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TWISTED ORBIFOLD GROMOV–WITTEN
INVARIANTS

VALENTIN TONITA

Abstract. Let X be a smooth proper Deligne–Mumford stack over C. One can
define twisted orbifold Gromov–Witten invariants of X by considering mul-
tiplicative invertible characteristic classes of various bundles on the moduli
spaces of stable maps Xg,n,d, cupping them with evaluation and cotangent line
classes, and then integrating against the virtual fundamental class. These are
more general than the twisted invariants introduced by Tseng. We express the
generating series of the twisted invariants in terms of the generating series of
the untwisted ones. We derive the corollaries which are used in a paper with
Givental about the quantum K-theory of a complex compact manifold X.

§1. Introduction and statement of results

Twisted Gromov–Witten invariants were introduced in [9] for manifold

target spaces and extended in [19] to the case of orbifolds. The original moti-

vation was to express Gromov–Witten invariants of complete intersections

(twisted ones) in terms of the Gromov–Witten invariants of the ambient

space (the untwisted ones). In addition, they were used in [8] to express

Gromov–Witten invariants with values in cobordism in terms of cohomo-

logical Gromov–Witten invariants.

Our results incorporate and generalize all of the above: we consider three

types of twisting classes. These are multiplicative cohomological classes of

bundles of the form π∗E, where π is the universal family of the moduli

space of stable maps to an orbifold X . The main tool in the computations

is the Grothendieck–Riemann–Roch theorem for stacks of [18], applied to

the morphism π; this gives differential equations satisfied by the gener-

ating functions of the twisted Gromov–Witten invariants. To the genus 0

Gromov–Witten potential of an orbifold X one can associate an overruled

Lagrangian cone in a symplectic space H, as explained in Section 2. Solving
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the differential equations for each type of twisting has an interpretation in

terms of the geometry of the cone: change its position by a symplectic trans-

formation, a translation of the origin, and a change of polarization of H.

Our motivation comes from studying the quantum K-theory of a manifold

X (see [12]), more precisely, from trying to express Euler characteristics

on the (virtual) orbifolds X0,n,d in terms of cohomological Gromov–Witten

invariants. However, they have other applications, for instance, recovering

the work of [8] on quantum extraordinary cohomology.

In [17], Teleman studies a group action on 2-dimensional quantum field

theories. Our results match his, if the field theories come from Gromov–

Witten theory.

Let X be a compact orbifold. Moduli spaces of orbimaps to orbifolds have

been constructed in [7] in the setup of symplectic orbifolds and in [4] in the

context of Deligne–Mumford stacks. Informally, the domain curve is allowed

to have nontrivial orbifold structure at the marked points and nodes. We

denote the moduli spaces of degree d maps of genus g with n marked points

by Xg,n,d.

Just like in the case of manifold target spaces, there are evaluation maps

evi at the marked points. Although it is clear how these maps are defined

on geometric points, it turns out that to have well-defined morphisms of

Deligne–Mumford stacks, the target of the evaluation maps is the rigidified

inertia stack of X .

We first define a related object, the inertia stack IX , as follows. Around

any point x ∈ X there is a local chart (Ũx,Gx) such that locally X is rep-

resented as the quotient of Ũx by Gx. Consider the set of conjugacy classes

(1) = (h1x), (h
2
x), . . . , (h

nx
x ) in Gx. Define

IX :=
{(

x, (hix)
) ∣∣ i= 1,2, . . . , nx

}
.

Pick an element hix in each conjugacy class. Then a local chart on IX is

given by

nx∐
i=1

Ũ (hi
x)

x /ZGx(h
i
x),

where ZGx(h
i
x) is the centralizer of hix in Gx.

The rigidified inertia stack, which we denote IX , is defined by taking

the quotient at (x, (g)) of the automorphism group by the cyclic subgroup

generated by g. So, whereas a local chart at (x, (g)) on IX is given by
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Ũg/ZGx(g), on IX a local chart is Ũg/[ZGx(g)/〈g〉]. It is in general discon-

nected, even if X is connected. We write IX :=
∐

μ X̄μ. The distinguished

component corresponding to the identity is a copy of X , and throughout we

will label it X0 to distinguish it from other components of IX . We denote by

ι : IX → IX the involution which maps (x, (g)) to (x, (g−1)). It descends to

an involution on IX , which we also denote ι. We write XμI := ι(Xμ). There

is a natural map q : IX →X .

The orbifold Poincaré pairing on IX is defined for a ∈ H∗(Xμ,C), b ∈
H∗(XμI ,C) as

(a, b)orb :=

∫
Xμ

a∪ ι∗b.

Here IX and IX have the same geometric points (coarse spaces); hence,

we can identify the rings H∗(IX ,C) and H∗(IX ,C). This allows us to

pretend that the cohomological pullbacks by the maps evi have domain

H∗(IX ,C). We can use the maps evi to decompose Xg,n,d as a union of

closed and open substacks:

Xg,n,d,(μ1,...,μn) :=Xg,n,d ∩ (ev1)
−1(X̄μ1)∩ · · · ∩ (evn)

−1(X̄μn).

For each i we denote by ψ̄i = c1(L̄i), where the line bundle L̄i has fiber

over each point (C, x1, . . . , xn, f), the cotangent line to the coarse curve C

at xi.

We denote the universal family by π : Ug,n,d →Xg,n,d. Here Ug,n,d can be

identified with
⋃

(μ1,...,μn)
Xg,n+1,d,(μ1,...,μn,0). Since the extra marked point

on the universal family has trivial orbifold structure, the map evn+1 lands

in X0. We will write evn+1 throughout. The moduli spaces Xg,n,d have per-

fect obstruction theory and are equipped with virtual fundamental classes

[Xg,n,d] ∈ H∗(Xg,n,d,Q). Orbifold Gromov–Witten invariants are obtained

by integrating ψ̄i and evaluation classes on these cycles. We use correlator

notation:

〈a1ψ̄k1 , . . . , anψ̄
kn〉g,n,d :=

∫
[Xg,n,d]

n∏
i=1

ev∗i aiψ̄
ki
i .

Their generating series are functions on a suitable infinite-dimensional

vector space H+, which we describe below. Let Λ :=C[[Q]] be the Novikov
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ring which is a completion of the semigroup ring of degrees of holomorphic

curves in X , and let

H :=H∗(IX ,Λ)((z)).

We equip H with the symplectic form

Ω(f ,g) :=

∮
z=0

(
f(z),g(−z)

)
orb

dz.

Consider the following polarization of H:

H+ :=H∗(IX ,C)[[z]] and H− := z−1H∗(IX ,C)[z−1].

Let t(z) ∈H+. The genus g descendant potential and the total descendant

potential are defined as

Fg
X
(
t(z)

)
=
∑
d,n

Qd

n!

〈
t(ψ̄), . . . , t(ψ̄)

〉
g,n,d

,

DX (t) = exp
(∑
g≥0

�g−1Fg(t)
)
,

respectively. Then DX is a well-defined formal function on H+ taking values

in Λ⊗C[[�,�−1]]. Also it is well known that the differential of the genus 0

potential gives rise to a cone LH ⊂H with nice geometric properties (see

Theorem 2.6).

Twisted Gromov–Witten invariants are obtained from the usual ones by

systematically inserting in the correlators multiplicative classes of certain

bundles. For a vector bundle E, a general multiplicative class is of the form

A(E) = exp
(∑
k≥0

sk chkE
)
.

We want to consider three types of twistings, each by several possibly dif-

ferent multiplicative characteristic classes:

• twistings by a finite number of multiplicative classes Aα(π∗(ev∗n+1E)),

where E ∈K0(X );

• twistings by classes Bβ (kappa classes) of the form

Bg,n,d =

iB∏
β=1

Bβ

(
π∗
(
fβ(L

−1
n+1)− fβ(1)

))
,
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where Ln+1 is the cotangent line bundle at the extra marked point on the

universal curve, fβ are polynomials with coefficients in ev∗n+1K
0(X ), and

1 is the trivial line bundle; and

• twistings by nodal classes Cδ of the form

Cg,n,d =
∏
μ

iμ∏
δ=1

Cμ
δ

(
π∗(ev

∗
n+1Fδμ ⊗ iμ∗OZμ)

)
,

where Fδμ ∈K0(X ); see Section 2 for the precise definition of Zμ—roughly

speaking, it parameterizes nodes with fixed orbifold type; we denote by

iμ the corresponding inclusion Zμ →Ug,n,d, so we allow different types of

twistings localized near the loci Zμ.

We will refer to these as type A,B,C twistings, respectively. So a twisted

Gromov–Witten invariant will be an integral of the form∫
[Xg,n,d]

n∏
i=1

ev∗i aiψ̄
ki
i A(·)B(·)C(·).

These can be packed in generating series—the twisted potentials Fg
A,B,C ,

DA,B,C , which we can regard as functions on the same space H+. We post-

pone the precise definitions to Section 2. We will write DA,B,LA, and so

forth, for objects associated to twisted Gromov–Witten invariants of the

types specified in notation.

The main theorems of the paper describe how the twistings change the

potentials and the corresponding Lagrangian cones LA,B,C (which we define

in Section 2).

Theorem 1.1. The cone LA is obtained from LH after rotation by a

symplectic transformation

LA =
(∏

α

Δα

)
LH .

We write explicit formulas for each Δα in Remark 1.5.

Let now Lz be a line bundle with first Chern class z.

Theorem 1.2. The twisting by the classes Bg,n,d has the same effect as

a translation on the Fock space:

DA,B,C(t) =DA,C
(
t+ z − z

iB∏
i=1

Bβ

(
−fβ(L

−1
z )− fβ(1)

Lz − 1

))
·KB,(1.1)

where KB is a constant discussed in the proof.
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A related result for manifold target spaces is in [14].

Theorem 1.3. The potential DA,B,C satisfies the differential equation

DA,B,C = exp
(�
2

∑
a,b,α,β,μ

Aμ
a,α;b;β∂

α,μ
a ∂β,μI

b

)
DA,B,

where the coefficients Aμ
a,α;b;β are defined by (4.12) in Section 4. This is

equivalent to considering the potential DA,B as a generating function with

respect to a new polarization H = H+ ⊕ H−,C . We give a precise linear

transformation of Darboux coordinates on H in (4.24).

A few remarks are in order at this point.

Remark 1.4. The study of the K-theoretic Gromov–Witten invariants of

a manifold X in [12] leads naturally to considering these twisted Gromov–

Witten invariants. Briefly put, to compute K-theoretic Gromov–Witten

invariants of X in terms of cohomological ones, one needs to consider coho-

mological integrals twisted by certain Todd-like classes (see Section 6) of

the (virtual) tangent bundle of X0,n,d. Proposition 5.3 expresses this tan-

gent bundle as a sum of three contributions—one of each type.

Remark 1.5. Theorem 1.1 is a rather straightforward generalization of

the main theorem in [19], the only difference being that we consider more

than one class Aα. If the twisting data A are given by the multiplicative

class A(·) = exp(
∑

sk chk(·)) and by E ∈K0(X ), then the symplectic trans-

formation Δ is defined as

Δ := exp
(∑
k≥0

sk

(∑
m≥0

(Am)k+1−mzm−1

m!
+

chk(E
(0))

2

))
,

where by (Am)j we mean the degree j part of operators of ordinary mul-

tiplication by certain elements Am ∈H∗(IX ). To define Am we introduce

more notation. Let rμ be the order of each element in the conjugacy class

which is labeled by Xμ. The restriction of the bundle E to Xμ decomposes

into characters; let E
(l)
μ be the subbundle on which every element of the con-

jugacy class acts with eigenvalue e2πil/rμ . The Bernoulli polynomials Bm(x)

are defined by

tetx

et − 1
=
∑
m≥0

Bm(x)tm

m!
.
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Then

(Am)|Xμ
:=

l=rμ−1∑
l=0

Bm

( l

rμ

)
ch(E(l)

μ ).

The symplectic operator in Theorem 1.1 is just the product of Tseng’s

operators Δα associated to each Aα.

Remark 1.6. The decomposition

H∗(IX ,C)((z−1)) =⊕H∗(Xμ,C)((z
−1))

is preserved by the action of this loop group element. The element Am acts

by cup product multiplication on each H∗(Xμ).

Remark 1.7. Theorem 1.1 can be extended to a statement about the

total descendant potential using the quantization formalism of [10]. It reads:

DA(q)≈
∏
α

Δ̂αDX (q),

where Δ̂ denotes the quantization of the operator Δ and where the symbol

≈ means that the two sides are equal up to a (precisely determined) scalar

factor.

Remark 1.8. Another way to obtain a basis for the new space H−,C of

the new polarization from Theorem 1.3 is the following. For each μ, let the

series uμ(z) be defined by

z

uμ(z)
=

iμ∏
δ=1

Cμ
δ

(
(q∗Fδμ)μ ⊗ (−L−z)

)
.

Moreover, define the Laurent series vk,μ, k = 0,1,2, . . . by

1

uμ(−x− y)
=
∑
k≥0

(
uμ(x)

)k
vk,μ

(
u(y)

)
,

where we expand the left-hand side in the region where |x| < |y|. Then

H−,C =
⊕

μH
μ
−,C , and each Hμ

−,C is spanned by {ϕα,μvk,μ(u(z))}, where

{ϕα,μ} runs over a basis of H∗(Xμ,C) and k runs from 0 to ∞.
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The rest of the paper is structured as follows. Section 2 is used to intro-

duce the main objects of study: the moduli spaces Xg,n,d and the Gromov–

Witten theory of X , the symplectic spaceH, and the (twisted and untwisted)

Gromov–Witten potentials. Section 3 contains the technical results which

are the core of the computations—mainly how the twisting cohomological

classes pull back on the universal family and the locus of nodes. We are

then ready to prove Theorems 1.1, 1.2, and 1.3, which we do in Section 4.

In Section 5 we use the results to give a concise proof of the fake quantum

Hirzebruch–Riemann–Roch theorem: this was done in [8] by a very long

calculation. In Section 6 we extract the corollaries which are used in [12] on

quantum K-theory. Finally, in the appendix we state Toën’s Grothendieck–

Riemann–Roch theorem for stacks, which applied to the universal family is

the starting point in the computation.

§2. Orbifold Gromov–Witten theory

Throughout this article, X will be a proper smooth Deligne–Mumford

stack over C with projective coarse moduli space.

We now recall the definitions of orbicurve and of orbifold stable maps

of [7, Section 2] and [4, Section 4]. The idea to extend the definition of a

stable map to an orbifold target space is quite natural. One then notices

that in order to obtain compact moduli spaces parameterizing these objects,

one has to allow orbifold structure on the domain curve at the nodes and

marked points (see, e.g., [1]).

Definition 2.1. A nodal n-pointed orbicurve (C, x1, x2, . . . , xn) is a nodal
marked complex curve such that

• C has trivial orbifold structure on the complement of the marked points

and nodes;

• locally near a marked point, C is isomorphic to [Spec C[z]/Zr], for some

r, and the generator of Zr acts by z → ζz, ζr = 1;

• locally near a node, C is isomorphic to [Spec (C[z,w]/(zw))/Zr], and the

generator of Zr acts by z → ζz, w → ζ−1w; we call this action balanced

at the node.

We now define twisted stable maps.

Definition 2.2. An n-pointed, genus g, degree d orbifold stable map is

a representable morphism f : C →X , whose domain is an n-pointed genus
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g orbicurve C such that the induced morphism of the coarse moduli spaces

C →X is a stable map of degree d.

We denote the moduli space parameterizing n-pointed, genus g, degree d

orbifold stable maps by Xg,n,d. It is proved in [5, Theorem 1.4.1] that Xg,n,d

is a proper Deligne–Mumford stack. Just like the case of stable maps to

manifolds, there are evaluation maps at the marked points, but these land

naturally in the rigidified inertia orbifold of X , which we denote IX .

Example 2.3. If X is a global quotient Y/G, then the strata of IX
are Y g/CG(g) and the strata of IX are X̄(g) := Y g/CG(g), where CG(g) =

CG(g)/〈g〉 for each conjugacy class (g)⊂G.

See [3, Section 4.4] and [4, Section 3.4] for the definition of IX in the

category of stacks.

We decompose Xg,n,d according to the target of the evaluation maps:

Xg,n,d,(μ1,...,μn) :=Xg,n,d ∩ (ev1)
−1(X̄μ1)∩ · · · ∩ (evn)

−1(X̄μn).

Since we work with cohomology with complex coefficients, we consider the

cohomological pullbacks by the maps evi having domain H∗(IX ,C). Here

IX and IX have the same coarse spaces, which implies that both spaces

have the same cohomology rings with rational coefficients. In fact, there is a

map Π : IX → IX , which maps a point (x, (g)) to (x, (ḡ)). If ri is the order

of the automorphism group of xi, then define

ev∗i :H
∗(IX ,C)→H∗(Xg,n,d,C),

a → r−1
i (evi)

∗(Π∗a).

Notice that if a marked point xi has trivial orbifold structure, evi lands

in the distinguished component X0 of IX . The universal family can be

therefore identified with the diagram

Ug,n,d :=
⋃

(μ1,...,μn)

Xg,n+1,d,(μ1,...,μn,0)
evn+1−−−−→ X

π

⏐⏐�
Xg,n,d

In the universal family Ug,n,d lies the divisor of the ith marked point

Di: its points parameterize maps whose domain has a distinguished node
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separating two orbicurves C0 and C1; C1 has genus 0 and carries only three

special points—the node, the ith marked point, and the (n+ 1)st marked

point—and is mapped with degree 0 to X . We write

Di,(μ1,...,μn) :=Di ∩Xg,n+1,d,(μ1,...,μn,0).

We denote by σi the corresponding inclusions.

Let Z be the locus of nodes in the universal family. It has codimension 2

in Ug,n,d. Denote by p : Z̃ →Z the double cover over Z given by a choice of

+,− at the node. For the inclusion of a stratum

Xg1,n1+1,d1 ×IX X0,3,0 ×IX Xg2,n2+1,d2 →Z ↪→Xg,n+1,d,

we will denote by pi (i= 1,2) the projections

pi :Xg1,n1+1,d1 ×IX X0,3,0 ×IX Xg2,n2+1,d2 →Xgi,ni+1,di .

We denote by Z irr,Zred the loci of nonseparating nodes and separating

nodes, respectively, and by iirr, ired the respective inclusion maps. Moreover,

we will need to keep track of the orbifold structure of the node. We denote

by Zμ the locus of nodes where the evaluation map at one branch lands in

X̄μ and by iμ the corresponding inclusions.

The moduli spacesXg,n,d have perfect obstruction theory (see [4]). Accord-

ing to [6] this yields virtual fundamental classes:

[Xg,n,d] ∈H∗(Xg,n,d,Q).

We define ψ̄i to be the first Chern classes of line bundles whose fibers over

each point (C, x1, . . . , xn, f) are the cotangent spaces at xi to the coarse

curve C. Gromov–Witten invariants are obtained by intersecting ψ̄ and

evaluation classes against the virtual fundamental class. We write

〈a1ψ̄k1 , . . . , anψ̄
kn〉g,n,d :=

∫
[Xg,n,d]

n∏
i=1

ev∗i (ai)ψ̄
ki
i .

Remark 2.4. The moduli spaces Xg,n,d and the evaluation maps dif-

fer from those considered in [19]. However, the Gromov–Witten invariants

agree, since integration in [19] is done over a weighted virtual fundamental

class.
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Let C[[Q]] be the Novikov ring which is the formal power series completion

of the semigroup ring of degrees of holomorphic curves in X . (For more on

Novikov rings, see [16].) We define the ground ring Λ :=C[[Q]] and

H :=H∗(IX ,Λ)((z)).

We endow H with the symplectic form:

Ω(f ,g) :=

∮
z=0

(
f(z),g(−z)

)
orb

dz.

The polarization of H,

H+ :=H∗(IX ,Λ)[[z]], H− := z−1H∗(IX ,Λ)[z−1],

identifies H with T ∗H+.

Remark 2.5. This choice of polarization is different from the one in most

places in literature. The reason is that in applying these results to quantum

K-theory, we need that ez ∈H+ (see [12, Section 6] for details).

Let {ϕα} and {ϕβ} be dual bases in H∗(IX ,Λ). We introduce Darboux

coordinates {pαa , q
β
b } on H, and we write

p(z) =
∑
a,α

pαaϕα(−z)−a−1 ∈H−,

q(z) =
∑
b,β

qβb ϕ
βzb ∈H+.

We equip H with the Q-adic topology. Let

t(z) := t0 + t1z + · · · ∈H∗(IX ,Λ)[[z]].

Then the genus g and the total potential are defined to be

Fg
(
t(z)

)
=
∑
d,n

Qd

n!

〈
t(ψ̄), . . . , t(ψ̄)

〉
g,n,d

,

D
(
t(z)

)
= exp

(∑
g≥0

�g−1Fg
(
t(z)

))
,

respectively. For t(z) ∈ H+, we call the translation q(z) := t(z) − 1z the

dilaton shift. We regard the total descendant potential as a formal function

on H+ in a neighborhood of −1z taking values in C[[Q,�,�−1]].
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The graph of the differential of F0 defines a formal germ of a Lagrangian

submanifold of H:

LH :=
{
(p,q),p= dqF 0

}
∈H.

Theorem 2.6 (see [11]). The submanifold LH is (the formal germ of) a

Lagrangian cone with vertex at the origin such that each tangent space T is

tangent to LH exactly along zT .

The class of cones satisfying properties of Theorem 2.6 is preserved under

the action of symplectic transformations on H which commute with mul-

tiplication by z. We call these symplectomorphisms loop group elements.

They are matrix-valued Laurent series in z:

S(z) =
∑
i∈Z

Siz
i,

where Si ∈ End(H∗(IX )⊗Λ). Being a symplectomorphism amounts to

S(z)S∗(−z) = I,

where I is the identity matrix and S∗ is the adjoint of S. Differentiating the

relation above at the identity, we see that infinitesimal loop group elements

R satisfy

R(z) +R∗(−z) = 0.

We now introduce twisted Gromov–Witten invariants. For a bundle E we

will denote by A(E), B(E), C(E) general multiplicative classes of E. These

are of the form

exp
(∑
k≥0

sk chk(E)
)
.

We then define the classes Ag,n,d,Bg,n,d,Cg,n,d ∈H∗(Xg,n,d) as products of

possibly different multiplicative classes of bundles:

Ag,n,d =

iA∏
α=1

Aα

(
π∗(ev

∗Eα)
)
,

Bg,n,d =

iB∏
β=1

Bβ

(
π∗
(
fβ(L

−1
n+1)− fβ(1)

))
,

Cg,n,d =
∏
μ

iμ∏
δ=1

Cμ
δ

(
π∗(ev

∗
n+1Fδμ ⊗ iμ∗OZμ)

)
.
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Here fi are polynomials with coefficients in ev∗n+1K
0(X ) and the bundles

Eα, Fδμ are elements of K0(X ). To keep notation simple we write

Θg,n,d :=Ag,n,d · Bg,n,d · Cg,n,d.

Twisted Gromov–Witten invariants are

〈a1ψ̄k1 , . . . , anψ̄
kn ;Θ〉g,n,d :=

∫
[Xg,n,d]

n∏
i=1

ev∗i (ai)ψ̄
ki
i ·Θg,n,d.

Their generating series is the twisted potential DA,B,C :

Fg
A,B,C(t) :=

∑
d,n

Qd

n!

〈
t(ψ̄), . . . , t(ψ̄);Θ

〉
g,n,d

,

DA,B,C := exp
(∑

g

�g−1Fg
A,B,C

)
.

We view DA,B,C as a formal function on HA,B,C
+ .

The symplectic vector space (HA,B,C,ΩA,B,C) is defined as HA,B,C = H,

but with a different symplectic form:

ΩA,B,C(f ,g) :=

∮
z=0

(
f(z),g(−z)

)
A dz,

where ( , )A is the twisted pairing given for a, b ∈H∗(IX ) by

(a, b)A := 〈a, b,1;Θ〉0,3,0.

Remark 2.7. We briefly discuss the case (g,n, d) = (0,3,0). According

to [3] in this case the evaluation maps lift to evi : X0,3,0 → IX . The spaces

X0,3,0,(μ1,μ2,0) are empty unless μ2 = μI
1, in which case they can be identified

with Xμ1 , with the evaluation maps being ev1 = id : Xμ1 → Xμ1 , ev2 = ι :

Xμ1 →XμI
1
, and ev3 is the inclusion of Xμ1 in X .

Remark 2.8. On X0,3,0 there are no twistings of type B (the correspond-

ing pushforwards are trivial for dimensional reasons) or of type C (there

are no nodal curves). Hence, the twisted pairing depends only on the A
classes.
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For a bundle E on Xμ we denote by Einv the subbundle invariant under

the action of the group element associated to Xμ. According to the previous

two remarks, we can rewrite the pairing as

(a, b)A :=

∫
IX

a · ι∗b ·
∏
α

Aα

(
(q∗Eα)inv

)
.

There is a rescaling map

(HA,B,C,ΩA,B,C)→ (H,Ω),

a → a

√∏
α

Aα

(
(q∗Eα)inv

)
which identifies the symplectic spaces.We denote byDA,B,DA, and so on, the

potentials twisted only by classes of type occurring in the notation and by

[Xg,n,d]
tw := [Xg,n,d]∩Θg,n,d.

§3. Technical prerequisites

The computations in the proof of the theorems rely on pulling back the

correlators on the universal orbicurve and on the locus of nodes. Hence, we

need to know how the classes Θg,n,d behave under such pullbacks. The reader

can skip this (unavoidably technical) section. To not make the statements

and their proofs even more ugly, we assume throughout this section that iredμ

denotes the inclusion of a single nodal stratum in the moduli space Xg,n+1,d.

Otherwise, (3.2), (3.6), and (3.9) (and their proofs) need on the right-hand

side summation after all tuples g1 + g2 = g, d1 + d2 = d, n1 + n2 = n. The

result which we will use in the proofs of the theorems is as follows.

Proposition 3.1. The following equalities hold:

1. π∗[Xg,n,d]
tw

= [Xg,n+1,d]
tw ·

iB∏
β=1

Bβ

(
−
fβ(L

−1
n+1)− fβ(1)

Ln+1 − 1

)

+
n∑

j=1

[Xg,n+1,d]
tw ·

( iμj∏
δ=1

Cμj

δ

(
−ev∗n+1(Fδμj

)⊗ σj∗ODj

)
− 1

)

+
∑
μ

[Xg,n+1,d]
tw ·

( iμ∏
δ=1

Cμ
δ

(
−ev∗n+1(Fδμ)⊗ iμ∗OZμ

)
− 1

)
,

(3.1)
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2. (π ◦ iredμ ◦ p)∗[Xg,n,d]
tw

=
p∗1([Xg1,n1+1,d1 ]

tw) · p∗2([Xg2,n2+1,d2 ]
tw)

(ev∗+ × ev∗−)Δμ∗
∏iμ

δ=1 C
μ
δ ((q

∗Fδμ)μ)⊗ (L+L− − 1))
,

(3.2)

3. (π ◦ iirrμ ◦ p)∗[Xg,n,d]
tw

=
[Xg−1,n+2,d]

tw

(ev∗+ × ev∗−)Δμ∗
∏iμ

δ=1 C
μ
δ ((q

∗Fδμ)μ)⊗ (L+L− − 1))
.

(3.3)

Proof. All the equalities follow from the corresponding statements about

the classes A,B,C separately, which we state and prove below. Formula (3.1)

follows from (3.5), (3.8), and (3.31) combined with some more cancellation;

namely, the terms in (3.31) supported on Dj and Z are killed by the correc-

tion factor in (3.8) which is of the form 1+ψn+1 · . . . . The untwisted virtual

fundamental classes satisfy π∗[Xg,n,d] = [Xg,n+1,d].

Formulas (3.2) and (3.3) follow from the corresponding Propositions 3.3,

3.4, and 3.9 for each of the classes Ag,n,d, Bg,n,d, and Cg,n,d combined with

the splitting axiom in orbifold Gromov–Witten theory for the untwisted

fundamental classes [Xg,n,d], which we briefly review below. Let Mtw
g,n be the

stack of genus g twisted curves with n marked points. There is a natural

map

gl :Dtw(g1;n1 | g2;n2)→Mtw
g,n

induced by gluing two families of twisted curves into a reducible curve with

a distinguished node. Here Dtw(g1;n1 | g2, n2) is defined as in [4, Section

5.1]. This induces a Cartesian diagram:

Dtw
g,n(X ) −−−−→ Xg,n,d⏐⏐� ⏐⏐�

Dtw(g1;n1 | g2;n2)
gl−−−−→ Mtw

g,n

There is a natural map

g :
⋃

d1+d2=d

Xg1,n1+1,d1 ×IX Xg2,n2+1,d2 →Dtw
g,n(X ).
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Then the diagram

Xg1,n1+1,d1 ×IX Xg2,n2+1,d2 ⊂Z −−−−→ IX⏐⏐� Δ

⏐⏐�
Xg1,n1+1,d1 ×Xg2,n2+1,d2

ev+×ĕv−−−−−−→ IX × IX

gives ∑
d1+d2=d

Δ!
(
[Xg1,n1+1,d1 ]× [Xg2,n2+1,d2 ]

)
= g∗

(
gl!
(
[Xg,n,d]

))
.(3.4)

For details and proofs of the statements. we refer the reader to [4, Propo-

sition 5.3.1]. The only modification we have made is that we consider the

class of the diagonal with respect to the twisted pairing on X0,3,0,(μ1,μ2,0).

This cancels the factor ev∗Δ(A0,3,0) in (3.2) and (3.3).

Informally, relation (3.4) says that the restriction of the virtual funda-

mental class of Xg,n,d to Z coincides with the pushforward of the product

of virtual fundamental classes under the gluing morphisms. Hence, integra-

tion on Z factors nicely as products of integrals on the two separate moduli

spaces.

The rest of the section is devoted to proving pullback results about each

type of twisting class separately.

Lemma 3.2. Consider the following diagram:

Xg,n+◦+•,d,(μ1,...,μn,0,0)
π1−−−−→ Xg,n+•,d,(μ1,...,μn,0)

π2

⏐⏐� π2

⏐⏐�
Xg,n+◦,d,(μ1,...,μn,0)

π1−−−−→ Xg,n,d,(μ1,...,μn)

where π1 forgets the (n + 1)st marked point (which we denoted ◦) and

π2 forgets the (n + 2)nd marked point (denoted •), and let α ∈
K0(Xg,n+◦,d,(μ1,...,μn,0)). Then π∗

2π1∗α= π1∗π∗
2α.

Proof. For simplicity of notation, we suppress the labeling (μ1, . . . , μn) in

the proof. Consider the fiber product

F :=Xg,n+◦,d ×Xg,n,d
Xg,n+•,d;

denote by p1, p2 the projections from F to the factors, and denote by

ϕ : Xg,n+◦+•,d →F the morphism induced by π1, π2. The ϕ is a birational
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map: it has positive-dimensional fibers along the locus where the two extra

marked points hit another marked point or a node. This locus has codimen-

sion 2—this in particular shows that F is normal. We will prove that

ϕ∗(OXg,n+◦+•,d) =OF .

By definition of K-theoretic pushforward,

ϕ∗OXg,n+◦+•,d =R0ϕ∗OXg,n+◦+•,d −R1ϕ∗OXg,n+◦+•,d .

It is easy to see that R0ϕ∗(OXg,n+◦+•,d) = OF as quasi-coherent sheaves.

(This is true for every proper birational map with normal target.) We only

have to prove that R1 = 0, which we do by looking at the stalks

(R1ϕ∗OXg,n+◦+•,d)x =H1
(
ϕ−1(x),OXg,n+◦+•,d|ϕ−1(x)

)
.

If the fiber over x is a point, there is nothing to prove. If x is in the blow-

up locus, the fiber is a (possibly weighted) P1. A calculation in [4, Theo-

rem 7.2.1] shows that

χ(C,OC) = 1− g,

where g is the arithmetic genus of the coarse curve C. This shows that

H1(ϕ−1(x),O) = 0. We have p1∗p∗2α= π∗
2π1∗α because the diagram

F p1−−−−→ Xg,n+•,d,(μ1,...,μn,0)

p2

⏐⏐� π2

⏐⏐�
Xg,n+◦,d,(μ1,...,μn,0)

π1−−−−→ Xg,n,d,(μ1,...,μn)

is a fiber square. Therefore,

π1∗π
∗
2α= p1∗ϕ∗(ϕ

∗p∗2α) = p1∗p
∗
2αϕ∗(O) = p1∗p

∗
2α= π∗

2π1∗α.

Weneed to know how the classesAg,n,d,Bg,n,d,Cg,n,d behave under pullback
by the morphisms π and π ◦ i ◦ p.

Proposition 3.3. The following identities hold:

a. π∗Ag,n,d =Ag,n+1,d,(3.5)

b. (π ◦ ired ◦ p)∗Ag,n,d =
p∗1Ag1,n1+1,d1 · p∗2Ag2,n2+1,d2

ev∗ΔA0,3,0
,(3.6)

c. (π ◦ iirr ◦ p)∗Ag,n,d =
Ag−1,n+2,d

ev∗ΔA0,3,0
.(3.7)
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Denote by Eg,n,d := π∗(ev∗n+1E). Then it is shown in [19, Lemma B.0.9]

that

a. π∗Eg,n,d =Eg,n+1,d,

b. (π ◦ ired ◦ p)∗Eg,n,d = p∗1(Eg1,n1+1,d1) + p∗2(Eg2,n2+1,d2)− ev∗Δ(q
∗Einv),

c. (π ◦ iirr ◦ p)∗Eg,n,d =Eg−1,n+2,d − ev∗Δ(q
∗Einv).

The identities then follow by multiplicativity of the classes Aα. We regard

the class A0,3,0 as an element of H∗(IX ,Q). We can then pull it back by

the diagonal evaluation morphism evΔ at the node.

Proposition 3.4. The following hold:

a. π∗Bg,n,d = Bg,n+1,d ·
iB∏
β=1

Bβ

(
−
fβ(L

−1
n+1)− fβ(1)

Ln+1 − 1

)
,(3.8)

b. (π ◦ ired ◦ p)∗Bg,n,d = p∗1Bg1,n1+1,d1 · p∗2Bg2,n2+1,d2 ,(3.9)

c. (π ◦ iirr ◦ p)∗Bg,n,d = Bg−1,n+2,d.(3.10)

Proof. The first identity is a consequence of Lemma 3.2. More precisely,

we apply the lemma to the class α= ev∗n+1(E)(Ln+1 − 1)k+1. This gives

π∗
2π1∗

[
ev∗n+1(E)(Ln+1 − 1)k+1

]
= π1∗π

∗
2

[
ev∗n+1(E)(Ln+1 − 1)k+1

]
= π1∗

[
ev∗n+1(E)(Ln+1 − 1)k+1 − (σ•)∗

(
ev∗n+1(E)(Ln+1 − 1)k

)]
= π1∗

(
ev∗n+1(E)(Ln+1 − 1)k+1

)
− ev∗n+1(E)(Ln+1 − 1)k.

The last equality follows because π1 ◦ σ• = Id, and the second equality uses

the comparison identity for cotangent line bundles Li:

π∗((Li − 1)k+1
)
= (Li − 1)k+1 − σi∗

[
(Li − 1)k

]
.

But both morphisms π1, π2 can be identified with the universal orbicurve π.

Hence, we deduce that

π∗π∗
(
ev∗n+1(E)(Ln+1 − 1)k+1

)
= π∗

(
ev∗n+2(E)(Ln+2 − 1)k+1

)
− ev∗n+1(E)(Ln+1 − 1)k,

(3.11)
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or, more generally, if we expand

fβ(L
−1
n+1)− fβ(1) =

∑
k≥0

ak(Ln+1 − 1)k+1,

then

π∗π∗
(
fβ(L

−1
n+1)− fi(1)

)
= π∗

(
fβ(L

−1
n+2)− fi(1)

)
−

fβ(L
−1
n+1)− fβ(1)

Ln+1 − 1
.

(3.12)

Then (3.8) follows because Bβ are multiplicative classes:

π∗Bβ

(
π∗
(
fβ(L

−1
n+1)− fβ(1)

))
= Bβ

(
π∗π∗

(
fβ(L

−1
n+1)− fβ(1)

))
= Bβ

(
π∗
(
fβ(L

−1
n+2)− fβ(1)

)
−

fβ(L
−1
n+1)− fβ(1)

Ln+1 − 1

)
= Bβ

(
π∗
(
fβ(L

−1
n+2)− fβ(1)

))
· Bβ

(
−
fβ(L

−1
n+1)− fβ(1)

Ln+1 − 1

)
.

Example 3.5. In the case fβ = ev∗n+1(Eβ)⊗L−1
n+1 (which is the only one

we will need), we have

fβ(L
−1
n+1)− fβ(1)

Ln+1 − 1
=−EβL

−1
n+1,

and relation (3.8) reads

π∗Bg,n,d = Bg,n+1,d ·
iB∏
β=1

Bβ(Eβ ⊗L−1
n+1).(3.13)

Relation (3.9) follows from the identity

(π ◦ ired)∗
[
π∗
(
f(L−1

n+1)− f(1)
)]

= p∗1
[
π∗
(
f(L−1

n1+2)− f(1)
)]

+ p∗2
[
π∗
(
f(L−1

n2+2)− f(1)
)]
,

which we prove below. By linearity, it is enough to prove the result for

f = (Ln+1 − 1)k+1 for k ≥ 0. Assume for now that k ≥ 1. Relation (3.11)

gives

π∗π∗(Ln+1 − 1)k+1 = π∗(Ln+2 − 1)k+1 − (Ln+1 − 1)k.(3.14)
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When we apply p∗i∗red to this relation, the second summand in the right-

hand side of (3.14) vanishes because Ln+1 is trivial on Z̃ . Therefore,

p∗i∗redπ
∗π∗(Ln+1 − 1)k+1 = (ired ◦ p)∗π∗(Ln+2 − 1)k+1.

Let Xg1,n1+1,d1 ×IX X0,3,0 ×IX Xg2,n2+1,d2 be a stratum of Z . If we denote

by π : U ′
g,n,d →Ug,n,d the universal curve, then we have a fiber diagram

Z1 ∪Z2 ∪Z3
i−−−−→ U ′

g,n,d

π

⏐⏐� π

⏐⏐�
Xg1,n1+1,d1 ×IX X0,3,0 ×IX Xg2,n2+1,d2

i−−−−→ Ug,n,d

Here Z1 and Z3 are the universal curves over the factors Xg1,n1+1,d1 and

Xg2,n2+1,d2 . So, using

i∗redπ∗(Ln+2 − 1)k+1 = π∗i
∗
red(Ln+2 − 1)k+1,(3.15)

we see that the contribution of the strata Z1 and Z3 above is

p∗1
[
π∗
(
f(L−1

n1+2)− f(1)
)]

+ p∗2
[
π∗
(
f(L−1

n2+2)− f(1)
)]
.(3.16)

So if we show that the contribution from Z2 is 0, we are done. The curve

Z2 is the universal curve over the factor X0,3,0; hence, it is a fiber product

Xg1,n1+1,d1 ×IX X0,4,0 ×IX Xg2,n2+1,d2 . The fibers of the map Z2 → Z are

(weighted) P1. However, the class Ln+2 (consider it as the cotangent line

L1 ∈K0(M̄0,4)) is a cotangent line at a point with trivial orbifold structure,

so we can use Lee’s formula in [15], which in this particular case reads

χ(M̄0,4,L
k
1) = k+ 1.(3.17)

Hence, the Euler characteristics of (Ln+2 − 1)k+1 are

χ
(
M̄0,4, (L1 − 1)k+1

)
=

k+1∑
i=0

(i+ 1)(−1)k+1−i

(
k+ 1

i

)

=

k+1∑
i=0

(−1)k+1−i

(
k+ 1

i

)
+ (k+ 1)

k+1∑
i=1

(−1)k+1−i

(
k

i− 1

)
= 0+ 0 = 0.
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This almost proves the statement. We are left with the case k = 0, which is

slightly different. The sum above equals 1, but this is canceled by the −1 in

the second term of (3.14). Relation (3.9) follows then from the multiplica-

tivity of the classes Bβ . A similar computation shows relation (3.10).

Lemma 3.6. Let F ∈K0(X ). Then

a. π∗π∗iμ∗
(
ev∗n+1(F )⊗OZμ

)
= π∗iμ∗

(
ev∗n+1(F )⊗OZμ

)
−

∑
j,μj=μ

ev∗n+1(F )⊗ σj∗ODj − iμ∗
(
ev∗n+1(F )⊗OZμ

)
,

(3.18)

b. (π ◦ i ◦ p)∗
(
π∗iμ∗

(
ev∗n+1(F )⊗OZμ

))
= p∗1

(
π∗iμ∗

(
ev∗n+1(F )⊗OZμ

))
+ p∗2

(
π∗iμ∗

(
ev∗n+1(F )⊗OZμ

))
+
(
ev∗n+1F ⊗ (1−L+L−)

)
.

(3.19)

Remark 3.7. Before delving into the technicalities of the proof, we try

a heuristic explanation of why the rather ugly formulas should be true.

• Assume for now that F is the trivial bundle C. The nodal locus Z
separates nodes in the following sense. Above a point of Xg,n,d representing a

nodal curve with k nodes lie exactly k points of Z . This is very similar to the

way the normalization of a nodal curve C̃ →C separates the nodes. But the

structure sheaves of C̃ and C differ (in K-theory) by skyscraper sheaves at

the preimages of nodes. That is pretty much what the first formula expresses:

the pullback of the structure sheaf of the codimension 1 stratum of nodal

curves in Xg,n,d equals the structure sheaf of the nodal locus in the universal

family, minus a copy of the structure sheaf of Z (which has codimension 2

in the universal family) itself. The terms supported on the divisors Dj are

subtracted because they are nodes in the universal family, but they lie over

the whole space Xg,n,d. We will see that the presence of the class ev∗n+1(F )

does not complicate things too much.

• For the second formula, think of π∗iμ∗α as a class supported on a

codimension 1 subvariety. We pull it back along the map (πi), which is like

restricting to another codimension 1 subvariety. If parameter varieties inter-

sect along a codimension 2 cycle (represented by curves with two nodes),

then they contribute p∗i (π∗iμ∗α) to (3.19). If they are the same subvariety,

then α gets multiplied with the Euler class of the normal bundle of it in the

ambient space, which is 1−L+L−.
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Proof of Lemma 3.6. Denote by Z•, Z◦, (resp., Z•◦) the nodal loci living
inside the corresponding moduli spaces (and by Z◦,μ and so forth the ones

with nodes of specific orbifold type) in the following diagram (we write μ̄

for the sequence (μ1, . . . , μn)):

π−1
2 (Z◦,μ)

iμ−−−−→
⋃
μ̄

Xg,n+◦+•,d,(μ̄,0,0)
π1−−−−→

⋃
μ̄

Xg,n+•,d,(μ̄,0)

π2

⏐⏐� π2

⏐⏐� π2

⏐⏐�
Z◦,μ

iμ−−−−→
⋃
μ̄

Xg,n+◦,d,(μ̄,0)
π1−−−−→ Xg,n,d

Remember that Z◦,μ is defined as the total range of the gluing map, as

follows. (For simplicity we omit in the notation the stratum parameterizing

self-intersecting curves; the proof carries through word by word.)

Xg1,n1+1,d1 ×X̄μ×X̄
μI

X0,3,0 ×X̄μ×X̄
μI

Xg2,n2+1,d2 →Z◦ ↪→Xg,n+◦,d.

We will compute π∗
2(π1∗iμ∗(ev

∗
◦(F )⊗OZ◦,μ)).

The square on the left is a fiber diagram; hence, i∗π∗
2 = π∗

2i∗. For the one

on the right, we have proved that π∗
2π1∗ = π1∗π∗

2 . Therefore,

π∗
2

(
π1∗iμ∗

(
ev∗n+1(F )⊗OZ◦,μ

))
= π1∗iμ∗π

∗
2

(
ev∗◦(F )⊗OZ◦,μ

)
.(3.20)

However,

π∗
2(ev

∗
◦F ⊗OZ◦,μ) = ev∗◦F ⊗Oπ−1

2 (Z◦,μ)
.

The space π−1
2 (Z◦,μ) :=Z◦,1 ∪Z◦,2 ∪Z◦,3 is a singular space, where each

codimension 2 stratum is the universal curve over one factor of Z◦,μ, and
they intersect along two codimension 3 strata—call them Z12 and Z23:

Z12 =Xg1,n1+1,d1 ×IX X0,3,0 ×IX X0,3,0 ×IX Xg2,n2+1,d2 ,

where the two rational components carry the points •, ◦ and two nodes.

Figure 1 schematically represents each of these five strata. We can write the

structure sheaf of π−1
2 (Z◦,μ) as

Oπ−1
2 (Z◦,μ)

=OZ◦,1 +OZ◦,3 +OZ◦,2 −OZ12 −OZ23 .
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Figure 1: Strata of π−1
2 (Z◦,μ).

We tensor this with the class ev∗◦F , keeping in mind that on the strata

Z◦,2,Z12,Z23 ev◦ = ev•,

ev∗◦F ⊗Oπ−1
2 (Z◦,μ)

= ev∗◦F ⊗ [OZ◦,1 +OZ◦,3 ] + ev∗•F ⊗ [OZ◦,2 −OZ12 −OZ23 ].
(3.21)

We plug (3.21) in (3.20) and get

π∗
2

(
π1∗iμ∗

(
ev∗◦(F )⊗OZ◦,μ

))
= π1∗iμ∗

[
ev∗◦F (OZ◦,1 +OZ◦,3) + ev∗•F (OZ◦,2 −OZ12 −OZ23)

]
.

(3.22)

We now notice that the union of Z◦,1 and Z◦,3 is almost Z•◦,μ, but not

quite. There are strata

Xg,n,d ×X̄μ
X0,3,0 ×X̄μ

X0,3,0,

which are in Z•◦,μ, but they are missing from Z◦,1 ∪Z◦,3 because the map

π2◦iμ contracts one rational tail. These are mapped by π1◦iμ isomorphically
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to divisors Dj ∈ Xg,n+•,d. There is one such stratum for each j such that

μj = μ. Hence, we can write

π1∗iμ∗[ev
∗
◦FOZ◦,1 + ev∗◦FOZ◦,3 ]

= π1∗iμ∗
(
ev∗◦(F )⊗OZμ

)
−

∑
j,μj=μ

ev∗◦(F )⊗ σj∗ODj .
(3.23)

The codimension 3 strata Z12 and Z23 are mapped by π1iμ isomorphically

to Z•,μ. As for Z◦,2, this is a P1 fibration over Z•,μ. When we push forward,

we integrate the structure sheaf of (weighted) P1. This equals 1, as already

explained. At the end of the day, we see that the last three terms in (3.22)

contribute

π1∗iμ∗
[
ev∗•F (OZ◦,2 −OZ12 −OZ23)

]
=−ev∗•F ⊗ iμ∗OZ•,μ .(3.24)

Adding up (3.23) with (3.24) and identifying π1 = π2 = π and ev◦ = evn+1

proves the first equality in the lemma.

For the second equality, we first prove the following.

Lemma 3.8. Let j :Z ↪→Ug,n,d be the codimension 2 nodal locus. Then

j∗π∗iμ∗(ev
∗
n+1F ⊗OZμ)

= p∗1π∗iμ∗(ev
∗
n+1F ⊗OZμ)

+ p∗2π∗iμ∗(ev
∗
n+1F ⊗OZμ) + (2−L+ −L−)ev

∗
n+1(F ).

(3.25)

Proof. Let U ′
g,n,d be the universal curve over Ug,n,d. The universal curve

over Z is a union of three types of strata, depending on which component

the extra marked point on U ′
g,n,d—which we denote •—lies on

Z1 =Xg1,n1+1+•,d1 ×IX X0,3,0 ×IX Xg2,n2+1,d2 ,

Z2 =Xg1,n1+1,d1 ×IX X0,3+•,0 ×IX Xg2,n2+1,d2 ,

Z3 =Xg1,n1+1,d1 ×IX X0,3,0 ×IX Xg2,n2+1+•,d2 .

The diagram below is a fiber square:

Z1 ∪Z2 ∪Z3
j−−−−→ U ′

g,n,d

π

⏐⏐� π

⏐⏐�
Z j−−−−→ Ug,n,d



TWISTED ORBIFOLD GROMOV–WITTEN INVARIANTS 165

Hence, j∗π∗iμ∗α= π∗j∗iμ∗α. To compute j∗iμ∗α, we form the following fiber

diagram:

Z̄ j−−−−→ Z•,μ

π

⏐⏐� π

⏐⏐�
Z1 ∪Z2 ∪Z3

j−−−−→ U ′
g,n,d

The space Z̄ is simply the intersection of Z1 ∪ Z2 ∪ Z3 with Z•,μ. Where

the intersection is transversal, one can simply write j∗iμ∗α = iμ∗j∗α. On

components where the intersection is not transversal, there is some excess

bundle N and j∗iμ∗α = iμ∗e(N)j∗α. The strata Z1 and Z3 intersect the

nodal locus Z•,μ in U ′
g,n,d transversely along codimension 4 strata, which can

be seen as the nodal locus in Xg1,n1+1+•,d1 and Xg2,n2+1+•,d2 , respectively.
Hence, the contribution to (3.25) is

p∗1π∗iμ∗(ev
∗
n+1F ⊗OZμ) + p∗2π∗iμ∗(ev

∗
n+1F ⊗OZμ).

On the other hand, Z2 intersects Z•,μ along two codimension 3 strata of the

form

Z1 =Xg1,n1+1,d1 ×IX X0,3,0 ×IX X0,3,0 ×IX Xg2,n2+1,d2 .

Each gives a 1-dimensional excess normal bundle with Euler classes 1 −
L+ and 1−L−, respectively. They project isomorphically to Z downstairs.

Hence, they contribute

(2−L+ −L−)ev
∗
n+1(F ).

Adding up, we get (3.25).

We now prove formula (3.19) in Lemma 3.6. It falls out easily by com-

bining (3.18) with Lemma 3.8. More precisely, we take i∗ of (3.18): the first

term is computed in Lemma 3.8, the part supported on Dj vanishes, and

i∗μiμ∗OZμ = e(N) = (1−L−)(1−L+),(3.26)

where N is the normal bundle of Zμ in the ambient space. When we add

this with (3.25) we get

(π ◦ i)∗π∗iμ∗
(
ev∗n+1(F )⊗OZμ

)
= p∗1

(
π∗iμ∗

(
ev∗n+1(F )⊗OZμ

))
+ p∗2

(
π∗iμ∗

(
ev∗n+1(F )⊗OZμ

))
+ ev∗n+1F ⊗ (1−L+L−),

(3.27)

as stated.
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Proposition 3.9. The following hold:

a. π∗Cg,n,d = Cg,n+1,d ·
n∏

j=1

iμj∏
δ=1

Cμj

δ

(
−ev∗n+1(Fδμj

)⊗ σj∗ODj

)

·
∏
μ

iμ∏
δ=1

Cμ
δ

(
−ev∗n+1(Fδμ)⊗ (iμ∗OZμ)

)
,

(3.28)

b. p∗(iredμ )∗π∗Cg,n,d
= (p∗1C

μ
g1,n1+1,d1

· p∗2C
μ
g2,n2+1,d2

)

· (ev∗+ × ev∗−)Δμ∗
( iμ∏
δ=1

Cμ
δ

(
(q∗Fδμ)μ

)
⊗ (1−L+L−)

)
,

(3.29)

c. p∗(iirrμ )∗π∗Cg,n,d
= Cμ

g−1,n+2,d

· (ev∗+ × ev∗−)Δμ∗
( iμ∏
δ=1

Cμ
δ

(
(q∗Fδμ)μ

)
⊗ (1−L+L−)

)
.

(3.30)

Proof. The equalities (3.28) and (3.29) are immediate consequences of

(3.18) and (3.19) and of the multiplicativity of the classes Cg,n,d. We will

use (3.28) in a different form, transforming the product into a sum:

π∗Cg,n,d = Cg,n+1,d ·
n∏

j=1

iC∏
δ=1

(
1 + Cμj

δ

(
−ev∗n+1(Fδμj

)⊗ σj∗ODj

)
− 1

)

·
∏
μ

(
1 +

iCμ∏
δ=1

Cμ
δ

(
−ev∗n+1(Fδμ)⊗ iμ∗OZμ

)
− 1

)
= Cg,n+1,d +

∑
j

Cg,n+1,d

·
iCμj∏
δ=1

(
Cμj

δ

(
−ev∗n+1(Fδμj

)⊗ σj∗ODj

)
− 1

)

+
∑
μ

Cg,n+1,d ·
(iCμ∏
δ=1

Cμ
δ

(
−ev∗n+1(Fδμ)⊗ iμ∗OZμ

)
− 1

)
.

(3.31)
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This happens because the classes Cμ
δ (.)− 1 are supported on Di and Z , and

Di · Dj =Di · Zμ = 0 if i �= j. (We will use the same trick in (4.6) below.)

We conclude the section by doing a short Grothendieck–Riemann–Roch

computation which will turn out to be useful in the next section.

Lemma 3.10. Let F ∈K0(X ). Then

ch
(
π∗iμ∗(ev

∗
n+1F ⊗OZμ)

)
= π∗iμ∗

(
ch(ev∗n+1F ) ·Td∨(−L+ ⊗L−)

)
.

(3.32)

Proof. Recall that r(μ) is the order of the distinguished node on Zμ. We

will simply write r throughout the proof.

We apply Toën’s theorem (Theorem A.4) to the map f = π ◦ i. The map

π is given in local coordinates near Zμ by

(z,x, y)/Zr ×Zr → (z,xy)/Zr,

where z is a vector coordinate along Zμ and Zμ is given by x= y = 0. The

generator of Zr × Zr acts on the (x, y) plane as follows. We have (x, y) →
(ζax, ζby) and necessarily by multiplication by ζa+b on the base, so in this

local description If maps r copies of the point (z,0,0) to (z,0) on the base.

Each copy has weight 1/r due to their orbifold structures. The relative

tangent bundle is −L−1
+ ⊗L−1

− because the coordinate on the base is ε= xy

and is invariant with respect to the Zr-action. This proves the statement.

§4. Proofs of theorems

Proof of Theorem 1.1. This is an easy consequence of Tseng’s result and

of the commutativity of the operators Δα.

Proof of Theorem 1.2. Remember that Bg,n,d is a product of iB multi-

plicative characteristic classes. We will prove the statement using induction

on iB . The case iB = 0 is trivial. Assuming that the statement holds for

iB − 1, we will prove the infinitesimal version of the proposition for iB .

Namely, assume that the twisting class BiB is

BiB = exp
(∑
l≥1

vl chl π∗
(
f(L−1

n+1)− f(1)
))

.
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We compute

∂DA,B,C

∂vl
D−1

A,B,C

=
∑
d,n

Qd�g−1

n!

〈 n∏
i=1

t(ψ̄i) · chl π∗
(
f(L−1

n+1)− f(1)
)
·Θg,n,d

〉
g,n,d

.

(4.1)

To compute chl π∗(f(L
−1
n+1)−f(1)) above, we apply Toën’s Grothendieck–

Riemann–Roch theorem to the morphism π to get

ch
(
π∗
(
f(L−1

n+1)− f(1)
))

= Iπ∗
(
c̃h
(
f(L−1

n+1)− f(1)
)
Td∨(Ωπ)

)
.(4.2)

Notice that c̃h = ch because the last marked point is not an orbifold point.

We have

c̃h
(
f(L−1

n+1)− f(1)
)
= f(e−ψn+1)− f(1).(4.3)

In our situation, there are three strata on the universal curve which get

mapped to Xg,n,d,(μ1,...,μn):

• the total space Xg,n+1,d,(μ1,...,μn,0);

• the locus of marked points Dj,(μ1,...,μn);

• the nodal loci Zμ where μ �= 0; that is, the node is an orbifold point.

But the expression on the right-hand side in (4.3) is a multiple of ψn+1, and

ψn+1 vanishes on the locus of marked points Dj and on the locus of nodes Z .

Hence, only the total space contributes to the Grothendieck–Riemann–Roch

theorem. Exact sequences very similar to (5.7)and (5.5) in Section 5 allow

us to write the sheaf of relative differentials (see also [19]):

Ωπ = Ln+1 −
n⊕

j=1

(σj)∗ODj,(μ1,...,μn)
− i∗L.(4.4)

Keeping in mind that the bundle L defined in Section 5 has trivial Chern

character, we get

Td∨(Ωπ) = Td∨(Ln+1)

n∏
j=1

Td∨(−σj∗ODj,(μ1,...,μn)
)Td∨(−i∗OZ).(4.5)
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We now use the fact that ψn+1 ·Dj = ψn+1 ·Z = 0 (recall that Td∨(Ln+1)−1

is a multiple of ψn+1) to rewrite the product above as a sum:

Td∨(Ωπ) = Td∨(Ln+1) +

n∑
j=1

(
Td∨(−σj∗ODj,(μ1,...,μn)

)− 1
)

+Td∨(−i∗OZ)− 1.

(4.6)

The last n+ 1 summands are classes supported on Dj and Z , so they are

killed by the presence of ψ in f(e−ψn+1)−f(1). After all these cancellations,

we see that

ch
(
π∗
(
f(L−1

n+1)− f(1)
))

= π∗
((
f(e−ψn+1)− f(1)

)
·Td∨(Ln+1)

)
.(4.7)

Here we see that formula (4.7) is a linear combination of kappa classesKaj =

π∗(ev∗n+1ϕaψ
j+1
n+1). Now we pull the correlators back on the universal orbi-

curve. It is essential here that the corrections in the Cg,n,d classes are also

supported on Dj and Z (as we can see from (3.31)), and that the presence

of ψn+1 kills them. Therefore (we denote by [f ]l the homogeneous part of

degree l of f ),

D−1
A,B,C

∂DA,B,C
∂vl

=
∑
d,n,g

Qd�g−1

n!

∫
[Xg,n+1,d]

n∏
i=1

(∑
ki≥0

(
ev∗i (tki) · ψ̄

ki
i

))
·Θg,n+1,d

·
[(
f(e−ψn+1)− f(1)

)
·Td∨(Ln+1)

]
l+1

·
iB∏
β=1

Bβ

(
−
fβ(L

−1
n+1)− fβ(1)

Ln+1 − 1

)
−
∫
X0,3,0

ϕaψ
m+1
3 (· · · )−

∫
X1,1,0

ϕaψ
m+1
1 (· · · ).

(4.8)

The correction terms occur because the spaces X0,3,0 and X1,1,0 are not

universal families. Notice that the first correction is always 0 for dimensional

reasons and that the second is not equal to 0 only form= deg(ϕa) = 0 (again

for dimensional reasons). If we denote this contribution by Kl,iB , then the

constant KB in Theorem 1.2 equals
∏

i,l e
Kl,i . This will not play any further

role.
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So the new twisting by the class BiB has the same effect as the translation

tB(z) = t(z) + z − z

iB∏
γ=1

Bβ

(
−fβ(L

−1
z )− fβ(1)

Lz − 1

)
because both potentials satisfy the same differential equation. To see this,

differentiate the potential DA,B(tB(z)) in vl:

∂DA,B(tB(z))

∂vl
D−1

A,B

=
∑
d,n,g

Qd�g−1

n!

∫
[Xg,n+1,d]

n∏
i=1

(∑
ki≥0

(
ev∗i (tki) · ψ̄

ki
i

))

·ψn+1 chl

(f(L−1
n+1)− f(1)

Ln+1 − 1

)
·Θg,n+1,d ·

iB∏
β=1

Bβ

(
−
fβ(L

−1
n+1)− fβ(1)

Ln+1 − 1

)
.

(4.9)

However,

ψn+1 chl

(f(L−1
n+1)− f(1)

Ln+1 − 1

)
= ψn+1

[f(e−ψn+1)− f(1)

eψ − 1

]
l

=
[
ψn+1

f(e−ψn+1)− f(1)

eψ − 1

]
l+1

=
[(
f(e−ψn+1)− f(1)

)
·Td∨(Ln+1)

]
l+1

(4.10)

because

Td∨(Ln+1) =
ψn+1

eψn+1 − 1
.

Plugging (4.10) in (4.9), we see that (4.9) and (4.8) are of exactly the same

form. The potentials also satisfy the same initial condition at v= 0 by the

induction hypothesis.

Proof of Theorem 1.3. We will prove that

DA,B,C = exp
(�
2

∑
a,b,α,β,μ

Aμ
a,α;b;β∂

α,μ
a ∂β,μI

b

)
DA,B,(4.11)
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where Aμ
a,α;b,β are the coefficients of the expansion∑

a,b

Aμ
a,α;b,βϕα,μψ̄

a
+ ⊗ϕβ,μI ψ̄b

−

=
Δμ∗(

∏iμ
δ=1 C

μ
δ ((q

∗Fδμ)μ ⊗ (1−Lz))− 1)

−ψ+ − ψ−

∈H∗(Xμ,Q)[ψ̄+]⊗H∗(XμI ,Q)[ψ̄−].

(4.12)

Here ψ+ = c1(L+), ψ− = c1(L−), and Δμ :Xμ →Xμ⊗XμI is the composition

(Id×ι) ◦Δ . The map

Δμ∗ :H
∗(Xμ,Q)→H∗(Xμ,Q)⊗H∗(XμI ,Q)

extends naturally to a map, which we abusively also call Δμ∗:

Δμ∗ :H
∗(Xμ,Q)[z]→H∗(Xμ,Q)[ψ̄+]⊗H∗(XμI ,Q)[ψ̄−],

by mapping z → ψ+ ⊗ 1 + 1⊗ ψ−, and the right-hand side of (4.12) should

be understood in this way.

We will prove (4.11) using induction on the total number
∑

μ iμ of twist-

ing classes Cμ
δ . If

∑
iμ = 0, then the equality is trivial. Let now

∑
iμ ≥ 1.

Assuming that (4.11) is true for
∑

iμ − 1, we will prove the infinitesimal

version of the theorem for
∑

iμ. More precisely, fix a μ0, and let the multi-

plicative class Cμ0 (we omit the lower index) be of the form

Cμ0(E) = exp
(∑

l

wl chl(E)
)
.(4.13)

As we vary the coefficients wl, we obtain a family of elements in the Fock

space. We prove (4.11) by showing that both sides satisfy the same differ-

ential equations with the same initial condition. Notice that the induction

hypothesis ensures that both sides of (4.11) satisfy the same initial condi-

tion at w= 0. Moreover, ∂DA,B/∂wl = 0, so on the right-hand side only the

coefficients Aμ0

a,α;b,β depend on wl. So if we denote the right-hand side by G
and differentiate it, we get

�

2

∑
a,b

∂Aμ0

a,α;b,β

∂wl
∂α,μ0
a ∂

β,μI
0

b G =
∂

∂wl
G.(4.14)
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To compute ∂Aμ0

a,α;b,β/∂wl, we differentiate in wl relation (4.12) to get

∑
a,α;b,β

∂Aμ0

a,α;b,β

∂wl
ϕα,μ0ψ̄

a
+ ⊗ϕβ,μI

0
ψ̄b
−

=
−1

ψ+ + ψ−
·Δμ0∗

·
(
chl

(
(q∗F )μ0(1−L+L−)

) iμ0∏
δ=1

Cμ0

δ

(
(q∗F )μ0(1−L+L−)

))
.

(4.15)

However,

chl
(
(q∗F )μ0(1−L+L−)

)
=
[
ch(q∗F )μ0(1− eψ++ψ−)

]
l
;(4.16)

hence,

∑
a,α;b,β

∂Aμ0

a,α;b,β

∂wl
ϕα,μ0ψ̄

a
+ ⊗ϕβ,μI

0
ψ̄b
−

=
−1

ψ+ +ψ−
·Δμ0∗

·
([

ch(q∗F )μ0(1− eψ++ψ−)
]
l

iμ0∏
γ=1

Cμ0

δ

(
(q∗F )μ0(1−L+L−)

))
.

(4.17)

Below we prove that DA,B,C satisfies the same second-order differential

equation. The partial derivative of DA,B,C with respect to wl equals

D−1
A,B,C

∂DA,B,C
∂wl

=
∑
d,n

Qd�g−1

n!
(4.18)

·
〈
t(ψ̄1), . . . , t(ψ̄n); chl π∗

(
ev∗n+1(F )⊗ iμ0∗OZμ

)
·Θg,n,d

〉
g,n,d

.

Lemma 3.10 shows that

chl π∗
(
ev∗n+1(F )⊗ iμ0∗OZ

)
= π∗iμ0∗

[
ev∗n+1 ch(F ) · e

ψ++ψ− − 1

ψ+ + ψ−

]
l−1

.(4.19)
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Using (4.19) and the formula∫
[Xg,n,d]

(π∗i∗a) · b=
∫
[Z]

a · (π ◦ i)∗b,

we pull back the right-hand side of (4.18) on Z . Moreover, we use Proposi-

tion 3.1 to pull back the correlators on the factors Xg1,n1+1,d1 ×Xg2,n2+1,d2 .

The classes [Xg,n,d]
tw pull back as in formulas (3.2) and (3.3). As a con-

sequence, we see that if we define the coefficients Aμ0,l
a,α;b,β by∑

a,b,α,β

Aμ0,l
a,α;b,βϕα,μ0ψ̄

a
+ ⊗ϕβ,μI

0
ψ̄b
−

=Δμ0∗
([

ch(q∗F )μ0 ·
eψ++ψ− − 1

ψ+ +ψ−

]
l−1

·
( iμ0∏
δ=1

Cδ
(
(q∗F )μ0 ⊗ (1−L+L−)

)))
,

(4.20)

we can express (4.18) as

D−1
A,B,C

∂DA,B,C
∂wl

=
∑

gi,ni,di

Qd1+d2�g1+g2−1

n1!n2!

·
∑

a,b,α,β

1

2
〈t, . . . , t,Aμ0,l

a,α;b,βϕα,μ0ψ̄
a
+;Θg1,n1+1,d1〉g1,n1+1,d1

· 〈t, . . . , t,ϕβ,μI
0
ψ̄b
−;Θg2,n2+1,d2〉g2,n2+1,d2

+
∑
g,n,d
a,b,α,β

1

2

Qd�g−1

n!

· 〈t, . . . , t,Aμ0,l
a,α;b,βϕα,μ0ψ̄

a
+,ϕβ,μI

0
ψ̄b
−;Θg−1,n+2,d〉g−1,n+2,d.

(4.21)

Hence, the generating function DA,B,C satisfies the equation

∂DA,B,C
∂wl

=
�

2

∑
a,b

Aμ0,l
a,α;b,β∂

α,μ0
a ∂

β,μI
0

b DA,B,C.(4.22)
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Comparing (4.17) with (4.20), we see that

∂Aμ0

a,α;b,β

∂wl
=Aμ0,l

a,α;b,β.(4.23)

Therefore, both sides of (4.11) satisfy the same partial differential equa-

tion. The theorem follows.

Remark 4.1. According to [8, pp. 91–95], this change of generating func-

tion corresponds to a change of polarization; namely, we regard the potential

DA,B,C as an element of the Fock space HC =H+ ⊕H−,C . The correspond-

ing element in H=H+⊕H− with the usual polarization is G. If {qα,μa , pβ,μb }
and {q̄α,μa , p̄β,μb } are Darboux coordinate systems on H and HC , respectively,
then this change of polarization is given in coordinates by

pβ,μb = p̄β,μb ,

q̄α,μa = qα,μa −
∑
a,b

Aμ
a,α;b,βp

β,μ
b .

(4.24)

Example 4.2. Let X be a manifold, and let C(π∗i∗OZ) = Td(−π∗i∗OZ)∨.
Then Aa,α;b,β do not depend on α or β, and we have

C(1−L+L−) = Td∨(L+L−) =
−ψ+ − ψ−
1− eψ++ψ−

.

This gives

∑
a,b

Aa,α,b,βψ
aψb =

1

ψ+ +ψ−
− 1

eψ++ψ− − 1
.

According to [8, Section 2.3.2], the expansion of

1

1− eψ++ψ−
=
∑
k≥0

ekψ+

(1− eψ+)k+1
(eψ− − 1)k

gives a Darboux basis on HC in the sense of Theorem 1.3; that is, ϕa(e
kψ+)/

((1− eψ+)k+1) span H−.
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§5. Quantum fake Hirzebruch–Riemann–Roch

As a first application, we recover the quantum Hirzebruch–Riemann–

Roch theorem of [8], which expresses the potential of the fake cobordism

theory in terms of the cohomological one. Throughout this section, X will

be a compact complex manifold.

We first briefly review some basic background facts on complex-oriented

cohomology theories. A more detailed review is given in [8].

Definition 5.1. A complex-oriented cohomology theory is a multiplica-

tive cohomology theory E∗ together with a choice of element uE ∈E2(CP∞)

such that if j :CP1 →CP∞ is the inclusion, then j∗(uE) is the standard gen-

erator of E2(CP1).

We denote the ground ring by RE :=E∗(pt). One can define Chern classes

satisfying the usual axioms such that j∗(uE) is the first Chern class of the

Hopf bundle. The Chern–Dold character is the unique multiplicative natural

transformation

chE :E∗(X)→H∗(X,RE),

which is the identity if X = {pt}.
In particular, chE(uE) is a power series in z, where z is the standard

orientation of H∗(X,RE). We denote it uE(z). The Todd class is the unique

multiplicative class which for a line bundle L is

TdE(L) :=
c1(L)

uE(c1(L))
.

We now fix the cohomology theory to be complex cobordism MU∗. For
a given i, MU i(X) is defined as

MU i(X) := lim
j→∞

[
ΣjX,MU(i+ j)

]
,

where [ , ] denotes homotopy classes of maps, ΣjX is the iterated reduced

suspension of X , and MU(k) are the Thom spaces.

Cobordism is universal among complex-oriented cohomology theories in

the following sense. For any other cohomology (E,uE) there is a unique

natural transformation MU →E which maps u to uE . (We will write u,R,

etc., instead of uMU ,RMU .) If X has complex dimension n, MU i(X) can

be identified with the complex bordism group MU2n−i(X). This is Poincaré
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duality for complex cobordism and bordism. The image of u under the

Chern–Dold map is a formal power series u(z), where z is the first Chern

class of the universal line bundle.

The ground ring of the cobordism is R := MU∗(pt) = C[p1, p2, . . .] (we

tensored with C), where pi is the class of the map CPi → pt. For a local

complete intersection map f : X → Y , there is a pushforward f∗ and a

Hirzebruch–Riemann–Roch theorem which says that the diagram

MU∗(X)
chMU ·Td(Tf )−−−−−−−−→ H∗(X,R)

f∗

⏐⏐� f∗

⏐⏐�
MU∗(Y )

chMU−−−−→ H∗(Y,R)

is commutative. We define fake cobordism-valued Gromov–Witten invari-

ants to be given by the above theorem applied to the morphisms Xg,n,d →
{pt}.

Denote by Tg,n,d the virtual tangent bundle to Xg,n,d. The genus g descen-

dant cobordism-valued potential (called extraordinary potential in [8]) is

defined as

Fg
MU :=

∑
d,n

Qd

n!

∫
[Xg,n,d]

n∏
i=1

(∑
k≥0

chMU

(
ev∗i tku(ψi)

k
))

·TdMU (Tg,n,d).

It is a formal function of

t(u) :=
∑
k≥0

tku
k ∈MU∗(X)[[u]],

which takes values in the ring R[[Q]]. The total extraordinary potential is

DMU := exp
( ∞∑
g=0

�g−1Fg
MU

)
.

We define U to be the space

U :=MU∗(X,C[[Q]]
)
[[u]].

The symplectic form on U is

ΩMU (f ,g) :=

∮
z=0

(
f
(
u(z)

)
,g
(
u(−z)

))
MU

dz,
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with the pairing

(α,β)MU =

∫
X
chMU (α) · chMU (β) ·TdMU (TX).

The space U+ of the polarization on U is defined to include all power series

in u. If we expand

1

u(−x− y)
=
∑
k≥0

uk(x)vk
(
u(y)

)
,

then U− is defined as the span of all φαvk(u) for all k ≥ 0, φα ∈MU∗(X).

It is shown in [8] that these two subspaces realize a polarization of U . To
show how the extraordinary potential is related to the cohomological one,

we define a modification of H:

HMU :=H∗(X,R[[Q]]
)
((z)).

The pairing and symplectic form on HMU (henceforth denoted H) are

defined in the obvious way. The map

c̃hMU : U →H,∑
k

tku
k →

√
TdMU (TX)

(∑
k

chMU (tk)u
k(z)

)
is a symplectomorphism which maps U+ to H+, but it does not map U− to

H−. Let

q(z) =
√
TdMU (TX)

(
t(z) + u(−z)

)
.(5.1)

We regard F0
MU ,DMU as functions of q(z) (hence a function on H+) via

the identifications above. Let ∇̂ be the quantized linear symplectic trans-

formation

∇̂ := exp(Aa,α;b,βg
αβ∂α

a ∂β
b ),

with Aa,α;b,β given in Example 4.2. Let

Δ := exp
(∑
m≥0

dim(X)∑
l=0

s2m−1+l
B2m

(2m)!
chl(TX)z2m−1

)
,(5.2)

where the sk are defined by

exp
(∑
k≥1

sk
xk

k!

)
=

x

u(x)
∈H∗(X,R).
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Theorem 5.2. We then have

DMU ≈ ∇̂Δ̂D.

The proof will be a consequence of the description of the virtual tangent

bundles to Xg,n,d as linear combinations of classes of type A,B,C, as follows.

Proposition 5.3. We have

Tg,n,d := π∗ev
∗
n+1(TX − 1)− π∗(L

−1
n+1 − 1)− (π∗i∗OZ)

∨.(5.3)

Proof. We follow closely the computation in the dissertation [8]. However,

the proof there, while leading to the same formula, is a bit imprecise in

assuming that Ln+1 restricted to Z is the trivial line bundle. Recall that Z
is the nodal locus in the universal family and that it is parameterized by Z̃ ,

which is a fiber product of moduli spaces of maps of lower genus. The gluing

map Z̃ → Z is generically 2 to 1. The symmetry on Z̃ permuting the two

marked points which become the node after gluing acts nontrivially on the

fibers of i∗Ln+1 above the fixed-point locus. Hence, i∗Ln+1 is a nontrivial

(orbi)bundle on Z . We denote it by L. More precisely, let L′ be the Z2

equivariant line bundle on Z̃ which is Z̃ ×C as a set and on which −1 ∈ Z2

acts by

(x, v) → (−1 · x,−v) for x ∈ Z̃;v ∈C.

Then L= L′/Z2.

Let (C,x1, . . . , xn) be a point in Xg,n,d, and let D be the divisor of marked

points D =D1 + · · ·+Dn. Then (see [8] and the references therein)

Tg,n,d = π∗(ev
∗TX)−H0

(
C,Ω∨

π (−D)
)
+H1

(
C,Ω∨

π (−D)
)

= π∗(ev
∗TX)− π∗

(
Ω∨
π (−D)

)
.

(5.4)

Roughly the first summand accounts for deformations of the map, the second

for infinitesimal automorphisms of the curve (C,x1, . . . , xn), and the third

for deformations of the complex structure of C and smoothing of the nodes.

Denote by ωπ the dualizing sheaf of the universal family. According to [8],

we have the exact sequence

0→ ωπ → Ln+1 →⊕jσj∗(ODj )→ 0.(5.5)
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Using Serre duality and the relation given by the above exact sequence, the

second summand in (5.4) becomes

−π∗
(
Ω∨
π (−D)

)
=
[
π∗
(
Ωπ(D)⊗ ωπ

)]∨
=
[
π∗(Ωπ ⊗Ln+1)

]∨
.(5.6)

There is an exact sequence

0→Ωπ → ωπ → i∗L→ 0.(5.7)

First, notice that Ωπ and ωπ coincide away from Z . Near a point of Z ,

the map π can be described locally by

π : (z,x, y)→ (z,xy),

where z is a (vector) coordinate on Z̃ viewed as an orbifold chart for Z , and

the symmetry −1 ∈ Z2 interchanges x and y. Locally, sections of ωπ have

the form

f(z,x, y)
dx∧ dy

d(xy)
,

and sections of Ωπ are of the form g(z,x, y)dx + h(z,x, y)dy, where we

impose the relation xdy+ y dx= 0. There is a natural inclusion:

Ωπ → ωπ

g(z,x, y)dx+ h(z,x, y)dy →
(
xg(z,x, y)− yh(z,x, y)

)dx∧ dy

d(xy)
.

Sections in the cokernel are represented by elements of the form

α(z)
dx∧ dy

d(xy)
.

This is identified with i∗L because the symmetry acts nontrivially on dx∧dy.
This establishes (5.7).

We now use (5.7) to rewrite Ωπ = ωπ − i∗L and then plug in (5.6):[
π∗(Ωπ ⊗Ln+1)

]∨
=
[
π∗(ωπ ⊗Ln+1)

]∨ −
[
π∗
(
i∗(L)⊗Ln+1

)]∨
.(5.8)

The first term in (5.8) equals −π∗[L
−1
n+1] by Serre duality again. Replacing

in (5.8), we get[
π∗(Ωπ ⊗Ln+1)

]∨
=−π∗[L

−1
n+1]−

[
π∗i∗(L⊗ i∗Ln+1)

]∨
.(5.9)

But i∗Ln+1 = L, and L2 = 1. Hence, the last term in (5.9) is −(π∗i∗OZ)∨.
Formula (5.3) then follows by plugging (5.9) in (5.4).
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Proof of Theorem 5.2. We regard the Todd class TdMU as a family of

multiplicative classes depending on the parameters si. Then the twisting

theorems apply:

• twisting by TdMU (π∗ev∗n+1(TX − 1)) corresponds to acting by the opera-

tor Δ̂ on the potential D according to Remark 1.7;

• twisting by TdMU (−π∗(L
−1
n+1 − 1)) accounts for the dilaton shift (5.2)

according to Theorem 1.2;

• twisting by the class TdMU (−(π∗i∗OZ)∨), which according to the proof

of Theorem 1.3 and Example 4.2 is tantamount to acting on the potential

by the operator ∇̂ .

By looking only at genus 0, we easily deduce the following.

Corollary 5.4. The graph of the generating series F 0
MU , viewed as a

formal function of q(z) with respect to the polarization

HMU =H+ ⊕
{
φαvk

(
u(z)

)
| k ≥ 0, φα ∈H∗(X,R)

}
,(5.10)

is a Lagrangian cone LMU . It is obtained from the cohomological cone LH

after rotating by the symplectic transformation Δ.

§6. Applications to the Gromov–Witten theory of X ×BZm

In this section we apply the results to the Gromov–Witten theory of the

orbifold X×BZm, where X is a smooth complex manifold. The motivation

lies in the study of the quantum K-theory of X . The results in this section

are used in [12, Section 8].

Let G be a finite group which acts trivially on X , and let X =X ×BG,

the stack-theoretic quotient. We denote by [γi] the conjugacy class of γi ∈G

and by C(γ) the centralizer of γ. The inertia stack of X/G is the disjoint

union
∐

i([γi],X/C(γi)). Therefore,

H∗(I(X/G),C
)
=
⊕
[γi]

H∗(X,C).

Denote by e[γi] := 1 ∈H∗(([γi], pt/C([γi]))). A basis of H∗(([γi],X/C(γi))) is

given by ϕa× e[γi], where {ϕa} is a basis of H∗(X,C). The Poincaré pairing

is given by

(ϕa × e[γi],ϕb × e[γj ]) =
δ[γi][γ−1

j ]

|C(γi)|

∫
X
ϕa �ϕb.
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The J function is defined as

JX (t,−z) = − z + t(z)

+
∑
n,d

Qd

n!
φa

〈 φ̃a

−z − ψ̄1
, t(ψ̄2), . . . , t(ψ̄n)

〉X/G

n,d
,

(6.1)

where {φa},{φ̃a} are dual bases. We use [13, Proposition 3.4] to express the

correlators in terms of correlators on X0,n,d. In fact, there is a finite degree

map (X ×BG)0,n,d,([γ1],...,[γn]) →X0,n,d. In [13] it is shown that the degree

equals

|χG
0 (γ)|
|G| ,

where

χG
0 (γ) :=

{
(σ1, . . . , σn)

∣∣∣ 1 = n∏
j=1

σj , σj ∈ [γj ] for all j
}
.

Since the ψ̄ classes in the correlators are pullbacks of ψ classes from the

coarse curve, it follows that〈∏
i

ψ̄ki
i

(
ev∗i (ti × e[γi])

)〉X/G

0,n,d
=

|χG
0 (γ)|
|G|

〈∏
i

ψki
i ev∗i (ti)

〉X

0,n,d
,(6.2)

where ti ∈H∗(X).

From now on, let G = Zm, and let ζ be a primitive mth root of unity.

Denote by tdζ the multiplicative class defined for line bundles L by

tdζ(L) :=
1

1− ζe−c1(L)
.

We twist the cohomological potential of X with three types of twisting

classes as follows.

• The type A classes we take to be

td
(
π∗ev

∗(TX)
)m−1∏
k=1

tdζk
(
π∗ev

∗(TX ⊗Cζk)
)
.
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For a function s(x), the Euler–Maclaurin asymptotics of
∏∞

r=1 e
s(x−rz) are

given by

∞∑
r=1

s(x− rz) =
( ∞∑
r=1

e−rz∂x
)
s(x)

=
z∂x

ez∂x − 1
(z∂x)

−1s(x)

=
s(−1)(x)

z
− s(x)

2
+

∞∑
k=1

B2k

(2k)!
s(2k−1)(x)z2k−1,

where sk = dks/dxk, s−1 is the antiderivative
∫ x
0 s(t)dt, andB2k are Bernoulli

numbers. The effect of the type A twisting is as follows.

Corollary 6.1. The cone rotates by the loop group element

Ltw =

m−1∏
j=0

(�j)LX ,

where we think of LX as a product of m copies of LX , and each operator

�j acts on the copy corresponding to the sector labeled by gj . Let [kj/m]

denote the greatest integer less than kj/m. The operators in the statement

are Euler–Maclaurin expansions of the products

�0 =
∏
i

∞∏
r=1

xi − rz

1− e−mxi+mrz
,

�j =

m−1∏
k=0

∏
i

∞∏
r=1

xi − rz

1− ζke−xi+rz−(kj/m−[kj/m])z
.

Proof. The corollary follows by application of [19, Corollary 4.2.3] to the

twisting data described above.

• The type B classes we take to be

td
(
π∗(1−L−1

n+1)
)m−1∏
k=1

tdζk
(
π∗(1−L−1

n+1 ⊗ ev∗Cζk)
)
.

Corollary 6.2. The dilaton shift changes from q(z) = t(z)−z to q(z) =

t(z)− (1− emz).
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Proof. We apply Theorem 1.2 to the potential F .

In our case fβ =−ev∗n+1(Cζ)⊗L−1
n+1, we have

fβ(L
−1
n+3)− fβ(1)

Ln+3 − 1
=CζL

−1
n+3,

so according to Theorem 1.2 (fix ζ to be primitive mth root of unity), the

translation is

t(z) := t(z) + z − z
m−1∏
k=0

Tdζk(−CζkL
−1
z )

:= t(z) + z − z
1− ez

z

m−1∏
k=1

(1− ζkez) = t(z) + z − (1− emz).

(6.3)

• The type C classes we take to be as follows. We twist by the class

Td∨(−π∗ig∗OZg) the nodal locus Zg; we twist the locus Z0 of nonstacky

nodes by

td∨
(
−π∗(i∗OZ0)

)m−1∏
k=1

td∨ζk
(
−π∗(i∗OZ0 ⊗ ev∗Cζk)

)
.

We do not twist the other nodal loci.

Corollary 6.3. The nodal twisting changes the polarization in the sec-

tors (X ,1) and (X , g) of IX . The new Darboux basis is given by expansions

of

1

1− emψ++mψ−

for (X ,1) and of

1

1− e
ψ̄++ψ̄−

m

=
1

1− eψ++ψ−

for (X , g).

Proof. According to Theorem 1.3, the coefficients A0
a,α,b,β in the untwisted

sector are given by

−
∏m−1

i=0 C0
k(1−L+L−)− 1

ψ+ +ψ−
=− 1

ψ+ +ψ−

( ψ+ +ψ−∏m−1
k=0 (1− ζkeψ++ψ−)

− 1
)
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=
1

ψ+ +ψ−
− 1

emψ++mψ− − 1
.

Then (see Example 4.2 and [8, Section 2.3.2]) the Darboux basis is given

by the expansion of 1/(1− emψ++mψ−). In the same way, the coefficients

Ag
a,α,b,β are given by expansion of

−(Td∨(L+L− − 1)− 1)

ψ+ +ψ−
=

1

ψ+ +ψ−
− 1

e(ψ++ψ−) − 1
,

and hence the polarization is given by the expansion of 1/(1− eψ̄+/m+ψ̄−/m).

Appendix. Grothendieck–Riemann–Roch for stacks

The main tool for proving Theorems 1.1, 1.2, and 1.3 is a generalization

of Grothendieck–Riemann–Roch theorem for morphisms of stacks due to

Toën [18]. Before stating it, we will introduce more notation.

Definition A.1. Define Tr :K0(X )→K0(IX ) to be the map

F → ⊕λi(g)Fi

on each component (g,Xμ) of the inertia stack, where Fi is the decomposi-

tion of the g-action and λi(g) is the eigenvalue of g on Fi.

Definition A.2. Define c̃h :K0(X )→H∗(IX ) to be the map ch◦Tr.

Now each vector bundle E on X restricts on each connected component

(g,Xμ) of the inertia stack as the direct sum Einv ⊕Emov.

Definition A.3. Define T̃d(E) :K0(X )→H∗(IX ) to be the class

T̃d :=
Td(Einv)

ch(Tr ◦ λ−1(Emov)∨)
,

where λ−1 is the operation inK-theory defined as λ−1(V ) :=
∑

a≥0(−1)aΛaV .

In the following theorem, we assume that the morphism f factors as the

composition of a smooth regular immersion followed by a smooth morphism.

Then one can define Tf as in the case of local complete intersection mor-

phisms of manifolds.
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Theorem A.4 (see [18]). Let f :X →Y be a proper morphism of smooth

Deligne–Mumford stacks (over C) with quasi-projective coarse moduli spaces.

This induces a morphism If : IX → IY. If f factors as stated above, we have

c̃h(f∗E) = If∗
(
c̃h(E)T̃d(Tf )

)
.(A.1)

Restricting to the identity component Y of IY , we get

ch(f∗E) = If∗
(
c̃h(E)T̃d(Tf )|If−1Y

)
.(A.2)

The universal curve π, to which we apply Theorem A.4, is not necessarily

a local complete intersection, so following [19], we proceed as follows. The

construction in [2] provides a family of orbicurves

π̃ : U →M(A.3)

and an embedding Xg,n,d →M satisfying the following properties.

• The family U →M pulls back to the universal family over Xg,n,d.

• A vector bundle of the form ev∗n+1(E) extends to a vector bundle over U .
• The Kodaira–Spencer map TmM→Ext1(OUm ,OUm) is surjective for all

m ∈M.

• The locus Z ⊂ U of the nodes of π̃ is smooth, and π̃(Z) is a divisor with

normal crossings.

• The pullback of the normal bundle NZ/U to the double cover Z̃ given by

choice of marked points at the node is isomorphic to the direct sum of

the cotangent line bundles at the two marked points.

Thus, technically we apply Grothendieck–Riemann–Roch to π̃ and then

cap with the virtual fundamental classes [Xg,n,d]
tw. Therefore, in the compu-

tations we assume that the universal family π satisfies the above properties.

Acknowledgments. I would like to thank Alexander Givental for sug-

gesting the problem as a tool for the work in [12], and Tom Coates and

Hsian-Hua Tseng for useful discussions.

References

[1] D. Abramovich, “Lectures on Gromov–Witten invariants of orbifolds” in Enumerative
Invariants in Algebraic Geometry and String Theory, Lecture Notes in Math. 1947,
Springer, Berlin, 2008, 1–48. MR 2493583. DOI 10.1007/978-3-540-79814-9 1.

[2] D. Abramovich, T. Graber, M. Olsson, and H.-H. Tseng, On the global quotient
structure of the space of twisted stable maps to a quotient stack, J. Algebraic Geom.
16 (2007), 731–751. MR 2357688. DOI 10.1090/S1056-3911-07-00443-2.

http://www.ams.org/mathscinet-getitem?mr=2493583
http://dx.doi.org/10.1007/978-3-540-79814-9_1
http://www.ams.org/mathscinet-getitem?mr=2357688
http://dx.doi.org/10.1090/S1056-3911-07-00443-2
http://dx.doi.org/10.1007/978-3-540-79814-9_1
http://dx.doi.org/10.1007/978-3-540-79814-9_1


186 V. TONITA

[3] D. Abramovich, T. Graber, and A. Vistoli, “Algebraic orbifold quantum products”

in Orbifolds in Mathematics and Physics (Madison, Wis., 2001), Contemp. Math.

310, Amer. Math. Soc., Providence, 2002, 1–24. MR 1950940. DOI 10.1090/conm/

310/05397.

[4] , Gromov–Witten theory of Deligne–Mumford stacks, Amer. J. Math. 130

(2008), 1337–1398. MR 2450211. DOI 10.1353/ajm.0.0017.

[5] D. Abramovich and A. Vistoli, Compactifying the space of stable maps, J. Amer.

Math. Soc. 15 (2002), 27–75. MR 1862797. DOI 10.1090/S0894-0347-01-00380-0.

[6] K. Behrend and B. Fantechi, The intrinsic normal cone, Invent. Math. 128 (1997),

45–88. MR 1437495. DOI 10.1007/s002220050136.

[7] W. Chen and Y. Ruan, “Orbifold Gromov–Witten theory” in Orbifolds in Mathe-

matics and Physics (Madison, Wis., 2001), Contemp. Math. 310, Amer. Math. Soc.,

Providence, 2002, 25–85. MR 1950941. DOI 10.1090/conm/310/05398.

[8] T. H. Coates, Riemann–Roch theorems in Gromov–Witten theory, Ph.D. dissertation,

University of California, Berkeley, Berkeley, Calif., 2003. MR 2705177.

[9] T. Coates and A. Givental, Quantum Riemann–Roch, Lefschetz and Serre, Ann. of

Math. (2) 165 (2007), 15–53. MR 2276766. DOI 10.4007/annals.2007.165.15.

[10] A. B. Givental, Gromov–Witten invariants and quantization of quadratic Hamiltoni-

ans, Mosc. Math. J. 1 (2001), 551–568, 645. MR 1901075.

[11] , “Symplectic geometry of Frobenius structures” in Frobenius Manifolds,

Aspects Math. E36, Friedr. Vieweg, Wiesbaden, 2004, 91–112. MR 2115767.

[12] A. Givental and V. Tonita, The Hirzebruch–Riemann–Roch theorem in true genus 0

quantum K-theory, preprint, arXiv:1106.3136v1 [math.AG].

[13] T. J. Jarvis and T. Kimura, “Orbifold quantum cohomology of the classifying space

of a finite group” in Orbifolds in Mathematics and Physics (Madison Wis., 2001),

Contemp. Math. 310, Amer. Math. Soc., Providence, 2002, 123–134. MR 1950944.

DOI 10.1090/conm/310/05401.

[14] A. Kabanov and T. Kimura, A change of coordinates on the large phase space

of quantum cohomology, Comm. Math. Phys. 217 (2001), 107–126. MR 1815027.

DOI 10.1007/s002200000359.

[15] Y.-P. Lee, A formula for Euler characteristics of tautological line bundles on

the Deligne–Mumford moduli spaces, Int. Math. Res. Not. IMRN 1997, 393–400.

MR 1443318. DOI 10.1155/S1073792897000263.

[16] D. McDuff and D. Salamon, J-Holomorphic Curves and Quantum Cohomology, Univ.

Lecture Ser. 6, Amer. Math. Soc., Providence, 1994. MR 1286255.

[17] C. Teleman, The structure of 2D semi-simple field theories, Invent. Math. 188 (2012),

525–588. MR 2917177. DOI 10.1007/s00222-011-0352-5.
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