

=
∣∣∣ 2(ξ1 + ξ4)(ξ2 + ξ4)(ξ3 + ξ4)

Ni(ξ1 + ξ4)(ξ2 + ξ4)(ξ3 + ξ4)

∣∣∣
≤ C|α4|

(N +N1)(N +N2)(N +N3)(N +N4)

by (6.10) and (6.11). Of course, m2(κ) = 1 since κ=min{Ni,Nij} ≤ (1/4)N ,

and thus,

|II |=
∣∣∣m2(ξ2)

ξ1
+

m2(ξ1)

ξ2
+

m2(ξ4)

ξ3

− m2(ξ1 + ξ2)

ξ1
− m2(ξ1 + ξ2)

ξ2
− m2(ξ1 + ξ2)

ξ3

∣∣∣
≤ C|α4|m2(κ)

(N +N1)(N +N2)(N +N3)(N +N4)
,

as each of the summands is bounded separately by the right-hand side of

the inequality. Therefore, inequality (6.2) holds for this region.

Remark 11. If S2
2 is replaced by

S̃2
2 =

{
(ξ1, ξ2, ξ3, ξ4) : |ξ1| ≥

N

C1
, |ξ2| ≤

N

C2D2
, |ξ3| ≥

N

C3
, |ξ4| ≥

N

C4

}
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for some dyadic numbers Ci ≥ 1 and C2D2 > 2Ci, then if one replaces (6.8)

and (6.9) by
1

|ξi + ξ2|
≤ 2C2D2(Ci + 1)

(C2D2 − 2Ci)(N +Ni)

and
1

|ξi|
≤ 2

Ni
≤ 2(Ci + 1)

N +Ni
≤ 2(Ci + 1)

N +N2
,

respectively, for i= 1,3,4, and makes some other obvious changes, the above

arguments allow (6.2) to be verified when (ξ1, ξ2, ξ3, ξ4) ∈ S̃2
2 . If these obser-

vations are combined with Remark 10, it is deduced that (6.2) holds for

regions of the form{
(ξ1, ξ2, ξ3, ξ4) : |ξ2| ≤

N

C2
, |ξj | ≥

N

Cj
, j �= 2

}
.

The case {
(ξ1, ξ2, ξ3, ξ4) : |ξ4| ≤

N

C4
, |ξj | ≥

N

Cj
, j �= 4

}
is also similarly proved.

Case D : The region has the form

R4 =R><>< =
{
(ξ1, ξ2, ξ3, ξ4) : |ξ1| ≥N, |ξ2|<N, |ξ3| ≥N, |ξ4|<N

}
.

The region R4 may be divided into the two subregions

S4
1 =

{
(ξ1, ξ2, ξ3, ξ4) ∈R4 : |ξ2| ≥

N

4
or |ξ4| ≥

N

4

}
and

S4
2 =

{
(ξ1, ξ2, ξ3, ξ4) ∈R4 : |ξ2| ≤

N

4
, |ξ4| ≤

N

4

}
.

The case where (ξ1, ξ2, ξ3, ξ4) ∈ S4
1 is covered on account of Remarks 10 and

11. If (ξ1, ξ2, ξ3, ξ4) ∈ S4
2 , then |ξi| ≤ Ni ≤ (1/4)N ≤ (1/4)|ξ1| or (1/4)|ξ3|

for i= 2,4. Hence, |ξ1 + ξ3|= |ξ2 + ξ4| ≤ (1/2)N and (3/4)|ξ1| ≤ |ξ1 + ξi| ≤
(5/4)|ξ1|, i= 2,4. Thus, for i= 2,4,N+Ni ≤ (5/4)N and |ξ1+ξi| ≥ (3/4)N ,

whence

(6.12)
1

|ξ1 + ξi|
≤ 5

3(N +Ni)
, i= 2,4.
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Moreover, for i= 1,3,Ni ≥N ≥ 1, and so

(6.13)
1

|ξ1|
≤ 1

|ξi|
≤ 2

Ni
≤ 4

N +Ni
.

Without loss of generality, take it that |ξ1| ≥ |ξ3| and |ξ2| ≥ |ξ4|. From the

facts that |ξ1 + ξ3|= |ξ2 + ξ4| ≤ (1/2)N and that |ξ1| ≥N ≥ 4N2 ≥ 4|ξ2|, it
is clear that ξ1 and ξ3 must have different signs.

Write M2
4 in the form

M2
4 =

m2(ξ1)

ξ2
+

m2(ξ2)

ξ1
+

m2(ξ3)

ξ4
+

m2(ξ4)

ξ3

− m2(ξ1 + ξ2)

ξ2
− m2(ξ1 + ξ2)

ξ1
− m2(ξ1 + ξ2)

ξ4
− m2(ξ1 + ξ2)

ξ3

=
m2(ξ1)

ξ2
− m2(ξ1 + ξ2)

ξ2
+

m2(ξ3)

ξ4
− m2(ξ1 + ξ2)

ξ4

+
m2(ξ2)

ξ1
− m2(ξ1 + ξ2)

ξ1
+

m2(ξ4)

ξ3
− m2(ξ1 + ξ2)

ξ3

= I + II .

There are two cases that arise in estimating I .

Subcase 1 : (|ξ2| ≥ 2|ξ1 + ξ3|). Let ξ3 = −ξ1 + ρξ2. Then |ρ| ≤ 1/2 and

ξ4 =−(ξ1 + ξ2 + ξ3) =−(ρ+ 1)ξ2. Thus, I may be written in the form

I =
m2(ξ1)

ξ2
− m2(ξ1 + ξ2)

ξ2
− m2(−ξ3)

(ρ+ 1)ξ2
+

m2(ξ1 + ξ2)

(ρ+ 1)ξ2

=
(ρ+ 1)m2(ξ1)− ρm2(ξ1 + ξ2)−m2(ξ1 − ρξ2)

(ρ+ 1)ξ2
.

If m2 is expanded in a second-order Taylor polynomial about ξ1, it follows

that for some θ1 and θ2 with 0< θ1 < 1 and 0< θ2 < 1,

m2(ξ1 + ξ2) =m2(ξ1) + (m2)′(ξ1)ξ2 +
(m2)′′(ξ1 + θ1ξ2)ξ

2
2

2

and

m2(ξ1 − ρξ2) =m2(ξ1)− (m2)′(ξ1)ρξ2 +
(m2)′′(ξ1 − ρθ2ξ2)ρ

2ξ22
2

.
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Thus, because of (3.5), (3.6), (6.12), (6.13), and the facts that (3/4)|ξ1| ≤
|ξ1 + θ1ξ2| ≤ (5/4)|ξ1| and that (3/4)|ξ1| ≤ |ξ1 − ρθ2ξ2| ≤ (5/4)|ξ1|, the

inequality

|I|=
∣∣∣(ρ+ 1)m2(ξ1)− ρm2(ξ1 + ξ2)−m2(ξ1 − ρξ2)

(ρ+ 1)ξ2

∣∣∣
≤C

∣∣∣(m2)′′(ξ1)ρξ22
(ρ+ 1)ξ2

∣∣∣
≤C

∣∣∣m2(κ)ρξ2
ξ21

∣∣∣
=C

∣∣∣m2(κ)(ξ1 + ξ3)(ξ1 + ξ2)(ξ1 + ξ4)

ξ21(ξ1 + ξ2)(ξ1 + ξ4)

∣∣∣
≤C

|α4|m2(κ)

(N +N1)(N +N2)(N +N3)(N +N4)

is seen to be valid.

Subcase 2 : (|ξ2| ≤ 2|ξ1+ξ3|). By the mean-value theorem, there are values

θ1 and θ2 with 0< θ1 < 1 and 0< θ1 < 1 such that

I =
m2(ξ1)

ξ2
− m2(ξ1 + ξ2)

ξ2
+

m2(ξ3)

ξ4
− m2(ξ3 + ξ4)

ξ4

= (m2)′(ξ1 + θ1ξ2) + (m2)′(ξ3 + θ2ξ4)

= 2m(ξ1 + θ1ξ2)m
′(ξ1 + θ1ξ2) + 2m(ξ3 + θ2ξ4)m

′(ξ3 + θ2ξ4)

= 2m(ξ1 + θ1ξ2)m
′(ξ1 + θ1ξ2)− 2m(−ξ3 − θ2ξ4)m

′(−ξ3 − θ2ξ4),

where the last line follows since m is an even function and so m′ is an odd

function. Applying the mean-value theorem a second time yields

2m(ξ1 + θ1ξ2)m
′(ξ1 + θ1ξ2)− 2m(−ξ3 − θ2ξ4)m

′(−ξ3 − θ2ξ4)

= 2(mm′)′(η)(ξ1 + θ1ξ2 + ξ3 + θ2ξ4),

where η lies between ξ1+θ1ξ2 and −(ξ3+θ2ξ4). Because |ξ1+ξ3|= |ξ2+ξ4| ≤
(1/2)N , |ξ1| ≥N ≥ 4N2 ≥ 4|ξ2|, and |ξ3| ≥N ≥ 4N4 ≥ 4|ξ4|, it follows right
away that ξ1 and ξ3 must have different signs and, second, that the signs

of ξ1 + θ1ξ2 and −(ξ3 + θ2ξ4) are the same. In consequence, (3/8)|ξ1| ≤
(3/4)|ξ3| ≤ |η| ≤ (5/4)|ξ1|. Note also that

(6.14) |ξ1+θ1ξ2+ξ3+θ2ξ4| ≤ |ξ1+ξ3|+θ2|ξ2+ξ4|+ |θ2−θ1||ξ2| ≤ 4|ξ1+ξ3|.
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Since (2mm′)′ = 2mm′′ + 2m′m′, the inequality

|I| ≤C
m2(η)

η2
|ξ1 + ξ3|

=C
∣∣∣m2(κ)(ξ1 + ξ3)(ξ1 + ξ2)(ξ1 + ξ4)

ξ21(ξ1 + ξ2)(ξ1 + ξ4)

∣∣∣
≤C

|α4|m2(κ)

(N +N1)(N +N2)(N +N3)(N +N4)

is a consequence of (6.12) and (6.13).

Attention is now turned to II . Using the fact that |ξ2| ≤ (1/4)N and

|ξ4| ≤ (1/4)N , it follows from the definition of m that m2(ξ2) =m2(ξ4) = 1,

whence

II =
m2(ξ2)

ξ1
− m2(ξ1 + ξ2)

ξ1
+

m2(ξ4)

ξ3
− m2(ξ1 + ξ2)

ξ3

=
1

ξ1
+

1

ξ3
−m2(ξ1 + ξ2)

( 1

ξ3
+

1

ξ1

)
=
(
1−m2(ξ1 + ξ2)

)( 1

ξ3
+

1

ξ1

)
.

Because κ=min{Ni,Nij} ≤ (1/4)N , m2(κ) = 1. In consequence, it is ascer-

tained that

|II |=
∣∣∣m2(ξ2)

ξ1
− m2(ξ1 + ξ2)

ξ1
+

m2(ξ4)

ξ3
− m2(ξ1 + ξ2)

ξ3

∣∣∣
≤C

∣∣∣ξ1 + ξ3
ξ1ξ3

∣∣∣=C
∣∣∣ξ1 + ξ3

ξ1ξ3

∣∣∣m2(κ)

≤C
∣∣∣ξ1 + ξ3

ξ1ξ3

∣∣∣m2(κ)
|(ξ1 + ξ2)(ξ1 + ξ4)|
|(ξ1 + ξ2)(ξ1 + ξ4)|

≤C
|α4|m2(κ)

(N +N1)(N +N2)(N +N3)(N +N4)

by (6.12) and (6.13).

Case E : The region has the form

R5 =R>><< =
{
(ξ1, ξ2, ξ3, ξ4) : |ξ1| ≥N, |ξ2| ≥N, |ξ3|<N, |ξ4|<N

}
.

The region R5 may be divided into the two subregions

S5
1 =

{
(ξ1, ξ2, ξ3, ξ4) ∈R5 : |ξ3| ≥

N

4
or |ξ4| ≥

N

4

}
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and

S5
2 =

{
(ξ1, ξ2, ξ3, ξ4) ∈R5 : |ξ3| ≤

N

4
, |ξ4| ≤

N

4

}
.

The case where (ξ1, ξ2, ξ3, ξ4) ∈ S5
1 is covered on account of Remarks 10

and 11. If (ξ1, ξ2, ξ3, ξ4) ∈ S5
2 , then |ξi| ≤ Ni ≤ (1/4)N for i = 3,4. Hence,

|ξ1 + ξ2|= |ξ3 + ξ4| ≤ (1/2)N . So m2(ξ3) =m2(ξ4) =m2(ξ1 + ξ2) = 1. Con-

sequently,

M2
4 =

m2(ξ1)

ξ2
+

m2(ξ2)

ξ1
+

m2(ξ3)

ξ4
+

m2(ξ4)

ξ3

− m2(ξ1 + ξ2)

ξ2
− m2(ξ1 + ξ2)

ξ1
− m2(ξ1 + ξ2)

ξ4
− m2(ξ1 + ξ2)

ξ3

=
m2(ξ1)

ξ2
+

m2(ξ2)

ξ1
− 1

ξ2
− 1

ξ1

=
ξ1m

2(ξ1) + ξ2m
2(ξ2)

ξ1ξ2
− ξ1 + ξ2

ξ1ξ2

= I − II .

From the facts that |ξ1 + ξ2| = |ξ3 + ξ4| ≤ (1/2)N and that |ξ1| ≥ N , it

is clear that ξ1 and ξ2 must have different signs. Thus, by the mean-value

theorem and (6.5),

|I|=
∣∣∣ξ1m2(ξ1) + ξ2m

2(ξ2)

ξ1ξ2

∣∣∣
=
∣∣∣ξ1m2(ξ1)− (−ξ2)m

2(−ξ2)

ξ1ξ2

∣∣∣
=
∣∣∣G′(η)(ξ1 + ξ2)

ξ1ξ2

∣∣∣
≤C

∣∣∣ξ1 + ξ2
ξ1ξ2

∣∣∣,
where η lies between ξ1 and −ξ2.

Because |ξi| ≤Ni ≤ (1/4)N ≤ (1/4)|ξ1| or (1/4)|ξ2| for i= 3,4, (3/4)|ξ1| ≤
|ξ1 + ξi| ≤ (5/4)|ξ1|, i= 3,4. Thus, for i= 3,4,N +Ni ≤ (5/4)N and |ξ1 +
ξi| ≥ (3/4)N , whence

(6.15)
1

|ξ1 + ξi|
≤ 5

3(N +Ni)
, i= 3,4.
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Moreover, for i= 1,2,Ni ≥N ≥ 1, and so

(6.16)
1

|ξ1|
≤ 1

|ξi|
≤ 2

Ni
≤ 4

N +Ni
.

Thus,

|M2
4 | ≤ |I|+ |II |

≤C
∣∣∣ξ1 + ξ2

ξ1ξ2

∣∣∣
= 2

∣∣∣(ξ1 + ξ2)(ξ1 + ξ3)(ξ1 + ξ4)

ξ1ξ2(ξ1 + ξ3)(ξ1 + ξ4)

∣∣∣
≤ C|α4|m2(κ)

(N +N1)(N +N2)(N +N3)(N +N4)

because of (6.15), (6.16), and m2(κ) = 1.

Remark 12. With some obvious changes, the same arguments show that

the inequality (6.2) holds for regions of the form{
(ξ1, ξ2, ξ3, ξ4) : |ξi| ≤

N

Ci
, i= 2,4, |ξj | ≥

N

Cj
, j = 1,3

}
and for the regions{

(ξ1, ξ2, ξ3, ξ4) : |ξi| ≤
N

Ci
, i= 3,4, |ξj | ≥

N

Cj
, j = 1,2

}
.

Case F : The region is of the form

R6 =R><<< =
{
(ξ1, ξ2, ξ3, ξ4) : |ξ1| ≥N, |ξ2|<N, |ξ3|<N, |ξ4|<N

}
.

We divide this region into the two subregions

S6
1 =

{
(ξ1, ξ2, ξ3, ξ4) ∈R6 : |ξ2| ≥

N

4
or |ξ3| ≥

N

4
or |ξ4| ≥

N

4

}
and

S6
2 =

{
(ξ1, ξ2, ξ3, ξ4) ∈R6 : |ξi| ≤

N

4
, i= 2,3,4

}
.

If (ξ1, ξ2, ξ3, ξ4) ∈ S6
1 , then by Remarks 10, 11, and 12, the situation is

covered.
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If (ξ1, ξ2, ξ3, ξ4) ∈ S6
2 , then |ξi| ≤Ni ≤ (1/4)N ≤ (1/4)|ξ1|. Since

0 = |ξ1 + ξ2 + ξ3 + ξ4|

≥ |ξ1| − |ξ2| − |ξ3| − |ξ4|

≥ |ξ1|
4

≥ N

4
,

this is a contradiction. Thus, S6
2 = ∅.

Remark 13. With some obvious changes, the same arguments show that

the inequality (6.2) holds for regions of the form{
(ξ1, ξ2, ξ3, ξ4) : |ξ1| ≥

N

C1
, |ξi| ≤

N

Ci
, i= 2,3,4

}
.

Case G : The region is of the form

R7 =R<<<< =
{
(ξ1, ξ2, ξ3, ξ4) : |ξ1| ≤N, |ξ2|<N, |ξ3|<N, |ξ4|<N

}
.

We divide this region into the two subregions

S7
1 =

{
(ξ1, ξ2, ξ3, ξ4) ∈R7 : |ξ1| ≥

N

4
, |ξ2|<N, |ξ3|<N, |ξ4|<N

}
and

S7
2 =

{
(ξ1, ξ2, ξ3, ξ4) ∈R7 : |ξi| ≤

N

4
, i= 1,2,3,4

}
.

If (ξ1, ξ2, ξ3, ξ4) ∈ S7
1 , then by Remarks 10, 11, 12, and 13, the situation is

covered. If (ξ1, ξ2, ξ3, ξ4) ∈ S7
2 , as max1≤i≤4{|ξi|} ≤ (N/4)<N and |ξ1+ξ2| ≤

(N/2) < N , M2
4 = 0 as m2(ξi) = m2(ξ1 + ξ2) = 1, i = 1,2,3,4. So this is a

trivial case.

This establishes estimate (6.2).

§7. The Λ5 terms

In [16, Section 6], an estimate of a quintilinear operator analogous to our

Λ5 was developed that completed the control of the growth of the simpler

version of the modified energy arising in the analysis of the KdV equation.

In our analysis, the calculation and estimation of the time derivative of the

quantity E4 that is applicable to the systems considered here are more com-

plicated than the analogous computations in [16] owing to the appearance

of quintilinear products involving both u and v . Another aspect that adds
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difficulty is the appearance of two different multipliers M1
4 and M2

4 in the

analysis. These are defined in terms of the M ij by the formulas

M2
4 (ξ1, ξ2, ξ3, ξ4) =M12 +M34

and

M1
4 (ξ1, ξ2, ξ3, ξ4) =M12 +M34 +M13 +M24 +M14 +M23.

It is immediate that M1
4 (ξ1,ξ2,ξ3,ξ4) can be written as the partial sym-

metrization

M1
4 (ξ1, ξ2, ξ3, ξ4) =M2

4 (ξ1, ξ2, ξ3, ξ4) +M2
4 (ξ1, ξ3, ξ2, ξ4) +M2

4 (ξ1, ξ4, ξ3, ξ2)

of M2
4 (ξ1, ξ2, ξ3, ξ4). Since the estimates for M2

4 (ξ1, ξ2, ξ3, ξ4) are symmetric

with respect to the dyadic bands provided by the Ni, it is clear that bounds

derived for M2
4 will also hold for M1

4 . (This remark provides a proof of [16,

Lemma 4.4].)

Define the quantity Γ4 by

Γ4 =Γ3 − ã22Λ22

(M2
4

α4

)
−

∑
i+j=4

aijΛij

(M1
4

α4

)
.

From what has already been determined about the t-derivatives of the inte-

grals defining the various Λ, it transpires that d
dtΓ

4 can be written as a

linear combination of terms of the form

Λij(Mσ,σ̃) = Λij

(
[ξσ̃(5) + ξσ̃(1)]Mσ(ξσ̃(1) + ξσ̃(5), ξσ̃(2), ξσ̃(3), ξσ̃(4))

)
,

where i+ j = 5, ξ1 + ξ2 + ξ3 + ξ4 + ξ5 = 0, σ is a permutation of {1,2,3,4},
σ̃ is a permutation of {1,2,3,4,5}, Mσ is defined by

Mσ(ξ1, ξ2, ξ3, ξ4) =M(ξσ(1), ξσ(2), ξσ(3), ξσ(4)),

and M is either M1
4 /α4 or M2

4 /α4. So, for example, if σ =
(
1234
3214

)
, then

Mσ(ξ1 + ξ5, ξ2, ξ3, ξ4) =M(ξ3, ξ2, ξ1 + ξ5, ξ4).

The inequality (6.2) implies that∣∣[ξσ̃(5) + ξσ̃(1)]Mσ(ξσ̃(1) + ξσ̃(5), ξσ̃(2), ξσ̃(3), ξσ̃(4))
∣∣

≤ Cm2(κ)(N +Nl)Nl5

(N +N1)(N +N2)(N +N3)(N +N4)(N +Nl5)
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for any permutations σ, σ̃. This is the inequality that is essential for the proof

of (3.18) in Lemma 2. What needs to be shown now is that for 0> s>−3/4,

∣∣∣∫ δ

0

∫
ξ1+···+ξ5=0

Mσ,σ̃(ξ1, ξ2, ξ3, ξ4, ξ5)û1(ξ1)û2(ξ2)û3(ξ3)û4(ξ4)û5(ξ5)dt
∣∣∣

(7.1)

�N−5s
5∏

i=1

‖Iui‖Xδ
0,(1/2)+

,

where the Bourgain spaces Xδ
s,b are as defined earlier in (2.1) and (2.2). The

proof of this latter inequality uses [16, Lemma 5.1], which is restated here

for the reader’s convenience.

Lemma 6. Given functions wi =wi(x, t), with 1≤ i≤ 5, the inequality

∣∣∣∫ δ

0

∫ 5∏
i=1

wi(x, t)dxdt
∣∣∣

�
( 3∏
i=1

∥∥wi(x, t)
∥∥
Xδ

(1/4),(1/2)+

)
‖w4‖Xδ

−(3/4),(1/2)+
‖w5‖Xδ

−(3/4),(1/2)+

holds for any δ > 0.

The stage is set to initiate a discussion of the important inequality (3.18)

of Lemma 2. The proof of (3.18) is similar to the proof of [16, Lemma 5.2].

Consequently, we content ourselves with providing a few indications of the

needed calculations and then refer the reader to the commentary in [16].

Begin by noting that with the right choices of u′i, we can rewrite

∣∣∣∫ δ

0
Λij(Mσ,σ̃)dt

∣∣∣
=
∣∣∣∫ δ

0

∫
ξ1+···+ξ5=0

Mσ,σ̃(ξ1, ξ2, ξ3, ξ4, ξ5)û1(ξ1)û2(ξ2)û3(ξ3)û4(ξ4)û5(ξ5)dt
∣∣∣

=
∣∣∣∫ δ

0

∫
ξ1+···+ξ5=0

Mσ,σ̃(ξ1, ξ2, ξ3, ξ4, ξ5)

× Îu1(ξ1)

m(ξ1)

Îu2(ξ2)

m(ξ2)

Îu3(ξ3)

m(ξ3)

Îu4(ξ4)

m(ξ4)

Îu5(ξ5)

m(ξ5)
dt
∣∣∣
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=
∣∣∣∫ δ

0

∫
ξ1+···+ξ5=0

Δ(ξ1, ξ2, ξ3, ξ4, ξ5)

× Îw1(ξ1)Îw2(ξ2)Îw3(ξ3)Îw4(ξ4)Îw5(ξ5)dt
∣∣∣,

where

Δ(ξ1, ξ2, ξ3, ξ4, ξ5) = eiE
Mσ,σ̃(ξ1, ξ2, ξ3, ξ4, ξ5)

m(ξ1)m(ξ2)m(ξ3)m(ξ4)m(ξ5)
,

with

E =
5∑

j=1

arg ûj(ξj), ŵj(ξj) = e−iarg ûj(ξj)ûj(ξj),

and the operator I = I(m) the Fourier multiplier operator with positive

symbol m defined in (3.4). The point here is that the exponential exp(iE)

is unimodular and the ŵj , j = 1, . . . ,5, are all nonnegative. Since the symbol

m is everywhere positive, it follows that the functions Îwj , j = 1, . . . ,5, are

also nonnegative. Consequently, if F is the nonnegative function

F (ξ1, ξ2, ξ3, ξ4, ξ5) = ̂Iw1(ξ1)Îw2(ξ2)Îw3(ξ3)Îw4(ξ4)Îw5(ξ5),

then the absolute value of the integral with respect to time of Λij(Mσ,σ̃)

appearing above can be straightforwardly bounded above in terms of the

integral of F over the hyperplane ξ1 + · · ·+ ξ5 = 0. To see this, proceed as

follows:∣∣∣∫ δ

0
Λij(Mσ,σ̃)dt

∣∣∣
≤
∫ δ

0

∫
ξ1+···+ξ5=0

|Mσ,σ̃(ξ1, ξ2, ξ3, ξ4, ξ5)|
m(ξ1)m(ξ2)m(ξ3)m(ξ4)m(ξ5)

F (ξ1, ξ2, ξ3, ξ4, ξ5)dt

≤C

∫ δ

0

∫
ξ1+···+ξ5=0

|Mσ,σ̃(ξ1, ξ2, ξ3, ξ4, ξ5)|
m(N1)m(N2)m(N3)m(N4)m(N5)

F (ξ1, ξ2, ξ3, ξ4, ξ5)dt

≤C

∫ δ

0

m2(κ)N45

(N+N1)(N+N2)(N+N3)(N+N45)

m(N1)m(N2)m(N3)m(N4)m(N5)

∫
ξ1+···+ξ5=0

F (ξ1, ξ2, ξ3, ξ4, ξ5)dt

≤C

∫ δ

0
M(κ)

∫
ξ1+···+ξ5=0

F (ξ1, ξ2, ξ3, ξ4, ξ5)dt

=C

∫ δ

0

∫ ∞

−∞
M(κ)Iw1(x, t)Iw2(x, t)Iw3(x, t)Iw4(x, t)Iw5(x, t)dxdt,



GLOBAL WELL-POSEDNESS FOR A COUPLED KDV SYSTEM 143

where

M(κ) =
m2(κ)

(N +N1)m(N1)(N +N2)m(N2)(N +N3)m(N3)m(N4)m(N5)
.

Since m2(κ) = m2(min{Ni,Nij}) ≤ 1, an estimate for the last integral

depends only on bounding the quantity

1

(N +N1)m(N1)(N +N2)m(N2)(N +N3)m(N3)m(N4)m(N5)
.

Following the argument in [16, Lemma 5.2], assume for reasons of symmetry

that N1 ≥N2 ≥N3 and that N4 ≥N5. For N3 ≥N ,

1

(N +Nj)m(Nj)
≤ cN sN−1−s

j

for j = 1,2,3, while for N5 ≥N ,

1

m(Nj)
≤CN sN−s

j

for j = 4,5. Since ûj is nonzero only on the dyadic band (1/2)Nj ≤ |ξj | ≤Nj ,

it follows that N−s
j |ŵj(ξj)| ≤ 2−s|ξj |−s|ŵj(ξj)|. These last two inequalities

imply that

‖N−s
j Iwj‖

Xδ
−(3/4),(1/2)+

≤CN
−(3/4)−s
j ‖Iwj‖

Xδ
0,(1/2)+

and that

‖N−1−s
j Iwj‖

Xδ
(1/4),(1/2)+

≤CN
−(3/4)−s
j ‖Iwj‖

Xδ
0,(1/2)+

.

In summary, the preceding machinations allow the conclusion that∣∣∣∫ δ

0
Λij(Mσ,σ̃)dt

∣∣∣
≤CN5s

∫ δ

0

∫ ∞

−∞
[N−1−s

1 Iw1N
−1−s
2 Iw2N

−1−s
3 Iw3

×N−s
4 Iw4N

−s
5 Iw5](x, t)dxdt,



144 J. L. BONA, J. COHEN, AND G. WANG

which, upon applying [16, Lemma 5.1] and the fact that ‖Iwi‖Xδ
0,(1/2)+

=

‖Iui‖Xδ
0,(1/2)+

, allows us to continue the inequality, namely,

≤CN5s
( 3∏
j=1

∥∥N−1−s
i Iwj(x, t)

∥∥
Xδ

−(3/4),(1/2)+

)
× ‖N−s

4 Iw4‖Xδ
(1/4),(1/2)+

‖N−s
5 Iw5‖Xδ

(1/4),(1/2)+

≤CN5s
5∏

j=1

N
−(3/4)−s
j ‖Iuj‖

Xδ
0,(1/2)+

.

Further details for the cases depending on the relative sizes of N and Nj

are handled as in [16, proof of Lemma 5.2]. Noting that s > −3/4 implies

that −3/4− s < 0, summing the dyadic pieces, and then summing over all

the different quintilinear integrals, the desired estimate,∫ δ

0

d

dt

{
H(t)2 − Λ̃3 − Λ̃4

}
≤CN5s

5∑
l=0

‖Iu‖l
Xδ

0,(1/2)+

‖Iv‖5−l

Xδ
0,(1/2)+

≤CN5s
(
‖Iu‖

Xδ
0,(1/2)+

+ ‖Iv‖
Xδ

0,(1/2)+

)5
≤CN5s

∥∥(Iu, Iv)∥∥5
Xδ

0,(1/2)+

≤CN5sH(0)5,

emerges.

Proposition 2. Let I be the multiplier defined in (3.4), and suppose that

0> s>−3/4. Let (u(x, t), v(x, t)) be any pair of real-valued functions. Then

for any t,

(7.2)
∣∣Λ̃3(t) + Λ̃4(t)

∣∣≤ c3H(t)3 + c4H(t)4.

Proof. The trilinear terms are the same as the Λ3(σ3) of [16], and the

quadrilinear terms, while not exactly the same as those in [16], have multi-

pliers that satisfy the same estimates as the Λ4(σ4) term of [16]. The esti-

mate [16, (6.8)] for Λ4(σ4) holds for the different quadrilinear terms that

appear in Λ̃4.

The proof of the estimate [16, (6.7)] uses an assumption that −3/4 <

s < −1/2. Since we wish to conclude global existence for the full range
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−3/4< s < 0, we need to modify the proof in [16]. As stated in [16, (6.9),

p. 724], it suffices to show that

∣∣∣Λ3

(ξ1m2(ξ1) + ξ2m
2(ξ2) + ξ3m

2(ξ3)

ξ1ξ2ξ3m(ξ1)m(ξ2)m(ξ3)
;u1, u2, u3

)∣∣∣≤ 3∏
j=1

‖uj‖2.

Let (1/2)Nj < |ξj | ≤Nj , where Nj is dyadic, and assume that N1 ≥N2 ≥
N3. The proof boils down to showing that

(7.3)
∣∣∣ξ1m2(ξ1) + ξ2m

2(ξ2) + ξ3m
2(ξ3)

ξ1ξ2ξ3m(ξ1)m(ξ2)m(ξ3)

∣∣∣≤ cN
−(1/6)
1 N

−(1/6)
2 N

−(1/6)
1 .

The case N1 �N is covered in [16, Lemma 6.1]. For the case N3 > N ,

reason as follows. First of all,∣∣ξ1m2(ξ1) + ξ2m
2(ξ2) + ξ3m

2(ξ3)
∣∣≤ cN−2s[N1+2s

1 +N1+2s
2 +N1+2s

3 ].

If −(3/4)< s<−(1/2), then 1 + 2s < 0 and

cN−2s[N1+2s
1 +N1+2s

2 +N1+2s
3 ]≤ 3cN−2sN1+2s

3 ,

which is shown in [16] to lead to the desired bound (7.3). If, on the other

hand, −1/2 < s < 0, then 1 + 2s ≥ 0 and the argument is slightly more

complicated. If N1 ≤ 16N3, then∣∣ξ1m2(ξ1) + ξ2m
2(ξ2) + ξ3m

2(ξ3)
∣∣≤ cN−2s[N1+2s

1 +N1+2s
2 +N1+2s

3 ]

≤ cN−2s(2 · 321+2s + 1)N1+2s
3 .

The desired estimate (7.3) follows once again with a constant in the

estimate which depends on s. Next assume that N1 > 16N3. Then since

ξ1 + ξ2 + ξ3 = 0 and m is an even function,

ξ1m
2(ξ1) + ξ2m

2(ξ2) + ξ3m
2(ξ3)

= ξ1m
2(ξ1)− (ξ1 + ξ3)m

2(ξ1 + ξ3) + ξ3m
2(ξ3)(7.4)

= ξ1
[
m2(ξ1)−m2(ξ1 + ξ3)

]
+ ξ3

[
m2(ξ3)−m2(ξ1 + ξ3)

]
.

Applying the mean-value theorem to the first term on the right,

ξ1
[
m2(ξ1)−m2(ξ1 + ξ3)

]
= 2ξ1ξ3m(θ)m′(θ),
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where θ is between ξ1 and ξ1+ ξ3. Since N1 > 16N3, |ξ1+ ξ3| ≥ (1/4)N1, and

so

(7.5)
∣∣ξ1ξ3m(θ)m′(θ)

∣∣≤ cN1N3N
−2sN2s−1

1 = cN−2sN2s
1 N3.

The second term in (7.4) is estimated as∣∣ξ3[m2(ξ3)−m2(ξ1 + ξ3)
]∣∣≤ cN3

[
N−2s

(N3

2

)2s
−N−2s(2N1)

2s
]

(7.6)

≤ c
1− 642s

4s
N−2sN1+2s

3 .

Thus,∣∣∣ξ1m2(ξ1) + ξ2m
2(ξ2) + ξ3m

2(ξ3)

ξ1ξ2ξ3m(ξ1)m(ξ2)m(ξ3)

∣∣∣≤ cs
N−2sN2s

1 N3 +N−2sN1+2s
3

N−3sN1+s
1 N1+s

2 N1+s
3

≤ csN
s
[ N s

1

N1N
1+s
2 N s

3

+
N s

3

N1+s
1 N1+s

2

]
≤ csN

s 1

N
(1/6)
1 N

(1/6)
2 N

2((5/6)+s)
3

≤ csN
sN

−(1/6)
1 N

−(1/6)
2 N

−(1/6)
3 ,

since −3/4 < s < 0 =⇒ 1/6 < 2(5/6 + s). Now [16, Lemma 6.1] holds for

−3/4< s< 0, and so (7.2) then follows from [16, (6.7), (6.8)] as follows:

∣∣Λ̃3(t) + Λ̃4(t)
∣∣≤ c

3∑
i=0

∥∥Iu(t)∥∥i
L2
x

∥∥Iv(t)∥∥3−i

L2
x
+ c̃

4∑
i=0

∥∥Iu(t)∥∥i
L2
x

∥∥Iv(t)∥∥4−i

L2
x

≤ c
(∥∥Iu(t)∥∥

L2
x
+
∥∥Iv(t)∥∥

L2
x

)3
+ c̃

(∥∥Iu(t)∥∥
L2
x
+
∥∥Iv(t)∥∥

L2
x

)4
≤ c1

∥∥(Iu(t), Iv(t))∥∥3
L2
x×L2

x
+ c2

∥∥(Iu(t), Iv(t))∥∥4
L2
x×L2

x

≤ c3H(t)3 + c4H(t)4,

since ∥∥(Iu(t), Iv(t))∥∥
L2
x×L2

x
≈H(t).

Because the constants in the above inequalities are independent of t, the

estimate in the proposition obtains.

This concludes the development of the technical details needed to estab-

lish the inequalities in Lemma 2 and thus concludes the proof of the main

theorem.
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