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ON THE UNIFORM SPREAD OF ALMOST SIMPLE
LINEAR GROUPS

TIMOTHY C. BURNESS and SIMON GUEST

Abstract. Let G be a finite group, and let k be a nonnegative integer. We
say that G has uniform spread k if there exists a fixed conjugacy class C in

G with the property that for any k nontrivial elements x1, . . . , xk in G there

exists y ∈ C such that G= 〈xi, y〉 for all i. Further, the exact uniform spread

of G, denoted by u(G), is the largest k such that G has the uniform spread k

property. By a theorem of Breuer, Guralnick, and Kantor, u(G)≥ 2 for every

finite simple group G. Here we consider the uniform spread of almost simple

linear groups. Our main theorem states that if G = 〈PSLn(q), g〉 is almost

simple, then u(G)≥ 2 (unless G∼= S6), and we determine precisely when u(G)
tends to infinity as |G| tends to infinity.
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§1. Introduction

Let G be a group, and let d(G) be the minimal number of generators

for G. We say that G is d-generated if d(G) ≤ d. It is well known that

every finite simple group is 2-generated, and in recent years a wide range of

related problems on the generation of simple groups have been studied. For

example, in [18], [31], and [36] it is proved that if G is a finite simple group,
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then the probability that two randomly chosen elements generate G tends to

1 as |G| tends to infinity, confirming a 1969 conjecture of Dixon [18, p. 205].

In a different direction, various generalizations have been investigated by

imposing restrictions on the orders of the generating pairs (see, e.g., [37],

[39], [40], [43]).

Following Steinberg [45], a finite group G is said to be 3/2-generated

if every nontrivial element of G belongs to a generating pair. Steinberg

[45, p. 277] conjectured that every finite simple group has this strong 2-

generation property, and this was later proved by Guralnick and Kantor

[23] using probabilistic methods. More generally, G is said to have spread k

if, for any k nontrivial elements x1, . . . , xk ∈G, there is some y ∈G such that

G= 〈xi, y〉 for all i. (This notion is originally due to Brenner and Wiegold

[6, Definition 1.01].) We define s(G) to be the exact spread of G, which is

the largest k such that G has the spread k property. In particular, G is

3/2-generated if and only if s(G)≥ 1.

The stronger notion of uniform spread was introduced in [23]. We say that

G has uniform spread k if there exists a fixed conjugacy class C in G such

that for any k nontrivial elements x1, . . . , xk ∈G there is some y ∈ C with

G= 〈xi, y〉 for all i. We define the exact uniform spread of G, denoted by

u(G), in the obvious way. Clearly, s(G)≥ u(G), and in general, these num-

bers are distinct. For example, if G= SL3(2), then s(G) = 4 and u(G) = 3.

Let G be a finite simple group. In [23] and [27] it is proved that s(G)≥ 2

for all but at most finitely many G, and that there are infinitely many

examples with s(G) = 2. This has been extended in [7], where it is proved

that every finite simple group G satisfies the bound u(G)≥ 2, with equality

if and only if G = Sp2m(2) (with m ≥ 3), A5, A6, or Ω+
8 (2) (see [7, The-

orem 1.2]). Related results for almost simple groups are also obtained in

[7]. (Recall that a group G is almost simple if G0 ≤G≤Aut(G0) for some

nonabelian finite simple group G0, which is the socle of G.) Of course, if G

is almost simple and G/G0 is noncyclic, then s(G) = 0 since G �= 〈x, y〉 for

all x ∈G0, y ∈G. However, the following slightly weaker spread 2 property

is established in [7, Corollary 1.5]: if x1, x2 ∈ G are nontrivial, then there

exists y ∈G such that G0 ≤ 〈xi, y〉 for i= 1,2.

In this paper we consider the spread of almost simple groups. An impor-

tant motivation comes from the following conjecture concerning the spread

of an arbitrary finite group (see [7, Conjecture 1.8]).
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Conjecture 1. A finite group G is 3/2-generated if and only if G/N is

cyclic for every nontrivial normal subgroup N of G.

Clearly, the cyclic condition on quotients is necessary for 3/2-generation.

For the converse, Guralnick [22] has established a reduction to the case

where G is almost simple with socle G0, and some special cases have recently

been established. Indeed, if G0 is a sporadic group, then the conjecture

follows from [7, Table 9 and Lemma 6.1], while the result for alternating

groups follows from [7] (for G = An and G0 = A6) and [3] (for the case

G= Sn). Therefore, to complete the proof of Conjecture 1, we may assume

that G0 is a simple group of Lie type.

The above conjecture can also be interpreted in terms of the generating

graph of a finite group G, which is defined as follows. Let Γ(G) be the graph

defined on the set of nontrivial elements of G so that two vertices x, y are

joined by an edge if and only if G= 〈x, y〉. Then G is 3/2-generated if and

only if there is no isolated vertex in Γ(G). Similarly, G has spread 2 if and

only if the diameter of Γ(G) is at most 2. An even stronger conjecture is

proposed in [8, Conjecture 1.6]: if |G| ≥ 4, then Γ(G) contains a Hamiltonian

cycle (a path that visits each vertex exactly once) if and only if G/N is cyclic

for every nontrivial normal subgroup N of G; for example, it is known that

all sufficiently large finite simple groups have this remarkable property (see

[8, Theorem 1.2]).

The purpose of this paper is to establish a stronger version of Conjecture 1

in the case G0 =PSLn(q). Our main theorem is the following.

Theorem 2. Let G = 〈PSLn(q), g〉 be an almost simple group. Then

either u(G)≥ 2, or G=PSL2(9).2∼= S6 and u(G) = 0.

In a spirit similar to [7] and [23], probabilistic methods play an essential

role in the proof of Theorem 2. Indeed, our main theorem is an easy corollary

of Theorem 3 below on random generation. To state the result, we require

some additional notation. Let G be a finite group, let C be a conjugacy

class of G, and let x ∈G. We write P(G= 〈x, y〉 | y ∈C) for the probability

that x and a randomly chosen element of C generate G.

Theorem 3. Let G = 〈PSLn(q), g〉 be an almost simple group. Then

either there exists a G-class C ⊆ gPSLn(q) such that

P(G= 〈x, y〉 | y ∈C)> 1/2

for all nontrivial x ∈G, or
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(1) G ∈
{
PSL2(9).2,PSL3(4).21,PSL4(2).2,PSL4(3).22

}
,

where PSL2(9).2∼= S6, PSL3(4).21 is an extension of PSL3(4) by a graph-

field automorphism, and PSL4(3).22 ∼= 〈PSL4(3), ι〉 where ι is the inverse-

transpose graph automorphism.

The groups in (1) are genuine exceptions, but in each case it is easy to

check directly that u(G)≥ 2, unless G=PSL2(9).2, where we have u(G) = 0

and s(G) = 2 (see Section 2.7). Note that PSL4(2).2∼= S8 and PSL4(3).22 ∼=
PGO+

6 (3).

It is interesting to consider the asymptotic behavior of s(G) and u(G) for

infinite sequences of simple groups G. In [27] it is proved that s(An) tends

to infinity if and only if the smallest prime divisor of n tends to infinity.

More generally, [27, Theorem 1.1] states that if Gi is a sequence of simple

groups such that |Gi| →∞, then s(Gi)→∞ if and only if there does not

exist an infinite subsequence of the Gi consisting either of odd-dimensional

orthogonal groups over a field of fixed size or of alternating groups Ani with

each ni divisible by a fixed prime. In fact, if we exclude these exceptional

cases, then the proof actually shows that u(Gi)→∞. (This observation is

originally due to Guralnick and Kantor [23].) Here we extend the analysis

to sequences of suitable almost simple groups with socle PSLn(q).

Theorem 4. Let Gi = 〈Si, gi〉 be a sequence of almost simple groups,

where Si = PSLni(qi) and |Gi| tends to infinity. Then u(Gi) is bounded if

and only if there exists an infinite subsequence of the Gi where ni is odd,

qi is fixed, and each gi is either a graph automorphism or a graph-field

automorphism involving an odd-order field automorphism.

Our final result concerns the minimal generation of almost simple groups.

Recall that every finite simple group is 2-generated. More generally, if G is

almost simple with socle G0, then a theorem of Dalla Volta and Lucchini

[16, Theorem 1] states that

d(G) =max
{
2, d(G/G0)

}
≤ 3.

As an easy corollary of Theorem 3, we recover this result in the case G0 =

PSLn(q).

Corollary 5. Let G be an almost simple group with socle G0 =PSLn(q).

Then

d(G) =max
{
2, d(G/G0)

}
≤ 3.
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Let G= 〈PSLn(q), g〉 be an almost simple group. Bounds on fixed point

ratios play an essential role in the proof of Theorem 3 (from which Theo-

rem 2 quickly follows). Recall that if Ω =G/H is a transitive G-set, then the

fixed point ratio (fpr) of an element x ∈G, which we denote by fpr(x,G/H),

is the proportion of points in Ω fixed by x. Our approach relies on the

following easy observation (see Theorem 2.3). Suppose that there exists

s ∈ PSLn(q) such that

(2)
∑

H∈M(gs)

fpr(x,G/H)< 1/2

for all x ∈G of prime order, where M(gs) is the set of maximal subgroups of

G containing gs. Then the conclusion to Theorem 3 holds with C = (gs)G.

In almost all cases, we will show that there exists such an element s.

There are several steps in estimating the summation in (2). First, we need

to choose s in such a way that we can determine the subgroups in M(gs);

the basic idea is to choose s so that gs is contained in very few maximal

subgroups, and we use a combination of tools to do this. For example,

we frequently apply the main theorem of [25] (and related results in [24,

Section 2]) on subgroups containing elements of large prime orders (see

Section 2.5), and we use the theory of Shintani descent in the case where

g is a field or graph-field automorphism (see Section 2.6). Next, we require

upper bounds on fixed point ratios for elements of prime order in primitive

actions of G (see Section 2.4). Fortunately, such bounds have been widely

studied in recent years (see, e.g., [9]–[12] and [23, Section 3]). Our aim is to

obtain an explicit bound of the form∑
H∈M(gs)

fpr(x,G/H)<F (n, q)

for some function F with the property that F (n, q) < 1/2 for all suitable

values of n and q. In addition, if F (n, q) tends to 0 as n or q tends to infinity,

then the conclusion to Theorem 4 also follows. For some small values on n

and q, we frequently require a more detailed analysis; in these cases it is

often convenient to verify the desired bound directly, with the aid of Magma

(see [4]; see Section 2.7 for further details).

In a forthcoming article, we extend our techniques and analysis to the

other almost simple groups of Lie type. Combined with Guralnick’s reduc-

tion theorem [22], and earlier work on groups with an alternating or sporadic
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socle, this will complete the proof of the Breuer–Guralnick–Kantor conjec-

ture on 3/2-generated finite groups.

Our article has the following organization. In Section 2, we fix notation

and present a number of results which will be required in the proofs of the

main theorems. More precisely, in Section 2.2 we describe the probabilistic

methods at the heart of our proof of Theorem 3—the main result here

is Theorem 2.3. In Section 2.3, we give a brief overview of the subgroup

structure of almost simple groups with socle PSLn(q), based on Aschbacher’s

main theorem in [1]. Various bounds on fixed point ratios are presented in

Section 2.4, and some useful results on primitive prime divisors are recalled

in Section 2.5. The theory of Shintani descent plays an important role in our

analysis—this is explained in Section 2.6. Finally, in Section 2.7 we discuss

the role of Magma in the proofs of the main theorems.

The proofs of Theorems 2–4 is given in Sections 3–6. Here the analysis

naturally splits into four cases, according to the various possibilities for g.

In Section 3, we quickly handle the case where g is a diagonal automor-

phism (this is essentially given in [7]). In Sections 4 and 5, we assume that

g is a field or graph-field automorphism, and we complete the proof in Sec-

tion 6, where we deal with graph automorphisms. Finally, the short proof

of Corollary 5 is presented in Section 7.

§2. Preliminaries

2.1. Notation and terminology

We start by fixing some of the notation we use throughout this paper.

Let G be a finite group, and let n be a positive integer. We write Gn for the

direct product of n copies of G, Z(G) for the center of G, and we write |x| for
the order of an element x ∈G. The exact spread and exact uniform spread of

G are denoted by s(G) and u(G), respectively. The cyclic group of order n is

denoted by Zn (or just n), while Fq is the finite field of order q. For integers

a and b, (a, b) denotes their highest common factor, and δa,b is the familiar

Kronecker delta (so that δa,b = 1 if a= b; otherwise, δa,b = 0). We adopt the

standard terminology and notation of [33] for finite classical groups and their

subgroups. In particular, we write GL+
n (q) = GLn(q) and GL−

n (q) = GUn(q),

and we extend this notation to the projective groups PGLε
n(q) and PSLε

n(q)

in the obvious way. We will often represent an element of (P)GL(V ) as a

matrix with respect to a fixed basis of V ; it is convenient to write [A1, . . . ,At]
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to denote a block-diagonal matrix with blocks Ai. We will also write Jm for

a standard unipotent Jordan block of size m.

Let G0 = PSLn(q), where n≥ 2 and q = pf for a prime p. By a theorem

of Steinberg (see [46, Theorem 30]), every automorphism of G0 is a product

of the form idfg, where

• i is an inner automorphism (induced by conjugation in G0),

• d is a diagonal automorphism (induced by conjugation in PGLn(q) \G0),

• f is a field automorphism (induced by an automorphism of Fq), and

• g is a graph automorphism (induced by the order 2 symmetry of the

associated Dynkin diagram of type An−1, with n≥ 3).

As the terminology suggests, an inner-diagonal automorphism is the prod-

uct of an inner and a diagonal automorphism. Naturally, we identify G0 and

PGLn(q) with the subgroups of Aut(G0) comprising the inner and inner-

diagonal automorphisms of G0, respectively. The full automorphism group

has structure

Aut(G0) = (G0 �Z(n,q−1))� (Zf ×Za),

where a= 2 if n≥ 3; otherwise, a= 1.

2.2. Probabilistic methods

Let G be a finite group. For x, y ∈G, we define

P(x, y) = 1− |{z ∈ yG |G= 〈x, z〉}|
|yG| =

|{z ∈ yG |G �= 〈x, z〉}|
|yG| ,

the probability that x and a randomly chosen conjugate of y do not gener-

ate G.

Lemma 2.1. Suppose that there exist an element y ∈ G and a positive

integer k such that P(x, y)< 1/k for all nontrivial x ∈G. Then u(G)≥ k.

Proof. Let P(E) be the probability that an event E occurs, and let Ec

denote the complementary event, so that P(Ec) = 1− P(E). Suppose that

x1, . . . , xk ∈G are nontrivial, and let Ei be the event that G= 〈xi, z〉, where
z is a randomly chosen G-conjugate of y. Clearly, it suffices to show that

P(E)> 0, where E =E1 ∩ · · · ∩Ek. Now

P(E) = 1− P(Ec) = 1− P(Ec
1 ∪ · · · ∪Ec

k)≥ 1−
k∑

i=1

P(Ec
i ),

and P(Ec
i ) = P(xi, y)< 1/k, so P(E)> 1− k(1/k) = 0 as required.
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Consequently, we see that Theorem 3 implies Theorem 2 (modulo check-

ing the four exceptions in (1)).

Clearly, we need to estimate P(x, y) in order to apply Lemma 2.1 effec-

tively. To do this, we will use the bound provided in Lemma 2.2 below, but

first we require some additional notation. For y ∈G, let M(y) denote the

set of maximal subgroups of G containing y. Let Ω =G/H denote the set of

(right) cosets of a subgroup H in G, and let fpr(x,G/H) be the fixed point

ratio of x ∈G with respect to the natural transitive action of G on G/H ,

so fpr(x,G/H) is the proportion |CΩ(x)|/|Ω| of points in Ω that are fixed

by x, where CΩ(x) = {ω ∈ Ω | ωx= ω} is the set of fixed points of x on Ω.

It is straightforward to show that

(3) fpr(x,G/H) =
|xG ∩H|
|xG| .

Lemma 2.2. For any x, y ∈G we have

P(x, y)≤
∑

H∈M(y)

fpr(x,G/H).

Proof. Suppose that z ∈ yG and G �= 〈x, z〉. Then 〈x′, y〉 ≤ H for some

H ∈ M(y) and x′ ∈ xG. The bound now follows since fpr(x,G/H) is the

probability that a randomly chosen G-conjugate x′ of x has the property

〈x′, y〉 ≤H .

Clearly, we have∑
H∈M(y)

fpr(x,G/H)≤
∑

H∈M(yi)

fpr(xj ,G/H)

for all positive integers i, j. In particular, Theorem 3 follows immediately

from the next result.

Theorem 2.3. Let G = 〈PSLn(q), g〉 be an almost simple group, and

assume that G is not one of the groups listed in (1). Then there exists

an element s ∈G0 such that∑
H∈M(gs)

fpr(x,G/H)< 1/2

for all x ∈G of prime order.
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Our strategy, therefore, is to find a suitable element s ∈ G0 so that we

can determine the maximal subgroups in M(gs), or at least the subgroups

in the superset M((gs)i) for some suitable positive integer i. The basic idea

is to choose s so that gs is contained in very few maximal subgroups of G.

Moreover, if we set α(x) =
∑

H∈M(gs) fpr(x,G/H), then in order to prove

Theorem 4, it suffices to show that α(x)→ 0 as |G| →∞ for all relevant G

and all x ∈G of prime order. In general, we do this by obtaining an explicit

upper bound of the form α(x)<F (n, q) with the property that F (n, q)→ 0

as n or q tends to infinity.

Finally, we record a general result on the number of points in Ω fixed by

an element x ∈G.

Lemma 2.4. Let G be a finite transitive permutation group on a set Ω

with point stabilizer H. Suppose that x ∈G and that xG ∩H is the union of

r distinct H-classes, with representatives x1, . . . , xr. Then

|CΩ(x)|= |CG(x)|
r∑

i=1

|CH(xi)|−1 =

r∑
i=1

[CG(xi) :CH(xi)].

Proof. By (3) we have

|CΩ(x)|=
|xG ∩H|
|xG| · [G :H] =

|CG(x)|
|H|

∑
i

|xHi |= |CG(x)|
∑
i

|CH(xi)|−1.

The final equality holds since |CG(x)|= |CG(xi)| for all i.

Corollary 2.5. Let G be a finite group, let H be a self-normalizing

subgroup of G, and let x ∈H. Let N be the number of distinct G-conjugates

of H containing x. Then N = 1 if and only if CG(x) =CH(x) and xG∩H =

xH .

Proof. Suppose that xG ∩H is the union of r distinct H-classes, with

representatives x1, . . . , xr. Since NG(H) =H , Lemma 2.4 implies that

N =
|xG ∩H|
|xG| · [G :H] =

r∑
i=1

[CG(xi) :CH(xi)],

and the result follows.
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Table 1: The Ci collections.

C1 Stabilizers of subspaces, or pairs of subspaces, of V

C2 Stabilizers of decompositions V =
⊕t

i=1 Vi, where dimVi = a

C3 Stabilizers of prime index extension fields of Fq

C4 Stabilizers of decompositions V = V1 ⊗ V2

C5 Stabilizers of prime index subfields of Fq

C6 Normalizers of symplectic-type r-groups in absolutely irreducible

representations

C7 Stabilizers of decompositions V =
⊗t

i=1 Vi, where dimVi = a

C8 Stabilizers of nondegenerate forms on V

C9 Almost simple irreducible subgroups of G

2.3. Subgroup structure

Let G be an almost simple group with socle G0 = PSLn(q) and natural

module V over Fq. The main theorem on the subgroup structure of finite

classical groups is due to Aschbacher [1]. In [1], nine subgroup collections

are defined, labeled Ci for 1 ≤ i ≤ 9, and the main theorem states that if

H is a maximal subgroup of G not containing G0, then H is contained in

one of these collections. A rough description of the various Ci collections is
given in Table 1.

We refer the reader to [33] (and, in particular, to [33, Table 3.5.A] for

the case G0 = PSLn(q) we are interested in here) for a detailed analysis of

these various subgroup collections. Throughout this article, we adopt the

standard notation and terminology of [33]. In particular, if H is a maximal

subgroup of G, then the type of H provides a rough group-theoretic descrip-

tion of H . For example, if n= 6 and if H is the G-stabilizer of a direct sum

decomposition V = V1 ⊕ V2 ⊕ V3 with dimVi = 2, then we say that H is a

C2-subgroup of type GL2(q) � S3.

2.4. Fixed point ratios

Let G = 〈G0, g〉 be an almost simple group with socle G0 = PSLn(q),

where q = pf for a prime p. Recall that in order to prove Theorem 2.3 we

need to estimate the sum

∑
H∈M(gs)

fpr(x,G/H)
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for certain elements gs in the coset gG0, where x ∈ G has prime order.

As previously described, Aschbacher’s theorem (combined with the analysis

in [33, Chapter 4]) provides us with detailed information on the possible

subgroups in M(gs). Given a maximal subgroup H ∈M(gs), our attention

now turns to the corresponding fixed point ratio fpr(x,G/H), where x ∈G

is an arbitrary element of prime order. To prove Theorem 2.3, we require

good upper bounds on fpr(x,G/H).

The study of fixed point ratios dates back to the early days of group the-

ory in the nineteenth century, and in recent years our understanding of fixed

point ratios for almost simple primitive groups has advanced greatly. For

example, Liebeck and Saxl [35] prove that if n≥ 5, then fpr(x,G/H)≤ 4/3q

for all x ∈G of prime order (this is a special case of [35, Theorem 1]), and

there are examples (for arbitrary n and q) where this upper bound is essen-

tially sharp. For instance, if H is the stabilizer of a 1-dimensional subspace

of V , then fpr(x,G/H) is roughly 1/q when x is a transvection. However,

we can establish much better bounds when H is a so-called nonsubspace

subgroup of G, which essentially means that H acts irreducibly on V (see

[9, Definition 1] for the precise definition).

Theorem 2.6. Let G be a primitive permutation group with socle G0 =

PSLn(q) and point stabilizer H, where n≥ 3 and where H is a nonsubspace

subgroup of G. Assume that (n, q) �= (4,2), (3,2). Then

fpr(x,G/H)< |xG|−1/2+1/n+ε

for all x ∈G of prime order, where ε= 1/n if H is of type Spn(q); otherwise,

ε= 0.

Proof. This is a special case of [9, Theorem 1].

For the remaining subspace subgroups, we will use Theorem 2.7 below.

Here the notation Pk denotes a maximal parabolic subgroup of G corre-

sponding to the G-stabilizer of a k-dimensional subspace of V . In addition,

Pk,n−k denotes the G-stabilizer of a pair of subspaces U ⊆W of V , where

dimU = k and dimW = n− k. (Such a subgroup is maximal in G whenever

G �≤ PΓLn(q).)

Theorem 2.7. Let G be a primitive permutation group with socle G0 =

PSLn(q) and point stabilizer H, where n≥ 3. Let H be a subgroup of type
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Table 2: Some fixed point ratio bounds for n≥ 5.

Type of H Condition g(n, q)

GL1(q)×GLn−1(q) n odd q−2

GLn/2(q
2) n even 2q8−2n

Spn(q) n even 2q2−n

Oε
n(q) q odd 2q1−n

Pk, Pk,n−k, or GLk(q) × GLn−k(q), where k ≤ n/2, and let x ∈ G be an

element of prime order. Then

fpr(x,G/H)<

{
min{1/2, q−1 + q1−n} if k = 1,

2q−k otherwise.

Proof. This follows from [23, Proposition 3.1 and Lemma 3.12].

The next result provides sharper, or more explicit, bounds in some specific

cases.

Proposition 2.8. Let G be a primitive permutation group with socle

G0 = PSLn(q) and point stabilizer H, where n ≥ 5 and where H is one of

the subgroups listed in Table 2. Then fpr(x,G/H)< g(n, q) for all x ∈G of

prime order, where g(n, q) is given in the final column of Table 2.

Proof. Let x ∈G be an element of prime order r. If x ∈H∩PGL(V ), then

x is either semisimple (if r �= p) or unipotent (if r = p); otherwise, either x

is a field automorphism (in which case, r divides logp q = f ), or r = 2 and x

is either a graph-field automorphism (this requires f to be even) or a graph

automorphism. For x ∈H ∩PGL(V ), we define

(4) ν(x) =min
{
dim[V ,λx̂]

∣∣ λ ∈K∗},
where x̂ is a preimage of x in GL(V ), V = V ⊗K with K = Fq, and [V ,λx̂] is

the subspace 〈v−vλx̂ | v ∈ V 〉. In particular, ν(x) is simply the codimension

of the largest eigenspace of x̂ on V . Various bounds on |xG| in terms of

ν(x) are presented in [10, Section 3]. We will use the notation [A1, . . . ,At]

to denote a block-diagonal matrix with blocks Ai, and we write Jm for a

standard unipotent Jordan block of size m.

First, assume that H is a nonsubspace subgroup, so H is of type

GLn/2(q
2), Spn(q), or Oε

n(q). Here the desired result quickly follows from
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Theorem 2.6. For example, suppose that H is of type Spn(q). For now, let us

assume that n≥ 8. If x ∈H \PGL(V ), then |xG|> (1/2)q(n
2−n−4)/2 by [10,

Corollary 3.49], and the bound in Theorem 2.6 is sufficient. Now assume

that x ∈ H ∩ PGL(V ). If ν(x) ≥ 2, then |xG| > (1/2)q4n−8 by [10, Corol-

lary 3.38], and once again the result follows from Theorem 2.6. Finally, if

ν(x) = 1, then x = [J2, In−2] is a transvection, and using (3) we calculate

that fpr(x,G/H)< 2q2−n since

|xG ∩H|= |Spn(q)|
|Spn−2(q)|q2n−1

= qn − 1

and

|xG|= |GLn(q)|
|GLn−2(q)||GL1(q)|q2n−3

=
(qn−1 − 1)(qn − 1)

q− 1
.

If n= 6, then we can analyze the various possibilities for x in more detail,

following the proof of [10, Proposition 8.1]. We leave the details to the

reader. In the same way, we can deal with the other nonsubspace subgroups

in Table 2.

For the remainder, let us assume that n is odd and that H is of type

GL1(q)×GLn−1(q). Let x ∈H be an element of prime order r. There are

several cases to consider, distinguished by the various possibilities for r.

First, assume that x ∈H ∩PGL(V ). Suppose that r = 2 and that p > 2.

If ν(x) = 1, then

|xG ∩H| ≤ 1 +
|GLn−1(q)|

|GL1(q)||GLn−2(q)|
= 1+

qn−2(qn−1 − 1)

q− 1
,

|xG|= |GLn(q)|
|GL1(q)||GLn−1(q)|

=
qn−1(qn − 1)

q− 1
,

and the result follows. Similarly, if ν(x) = s≥ 2, then the bounds

|xG ∩H| ≤ |GLn−1(q)|
|GLs(q)||GLn−s−1(q)|

+
|GLn−1(q)|

|GLs−1(q)||GLn−s(q)|

< 2qγ(q−2(n−s) + q−2s)

and |xG|> (1/4)qγ , where γ = 2ns− 2s2, are good enough.

Next, suppose that r = p. Let ai denote the number of Jordan blocks of

size i in the Jordan form of x̂ on V . Then ai = 0 for all i > p, and a1 ≥ 1

(since r = p and x ∈H). Let t denote the number of nonzero ai terms, and
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note that t ≥ 2. If ai = 0 for all i > 2, say, x = [Js
2 , J

n−2s
1 ] for some s ≥ 1,

then it is easy to see that

fpr(x,G/H)≤ (qn−2s − 1)/(qn − 1),

and the result follows. In the remaining cases (with r = p), we may assume

that p > 2. By applying [10, Lemma 3.18], we deduce that

|xG ∩H|< 2t−1qγ−2n+2
∑

i ai

and |xG|> (1/2)qγ , where γ = n2 − 2
∑

i<j iaiaj −
∑

i ia
2
i , whence

fpr(x,G/H)< 2tq−2n+2
∑

i ai .

If t= 2, then we may assume that ai > 0 for some i > 2; hence,
∑

i ai ≤ n−2,

and thus fpr(x,G/H) < 22q−4 < q−2 as required. Similarly if t ≥ 3, then∑
i ai ≤ n− t(t− 1)/2, and this yields

fpr(x,G/H)< 2tq−2n+2(n−t(t−1)/2) = 2tq−t(t−1) < q2t−t2 ≤ q−3.

Now assume that r �= p and that r > 2. Let i≥ 1 be minimal such that r

divides qi − 1. Then CG(x) is of type

GLl(q)×
d∏

j=1

GLaj (q
i)

for some d≥ 1, where n= l+ i
∑

j aj and aj ≥ 1 for all j. Set γ = n2 − l2 −
i
∑

j a
2
j . First, assume that i≥ 2, so l ≥ 1 (since x ∈H). Then |xG ∩H|<

2dqγ−2(n−l) and |xG|> (1/2)qγ , so

fpr(x,G/H)< 2d+1q−2(n−l) ≤ q1−3d ≤ q−2,

since n− l≥ 2d and d≥ 1. Now assume that i= 1 (so q ≥ 4). If d= 1, then

we may argue as in the case r = 2 with p > 2, so let us assume that d≥ 2.

Without loss, we may assume that l≥ a1. Then |xG|> (1/2)qγ−1 and

|xG ∩H| ≤ (d+ 1) · |GLn−1(q)|
|GLl−1(q)|

∏
j |GLaj (q

i)| < 2d(d+ 1)qγ−2(n−l).

Therefore,

fpr(x,G/H)< 2d+1(d+ 1)q1−2(n−l) < qd+1+1−2d = q2−d,
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and we reduce to the case d≤ 3. If (i, d) = (1,3), then q ≥ 11 (since r ≥ 5),

and the above bounds give fpr(x,G/H)< 64q−5 < q−3. Finally, suppose that

(i, d) = (1,2). If n− l > 2, then n− l ≥ 3, and thus fpr(x,G/H)< 24q−5 <

q−2 since q ≥ 4. Otherwise, if n− l = 2, then |xG ∩H|< 4q4n−10 + 4q2n−4,

|xG|> 1
2q

4n−6, and the result follows.

Finally, suppose that x ∈H \PGL(V ). First, assume that x is an involu-

tory graph automorphism, so |xG|> (1/2)q(n
2+n−4)/2 (see [10, Table 3.11]).

Now x induces a graph automorphism on the factor of H of type GLn−1(q),

so by considering the centralizer types listed in [10, Table 3.10], we deduce

that if p= 2, then

|xG ∩H| ≤ |GLn−1(q)|
|Spn−1(q)|

+
|GLn−1(q)|
|CSpn−1(q)

(t)| < q(1/2)(n
2−3n+2) + q(1/2)n(n−1),

where t ∈ Spn−1(q) is a transvection, while

|xG ∩H| ≤ |GLn−1(q)|
|Spn−1(q)|

+
|GLn−1(q)|
|SO+

n−1(q)|
+

|GLn−1(q)|
|SO−

n−1(q)|

< q(1/2)(n
2−3n+2) + 2q(1/2)n(n−1)

if p > 2. These bounds are sufficient unless n= 5 and q ≤ 3; here the desired

result is quickly obtained through direct calculation.

If x is an involutory field or graph-field automorphism, then q = q20 and

the bounds

|xG ∩H| ≤ |GL1(q)|
|GL1(q0)|

· |GLn−1(q)|
|GLn−1(q0)|

< 4q(1/2)(n
2−2n+2),

|xG|> 1

2
(n, q− 1)−1q(1/2)(n

2−1)

are sufficient. Finally, if x is a field automorphism of odd prime order r,

then q = qr0 and

|xG ∩H|< 4q(1+(n−1)2)(1−1/r), |xG|> 1

2
q(n

2−1)(1−1/r)−1;

hence,

fpr(x,G/H)< 8q(3−2n)(1−1/r)+1 ≤ 8q3−(4/3)n ≤ q4−(4/3)n.

The result follows.
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Corollary 2.9. Suppose that n≥ 3, that H is a nonsubspace subgroup,

and that (n, q) �= (4,2), (3,2). Also assume that n≥ 6 if H is of type Spn(q).

Then fpr(x,G/H)< f(n, q) for all x ∈G of prime order, where

(5) f(n, q) =
((qn−1 − 1)(qn − 1)

q− 1

)−(1/2)+(1/n)
.

Proof. If H is not of type Spn(q), then this follows immediately from

Theorem 2.6 since

|xG| ≥ |GLn(q)|
|GLn−2(q)||GL1(q)|q2n−3

=
(qn−1 − 1)(qn − 1)

q− 1

for all x ∈G of prime order (minimal if x is a transvection). Now assume that

H is of type Spn(q). If x ∈H ∩PGL(V ) and ν(x) = 1, then fpr(x,G/H) =

(q − 1)/(qn−1 − 1) (see the proof of Proposition 2.8), which is less than

f(n, q). If n ≥ 8 and x ∈ H is not a transvection, then |xG| > (1/2)q4n−8

(see [10, Corollaries 3.38 and 3.49]), and the bound in Theorem 2.6 is good

enough. Finally, the case n = 6 can be dealt with directly, by considering

each possibility for x in turn. The reader can check the details.

More accurate bounds when n= 3 or 4 are given in Lemmas 2.10 and 2.11

below.

Lemma 2.10. Suppose that n= 3 and that x ∈G has prime order.

(i) If H is of type O3(q), GL1(q) � S3, GL1(q
3), or GL3(q1), where q = qr1

for an odd prime r, then fpr(x,G/H)≤ (q2 + q+ 1)−1.

(ii) If H is of type GLε
3(q

1/2), then fpr(x,G/H)≤ (3, q− 1)q−1/2(q+ 1)−1.

Proof. This is a straightforward calculation. For example, suppose that

H is of type O3(q), in which case q is odd. Set d= (3, q− 1), and let x ∈H

be an element of prime order r. Suppose that x ∈H ∩ PGL(V ). If r = p,

then x is conjugate to [J3], so |xG ∩H| ≤ q2 − 1, |xG| ≥ 1
dq(q

2 − 1)(q3 − 1),

and the result follows. Similarly, if r = 2, then x is conjugate to [−I2, I1],

and we calculate that fpr(x,G/H)≤ (q2 + q+ 1)−1 since

|xG ∩H| ≤ i2
(
SO3(q)

)
=

|SO3(q)|
2|SO+

2 (q)|
+

|SO3(q)|
2|SO−

2 (q)|
= q2,

|xG|= q2(q2 + q+ 1),

where i2(SO3(q)) denotes the number of involutions in SO3(q). Next, sup-

pose that r �= p and that r is odd. Let i≥ 1 be minimal such that r divides
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qi− 1, so i= 1 or 2. If i= 2, then |xG ∩H|= q(q− 1) and |xG|= q3(q3− 1);

otherwise, |xG ∩H| = q(q + 1) and |xG| ≥ 1
dq

3(q + 1)(q2 + q + 1). In both

cases the desired bound holds. Finally, suppose that x ∈ H \ PGL(V ). If

r is odd, then q = qr0 and x is a field automorphism; here the bounds

|xG ∩H| ≤ [SO3(q) : SO3(q0)] and |xG| ≥ 1
d [PGL3(q) : PGL3(q0)] are suffi-

cient. Now assume that r = 2. If x is a field or graph-field automorphism,

then q = q20 and

|xG ∩H| ≤ |SO3(q)|
|SO3(q1/2)|

= q1/2(q+ 1),

|xG| ≥ 1

d

|PGL3(q)|
|PGU3(q1/2)|

=
1

d
q3/2(q+ 1)(q3/2 − 1);

otherwise, x is a graph automorphism and we have

|xG ∩H| ≤ i2
(
SO3(q)

)
+ 1= q2 + 1, |xG| ≥ 1

d
q2(q3 − 1).

It is easy to check that these bounds are sufficient.

The other cases are very similar, and we leave the details to the reader.

Note that if H is of type GL3(q
1/2) and x ∈H is an involutory graph-field

automorphism, or if H is of type GU3(q
1/2) and x ∈H is an involutory field

automorphism, then

|xG ∩H| ≤ |PGLε
3(q

1/2)|
|SO3(q1/2)|

= q(q3/2 − ε),

|xG| ≥ 1

d

|PGL3(q)|
|PGLε

3(q
1/2)| =

1

d
q3/2(q+ 1)(q3/2 − ε),

whence fpr(x,G/H)≤ dq−1/2(q+ 1)−1 as claimed.

Similarly, we compute the following bounds when n = 4. We omit the

proof.

Lemma 2.11. Suppose that n = 4. Let H1,H2, and H3 be maximal sub-

groups of G of type GL2(q
2), Sp4(q), and O−

4 (q), respectively. Then

fpr(x,G/Hi)≤ fi(q) for all x ∈G of prime order, where

f1(q) =
d1(q

3 + 2q+ 1)

q2(q3 − 1)
, f2(q) =

q2

d2(q3 − 1)
, f3(q) =

4d2
q3 − 1

,

with d1 = (4, q− 1) and d2 = (2, q− 1).
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2.5. Primitive prime divisors

Let q = pa be a prime power, and let r be a prime dividing qe − 1. We

say that r is a primitive prime divisor (ppd for short) of qe− 1 if r does not

divide qi − 1 for all 1≤ i < e. In [48], Zsigmondy states that if e≥ 3, then

either qe− 1 has a primitive prime divisor or (q, e) = (2,6). Primitive prime

divisors also exist when e = 2, provided that q is not a Mersenne prime.

Note that if r is a primitive prime divisor of qe − 1, then r ≡ 1 (mod e).

Let G be an almost simple group with socle G0 =PSLn(q), and let r be a

primitive prime divisor of qe − 1, where n/2< e≤ n. In [25], the subgroups

of PGLn(q) containing an element of order r are determined. As described

in [25, Examples 2.1–2.9], it turns out that such a subgroup belongs to one

of nine specific subgroup collections. Guralnick and Malle [24] prove the

following useful corollary.

Theorem 2.12. Let G be an almost simple group with socle G0 =PSLn(q)

and natural module V , where n≥ 3. Let r be either a primitive prime divisor

of qe− 1, where e > n/2 and r > 2e+1, or a product of two (possibly equal)

primitive prime divisors of qe − 1. Suppose that H is a maximal subgroup

of G such that H ∩PGL(V ) acts irreducibly on V and contains an element

of order r. Then one of the following holds:

(i) H is of type GUn(q
1/2), Spn(q), or Oε

n(q);

(ii) H is of type GLn/k(q
k), where k is a prime dividing (n, e);

(iii) H is of type GLn(q0), where q = qk0 for some prime k.

Proof. This follows immediately from [24, Theorem 2.2].

Recall that our basic strategy for proving Theorem 2.3 is to find an ele-

ment s ∈ G0 such that gs is contained in very few maximal subgroups of

G= 〈G0, g〉. If we can choose s so that some power of gs has order r, where

r is a primitive prime divisor of qe − 1 with e > n/2, then we can use the

aforementioned results in [24] and [25] to restrict significantly the possible

subgroups in M(gs).

2.6. Shintani descent

Let G0 be a simple group of Lie type over Fq, and set G = 〈G0, g〉 for

some g ∈ Aut(G0). In order to study the uniform spread of G, we need to

consider conjugacy classes in the coset gG0; as previously stated, our aim

is to identify a class (gs)G such that gs is contained in very few maximal

subgroups of G. In the cases where g is a field or graph-field automorphism,
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a key tool to do this is the theory of Shintani descent, which we outline

below (following Kawanaka [32, Section 2]).

First, let us set up the notation we will use for the remainder of this

section. Let X be a connected linear algebraic group over an algebraically

closed field, and let σ :X →X be a Frobenius morphism, so σ is a bijective

endomorphism of algebraic groups with finite fixed point subgroup Xσ =

{x ∈X | xσ = x}. Let e be a positive integer, set G=Xσe , and set H =Xσ ≤
G. Note that G is σ-stable, so the restriction σ :G→G is an automorphism.

Let A = 〈σ′〉 be a cyclic group of order e, and let φ : A→ Aut(G) be the

homomorphism such that φ(σ′) = σ. In the following we will abuse notation

by writing σ for σ′. Let AG=A�G be the corresponding semidirect product

with multiplication

(σi, s)(σj , t) = (σi+j , sσ
j
t).

Let σs be an element in the coset σG in AG. Then (σs)2 = σ2sσs, and

using the fact that A has order e, we quickly deduce that

(6) (σs)e = sσ
e−1

sσ
e−2 · · ·sσs ∈G.

By the Lang–Steinberg theorem (see [21, Theorem 2.1.1]), there exists a ∈X

such that

(7) s= a−σa.

Using the expression for (σs)e in (6), it is easy to check that a(σs)ea−1 is

fixed by σ, so a(σs)ea−1 ∈Xσ =H . This observation allows us to define a

map f from the set of AG-classes in the coset σG to the set of H-classes in

H by

f : (σs)AG �→
(
a(σs)ea−1

)H
,

which we call the Shintani map of G corresponding to σ. We will frequently

abuse notation by writing f(σs) for an arbitrary representative of the H-

class of a(σs)ea−1. In addition, to avoid any possible ambiguity, we will

sometimes write fG, rather than f , for the above map.

We must check that f is well defined. First, note that the element a ∈X

given in (7) is not unique in general. However, if b ∈X also satisfies s= b−σb,

then ab−1 ∈Xσ =H , and thus the elements a(σs)ea−1 and b(σs)eb−1 are

H-conjugate, so f is independent of the choice of a in (7). We also need to

show that f is independent of the choice of AG-class representative. To see
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this, suppose that σt ∈ σG is AG-conjugate to σs, say, σt= (σiw)−1σs(σiw)

for some w ∈G and integer i≥ 0. Now

(8) σt= (σt)i(σiw)−1σs(σiw)(σt)−i,

and (σiw)(σt)−i ∈G, so σs and σt are in fact G-conjugate. (Consequently,

f is a map from the set of G-classes in the coset σG to the set of H-

classes in H .) Therefore, there exists z ∈G such that σt= z−1σsz; hence,

σt = σz−σsz and t = z−σsz. Since s = a−σa, we have t = (az)−σaz, and

thus f(σt) = az(σt)ez−1a−1. But (σt)e = z−1(σs)ez by assumption; hence,

f(σt) = a(σt)ea−1 = f(σs) and f is well defined.

The next lemma is a key result (see [32, Lemma 2.2]).

Lemma 2.13. With the notation above, the following hold.

(i) We have

CG(σs) = a−1CH

(
f(σs)

)
a=Ca−1Ha

(
(σs)e

)
.

In particular, |CG(σs)|= |CH(f(σs))| for all s ∈G.

(ii) The Shintani map f is a bijection.

Proof. First, consider (i). If g ∈ CG(σs), then sg = gσs, and clearly we

have aga−1 ∈ CX(f(σs)). Further, since aσ = as−1 (see (7)), we see that

aga−1 ∈ Xσ, and thus aga−1 ∈ CH(f(σs)). Conversely, suppose that h ∈
CH(f(σs)). Then a−1ha centralizes (σs)e, and using (6) we deduce that

(σs)e = a−σe
a. Therefore,

(a−1ha)σ
e
= a−σe

haσ
e
= (σs)ea−1ha(σs)−e = a−1ha,

and thus a−1ha ∈ Xσe = G. Further, it is straightforward to check that

a−1ha centralizes σs, whence a−1ha ∈CG(σs). This proves (i).

Now let us turn to (ii). First, we claim that

(9) |(σs)AG|= |f(σs)H | · [G :H].

This follows easily from (i) since we have already observed that (σs)AG =

(σs)G (see (8)).

Let y ∈H . By the Lang–Steinberg theorem (applied to X and σe), there

exists b ∈ X such that y = bb−σe
. Since σ fixes y, it follows that σe fixes

b−σb, whence b−σb ∈G. By definition, f maps the AG-class of σb−σb to the

H-class of b(σb−σb)eb−1, and using the expression in (6), we calculate that

b(σb−σb)eb−1 = bb−σe
bb−1 = y.

This proves that the Shintani map f is surjective.
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Finally, let {c1, . . . , ct} be the set of H-classes in H . Since f is surjective,

there exist AG-classes Ci in σG such that f(Ci) = ci for all i. By (9) we

have |Ci|= |ci| · [G :H], so

t∑
i=1

|Ci|= [G :H]

t∑
i=1

|ci|= |G|= |σG|,

and thus {C1, . . . ,Ct} is the complete set of AG-classes in σG. We conclude

that f is a bijection.

Theorem 2.14. With the notation above, let Y be a closed connected σ-

stable subgroup of X, let K = Yσe , and let L = Yσ. Let Ω = G/K, and let

Δ=H/L. Then

|CΩ(σs)|=
∣∣CΔ

(
f(σs)

)∣∣
for all s ∈G.

Proof. Since K is σ-stable, we may form the semidirect product AK. In

addition, we obtain a well-defined action of AG on Ω via (Kg)σ = Kgσ.

Also note that since Y is σ-stable and connected, the Shintani map f = fG
on G naturally induces a Shintani map fK from the set of AK-classes in

the coset σK to the set of L-classes in L.

First, assume that |CΩ(σs)|= 0. If (σs)G∩σK is nonempty, then g−σsg ∈
K for some g ∈ G, and thus Kg−1 ∈ CΩ(σs), a contradiction. Therefore,

(σs)G ∩σK is empty. We claim that fG(σs)
H ∩L is also empty. To see this,

suppose that there exists h ∈ H such that fG(σs)
h ∈ L. By the Shintani

correspondence given by fK , there exists k ∈K such that fK(σk) = fG(σs)
h,

where fK(σk) = a(σk)ea−1 for some a ∈ Y with a−σa = k. Since a is also

in X , we may assume that fG(σk) = a(σk)ea−1, so fG(σk) = fG(σs)
h, and

thus the Shintani correspondence given by fG implies that σk and σs are G-

conjugate. This is a contradiction since (σs)G ∩ σK is empty. This justifies

the claim, and we conclude that |CΔ(f(σs))|= 0, as required.

Now suppose that |CΩ(σs)| ≥ 1, say, Kg ∈CΩ(σs). Then gσsg−1 ∈K and

(σs)g
−1

= σgσsg−1 ∈ (σs)G ∩ σK

is nonempty. Replacing σs by a suitable G-conjugate if necessary, we may

assume that σs ∈ σK; that is, s ∈K. Let σs1, . . . , σsr represent the distinct

AK-classes in (σs)G ∩ σK. By considering the Shintani map fK , and by

applying Lemma 2.13(i), we deduce that

|CK(σsi)|=
∣∣CL

(
fK(σsi)

)∣∣= ∣∣CL

(
fG(σsi)

)∣∣
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for all i. (Here we may choose fG(σsi) = fK(σsi) ∈ L to represent each of the

relevant H-classes, so we can write f for both fG and fK , when convenient.)

Evidently, AG acts transitively on Ω with point stabilizer AK, and we

note that the σsi represent the distinct AK-classes in (σs)AG ∩AK since

(σs)AG = (σs)G and (σsi)
AK = (σsi)

K for all i. Therefore, Lemma 2.4 yields

|CΩ(σs)|=
r∑

i=1

[CAG(σsi) :CAK(σsi)] =
r∑

i=1

[CG(σsi) :CK(σsi)].

By Lemma 2.13(i), the Shintani maps fG and fK preserve centralizer car-

dinalities, so

(10) |CΩ(σs)|=
r∑

i=1

[
CH

(
f(σsi)

)
:CL

(
f(σsi)

)]
.

Finally, we observe that f(σs)H ∩L is the union of the distinct L-classes

f(σsi)
L. To see this, suppose that l ∈ L is H-conjugate to f(σs) = fG(σs) =

fK(σs) ∈ L. Since fK is surjective, there exists t ∈K such that l= fK(σt).

We may assume that fG(σt) = fK(σt) and that fG(σs) = fK(σs), and since

fG(σs) and fG(σt) are H-conjugate, it follows that σs and σt must be

G-conjugate elements in σK. Thus, σt must be K-conjugate to some σsi,

and therefore l= fK(σt) must be L-conjugate to fK(σsi), which proves our

claim. Now a further application of Lemma 2.4 yields

∣∣CΔ

(
f(σs)

)∣∣= r∑
i=1

[
CH

(
f(σsi)

)
:CL

(
f(σsi)

)]

and thus |CΩ(σs)|= |CΔ(f(σs))| by (10).

Corollary 2.15. Let X =An−1, and let Y be a σ-stable subgroup of X,

where Y is either a parabolic subgroup or a Levi subgroup of type

Ai−1An−1−iT1 with 1 ≤ i < n/2. Assume that f(σs) ∈ L for some s ∈ G.

Then the number of H-conjugates of L containing f(σs) is equal to the

number of G-conjugates of K that are normalized by σs.

Proof. First, observe that NX(Y ) = Y and that NG(K) = K. Now σs

normalizes a G-conjugate Kg if and only if

(g−1Kg)σs = g−1Kg ⇐⇒ gσsg−1 ∈NG(K) =K ⇐⇒ Kgσs=Kg,
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which is true if and only if σs fixes the coset Kg ∈ Ω. Moreover, since

NG(K) =K, we have Kg1 =Kg2 if and only if Kg1 =Kg2, and so |CΩ(σs)|
is the number of G-conjugates of K that are normalized by σs. Similarly,

|CΔ(f(σs))| is the number of H-conjugates of L containing f(σs), and the

result follows by Theorem 2.14.

Corollary 2.15 will be an important tool in our later analysis. To explain

how it applies, let σ be a Frobenius morphism of X = PSLn(K) such that

Xσe = PGLn(q) has socle G0 = PSLn(q), where K is the algebraic closure

of Fq. Now σ induces an automorphism of G0 (e.g., a field, or a graph-

field automorphism), and we may consider the almost simple group G =

〈G0, σ〉. Fix an element x ∈Xσ, and let σs ∈ σXσe be a representative of

the corresponding Xσe-class under the Shintani map f (see Lemma 2.13).

By modifying x if necessary, we may assume that σs ∈ σG0. As before, let

M(σs) denote the set of maximal subgroups of G containing σs.

We can often use Corollary 2.15 to determine the reducible subgroups in

M(σs). For example, if σ is a field automorphism of G0, then the corol-

lary tells us that there is a bijection between the set of maximal parabolic

subgroups of Xσ =PGLn(q0) containing x (we choose x so that these sub-

groups are easy to identify) and the set of maximal parabolic subgroups of

G containing σs. Moreover, this bijection respects the type of the parabolic

subgroups involved. For example, if x belongs to unique maximal parabolic

subgroups of PGLn(q0) of type P1, P2, Pn−1, and Pn, then σs is contained

in exactly four maximal parabolic subgroups of G, which again are of type

P1, P2, Pn−1, and Pn.

The final proposition of this section provides some useful information on

the nonparabolic subgroups in M(σs).

Proposition 2.16. With the notation above, let H ∈M(σs) be a non-

parabolic subgroup.

(i) There are at most |CXσ(f(σs))| subgroups of type H in M(σs).

(ii) Suppose that e is prime, that σ is a field automorphism, and that

H ∈M(σs) is a subfield subgroup of type GLn(q0), where q = qe0. Fur-

ther, assume that f(σs) ∈ Xσ is regular semisimple and either irre-

ducible over Fq0 or block-diagonal of the form [A,B], where A and B

are irreducible blocks (over Fq0) of distinct dimensions. Then there are,

respectively, at most e or e2 subgroups of type GLn(q0) in M(σs).
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Proof. Let G1 = 〈Xσe , σ〉 = 〈PGLn(q), σ〉, and observe that all maximal

subgroups of type H in G are G1-conjugate (see [33, Proposition 4.0.2(i)]).

In particular, if N is the number of subgroups of type H in M(σs), then

N =
|(σs)G1 ∩H|
|(σs)G1 | · [G1 :NG1(H)] =

|(σs)G1 ∩H||CG1(σs)|
|NG1(H)| .

To prove (i), first observe that |(σs)G1∩H| ≤ |H|/e since (σs)G1 is contained

in the coset (σs)PGLn(q) = σPGLn(q), while the (σs)
i(PGLn(q)∩H) (with

1 ≤ i ≤ e) are distinct cosets in H . Now |CG1(σs)| = e|CXσ(f(σs))| by

Lemma 2.13, and the result follows.

Now let H be a maximal subfield subgroup of G of type GLn(q0) con-

taining σs, where q = qe0. To prove (ii), set H1 = NG1(H), and note that

|(σs)G ∩H| ≤ |(σs)G1 ∩H1|. To estimate this upper bound, observe that

some G1-conjugate of H1 is equal to 〈σ〉×Xσ, so without loss of generality

we may assume that H1 = 〈σ〉 ×Xσ.

Let E = {λe
1, λ

e
2, . . . , λ

e
n} be the set of eigenvalues of f(σs), and suppose

that σt ∈H1 is an element such that (σt)e = te and f(σs) have the same

eigenvalues, where t ∈Xσ. Then t has eigenvalues {μ1, . . . , μn}, where μe
i =

λe
i for all 1 ≤ i ≤ n. In particular, there are e choices for each μi (in the

algebraic closure K), so there are at most en distinct Xσ-classes in (σs)G1 ∩
H1. We claim that each of these Xσ-classes has size |f(σs)Xσ |.

To see this, let σt ∈ (σs)G1 ∩H1. As above, let {μ1, . . . , μn} be the set

of eigenvalues of t, where μe
i = λe

i for all i. First, assume that f(σs) is

irreducible over Fq0 . Then f(σt) is also irreducible over Fq0 , and so is (σt)e =

te ∈Xσ. Further, each eigenvalue λe
i of f(σs) is contained in Fqn0

and in no

smaller field extension of Fq0 . Similarly, since t ∈Xσ, the μi are also in Fqn0
and no smaller field extension, so t is irreducible over Fq0 . Therefore,

|CXσ(σt)|= (qn0 − 1)/(q0 − 1) =
∣∣CXσ

(
f(σs)

)∣∣.
Moreover, since t ∈GLn(q0) is irreducible over Fq0 , the eigenvalues of t must

be of the form {μ1, μ
q0
1 , . . . , μ

qn−1
0
1 }, and so in fact there are at most e distinct

Xσ-classes in (σs)G1 ∩H1.

Now assume that f(σs) is block-diagonal of the form [A,B], where A

is irreducible over Fq0 of dimension n − k and where B is irreducible of

dimension k (where n − k �= k). By relabeling the eigenvalues of f(σs) if

necessary, we may assume that λe
1, . . . , λ

e
n−k are contained in Fqn−k

0
(and no

smaller field extension of Fq0), while the remainder are contained in Fqk0
(and
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no smaller field extension). Now the λe
i are also the eigenvalues of (σt)e = te,

and it follows that either t is irreducible or t is also block-diagonal of the

form [C,D], where C and D are irreducible over Fq0 of dimensions n− k

and k, respectively. However, t is not irreducible since it has eigenvalues

with distinct multiplicative orders. Therefore, t is of the form [C,D]; hence,

|CXσ(σt)| = |CXσ(f(σs))|. Moreover, since the eigenvalues of t are of the

form {
μ1, μ

q0
1 , . . . , μ

qn−k−1
0
1 , μn−k+1, . . . , μ

qk−1
0
n−k+1

}
,

it follows that there are at most e2 distinct Xσ-classes in (σs)G1 ∩H1. This

proves the claim.

Consequently, if f(σs) is irreducible, then

|(σs)G1 ∩H1| ≤ e|f(σs)Xσ |= e
[
Xσ :CXσ

(
f(σs)

)]
,

and thus

N ≤ e|Xσ||CG1(σs)|
|H1|

∣∣CXσ

(
f(σs)

)∣∣ = e2|Xσ|
|H1|

= e,

since |CG1(σs)|= e|CXσe (σs)|= e|CXσ(f(σs))| (see Lemma 2.13). The result

follows. Similarly, if f(σs) is of the form [A,B], then we replace e by e2,

and once again the result follows.

2.7. Computational methods

For small values of n and q, our general techniques are less effective, and

it is convenient to use a computer package such as Magma [4] to obtain the

desired results in these situations. Here our main result is the following.

Proposition 2.17. The conclusion to Theorem 2.3 holds for all (n, q)

with n≤ 10 and q ≤ f(n), where f(n) is defined as follows:

n 2 3 4 5 6 7 8 9 10

f(n) 128 16 9 4 4 2 2 2 2

The next result handles the exceptional cases in the statement of The-

orem 3. Here PSL2(9).2 ∼= S6, PSL3(4).21 is an extension of PSL3(4) by

a graph-field automorphism, and PSL4(3).22 ∼= 〈PSL4(3), ι〉, where ι is the

inverse-transpose graph automorphism.

Proposition 2.18. Let G be one of the following groups:

PSL2(9).2, PSL3(4).21, PSL4(2).2, PSL4(3).22.

Then either u(G)≥ 2, or G=PSL2(9).2 and (s(G), u(G)) = (2,0).
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Remark 2.19. For the relevant groups G in Proposition 2.18, one can

check that the G-classes C with the uniform spread 2 property are the fol-

lowing (here we adopt the standard ATLAS [15] notation for the conjugacy

classes in G):

G C

PSL3(4).21 6A,8A,8B,8C

PSL4(2).2 8A

PSL4(3).22 6P,8G,10B,10C,12D,12E,12F,18A,18B

To establish Propositions 2.17 and 2.18, we adopt methods similar to

those used in [7], the main difference being that we use Magma rather than

GAP. Let us briefly outline our basic approach.

Let G= 〈G0, g〉, and fix an element s ∈G0. Recall that we are interested

in computing ∑
H∈M(gs)

fpr(x,G/H),

where x ∈G has prime order and M(gs) is the set of maximal subgroups

in G containing gs. First, we use Magma to construct G0 as a permutation

group on (qn − 1)/(q − 1) points. (This is the representation of G0 on the

set of cosets of a maximal parabolic subgroup P1; it is the standard rep-

resentation of PSLn(q) in Magma.) We then use the Magma commands

AutomorphismGroup (which is based on the algorithm of Cannon and Holt

[13]) and PermutationGroup to obtain Aut(G0) as a permutation group of

reasonable degree. This is effective in most of the cases we consider in Propo-

sition 2.17. However, if G0 is large, say, G0 =PSL10(2) or PSL6(4), then it is

much more efficient to construct Aut(G0) directly, using the natural permu-

tation representation of PΓLn(q) = 〈PGLn(q), φ〉 on (qn− 1)/(q− 1) points.

(This is the subgroup of Aut(G0) generated by the inner, diagonal, and field

automorphisms of G0.) To do this, we first construct the direct product

A=PΓLn(q)×PΓLn(q) and the subgroup B = {(φx,φx−T ) | x ∈ PGLn(q)}
of A. Note that B ∼=PΓLn(q) and that the inverse-transpose automorphism

ι acts on B by swapping φx and φx−T . This gives Aut(G0) ∼= 〈B, ι〉 as a

permutation group of degree 2(qn − 1)/(q− 1).

Next, we identify G as a suitable subgroup of Aut(G0) (with the aid

of the command LowIndexSubgroups), and we compute representatives of

the conjugacy classes of both elements and maximal subgroups of G via
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the commands ConjugacyClasses and MaximalSubgroups, respectively. (The

latter denotes the Magma implementation of an algorithm of Cannon and

Holt [14].)

Let C be a set of representatives of the G-classes of maximal subgroups

of G, and let H ∈ C. It is straightforward to calculate the fixed point ratio

fpr(x,G/H) =
|xG ∩H|
|xG|

for all x ∈G. Indeed, we first compute a set of representatives for the H-

classes of H , and then we add up the lengths of the classes that are repre-

sented by G-conjugates of x. (These are determined using the IsConjugate

command.) This gives |xG ∩H|, and fpr(x,G/H) quickly follows.

For each H ∈ C, let NH be the number of distinct G-conjugates of H

containing gs. Then

NH = fpr(gs,G/H) · [G :H],

and we can compute

α(x) :=
∑

H∈M(gs)

fpr(x,G/H) =
∑
H∈C

NH · fpr(x,G/H)

for all x ∈G of prime order. If we can find an element gs ∈ gG0 such that

the maximum value of α(x) is less than 1/2 (as we run through a set of

G-class representatives of prime order), then u(G)≥ 2.

For the vast majority of the groups that we consider, in Proposition 2.17

there exists a suitable element gs with α(x) < 1/2 for all x ∈ G of prime

order. Indeed, the only exceptions are the groups appearing in the statement

of Proposition 2.18. For these groups, we attempt to show that u(G) ≥ 2

directly (which is expensive). Our strategy is to choose a good candidate

gs ∈G (based on the elements we use in the proof of Theorem 2.3 in Sections

3–6), and then we check that for all nontrivial x1, x2 ∈G, there exists y ∈
(gs)G such that

(11) G= 〈x1, y〉= 〈x2, y〉.

Of course, here we may assume that x1 and x2 have prime order. Further,

it is easy to see that it suffices to check that (11) holds when x2 belongs to

a set of representatives of the G-classes containing elements of prime order.
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§3. Diagonal automorphisms

Let G0 =PSLn(q), where n≥ 2 and q = pf for a prime p. Recall from Sec-

tion 2.1 that every automorphism of G0 is a product of the form idfg, where

i is inner, d is diagonal, and f and g are field and graph automorphisms,

respectively. More precisely,

Aut(G0) = (G0 �Z(n,q−1))� (Zf ×Za),

where a = 2 if n ≥ 3; otherwise, a = 1. Consequently, in order to prove

Theorems 2–4, we may assume that G= 〈G0, g〉, where g ∈Aut(G0) is one

of the following:

(i) g ∈ PGLn(q) is a diagonal automorphism;

(ii) g = σx, where σ is a nontrivial field automorphism and x ∈ PGLn(q);

(iii) g = ισx, where ι is the inverse-transpose graph automorphism, σ is a

nontrivial field automorphism, and x ∈ PGLn(q);

(iv) g = ιx, where ι is the inverse-transpose graph automorphism and x ∈
PGLn(q).

Theorem 3.1. Theorems 2–4 hold in case (i).

Proof. The proof of [7, Theorem 1.1] provides an explicit semisimple ele-

ment s ∈G0 such that

P(G0 = 〈x, y〉 | y ∈ sG0)> 2/3

for all nontrivial x ∈ G0. Moreover, since G ≤ PGLn(q), we observe that

there exists s1 ∈G such that G= 〈G0, s1〉 and sm1 = s for some integer m.

The proof of the above bound in [7] now goes through unchanged (see, e.g.,

[7, Proposition 5.23]), and we conclude that

P(G= 〈x, y〉 | y ∈ sG1 )> 2/3

for all nontrivial x ∈G. Therefore, Theorem 3 holds and Theorem 2 follows

in the usual way. (Note that u(G)≥ 3 in this case.)

Now let us turn to Theorem 4. In [23, Sections 4, 5] it is proved that if

Gi is a sequence of simple groups isomorphic to PSLni(qi), then u(Gi)→∞
if |Gi| →∞ (see also [27, Propositions 3.6 and 3.9]). As in [7], an explicit

semisimple element s ∈G0 =PSLn(q) is given in [23], and it is shown that

P(G0 = 〈x, y〉 | y ∈ sG0) is bounded below by a function of n and q, which

tends to 1 as n or q tend to infinity. In particular, if PSLni(qi) < Gi ≤
PGLni(qi), then we can choose s1 ∈Gi as in the previous paragraph so that

the argument in [23] also yields u(Gi)→∞.
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We will deal with cases (ii)–(iv) in the next three sections.

§4. Field automorphisms

In this section we consider the case G= 〈G0, g〉, where g = σx, with σ a

field automorphism of G0 of order e > 1 and x ∈ PGLn(q). Here q = qe0 for

some p-power q0, and by fixing a suitable basis for the natural G0-module

V , we may assume that σ is standard in the sense that σ : (aij) �→ (aq0ij ).

In addition, we may write x= δt, where t ∈G0 and δ is a diagonal matrix

of the form δ = [λ, In−1] (modulo scalars) for some λ ∈ F
∗
q . Therefore, G=

〈G0, g〉 = 〈G0, σδ〉, so without any loss of generality we may assume that

g = σδ.

The main result of this section is the following. (Recall that M(gs) is the

set of maximal subgroups of G containing gs.)

Theorem 4.1. Let G0 = PSLn(q), and let G = 〈G0, g〉, where g = σx,

with σ a nontrivial field automorphism of G0 and x ∈ PGLn(q). Assume

that G �=PSL2(9).2. Then there exists s ∈G0 such that

∑
H∈M(gs)

fpr(z,G/H)< 1/2

for all z ∈ G of prime order. In particular, u(G) ≥ 2, and u(G) → ∞ as

|G| →∞.

Our approach is based on the theory of Shintani descent (see Section 2.6).

Let X = PSLn(K) be the ambient simple algebraic group over the alge-

braic closure K of Fq. We may view σ as a Frobenius morphism of X with

fixed point subgroupsXσ =PGLn(q0) and Xσe =PGLn(q). By Lemma 2.13,

the corresponding Shintani map f provides a bijection between the set of

PGLn(q)-classes in the coset σPGLn(q) and the set of PGLn(q0)-classes in

PGLn(q0). As before, for s ∈G0 we abuse notation by writing f(σs) for a

representative of the PGLn(q0)-class corresponding to the PGLn(q)-class of

σs, so f(σs) is X-conjugate to (σs)e. In view of (6), we note that if s ∈G0,

then f(gs) = f(σδs) has determinant λα, where α= (q− 1)/(q0 − 1).

Lemma 4.2. Suppose that y ∈ PGLn(q0) has determinant λα. Then there

exists s ∈G0 such that f(gs) is PGLn(q0)-conjugate to y.

Proof. Since the Shintani map f is a bijection, the PGLn(q0)-class of y

corresponds to the PGLn(q)-class of σt for some t ∈ PGLn(q). Let μ be
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the determinant of t, and fix a generator ω for F
∗
q . Since f(σt) and y are

PGLn(q0)-conjugate, it follows that μα = λα, and thus μ = ω(q0−1)jλ for

some integer 0≤ j < α. Let x ∈ PGLn(q) be an element with determinant

ωj . Then (σt)x = σx−σtx and x−σtx has determinant λ. Therefore, x−σtx ∈
δG0, so there exists s ∈ G0 such that σx−σtx = σδs = gs ∈ G corresponds

to y under the Shintani correspondence.

We also need the following number-theoretical result. In the statement,

for a positive integer n we write n2 for the largest power of 2 dividing n.

In addition, recall that (a, b) denotes the greatest common divisor of the

positive integers a and b.

Lemma 4.3. Let q ≥ 2 be an integer. For all integers n,m≥ 1, we have

(qn − 1, qm − 1) = q(n,m) − 1;

(qn − 1, qm + 1) =

{
q(n,m) + 1 if 2m2 ≤ n2,

(2, q− 1) otherwise;

(qn + 1, qm + 1) =

{
q(n,m) + 1 if m2 = n2,

(2, q− 1) otherwise.

Proof. This is a straightforward calculation.

Proposition 4.4. Theorem 4.1 holds when n≥ 5.

Proof. Set y = [J2,A] ∈ PGLn(q0), where J2 denotes a standard unipotent

Jordan block of size 2 and A ∈GLn−2(q0) is a semisimple irreducible element

with determinant λα, where α= (q − 1)/(q0 − 1) as before. More precisely,

we take A to be a suitable power of a Singer cycle in GLn−2(q0) of order

qn−2
0 − 1, so A has order (qn−2

0 − 1)|λα|/(q0 − 1), where |λα| denotes the

multiplicative order of λα in the cyclic group F
∗
q0 . Note that if (n, q0) �= (8,2),

then the order of some suitable power of y is a primitive prime divisor

of qn−2
0 − 1 (see Section 2.5). In addition, y has determinant λα, so by

Lemma 4.2 there exists s ∈ G0 such that the corresponding Shintani map

sends the PGLn(q)-class of gs to the PGLn(q0)-class of y. In particular, y

and (gs)e are X-conjugate. We can write

(12) E = {1, ωk, ωq0k, ωq20k, . . . , ωqn−3
0 k}

for the set of eigenvalues of (gs)e, where ω is a generator of F
∗
qn−2
0

and

k = (q0 − 1)/|λα|.
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Our first task is to determine the maximal subgroups of G containing

gs; as before, we write M = M(gs) to denote this set of subgroups. (In

part (i) of the following lemma we use Pi to denote the G-stabilizer of an

i-dimensional subspace of the natural G0-module.)

Lemma 4.5. Suppose that H ∈M. Then one of the following holds.

(i) H is a maximal parabolic subgroup of type P1, P2, Pn−2, or Pn−1, and

there is exactly one subgroup of each type in M.

(ii) H is an imprimitive C2-subgroup, and one of the following holds.

(a) H is of type GL2(q) � Sn/2, and e ≥ (n− 2)/2. There is a unique

subgroup of this type in M.

(b) H is of type GL1(q) �Sn, where q is even, e is odd, and e≥ n− 2.

There are at most q0/2 subgroups of this type in M.

(iii) H is a subfield subgroup of type GLn(q1), where q = qr1, with r a prime

divisor of e. For each prime r, there are at most q0(q
n−2
0 − 1) corre-

sponding subfield subgroups in M.

Proof. By Corollary 2.15, there is a bijective correspondence between

the reducible subgroups in M and the reducible subgroups of PGLn(q0)

containing y. Therefore, the maximal parabolic subgroups P1, P2, Pn−2, and

Pn−1 are the only possibilities. Moreover, there is exactly one subgroup in

M of each type since y clearly fixes a unique i-dimensional subspace of the

natural PGLn(q0)-module for each i ∈ {1,2, n− 2, n− 1}.
For the remainder, let us assume that H ∈M is irreducible. Recall from

Section 2.3 that a maximal irreducible subgroup of G belongs to one of eight

subgroup collections, labeled Ci (where 2≤ i≤ 9). From the Shintani setup,

(gs)e is X-conjugate to y, so a suitable power of (gs)e, say, z = (gs)m
′e, is

a long root element (i.e., a transvection [J2, In−2]). This useful observation

allows us to restrict significantly the possibilities for H .

Suppose that H is a field extension subgroup of type GLn/k(q
k) for some

prime k. (Recall that these subgroups comprise Aschbacher’s C3 collection.)

By the proof of [38, Lemma 4.2], we have ν(x)≥ k for all x ∈H ∩PGL(V )

of prime order (see (4)), so z /∈H since ν(z) = 1. Similarly, by applying [38,

Lemma 3.7], we deduce that there are no C4- or C7-subgroups in M, while

C6-subgroups are ruled out by [10, Lemma 6.3].

Next, let us turn our attention to the imprimitive C2-subgroups in M.

If (n, q0) �= (8,2), then a suitable power of y, say, ym, has order r, where

r is a primitive prime divisor of qn−2
0 − 1. Set x = (gs)me, so x has order
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r, and note that r ≥ n− 1 since r ≡ 1 (mod n− 2). On the other hand, if

(n, q0) = (8,2), then y18 has order 7, and we set x= (gs)18e.

Suppose that H ∈M is of type GLn/t(q) �St with t≥ 2 an integer dividing

n, so H is the G-stabilizer of a decomposition of V of the form

(13) V = V1 ⊕ V2 ⊕ · · · ⊕ Vt,

where dimVi = n/t for all i.

First, we claim that x fixes each of the subspaces in the above decom-

position (13). To see this, suppose that x induces a nontrivial permutation

π ∈ St on the Vi. Since x has prime order r ≥ n− 1, it follows that n = t

and that r ∈ {n− 1, n}. Further, since z is a transvection, it induces a non-

trivial permutation ρ ∈ St on the 1-spaces. (In fact, we must have p = 2

with ρ a transposition.) Now ρ and π commute (since x and z are both

powers of gs), but this is a contradiction since CSt(π) = 〈π〉. This justifies

the claim.

Next, we reduce to the case dimVi ≤ 2. To do this, first observe that x

and (gs)e commute, so (gs)e fixes each of the eigenspaces of x (over the

algebraic closure K). Further, x is semisimple with n− 1 distinct eigenval-

ues (1 occurs with multiplicity 2), so (gs)e fixes all of the subspaces in the

decomposition (13) on which x acts nontrivially. (Also recall that x fixes

each Vi by the previous claim.) Seeking a contradiction, let us assume that

dimVi ≥ 3. Here x acts nontrivially on each Vi, so (gs)e fixes each Vi. Next,

observe that if ξ ∈ Fq is an eigenvalue of (gs)e, then gs= σδs sends a cor-

responding ξ-eigenvector to a ξq0 -eigenvector of (gs)e. Indeed, if v ∈ Vi is a

ξ-eigenvector for (gs)e, then

(v · gs) · (gs)e =
(
v · (gs)e

)
· gs= (ξv) · gs= ξq0(v · gs).

In particular, gs maps 1-eigenvectors to 1-eigenvectors. Without loss of gen-

erality, we may assume that V1 is a subspace containing a 1-eigenvector.

Since the geometric multiplicity of 1 as an eigenvalue of (gs)e on V is 1,

it follows that the algebraic multiplicity of 1 as an eigenvalue of (gs)e on

V1 is 2. Therefore, gs fixes V1, but this contradicts our earlier observation

that the only parabolic subgroups containing gs are of type P1, P2, Pn−1,

and Pn (obtained via Corollary 2.15). For the remainder, we may assume

that dimVi ≤ 2.

First, assume that dimVi = 1. Here H is of type GL1(q) �Sn, and we note

that q is even since H contains the transvection z = (gs)m
′e. Recall that
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(gs)e fixes each Vi in (13) on which x acts nontrivially, so all the eigenval-

ues of (gs)e are in Fq. (Hence, e≥ n− 2 since the eigenvalues of (gs)e are

contained in Fq0n−2 and in no proper subfield (see (12)).) In particular, the

Vi are simply the eigenspaces of (gs)e corresponding to the n− 2 eigenval-

ues ξ ∈ Fq with ξ �= 1, together with the 2-dimensional fixed space of x, say,

CV (x) = V1 ⊕ V2. Now z (and therefore (gs)e and also gs) interchanges V1

and V2, and so e must be odd.

We claim that there are precisely q0/2 distinct possibilities for the 1-

spaces {V1, V2} in the 2-dimensional fixed space of x, so gs can belong to

at most q0/2 distinct C2-subgroups of type GL1(q) � Sn. Fix an Fq-basis

{u, v} for CV (x), and suppose that V1 = 〈au+ bv〉 and that V2 = 〈cu+ dv〉
for some a, b, c, d ∈ Fq. Since (gs)2 fixes V1 and V2, we may assume that

a, b, c, d ∈ Fq0 . (Note that e is odd and that 〈ξ(au+ bv)〉= 〈au+ bv〉, 〈ξ(cu+
dv)〉= 〈cu+ dv〉 for all ξ ∈ F

∗
q .) Evidently, there are q0 + 1 possibilities for

V1: either V1 = 〈u+ ξv〉 for some ξ ∈ Fq0 , or V1 = 〈v〉. Now q0 is even and

(gs)e interchanges V1 and V2, so there are q0/2 possibilities for the pair

{V1, V2}, as claimed.

To complete the analysis of C2 subgroups, let us assume that dimVi = 2.

By Corollary 2.15, gs belongs to a unique maximal parabolic subgroup of

G of type P2, so there is a unique 2-dimensional subspace of V fixed by gs.

Recall that (gs)e fixes each Vi on which x acts nontrivially. Clearly, either

x acts nontrivially on each Vi, or one of the Vi coincides with CV (x). It fol-

lows that each eigenvalue of (gs)e belongs to Fq2 (and thus e≥ (n− 2)/2).

Now, if every nontrivial eigenvalue of x belongs to Fq2 \ Fq, then the Vi

are 2-spaces fixed by (gs)e. In particular, the decomposition is unique, and

thus gs belongs to a unique C2-subgroup of type GL2(q) � Sn/2. Finally, let

us assume that all the eigenvalues of (gs)e are in Fq. By Galois theory,

gs acts transitively on the set of roots of the minimal polynomial of (gs)e

that are not equal to 1, which immediately implies that gs acts transi-

tively on the n− 2 nontrivial eigenvalues of (gs)e. In particular, gs induces

an (n− 2)-cycle on the corresponding eigenspaces {〈vi〉 | 1≤ i≤ n− 2}, so
there is a unique gs-invariant partition of 〈v1〉 ⊕ · · · ⊕ 〈vn−2〉 into 2-spaces.

The remaining 2-space is CV (x), so gs fixes a unique decomposition of type

(13), and once again we conclude that gs belongs to a unique C2-subgroup
of type GL2(q) � Sn/2.

We have now dealt with the subgroups in the C1,C2,C3,C4,C6, and C7
collections. Clearly, there are no C8-subgroups of type Oε

n(q) (with q odd)

in M since these subgroups do not contain transvections. To eliminate any



68 T. C. BURNESS AND S. GUEST

subgroups in the C9 collection, we can either appeal to [26, Theorem 7.1]

(if n≥ 6) or use the main theorem of [30]. In this way, we deduce that any

additional H ∈M is one of the following:

(i) H is a C5-subgroup of type GLn(q1), with q = qr1 for some prime

r;

(ii) H is a C8-subgroup of type Spn(q), with n even;

(iii) H is a C8-subgroup of type GUn(q
1/2).

We claim that there are no subgroups in M of type (ii) or (iii). To see

this, first suppose that H ∈ M is a C8-subgroup of type Spn(q). Recall

that the set of eigenvalues of (gs)e is given in (12), where F
∗
qn−2
0

= 〈ω〉 and

k = (q0 − 1)/|λα|. The presence of the J2 block in y implies that (gs)e

is in PSpn(q), so we must have ξ−1 ∈ E for all ξ ∈ E . However, ω−k /∈ E .
Indeed, if there exists 1 ≤ i ≤ n− 3 such that ω−k = ωqi0k, then qi0k ≡ −k

(mod qn−2
0 − 1), and thus qn−2

0 − 1 divides (qi0+1)k. This is a contradiction

since k ≤ q0 − 1. We conclude that there are no subgroups of type Spn(q)

in M.

Now suppose that H ∈M is a C8-subgroup of type GUn(q
1/2). Then q is

an even power of p, and ξ−q1/2 ∈ E for all ξ ∈ E . In particular, there exists

a nonnegative integer i≤ n− 3 such that ω−qf0 k = ωqi0k, where f = e/2, so

qn−2
0 − 1 divides k(qf0 + qi0). Since k ≤ q0 − 1, we have qf0 ≥ qn−3

0 , and thus

f ≥ n − 3 ≥ i. But (qn−2
0 − 1, k(qf0 + qi0)) ≤ k(qn−2

0 − 1, qf−i
0 + 1), and by

Lemma 4.3 this is at most k(2, q0 − 1) unless 2(f − i)2 ≤ (n− 2)2, in which

case it is at most k(q
(f−i,n−2)
0 + 1) ≤ k(q

(n−2)/2
0 + 1) < qn−2

0 − 1. This con-

tradicts the fact that qn−2
0 − 1 divides k(qf0 + qi0), so there are no subgroups

of type GUn(q
1/2) in M.

Finally, suppose that H ∈ M is a subfield subgroup of type GLn(q1),

where q = qr1 with r prime. Since y ∈ PGLn(q1) ∩ PGLn(q0), we quickly

deduce that Fq0 ∩ Fq1 = Fq0 , so q1 = qm0 for some m≥ 1. Therefore, e=mr

(recall that q = qe0), and thus the number of possibilities for r is equal to

the number of distinct prime divisors of e (which is less than log(e)+1). By

Proposition 2.16(i), there are at most |CPGLn(q0)(y)|= q0(q
n−2
0 − 1) subfield

subgroups of type GLn(q1) in M.

We are now in a position to proceed with the proof of Proposition 4.4.

Let z ∈G be an element of prime order, and set

(14) α(z) =
∑
H∈M

fpr(z,G/H).
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For the parabolic subgroups in M, Theorem 2.7 gives fpr(z,G/H)< q−1 +

q1−n if H is of type P1 or Pn−1, and fpr(z,G/H)< 2q−2 if H is of type P2

or Pn−2. Therefore, the contribution to α(z) from the reducible subgroups

in M is less than

2q−1 + 2q1−n + 4q−2.

For the remaining subgroups H ∈M, Corollary 2.9 states that

(15) fpr(z,G/H)<
((qn−1 − 1)(qn − 1)

q− 1

)−(1/2)+(1/n)
= f(n, q).

In view of Lemma 4.5, using the fact that there are less than log(e) + 1

distinct prime divisors of e, we conclude that

α(z)< 2q−1 + 2q1−n + 4q−2

(16)

+
(1
2
q0 + 1+

(
log(e) + 1

)
q0(q

n−2
0 − 1)

)
· f(n, q).

If e ≥ 3, then this bound implies that α(z) < 1/2 unless (n, q0, e) =

(5,2,3). Here we may omit the term log(e), and this gives α(z) < 1/2 as

required. Similarly, if e= 2 and q0 ≥ 3, then the above bound (again, with

log(e) omitted) is sufficient unless (n, q0) = (5,3).

Suppose that (n, q0, e) = (5,3,2). As above, we calculate that the contri-

bution to α(z) from nonsubfield subgroups is less than 0.285. Therefore, we

need to show that the remaining contribution, which we will denote by β(z),

is at most 0.215. Let H ∈M(gs) be a subfield subgroup of type GL5(3).

Since β(z)≤ 3(33 − 1) · fpr(z,G/H), it suffices to show that fpr(z,G/H)≤
0.0027 for all z ∈H of prime order. This is a straightforward calculation.

For example, suppose that z ∈H is semisimple. If ν(z)≥ 2 (see (4)), then

|zG|> (1/2)312 by [10, Corollary 3.38], and the desired bound follows from

Theorem 2.6. Also, if ν(z) = 1, then

fpr(z,G/H) =
|zH |
|zG| =

|GL5(3)|
|GL4(3)||GL1(3)|

· |GL4(9)||GL1(9)|
|GL5(9)|

=
1

4941
.

The other cases are very similar.

Next, suppose that q = 4. If n = 5 or 6, then Proposition 2.17 applies,

so we will assume that n ≥ 7. Let k < n/2 be maximal such that n− k is

odd and (n,n− k) = 1. We claim that k ≥ n/4. If n is even, then take k to

be a prime in the range n/4< k < n/2 (such a prime exists by Bertrand’s
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postulate), so n− k is odd and (n,n− k) = 1. Now suppose that n is odd.

(We may as well assume that n is reasonably large, say, n > 100.) Let k′ be
a prime in the range n/8 < k′ < n/4, and set k = 2k′. Then n− k is odd,

and we may choose k′ so that it does not divide n. (Indeed, if k′ divides
n, then n= 5k′ or 7k′, but there are at least three possibilities for k′ since
we are assuming that n > 100 (see, e.g., [42]).) Therefore, (n,n− k) = 1 as

required.

Let y = [A,B] ∈GLn(2), where A ∈GLk(2) and B ∈GLn−k(2) are Singer

cycles, so |A| = 2k − 1 and |B| = 2n−k − 1. Let d be the largest divisor of

2n−k−1 that is relatively prime to 2i−1 for all 1≤ i < n−k. Note that every

prime divisor of d is a primitive prime divisor of 2n−k − 1 and is therefore

congruent to 1 modulo n−k. Since n−k ≥ 5 is odd, [24, Lemma 2.1] implies

that d > 2(n−k)+1. In addition, since k < n−k, it follows that d and 2k−1

are coprime and that some power of y has order d. Moreover, since n− k is

odd, it follows that a primitive prime divisor of 2n−k − 1 is also a primitive

prime divisor of 4n−k − 1. Now, if d is a prime, then a power of y has order

a primitive prime divisor r of 4n−k − 1, with r > 2(n− k) + 1. Also, if d is

composite, then some power of y has order a product of two (not necessarily

distinct) primitive prime divisors of 4n−k − 1. Consequently, Theorem 2.12

applies, and we obtain a short list of possible subgroups H ∈M, where M
is the set of maximal subgroups of G that contain gs (using the Shintani

correspondence, we choose s ∈G0 so that (gs)2 is X-conjugate to y):

(i) H is a parabolic subgroup of type Pk or Pn−k; there is exactly one

subgroup of each type in M;

(ii) H is a C8-subgroup of type GUn(2) or Spn(4);

(iii) H is a subfield subgroup of type GLn(2); by Proposition 2.16, there

are at most |CPGLn(2)(y)|= (2n−k − 1)(2k − 1) subgroups of this type

in M.

In fact, it is easy to see that there are no C8-subgroups in M. Indeed, if

H is of type GUn(2), then |H| is not divisible by a primitive prime divisor

of 2n−k − 1. Similarly, we can eliminate subgroups of type Spn(4) since y is

irreducible on an odd-dimensional subspace of V . We deduce that if z ∈G

has prime order, then

α(z)< 41−k + (2n−k − 1)(2k − 1)f(n,4)≤ 41−n/4 + 2nf(n,4)< 1/2

for all n≥ 8, where f(n,4) is defined as in (15). Finally, if n= 7, then k = 3

and the first inequality yields α(z)< 1/2 as required.
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To complete the proof of Proposition 4.4, it remains to show that u(G)→
∞ as |G| →∞. If q > 49, then the bound in (16) implies that α(z)< q−1/4

for all n ≥ 5, so we may assume that q (and therefore e) is bounded and

that n tends to infinity.

Assume that n is large, and let k be an integer such that n/4 < k <

n/2, n − k is odd, and (n,k) = (n − k, e) = 1. (Note that k exists since

e is bounded.) Set y = [A,B] ∈ PGLn(q0), where A ∈ GLk(q0) and B ∈
GLn−k(q0) are irreducible. (Take suitable powers of Singer cycles so that

det(y) = λα.) Choose s ∈G0 such that (gs)e is X-conjugate to y.

There is a suitable power of (gs)e, say, x = (gs)me, such that x has

order r, where r is a primitive prime divisor of qn−k
0 − 1. Moreover, since

(n− k, e) = 1, it follows that r is a primitive prime divisor of qn−k − 1. Now

[24, Lemma 2.1] implies that either r > 2(n− k)+ 1 or some other power of

(gs)e has order r′, with r′ a product of two (not necessarily distinct) prim-

itive prime divisors of qn−k − 1. In particular, by combining Theorem 2.12

and Corollary 2.15, we see that the only possibilities for H ∈ M are the

following.

(i) A maximal parabolic subgroup of type Pk or Pn−k; there is exactly one

subgroup of each type in M.

(ii) A C8-subgroup of type Spn(q), O
ε
n(q), or GUn(q

1/2).

(iii) A subfield subgroup of type GLn(q1), where q = qa1 for some prime

divisor a of e.

Since r is a primitive prime divisor of qn−k − 1, and we have chosen k so

that n−k is odd, it follows that x does not belong to a C8-subgroup of type

Spn(q) or O
ε
n(q), so there are no such subgroups inM. Next, we observe that

there are no C8-subgroups of type GUn(q
1/2) in M. Since r is a primitive

prime divisor of qn−k − 1, it follows that r does not divide |PGUn(q
1/2)|.

Indeed, suppose that r divides qj/2 − (−1)j for some 2≤ j ≤ n. If j is even,

then r divides qj/2 − 1, which is absurd since r is a primitive prime divisor

of qn−k − 1. Similarly, if j is odd, then Lemma 4.3 implies that r divides

(qj/2 + 1, qn−k − 1) = (2, q− 1), which once again is a contradiction.

Finally, note that for each prime divisor a of e, there are at most

|CPGLn(q0)(y)| = (qn−k
0 − 1)(qk0 − 1)/(q0 − 1) < qn/e subfield subgroups of

type GLn(q1) (where q = qa1) in M (see Proposition 2.16(i)). Therefore, by

applying Theorem 2.7, we conclude that if n is sufficiently large and z ∈G

has prime order, then

α(z)< 2q−k + 2qk−n +
(
log(e) + 1

)
qn/e · f(n, q).
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Now f(n, q)< q3−n−2/n and q is bounded; hence, α(z)→ 0 as n→∞, and

the result follows.

To complete the proof of Theorem 4.1, it remains to deal with the small-

dimensional groups with n≤ 4.

Proposition 4.6. Theorem 4.1 holds when n= 4.

Proof. In view of Proposition 2.17, we may assume that q ≥ 16. Take

y = [A,μ] ∈ PGL4(q0), where A ∈GL3(q0) is irreducible of order q30 − 1 and

μ = λα/det(A). By Lemma 4.2, there exists s ∈ G0 such that (gs)e is X-

conjugate to y. Note that a suitable power of (gs)e, say, x = (gs)me, has

order r, where r is a primitive prime divisor of q30 − 1.

Let M be the set of maximal subgroups of G containing gs, and let

H ∈M. We claim that one of the following holds:

(i) H is a parabolic subgroup of type P1 or P3; there is a unique subgroup

of each type in M;

(ii) e≡ 0 (mod 3), and H is a C2-subgroup of type GL1(q) � S4; there is a

unique such subgroup in M;

(iii) H is a subfield subgroup of type GL4(q1), where q = qa1 for some prime

divisor a of e; for each q1, there are at most |CPGL4(q0)(y)| = q30 − 1

such subgroups in M.

By Corollary 2.15, the only reducible subgroups in M are parabolic of

type P1 or P3; there are unique such subgroups because y fixes a unique

i-dimensional subspace of the natural PGL4(q0)-module, for i = 1,3. Part

(iii) on subfield subgroups follows in the usual way from Proposition 2.16(i).

Next, suppose that H ∈ M is a C2-subgroup. If (3, e) = 1, then r is a

primitive prime divisor of q3 − 1, and thus C2-subgroups are ruled out by

the main theorem of [25]. Now assume that e is a multiple of 3, so the

eigenvalues of (gs)e are contained in Fq. Note that r ≡ 1 (mod 3), and thus

r ≥ 7. In particular, if (gs)e stabilizes a decomposition V = V1⊕V2⊕V3⊕V4,

then x must fix each Vi, so the Vi are simply the eigenspaces of x, and we

conclude that there is a unique C2-subgroup of type GL1(q) � S4 in M.

Now assume that gs stabilizes a decomposition V = V1 ⊕ V2 with

dimVi = 2. By the same reasoning, x must fix V1 and V2. Without loss

of generality, let us assume that the restriction of x to V1 has eigenvalues 1

and ξ, while x restricted to V2 has eigenvalues ξq0 and ξq
2
0 . As observed in

the proof of Lemma 4.5, since gs commutes with x, it sends 1-eigenvectors
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of x to 1-eigenvectors of (gs)e, and thus gs fixes V1. This is a contradic-

tion because we have already observed that gs does not fix a 2-dimensional

subspace of V . Therefore, there are no C2-subgroups of type GL2(q) � S2

in M.

The C4,C6, and C7 families are empty, and the same is true for the C9
family since q �= p (see [5, Table 7.9]). We can quickly eliminate C3-subgroups
of type GL2(q

2) because the eigenvalues of (gs)e do not consist of two pairs,

with elements in each pair having the same multiplicative order (as elements

of F∗
q3). Therefore, it remains to deal with the subgroups in C8.

Suppose that H ∈M is a C8-subgroup of type GU4(q
1/2), so q = qe0 is an

even power of p, and we may write q1/2 = qf0 . Let E = {μ,ω,ωq0 , ωq20} be the

set of eigenvalues of (gs)e, where F
∗
q30

= 〈ω〉, and let T be a maximal torus

of H containing (gs)e. The conjugacy classes of maximal tori of GU4(q
f
0 )

are parameterized by the conjugacy classes in S4, which is the Weyl group

of the corresponding root system of type A3. For example, the class of

transpositions in S4 corresponds to a class of maximal tori with structure

Zi ×Zj ×Zj , where i= q2f0 − 1 and j = qf0 +1. The eigenvalues of elements

in such a torus are of the form {a,aqf0 , b, c}, where a has multiplicative order

dividing q2f0 − 1 and b and c have multiplicative order dividing qf0 + 1. In

particular, the two eigenvalues corresponding to the q2f0 − 1 factor have the

same multiplicative order. Now three of the four eigenvalues of (gs)e have

multiplicative order q30 − 1, so these must correspond to cyclic factors of

T of order q4f0 − 1 or q2f0 − 1. Therefore, the only possible tori are of the

form q4f0 − 1 or (q2f0 − 1)× (q2f0 − 1), but the eigenvalues of any element in

such a torus either all have the same multiplicative order or occur in pairs

having the same order. This contradiction rules out C8-subgroups of type

GU4(q
1/2) in M.

Next, assume that H ∈ M is a C8-subgroup of type Sp4(q). Now

(gs)e(q0−1) has eigenvalues {1, ξ, ξq0 , ξq20} for some ξ ∈ Fq30
of multiplicative

order q20 + q0+1, but this is a contradiction since the nontrivial eigenvalues

of semisimple elements in H∩G0 occur in pairs with the same multiplicative

order. The same argument also rules out C8-subgroups of type Oε
4(q).

Putting all this together, and applying Corollary 2.9 and Theorem 2.7,

we deduce that if z ∈G has prime order, then

α(z)< 2q−1 + 2q−3 +
(
1 + (1 + log(e))(q30 − 1)

)
· f(4, q),
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with f(4, q) defined in (15). If e ≥ 3, then this bound implies that α(z) <

1/2. (Recall that we are assuming that q ≥ 16.) Now, if e = 2, then by

Proposition 2.16(ii) we may replace the term (1 + (1 + log(e))(q30 − 1)) in

the above bound by e2 = 4, and subsequently we deduce that α(z)< 0.187

for all q0 ≥ 4. Finally, the reader can check that the above bounds imply

that α(z)< q−1/4 for all q > 27; hence, u(G)→∞ as q→∞.

Proposition 4.7. Theorem 4.1 holds when n= 3.

Proof. If q ≤ 16, then the result follows from Proposition 2.17, so let us

assume that q ≥ 25. In fact, if q ≤ 49, then the desired result can be verified

using Magma, so we will assume that q > 49. Set y = [A,μ] ∈ PGL3(q0),

where A ∈GL2(q0) is irreducible of order q20 − 1 and where μ= λα/det(A),

and fix s ∈ G0 such that (gs)e is X-conjugate to y. As before, let M be

the set of maximal subgroups of G containing gs. We claim that if H ∈M,

then one of the following holds:

(i) H is a parabolic subgroup of type P1 or P2; M contains a unique

subgroup of each type;

(ii) e is even, and H is a C2-subgroup of type GL1(q) �S3; there is a unique

such subgroup in M if q0 �= 2, and there are at most three when q0 = 2;

(iii) H is a subfield subgroup of type GL3(q1), where q = qa1 for some prime

divisor a of e; for each q1, there are at most |CPGL3(q0)(y)| = q20 − 1

such subgroups in M;

(iv) H is a C8-subgroup of type GU3(q
1/2) or O3(q). In both cases, there

are at most q20 − 1 such subgroups in M.

The argument here is very similar to the one given in the proof of Propo-

sition 4.6, so we will give details only for C2- and C9-subgroups. (Note that

in items (iii) and (iv), we use Proposition 2.16(i) to bound the number of

subgroups of the given type in M.)

Suppose that H ∈M is a C2-subgroup of type GL1(q) � S3; say, H pre-

serves the decomposition V = V1 ⊕ V2 ⊕ V3. If e is odd, then A ∈ GL2(q)

is irreducible, so (gs)e must swap two of the Vi. Therefore, |(gs)e| divides
2(q − 1), but this is a contradiction since Lemma 4.3 implies that (q20 −
1,2(qe0 − 1))≤ 2q0 − 2< q20 − 1. Now assume that e is even. If q0 = 2, then

Proposition 2.16(i) implies that there are at most |CPGL3(q0)(y)| = 3 sub-

groups of type GL1(q) � S3 in M, so let us assume that q0 > 2. Since e is

even, the eigenvalues of (gs)e are in Fq. Now |(gs)e|= q20 − 1> 3, so either
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(gs)2e or (gs)3e fixes each Vi; hence, the Vi are simply the (distinct) Fq-

eigenspaces of this element. It follows that there is a unique such subgroup

in M.

Finally, suppose that H ∈ M is a C9-subgroup. Since q �= p, the only

possibility is q = p2 (so q0 = p and e= 2), with p≡ 2,3 (mod 5) (p �= 3), and

H has socle A6 (see [5, Table 7.4]). We are assuming that q > 49, so the

congruence condition implies that q0 ≥ 13. By considering the eigenvalues

of (gs)2, we deduce that |(gs)2| ≥ 2q0 + 2≥ 28, but no element in Aut(A6)

has order greater than 10, so there are no C9-subgroups in M.

Let z ∈G be an element of prime order. By applying Theorem 2.7 and

Lemma 2.10, we deduce that

α(z)< 2q−1 + 2q−2 +
(log(e) + 1)(q20 − 1) + 3d− 3

q2 + q+ 1

+
2(3, q− 1)(q20 − 1)(d− 1)

q1/2(q+ 1)
,

where d= (2, e). In particular, if e≥ 3, then α(z)< 1/2 for all q > 49. Now

assume that e= 2. By applying Proposition 2.16(ii), we have

α(z)< 2q−1 + 2q−2 +
q+ 2

q2 + q+ 1
+

(3, q− 1)(q+ 3)

q1/2(q+ 1)
,

which is sufficient for all q > 49. In addition, we observe that α(z)< q−1/4

for all q > 121, whence α(z)→ 0 as q→∞.

Proposition 4.8. Theorem 4.1 holds when n= 2.

Proof. Here we may assume that q ≥ 169 (see Proposition 2.17). Let y ∈
PGL2(q0) be an irreducible element with determinant λα, and note that

|y| ≥ (q0+1)/(2, q0− 1). By Lemma 4.2, there exists s ∈G0 such that (gs)e

and y are X-conjugate. As usual, let M be the set of maximal subgroups of

G containing gs. We claim that if H ∈M, then one of the following holds:

(i) H is a C2-subgroup of type GL1(q) � S2; either e is even, q0 �= 3, and

there is a unique such subgroup in M, or q0 = 3 and there are at most

four;

(ii) H is a C3-subgroup of type GL1(q
2), and there is at most one subgroup

of this type in M;

(iii) H is a subfield subgroup of type GL2(q1), where q = qa1 for some prime

divisor a of e. There are at most q0 + 1 such subgroups in M.
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To see this, first observe that there are no reducible subgroups in M
since y is irreducible, while the C4, C6, C7, and C8 families are empty. If

H is a C3-subgroup of type GL1(q
2), then fpr(y,G/H) = 2/(q(q − 1)) and

[G :H] = q(q−1)/2, so y (and thus gs) is contained in a unique C3-subgroup.
As usual, the claim for subfield subgroups follows from Proposition 2.16(i)

since |CPGL2(q0)(y)|= q0 + 1.

Suppose that H ∈M is a C9-subgroup. Here the only possibility is q = p2

(so q0 = p and e= 2), with p≡±3 (mod 10), and H has socle A5. As pre-

viously stated, we may assume that q0 ≥ 13, and thus |(gs)e| ≥ 7. However,

no element in S5 has order greater than 6, so there are no such subgroups

in M.

Finally, suppose that H is a C2-subgroup of type GL1(q) �S2; say, H pre-

serves the decomposition V = V1 ⊕ V2. If q0 = 3, then Proposition 2.16(i)

implies that there are at most |CPGL2(q0)(y)|= 4 subgroups of this type in

M, so let us assume that q0 �= 3. If e is even, then (gs)2e fixes each Vi, so V1

and V2 are the eigenspaces of (gs)2e (note that the eigenvalues are distinct

since q0 �= 3), and thus M contains a unique subgroup of this type. Now

assume that e is odd. Here (gs)e must swap V1 and V2, so |(gs)e| divides
2(q − 1). This is a contradiction if q0 is even since |(gs)e| = q0 + 1. Now

assume that q0 is odd, so |(gs)e| ≥ (q0+1)/2. The previous divisibility con-

dition implies that q0 is a Mersenne prime. Therefore, 2(q− 1)≡ 4 (mod 8),

and thus the same divisibility criterion implies that q0 = 7. Here a maximal

C2-subgroup of PGL2(q) is a dihedral group of order 2(7e−1). In particular,

since 7e − 1 is indivisible by 4 (recall that e is odd), and the exponent of

the dihedral group is 7e − 1, it follows that (gs)e is not contained in H .

Let z ∈ G be an element of prime order, and suppose that H ∈ M.

According to [35, Theorem 1], either fpr(z,G/H) ≤ 2/(q + 1), or H is of

type GL2(q
1/2) and

fpr(z,G/H)≤ 2 + q1/2(q1/2 + 1)

q1/2(q+ 1)
.

Therefore,

α(z)≤
2(q0 + 1)

(
log(e) + 2− d

)
+ 10

q+ 1
+(d−1)(q0+1) ·

(2 + q1/2(q1/2 + 1)

q1/2(q+ 1)

)

for all z ∈ G of prime order, where d = (2, e). In particular, if e ≥ 3 and

q ≥ 169, then α(z)< 1/2 as required. Finally, if e= 2 (and q ≥ 169 so q0 �= 3),
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then by applying Proposition 2.16(ii), we deduce that

α(z)≤ 4

q+ 1
+ 2

(2 + q1/2(q1/2 + 1)

q1/2(q+ 1)

)
< 1/2.

In addition, the above bounds imply that α(z) < q−1/7 for all q ≥ 169,

whence u(G)→∞ as q→∞.

This completes the proof of Theorem 4.1.

§5. Graph-field automorphisms

Here n≥ 3, andG= 〈G0, g〉, with g = ισx, where ι is the inverse-transpose

graph automorphism of G0, σ is a standard field automorphism (of order

e > 1), and x ∈ PGLn(q). In particular, q = qe0, and we note that ισ = σι.

As before, we may replace x by δ = [λ, In−1] for some λ ∈ F
∗
q . The idea is to

modify the approach used in Section 4, based on Shintani descent.

Let K be the algebraic closure of Fq, and set X =PSLn(K). We may view

ισ as a Frobenius morphism of X . As stated in Lemma 2.13, the associated

Shintani map provides a bijective correspondence between the set of X(ισ)e-

classes in the coset ισX(ισ)e and the set of Xισ-classes in Xισ =PGUn(q0).

If e is even, then X(ισ)e =Xσe = PGLn(q), and we can proceed as in Sec-

tion 4. However, if e is odd, then we cannot realize PGLn(q) as the set

of fixed points in X of some power of ισ. Indeed, X(ισ)2m+1 = Xισ2m+1 =

PGUn(q
2m+1
0 ) for all m. Therefore, a modified approach is required to han-

dle this case.

The main result of this section is the following.

Theorem 5.1. Let G0 =PSLn(q), and let G= 〈G0, g〉, where n≥ 3 and

g = ισx is the product of the inverse-transpose graph automorphism ι, a

standard field automorphism σ of order e > 1 and x ∈ PGLn(q). If we

assume that G �=PSL3(4).21, then there exists s ∈G0 such that

(17)
∑

H∈M(gs)

fpr(z,G/H)< 1/2

for all z ∈G of prime order. In particular, u(G) ≥ 2 for all G. Moreover,

u(G) is bounded as |G| →∞ if and only if q is bounded and ne is odd.

Remark 5.2. The excluded case G= PSL3(4).21 is a genuine exception

to the bound in (17), but it is easy to check that u(G) ≥ 2 (see Proposi-

tion 2.18).
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As previously remarked, the analysis here depends on the parity of e

(where e is the order of the field automorphism σ involved in g).

5.1. σ has even order

Let f be the Shintani map from the set of PGLn(q)-classes in the coset

ισPGLn(q) to the set of PGUn(q0)-classes in PGUn(q0). We start with an

analogue of Lemma 4.2.

Lemma 5.3. With the notation above, let α = −(q − 1)/(q0 + 1), and

suppose that y ∈ PGUn(q0) has determinant λα. Then there exists s ∈ G0

such that f(gs) is PGUn(q0)-conjugate to y.

Proof. Since f is a bijection, the PGUn(q0)-class of y corresponds to the

PGLn(q)-class of ισt for some t ∈ PGLn(q). Let μ be the determinant of t,

and fix a generator ω for F∗
q . Now

(ισt)e = t(ισ)
e−1

t(ισ)
e−2 · · · tισt,

and det t(ισ)
j
= μ(−q0)j , so f(ισt) has determinant μα. Since f(ισt) and y

are PGUn(q0)-conjugate, it follows that μ
α = λα, and thus μ= ω(q0+1)jλ for

some integer 0≤ j < α. Let x ∈ PGLn(q) be an element with determinant

ω−j . Then (ισt)x = ισx−ισtx, and x−ισtx has determinant λ. Therefore,

x−ισtx ∈ δG0, so there exists s ∈ G0 such that ισx−ισtx = ισδs = gs ∈ G

corresponds to y under the Shintani correspondence.

Proposition 5.4. Theorem 5.1 holds when e is even and n≥ 5.

Proof. This is very similar to the proof of Proposition 4.4. Set y = [A,B] ∈
PGUn(q0), where A ∈GUn−2(q0) is a regular semisimple element of order

(qn−2
0 − (−1)n)|λα|/(q0+1) and determinant λα (here α=−(q−1)/(q0+1),

as in Lemma 5.3), and B ∈GU2(q0) is a unitary transvection. Note that if

n is odd, then A is irreducible over Fq20
, while A splits into two irreducible

blocks of dimension n/2− 1 when n is even. Since A (and therefore y) has

determinant λα, a combination of Lemmas 2.13 and 5.3 implies that there

exists s ∈G0 such that (gs)e and y are X-conjugate. If (n, q) = (6,4), then

Proposition 2.17 applies, so we may assume that (n, q) �= (6,4).

To determine the subgroups in M=M(gs), we proceed as in the proof of

Lemma 4.5. First, observe that a suitable power of (gs)e is a transvection;

this immediately eliminates the subgroups in the C3, C4, C6, C7, and C9
collections, and we can also rule out C8-subgroups of type Oε

n(q) for the

same reason.
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Next, let us turn to the C1-subgroups in M. First, note that y is con-

tained in a unique maximal parabolic subgroup of PGUn(q0) of type P1

and also a unique subgroup of type GU2(q0) ⊥ GUn−2(q0) (the stabilizer

of a nondegenerate 2-space). In addition, if n is even, then y is contained

in exactly two subgroups of type Pn/2−1 and two of type Pn/2. By apply-

ing Corollary 2.15, we deduce that the C1-subgroups in M are as follows:

one each of type P1,n−1 and GL2(q)×GLn−2(q), in addition to two each of

type Pn/2−1,n/2+1 and Pn/2 when n is even. (Recall that Pi,j denotes the G-

stabilizer of a pair of subspaces U ⊂W of V , where dimU = i, dimW = j,

and i+ j = n; such subgroups are maximal in G whenever G �≤ PΓLn(q).)

Let us explain in more detail how Corollary 2.15 applies in this situa-

tion. Let Y be a parabolic subgroup of type P1,n−1 of the algebraic group

X = PSLn(Fq). Recall that e is even, so we have (ισ)e = σe. Now Corol-

lary 2.15 implies that the number of Xσe = PGLn(q)-conjugates of Yσe (a

type P1,n−1 parabolic subgroup of PGLn(q)) normalized by ισs is equal

to the number of Xισ = PGUn(q0)-conjugates of Yισ (a type P1 parabolic

subgroup of PGUn(q0)) containing f(ισs). We have already observed that

f(ισs) is contained in a unique P1 parabolic subgroup of PGUn(q0), so there

is only one subgroup of type P1,n−1 in M. Similarly, suppose that Y is a Levi

subgroup of X of type A1An−3T1. Then Yσe is a type GL2(q)×GLn−2(q)

subgroup of Xσe = PGLn(q), and Yισ is a type GU2(q0)×GUn−2(q0) sub-

group of Xισ = PGUn(q0). Since f(ισs) ∈ PGUn(q0) is contained in only

one such subgroup, Corollary 2.15 implies that there is only one subgroup

of PGLn(q) of type GL2(q)×GLn−2(q) normalized by ισs. The other cases

are similar.

Now assume that H ∈M is a C2-subgroup. By arguing as in the proof of

Lemma 4.5, we deduce that one of the following holds:

(i) H is of type GL2(q) � Sn/2, and e ≥ (n − 2)/2; there is at most one

subgroup of this type in M;

(ii) H is of type GL1(q) � Sn, q is even, and e ≥ n− 2; there are at most

q0/2 subgroups of this type in M.

Next, suppose that H is a C5-subgroup of type GLn(q1), where q = qr1 for

a prime r. (As before, we note that r divides e.) If e ≥ 3, then Propo-

sition 2.16(i) implies that for each relevant prime r there are at most

|CPGUn(q0)(y)| ≤ q0(q
n−2
0 +1) distinct C5-subgroups in M. Now assume that

e= 2, so r = 2 and n is even. We claim that there are no C5-subgroups in M.
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To see this, first note that the set of eigenvalues of (gs)e is of the form

E = {1, ωk, ω−q0k, ωq20k, . . . , ω(−q0)n−3k},

where F
∗
qn−2
0

= 〈ω〉 and k = (q0 + 1)/|λα| (with α = −(q − 1)/(q0 + 1) as

before). Now, if (gs)e is contained in a C5-subgroup of type GLn(q0), then

ωq0k is an eigenvalue of (gs)e, so ωq0k = ω(−q0)jk for some 0≤ j ≤ n− 3, and

thus qn−2
0 − 1 divides k(q0 − (−q0)

j). However, if j ≤ n − 4, then |k(q0 −
(−q0)

j)| < qn−2
0 − 1, which is a contradiction. Similarly, if j = n − 3 and

|λα| �= 1, then k ≤ (q0 + 1)/2 and |k(q0 − (−q0)
j)| < qn−2

0 − 1, whereas if

|λα|= 1, then k(q0 − (−q0)
j) = (q0 + 1)(q0 + qn−3

0 ) is clearly indivisible by

qn−2
0 − 1. (Recall that we may assume that (n, q) �= (6,4).) This justifies the

claim.

To complete the analysis of the subgroups in M, we may assume that H

is a C8-subgroup of type Spn(q) or GUn(q
1/2). By Proposition 2.16(i), there

are at most |CPGUn(q0)(y)| ≤ q0(q
n−2
0 + 1) subgroups of type GUn(q

1/2) in

M, but we claim that there are none of type Spn(q). To see this, suppose

that n is even, and let E be the set of eigenvalues of (gs)e as above. Now

(gs)e ∈ PGSpn(q), and thus (gs)2e ∈ PSpn(q), so ω−2k is an eigenvalue of

(gs)2e. Therefore, ω−2k = ω2k(−q0)j for some 0≤ j ≤ n−3, so qn−2
0 −1 divides

2k(−q0)
j + 2k, and thus (qn−2

0 − 1,2k(qj0 + (−1)j)) = qn−2
0 − 1. However,

(
qn−2
0 − 1,2k(qj0 + (−1)j)

)
≤ 2k

(
qn−2
0 − 1, qj0 + (−1)j

)
≤ 2(q0 + 1)

(
qn−2
0 − 1, qj0 + (−1)j

)
,

and Lemma 4.3 implies that this upper bound is less than qn−2
0 − 1, which

is a contradiction. For example, if j is even, then Lemma 4.3 yields

2(q0 + 1)
(
qn−2
0 − 1, qj0 + (−1)j

)
= 2(q0 + 1)(qn−2

0 − 1, qj0 + 1)≤ 2(q0 + 1)(q
(n−2,j)
0 + 1),

and we have 2(q0 + 1)(q
(n−2,j)
0 + 1)< qn−2

0 − 1 since (n− 2, j)≤ (n− 2)/2.

We conclude that there are no C8-subgroups of type Spn(q) in M.

Let z ∈G be an element of prime order, and define α(z) as in (14). By

applying Theorem 2.7, we deduce that the contribution to α(z) from the

subgroups in C1 is less than

q−1 + q1−n + 2q−2 +
(
(n,2)− 1

)
(4q1−n/2 + 4q−n/2),
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while Corollary 2.9 indicates that the remaining contribution is less than(
(n,2)−1+

1

2
q0((q,2)−1)+q0(q

n−2
0 +1)(1+(1−δ2,e)(log(e)+1))

)
·f(n, q),

where f(n, q) is given in (15). For n≥ 5, it is straightforward to check that

these bounds imply that α(z)< 1/2 unless

(n, q) ∈
{
(8,4), (7,4), (6,4), (5,9), (5,4)

}
.

In addition, we note that the above bounds immediately imply that α(z)→ 0

as q→∞ (for any n≥ 5), whence u(G)→∞ as q→∞.

The cases (n, q) = (5,4), (6,4) are dealt with in Proposition 2.17. To deal

with the remaining cases, it is helpful to note that if H is a maximal sub-

group of type GUn(q0), then fpr(z,G/H) ≤ β(n, q) for all z ∈ G of prime

order, where β(n, q) is defined as follows:

(n, q) (8,4) (7,4) (5,9)

β(n, q) 1/32639 1/8128 1/9801

Armed with these bounds, the desired result quickly follows. For example,

suppose that (n, q) = (5,9). As above, the C1 contribution is less than 9−1+

9−4 + 2 · 9−2; the only other subgroups in M are of type GU5(3), and thus

α(z)< 9−1 + 9−4 + 2 · 9−2 + 3(33 + 1)/9801< 1/2.

Similarly, we get α(z)< 1/2 when (n, q) = (8,4) or (7,4).

To complete the proof of Proposition 5.4, it remains to show that u(G)→
∞ when q is bounded and n tends to infinity. As in the proof of Proposi-

tion 4.4, let k be an integer such that n/4 < k < n/2, n − k is odd and

(n,k) = (n − k, e) = 1. We may assume that n is large. Set y = [A,B] ∈
PGUn(q0), where A ∈GUn−k(q0) is irreducible of order a multiple of qn−k

0 +

1 and B ∈ GUk(q0) has order a multiple of qk0 − (−1)k. (B is irreducible

when k is odd; otherwise, B splits into two irreducible blocks.) Note that

|CPGUn(q0)(y)| < 2qn−1
0 . Since (n− k, e) = 1, some power of y has order r,

where either r is a primitive prime divisor of qn−k− 1 with r > 2(n−k)+1,

or r is a product of primitive prime divisors of qn−k − 1. Therefore, since

n− k is odd, by applying Theorem 2.12 and Corollary 2.15 we deduce that

the possibilities for H ∈M are as follows (we use Proposition 2.16 to bound

the number of irreducible subgroups in M of a given type):
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(i) H is of type GLk(q)×GLn−k(q); there is a unique such subgroup in M;

(ii) H is of type Pk/2,n−k/2, and n is odd; there are at most two such

subgroups in M;

(iii) H is of type GLn(q1), where q = qa1 for some prime divisor a of e; for

a given a, there are less than 2qn−1
0 such subgroups in M;

(iv) H is of type GUn(q
1/2); there are less than 2qn−1

0 such subgroups in M.

(Note that there are no subgroups of type Spn(q) or Oε
n(q) in M since y

acts irreducibly on a subspace of V of odd dimension n− k > n/2.)

Let z ∈G be an element of prime order. In the usual way, we calculate

that

α(z)< 2q−n/4 + 4q−n/8 + 2
(
log(e) + 2

)
qn−1
0 · f(n, q);

hence, α(z)→ 0 as n→∞, as required.

Proposition 5.5. Theorem 5.1 holds when e is even and n= 4.

Proof. If q ≤ 9, then Proposition 2.17 applies, so we may assume that

q ≥ 16. Set y = [A,B] ∈ PGU4(q0), where A ∈ GU3(q0) is irreducible of

order q30 + 1 and B ∈ GU1(q0). As usual, let M denote the set of maxi-

mal subgroups of G containing gs, and note that there is a unique reducible

subgroup in M (of type GL1(q)×GL3(q)). Also, since q �= p, we note that

G has no maximal C9-subgroups (see [5, Table 7.9]).

First, assume that e is divisible by 3. Since e is even, it follows that e≥ 6,

and thus q ≥ 64. It is easy to see that there are no C4-, C6-, or C7-subgroups
in M. In addition, we can eliminate C3-subgroups, and also C8-subgroups of
type Sp4(q) or O

ε
4(q), because exactly three of the eigenvalues of y have the

same multiplicative order. For the remaining C2-, C5-, and C8-subgroups of
G, Proposition 2.16(i) implies that there are at most |CPGU4(q0)(y)|= q30 +1

subgroups of a given type in M. Therefore, by applying Theorem 2.7, we

deduce that

(18) α(z)< q−1 + q−3 +
(
4 + log(e)

)
(q30 + 1) · f(4, q)< 1/2

for all q, and we also observe that α(z)→ 0 as q→∞.

For the remainder of the proof, we will assume that e is indivisible by 3.

Now |(gs)e| is divisible by (q30 +1)/(q0+1), so every primitive prime divisor

of q60 − 1 divides |(gs)e|. Moreover, since e is indivisible by 3, such a prime

is a primitive prime divisor of q3−1. In particular, if q0 /∈ {2,3,5}, then [24,

Lemma 2.1] implies that some power of (gs)e has order r, where either r is

a primitive prime divisor of q3− 1 with r > 7, or r is a product of primitive
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prime divisors of q3 − 1. Therefore, in these cases we can use Theorem 2.12

to determine the subgroups in M.

Suppose that q0 /∈ {2,3,5}. Since y acts irreducibly on a 3-dimensional

subspace of V , it follows that there are no C8-subgroups of type Sp4(q) or

Oε
4(q) in M. Therefore,

α(z)< q−1 + q−3 +
(
log(e) + 2

)
(q30 + 1) · f(4, q),

and one can check that this bound is sufficient if e ≥ 4. Now assume that

e= 2. Here the proof of Proposition 2.16(ii) reveals that there are at most

e2 = 4 subgroups of type GU4(q0) in M, and we note that there are no C5-
subgroups since PGL4(q0) does not contain any elements of order |(gs)2|.
Therefore,

(19) α(z)< q−1 + q−3 + 4 · f(4, q)< 1/2.

To complete the proof, we may assume that q0 ∈ {2,3,5} and that e is

indivisible by 3. If e ≥ 4, then it is easy to check that (18) applies, so we

reduce to the case q = 25. Here a power of (gs)2 has order 7 (a primitive

prime divisor of 253 − 1), and by inspecting [25] we deduce that every irre-

ducible subgroup H ∈M is of type GU4(3). Therefore, (19) holds, and the

result follows.

Proposition 5.6. Theorem 5.1 holds when e is even and n= 3.

Proof. This is similar to the proof of Proposition 5.5. In view of Proposi-

tion 2.17, we may assume that q ≥ 25. Let y ∈ PGU3(q0) be an irreducible

element of order a multiple of (q30 + 1)/(q0 + 1), and define M as before.

Note that there are no reducible subgroups in M.

If e is a multiple of 3, then by arguing as in the proof of Proposition 5.5,

using Lemma 2.10 and Proposition 2.16(i), noting that |CPGU3(q0)(y)| =
q20 − q0 + 1, we have

(20) α(z)< (q20 − q0 + 1)
( (3, q− 1)

q1/2(q+ 1)
+

log(e) + 3

q2 + q+ 1

)
< 1/2,

and the result follows. For the remainder, let us assume that e is indivisible

by 3.

Suppose that q0 /∈ {2,3,5}. Then, as in the proof of Proposition 5.5, some

power of (gs)e has order r, where either r is a primitive prime divisor of

q3 − 1 with r > 7, or r is a product of primitive prime divisors of q3 − 1.
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In particular, if H ∈ M, then Theorem 2.12 implies that H is of type

GL1(q
3), GU3(q

1/2), or GL3(q1). Moreover, if H ∈M is of type GL1(q
3),

then H ≤ CG((gs)
e), so there is a unique such subgroup in M (because

(gs)e is contained in a unique maximal torus of CG((gs)
e)). Now, if e≥ 4,

then Lemma 2.10 implies that

α(z)< (q20 − q0 + 1)
( 2(3, q− 1)

q1/2(q+ 1)
+

log(e)

q2 + q+ 1

)
+

1

q2 + q+ 1
< 1/2.

Similarly, if e = 2, then the proof of Proposition 2.16(ii) implies that M
contains at most two subgroups of type GU3(q

1/2), and thus

(21) α(z)≤ 2(3, q− 1)

q1/2(q+ 1)
+

1

q2 + q+ 1
< 1/2

for all q ≥ 25. (Note that there are no subfield subgroups in M when e= 2.)

Finally, suppose that q0 ∈ {2,3,5} and that e is indivisible by 3. If e≥ 4,

then (20) applies, so we reduce to the case q = 25. Here we obtain the same

list of subgroups in M as in the previous paragraph, using the main theorem

of [25] and [5, Table 7.4], so (21) holds, and the result follows.

5.2. σ has odd order

As before, let K = Fq, let X =PSLn(K), and recall that we may assume

that g = ισδ, where δ = [λ, In−1]. We claim that g has order 2e, which

implies that g is PGLn(q)-conjugate to ισ (see [20, Theorem 7.2]). To see

this, first note that the order of g is certainly a multiple of 2e. Now an easy

calculation shows that

(ισδ)2 = σ2δ−σδ = σ2[λ1−q0 , In−1].

In particular, if we set μ= [λ1−q0 , In−1], then

(ισδ)2e = (σ2μ)e = μσ2e−2
μσ2e−4 · · ·μσ2

μ.

However, since e is odd and μσe
= μ, this is equal to

μσe−1
μσe−2 · · ·μσμ= [λ(1−q0)(q

e−1
0 +qe−2

0 +···+1), In−1] = 1.

This justifies the claim. Therefore, we may assume that g = ισ.

Let γ be the standard involutory graph automorphism of X induced from

the order 2 symmetry of the corresponding Dynkin diagram of type An−1.
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Set Y =CX(γ), and note that Y =PSOn(K) or PSpn(K) when n is odd or

even, respectively (see [21, Theorem 1.15.2(d)]). In particular, Y is a simple

algebraic group, and we can use the tools of Shintani descent. To do this,

consider the Frobenius morphism σ of X restricted to Y , and note that

Yσe =CXσe (γ) =

{
PGSpn(q) if n is even,

PSOn(q) = POn(q) otherwise.

Now ισ is PGLn(q)-conjugate to γσ, so let us assume that g = γσ. Note

that γσ = σγ.

By the theory of Shintani descent (see Lemma 2.13), there is a bijective

map f between the set of Yσe-classes in the coset σYσe and the set of Yσ-

classes in Yσ. Moreover, by arguing as in the proof of Lemma 4.2, we deduce

that if y ∈ Yσ has determinant 1, then there exists s ∈ Yσe such that det(s) =

1 and f(σs) = y. (That is, f maps the Yσe-class of σs to the Yσ-class of

y.) Now σs commutes with γ, so (γσs)2e is conjugate to y2. Therefore, if

y ∈ PSpn(q0) or PSOn(q0), in the cases n even and odd, respectively, then

there exists s ∈ G0 such that (gs)2e is conjugate to y2. Moreover, since

(γσs)2 = σ2sσs and σ2 acts as a field automorphism of order e on PGLn(q)

(since e is odd), we can use Corollary 2.15 and Proposition 2.16 to control

the maximal subgroups of G containing y2.

Lemma 5.7. With the notation above, suppose that y ∈ PSpn(q0) or

PSOn(q0) in the respective cases n even and n odd, and fix an element

s ∈ G0 such that (gs)2e is Y -conjugate to y2. Let M be the set of maxi-

mal subgroups of G containing gs, and assume that e≥ 3 is odd. Then the

following hold.

(i) There are at most |CPGLn(q0)(y
2)| distinct subgroups in M of a given

type.

(ii) More precisely, the number of C1-subgroups in M of a given type (Pn/2,

Pi,n−i, or GLi(q)×GLn−i(q)) is at most the number of reducible sub-

groups of the same type in PGLn(q0) containing y2.

Proof. First, consider (i). Set G1 = 〈PGLn(q), γσ〉, and note that all sub-

groups H ∈ M of a given type are G1-conjugate. Let H be a maximal

subgroup of G containing γσs, and let N be the number of subgroups of

type H in M. Then H also contains (γσs)2 = σ2t, where t= sσs, so

N ≤ |(σ2t)G1 ∩H|
|(σ2t)G1 | · |G1|

|H| .
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Further, since |(σ2t)G1 ∩H| ≤ |H|/e, we have

N ≤ |CG1(σ
2t)|/e=

∣∣CG1

(
(σs)2

)∣∣/e.
Next, let j be an integer such that 2j ≡ 1 (mod e) and (j, |G|) = 1. (For

instance, let j be a solution to the system of congruences j ≡ a (mod e)

(where a is the multiplicative inverse of 2 in Z/eZ) and j ≡ 1 (mod pi) for

all prime divisors pi of |G| with (pi, e) = 1; a solution exists by the Chinese

remainder theorem.) Now

CG1

(
(σs)2

)
≤CG1

(
(σs)2j

)
(in fact equality holds), and (σs)2j ∈ σPGLn(q), so Lemma 2.13(i) implies

that ∣∣CG1

(
(σs)2j

)∣∣= e
∣∣CPGLn(q0)

(
b(σs)2jeb−1

)∣∣
for some b ∈X . Since (j, |G|) = 1, there exists an integer k such that jk ≡ 1

(mod |G|), and we deduce that

e
∣∣CPGLn(q0)

(
b(σs)2jeb−1

)∣∣≤ e
∣∣CPGLn(q0)

(
b(σs)2jkeb−1

)∣∣
= e

∣∣CPGLn(q0)

(
b(σs)2eb−1

)∣∣.
However, b(σs)2eb−1 and y2 are PGLn(q0)-conjugate, so

e
∣∣CPGLn(q0)

(
b(σs)2eb−1

)∣∣= e|CPGLn(q0)(y
2)|,

and the result follows.

Finally, let us turn to (ii). Define the integers j and k as above. Let

H be a maximal C1-subgroup of G containing γσs, say, of type T . Then

(γσs)2 = (σs)2 ∈ H ; hence, (σs)2j ∈ H . Since (σs)2j ∈ σPGLn(q), Corol-

lary 2.15 implies that the number of subgroups of G of type T containing

(σs)2j is the same as the number of subgroups of type T in PGLn(q0)

containing b(σs)2jeb−1. But any such subgroup containing b(σs)2jeb−1 also

contains b(σs)2jkeb−1, and this element is PGLn(q0)-conjugate to y2. This

completes the proof of the lemma.

We now partition the proof of Theorem 5.1 (with e odd) into several

subcases. To do this, let us first define two sets of special cases (n, q0),

which we will consider separately:
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A=
{
(5,2), (5,3), (7,2), (7,3), (9,2), (11,2), (13,2), (15,2)

}
;

B =
{
(4,2), (4,3), (6,2), (6,3), (8,2), (10,2), (12,2), (14,2)

}
.

We start by assuming that n≥ 5 is odd.

Proposition 5.8. Theorem 5.1 holds when e is odd, n ≥ 5 is odd, and

(n, q0) /∈A.

Proof. Let n= 2k1 +2k2 + · · ·+1 be the binary representation of n (where

ki > ki+1 for all i), and note that 2k1 > n/2. Set y = [A2k1 ,A2k2 , . . . ,A1] ∈
PSOn(q0), where A1 ∈ F

∗
q0 and each Am ∈O−

m(q0) (withm> 1) is irreducible

of order q
m/2
0 +1. Since det(y) = 1, there exists s ∈G0 such that (gs)2e and

y2 are conjugate. As usual, let M be the set of maximal subgroups of G

containing gs.

The order of some power of y is a primitive prime divisor of q2
k1

0 − 1.

Moreover, since e is odd and (n, q0) /∈A, [24, Lemma 2.1] implies that some

power of y has order r, where either r is a primitive prime divisor of q2
k1 −1

with r > 2k1+1 +1, or r is a product of primitive prime divisors of q2
k1 − 1.

Therefore, we can use Theorem 2.12 to restrict the possible subgroups in M.

Furthermore, each H ∈M contains a conjugate of y2, and so by studying

the maximal subgroups of G containing y2, we can further restrict the pos-

sibilities in M.

By Lemma 5.7(ii), the maximal C1-subgroups containing y2 are as follows:
one each of type P1,n−1 and GL1(q)×GLn−1(q), together with at most one

of type Pj,n−j and also at most one of type GLj(q) × GLn−j(q) for all

2 ≤ j < n/2. In particular, by applying Theorem 2.7, we deduce that the

entire contribution to α(z) from reducible subgroups is less than

2q−1 + 2q1−n +
∑
j≥2

4q−j = 2q−1 + 2q1−n + 4/(q2 − q).

Now assume that H ∈ M is irreducible. In view of Theorem 2.12, it

follows that H is a C3-, C5-, or C8-subgroup of G. We can immediately

eliminate C3-subgroups since y2 has only one eigenvalue in Fq0 . Similarly,

there are no C8-subgroups of type GUn(q
1/2) since y2 acts irreducibly on

a 2k1 -dimensional subspace of V . By applying Lemma 5.7, we see that M
contains at most |CPGLn(q0)(y

2)|< qn−1
0 subfield subgroups for each prime

divisor of e, and at most the same number of C8-subgroups of type On(q)

(when q is odd).
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Therefore, if z ∈G has prime order, then

(22) α(z)< 2q−1+2q1−n+4/(q2− q)+ q(n−1)/e
(
(2, q−1)+ log(e)

)
· f(n, q),

which is less than 1/2. (Note that (n, q) �= (5,8) since we are assuming that

(n, q0) /∈A.)

From the previous bound, it is clear that α(z) → 0 as q → ∞, so the

asymptotic statement in Theorem 5.1 also holds. However, we claim that if

q is bounded, then α(z) does not tend to zero as n→∞. To do this, we

will prove that if ne is odd, then every gs ∈ gPGLn(q) stabilizes a pair of

subspaces (U,W ) of V , where dimU = 1 and dimW = n− 1. In particular,

every such element is contained in a reducible subgroup of type P1,n−1 or

GL1(q)×GLn−1(q), so α(z)> q−3 if z ∈G0 is a transvection.

Without loss of generality, we may assume that g = ισ. For any s ∈
PGLn(q), we have

(gs)2e = sg
2e−1

sg
2e−2 · · · sgs,

and since e is odd, this is equal to

sσ
e−1ιsσ

e−2 · · ·sσιs= zιz,

where z = sσ
e−1

sσ
e−2ι · · · sσιs ∈ PGLn(q). In particular, zιz is PGLn(q)-

conjugate to z−ιzιzzι = zzι = (zιz)ι. But every element in PGLn(q) is con-

jugate to its transpose; hence, zιz is conjugate to its inverse. Consequently,

if λ ∈ Fq is an eigenvalue of zιz on V , then λ−1 is also an eigenvalue. Since

n is odd, it follows that ±1 occurs as an eigenvalue of zιz = (gs)2e. By the

Shintani descent argument used in Lemma 5.7(ii), we deduce that (gs)2

stabilizes a 1-dimensional subspace U and is therefore contained in a P1

parabolic subgroup H of G. It follows that gs normalizes H ∩Hgs, and we

note that Hgs stabilizes an (n− 1)-dimensional subspace W . (The inverse-

transpose automorphism interchanges the stabilizers of i-dimensional and

(n− i)-dimensional subspaces of V .) There are two possibilities: if U ⊆W ,

then H ∩Hgs is a type P1,n−1 maximal parabolic subgroup of G containing

gs; otherwise, V = U ⊕W , and H ∩Hgs is a maximal subgroup of type

GL1(q)×GLn−1(q) containing gs. This justifies the claim; namely, if q is

bounded, then α(z) does not tend to zero as n tends to infinity.

In fact, we claim that if n≥ 5, then s(G)< (q+ 1)2, so u(G) is bounded

if q is bounded. (We thank Bob Guralnick for suggesting the following argu-

ment.) First, fix a basis {v1, . . . , vn} for V , and write F
∗
q = 〈ω〉. Define q+1
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hyperplanes H0, . . . ,Hq as follows:

H0 = 〈v1, v3, . . . , vn〉,

Hi = 〈v1 + ωiv2, v3, . . . , vn〉 (1≤ i≤ q− 1), Hq = 〈v2, . . . , vn〉.

Consider
⋂

iHi = 〈v3, . . . , vn〉, and note that
⋃

iHi = V . Set W = 〈v3, v4〉,
and label the 1-dimensional subspaces of W as follows:

L0 = 〈v3〉, Li = 〈v3 + ωiv4〉 (1≤ i≤ q− 1), Lq = 〈v4〉.

For each Hi and Lj , let zij be the transvection in G0 with center Hi and

axis Lj , so Lj = [V, zij ]⊂CV (zij) =Hi. Set Z = {zij | 0≤ i, j ≤ q}.
Let H be a hyperplane in V , and let L be a 1-dimensional subspace of V .

Note that dim(H ∩W )≥ 1 and that L⊂Hi for some i (since V =
⋃

iHi).

In particular, some Lj is contained in H ∩W . Consider the transvection

zij . By definition, zij acts trivially on Hi, so zij fixes L. In addition, since

[V, zij ] = Lj , it follows that zij also fixes H , whence zij fixes the pair of

subspaces (L,H).

Now, if s(G) ≥ (q + 1)2, then there exists an element y ∈ G such that

G= 〈z, y〉 for all z ∈ Z . Necessarily, y = gs for some s ∈G0, and recall that

we have previously observed that every such element fixes a pair of subspaces

(L,H), where dimL = 1 and dimH = n − 1. By the previous argument,

there exists z ∈ Z also fixing the pair (L,H), so 〈z, y〉 is contained in the

G-stabilizer of (L,H), and thus G �= 〈z, y〉. This is a contradiction; hence,

s(G)< (q+ 1)2 as claimed.

Proposition 5.9. Theorem 5.1 holds when e is odd, n is even, and

(n, q0) /∈ B.

Proof. This is similar to the proof of Proposition 5.8. Let n= 2k1 + · · ·+
2k� be the binary representation of n (with ki > ki+1 for all i), and set

y = [A2k1 ,A2k2 , . . . ,A2k� ] ∈ PSpn(q0), where each Am ∈ GSpm(q0) is irre-

ducible of order q
m/2
0 +1. As in the proof of Proposition 5.8, Theorem 2.12

implies that each irreducible H ∈M is a C3-, C5-, or C8-subgroup of G. More

precisely, H is one of the following types:

(23) GLn/2(q
2),GLn(q

1/r),Spn(q),O
ε
n(q)

(in the latter case q is odd ε=±, but not both) and Lemma 5.7 implies that

there are at most |CPGLn(q0)(y
2)|< 2qn−1

0 subgroups of each type in M. The
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reducible subgroups in M can be determined via Lemma 5.7(ii): there is at

most one of type Pj,n−j and one of type GLj(q)×GLn−j(q), for each even

integer j ≤ n/2. In particular, if z ∈G has prime order, then Theorem 2.7

implies that the contribution to α(z) from reducible subgroups is less than∑
t≥1 4q

−2t = 4/(q2 − 1). Consequently, if n≥ 6, then Corollary 2.9 implies

that

α(z)< 4/(q2 − 1) + 2q(n−1)/e
(
3 + log(e)

)
· f(n, q)< 1/2.

Finally, let us assume that n= 4. Since (n, q0) /∈ B, we may assume that

q0 ≥ 4. Here |CPGL4(q0)(y)| = (q40 − 1)/(q0 − 1), and y2 is irreducible, so

each H ∈ M is irreducible, and the possible types are given in (23). In

addition, we note that if H ∈ M is a C3-subgroup of type GL2(q
2), then

CG(y
2) =CH(y2) and (y2)G∩H = (y2)H , so there is a unique such subgroup

in M. By applying the relevant fixed point ratio estimates in Lemma 2.11,

we deduce that

α(z)<
d1(q

3 + 2q+ 1)

q2(q3 − 1)

+
(q40 − 1

q0 − 1

)( q2

d2(q3 − 1)
+

4d2(d2 − 1)

q3 − 1
+ log(e) · f(4, q)

)
,

where d1 = (4, q − 1) and d2 = (2, q − 1). It follows that α(z) < 1/2 for all

e≥ 5.

To deal with the case (n, e) = (4,3), we need to improve the upper bound

on the number of subgroups of type Sp4(q) in M. We claim that for any e,

there are at most d22(q0 + 1) such subgroups.

To see this, let G1 = 〈PGL4(q), gs〉, and observe that all subgroups of

G1 of type Sp4(q) are G1-conjugate. We may assume that H ∩ PGL4(q) is

contained in CPGL4(q)(γ) = Yσe . As in the proof of Lemma 5.7, let j be an

integer such that 2j ≡ 1 (mod e) and (j, |G1|) = 1. Write (gs)2 = σ2t, where

t = sσs, and set x1 := (gs)2j = (σ2t)j ∈ σYσe . Note that x1 has the same

order as σ2t since (j, |G1|) = 1. We will count the number of subgroups of

type Sp4(q) containing x1. Suppose that x2 ∈ xG1
1 ∩H . Now x1, x2 ∈ σYσe ,

so we can consider their images f(x1), f(x2) in Yσ under the corresponding

Shintani map f . Since the xi are G1-conjugate, it follows that the f(xi) are

irreducible and have the same eigenvalues. Therefore, f(x1) and f(x2) are

Yσ-conjugate, so x1 and x2 are actually Yσe-conjugate, and thus |xG1
1 ∩H| ≤

|xYσe

1 |. It follows that the number of subgroups of type Sp4(q) in M is at
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most
|xG1

1 ∩H|
|xG1

1 |
· |G1|
|H| ≤ |xYσe

1 |
|xG1

1 |
· |G1|
|H| =

|Yσe |
|H| · |CG1(x1)|

|CYσe (x1)|
.

Further, by considering the Shintani map between PGL4(q)-classes in

σPGL4(q) and PGL4(q0)-classes in PGL4(q0), we deduce that

|CG1(x1)|= 2e|CPGL4(q)(x1)|= 2e|CPGL4(q0)(y)|= 2e
(q40 − 1

q0 − 1

)

(see Lemma 2.13(i)). We also note that xe1 ∈CYσe (x1) and that |xe1|= |y|=
(q20 + 1)/d, so |CYσe (x1)| ≥ (q20 + 1)/d2. Finally, since |H| ≥ 2e|PSp4(q)| =
2e|Yσe |/d2, we conclude that

|Yσe |
|H| · |CG1(x1)|

|CYσe (x1)|
≤ d22(q0 + 1).

This justifies the claim. In particular, for (n, e) = (4,3), we have

α(z)<
d1(q

3 + 2q+ 1)

q2(q3 − 1)
+
(q40 − 1

q0 − 1

)(4d2(d2 − 1)

q3 − 1
+ f(4, q)

)

+ d2(q0 + 1) · q2

q3 − 1
,

and the result follows.

It is easy to check that the above bounds on α(z) imply that α(z)→ 0

(and thus u(G) → ∞) as q → ∞. In contrast to the situation in Propo-

sition 5.8, we claim that u(G) also tends to infinity if q is bounded and

n→∞.

To see this, we may assume that q (and therefore e) is bounded and that n

is large compared with e. Let k be an even integer such that n/4< k < n/2,

(k, e) = (n−k, e) = 1, and (k,n−k) = 2. Set y = [A,B] ∈ PSpn(q0), where A

and B are irreducible of dimensions n−k and k, respectively. Since (k, e) =

(n−k, e) = 1, it follows that A and B remain irreducible over Fq. In addition,

some power of y has order r, where either r > 2(n−k)+1 is a primitive prime

divisor of qn−k − 1, or r is a product of primitive prime divisors of qn−k − 1.

If H ∈M is reducible, then H is of type GLk(q)×GLn−k(q), and there is a

unique such subgroup in M. By Theorem 2.12, the irreducible subgroups in

M are of type GLn/2(q
2),GLn(q1),Spn(q), or O

+
n (q), where q = qa1 for some
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prime divisor a of e. Since |CPGLn(q0)(y
2)| ≤ 2(qn−k

0 − 1)(qk0 − 1)/(q0 − 1),

we conclude that

α(z)< 2q−k +
2
(
3 + log(e)

)
(qn−k

0 − 1)(qk0 − 1)

q0 − 1
· f(n, q),

which tends to 0 as n→∞.

To complete the proof of Theorem 5.1, it remains to deal with the cases

(n, q0) in A and B, together with the case n= 3.

Proposition 5.10. Theorem 5.1 holds when e is odd and (n, q0) ∈A∪B.

Proof. Define the element y as in the proof of Propositions 5.8 and 5.9,

according to the parity of n. As before, note that some power of y has

order r, where r is a primitive prime divisor of q2
k1 − 1, so we can use

the main theorem of [25] to restrict the subgroups containing gs. Also note

that (2k1 , r) = (4,5) if n ≤ 7; otherwise, (2k1 , r) = (8,17). As usual, let M
denote the set of maximal subgroups of G containing gs. We now inspect

the various subgroup collections presented in [25, Section 2].

First, assume that n is odd. As in the proof of Proposition 5.8, the contri-

bution to α(z) from reducible subgroups is less than 2q−1+2q1−n+4/(q2−
q). If H ∈M is a C2-subgroup, then [25, Example 2.3] implies that n ≤ 7

and that H is of type GL1(q) � Sn. By considering the eigenvalues of y, we

can eliminate C3-subgroups, while C4-, C6-, and C7-subgroups are ruled out

by [25]. As usual, M contains subfield subgroups of type GLn(q1), where

q = qa1 and a is a prime divisor of e; for each divisor a, there are at most

|CPGLn(q0)(y
2)|< qn−1

0 such subgroups in M (see Lemma 5.7(i)). Similarly,

the only C8-subgroups in M are of type On(q) (assuming that q is odd),

and again, there are fewer than qn−1
0 such subgroups.

To complete the analysis of M when n is odd, we may assume that

H ∈M is a C9-subgroup. The various possibilities are listed in [25, Tables

2–8], and we inspect each table in turn. Let H0 denote the socle of H . Since

q �= p, by [5, Table 7.19] we may assume that n≥ 7.

By inspecting [25, Tables 2–5], we can quickly rule out any possibilities

with H0 an alternating or sporadic group. (Here it is helpful to note that

if q0 is prime (in terms of the notation in [25]—this number is listed in the

sixth column of the relevant tables), then the corresponding almost simple

subgroup H is contained in a proper subfield subgroup of G; hence, H is

nonmaximal.) Similarly, we can rule out the cases appearing in [25, Tables
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6 and 7]. It remains to deal with the cases listed in [25, Table 8]; here

H0 belongs to an infinite family of simple classical groups in characteristic

p′ �= p. Since n≥ 7 is odd and 2k1 = 4 or 8, we can quickly eliminate all cases

unless (n, q0) = (9,2) andH0 =PSL2(17). However, the 2-modular character

table of SL2(17) (see [29, p. 11]) indicates that SL2(17) does not admit a 9-

dimensional irreducible representation in characteristic 2, so this possibility

is also eliminated. We conclude that there are no C9-subgroups in M.

It follows that if n ≥ 5 is odd and z ∈ G is an element of prime order,

then (22) holds, and thus we reduce to the case (n, q) = (5,8). However, if

n= 5, then the only reducible subgroups in M are those of type P1,4 and

GL1(q)×GL4(q), so we can omit the 4/(q2 − q) term in the upper bound

in (22), and this yields α(z)< 1/2.

Now assume that n is even. As above, by inspecting [25] we deduce that

if H ∈ M, then either H is a subfield subgroup, a C3-subgroup of type

GLn/2(q
2), a C8-subgroup of type Oε

n(q) (q odd), or Spn(q), or n= 6 and H

is a C2-subgroup of type GL1(q) � S6. Therefore, if n≥ 6, we have

α(z)< 4/(q2 − 1) + 2q(n−1)/e
(
(2, q− 1) + 3+ log(e)

)
· f(n, q)< 1/2,

and it is easy to see that α(z)→ 0 as q→∞.

Finally, let us assume that n= 4. Suppose that q0 = 2, and note that we

may assume that q ≥ 32 (see Proposition 2.17). Now |CPGL4(q0)(y
2)| = 15,

and by applying the bounds in Lemma 2.11, using the fact that y2 is irre-

ducible and belongs to a unique C3-subgroup of type GL2(q
2), we deduce

that

α(z)<
q3 + 2q+ 1

q2(q3 − 1)
+ 15

( q2

q3 − 1
+ log(e) · f(4, q)

)
< 1/2

if q > 32. Finally, if (n, q) = (4,32), then we can replace the term log(e)f(4, q)

in the above bound by 1/1198336. (Indeed, if H is a subfield subgroup of

type GL4(2), then it is easy to check that fpr(z,G/H)≤ 1/1198336 for all

z ∈ G of prime order.) This yields α(z) < 1/2. Similarly, if q0 = 3, then

|CPGL4(q0)(y
2)|= 40, and we have

α(z)<
(4, q− 1) · (q3 + 2q+ 1)

q2(q3 − 1)
+ 40

( q2

2(q3 − 1)
+

8

q3 − 1
+ log(e) · f(4, q)

)
,

which is less than 1/2 unless (n, q) = (4,27). As in the proof of Proposi-

tion 5.9, if (n, q) = (4,27), then there are at most 22(3 + 1) = 16 subgroups
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of type Sp4(q) in M, whence

α(z)<
19738

7174089
+

2916

9841
+

160

9841
+ 40 · f(4,27)< 1/2

as required.

Proposition 5.11. Theorem 5.1 holds when e is odd and n= 3.

Proof. In view of Proposition 2.17, we may assume that q ≥ 27. Set y =

[A2,A1] ∈ PO3(q0), where A2 ∈ O−
2 (q0) is irreducible (over both Fq0 and

Fq). By inspecting the explicit list of maximal subgroups of G given in [5,

Table 7.3], we deduce that the possibilities for H ∈M are as follows: we get

reducible subgroups of type P1,2 and GL1(q)×GL2(q) (exactly one of each

type), C2-subgroups of type GL1(q) �S3, subfield subgroups of type GL3(q1),

and C8-subgroups of type O3(q) (with q odd). Now |CPGL3(q0)(y
2)| ≤ q20 − 1,

and thus Lemma 2.10 implies that

α(z)< 2q−1 + 2q−2 + (q20 − 1)
(
(2, q− 1) + log(e)

)
(q2 + q+ 1)−1 < 1/2

for all q ≥ 27.

This completes the proof of Theorem 5.1.

§6. Graph automorphisms

In this section, we complete the proof of Theorems 2–4 by considering

the case where G= 〈G0, g〉 with g a graph automorphism of G0. Here n≥ 3,

and g is of the form g = ιx, where ι is the inverse-transpose map and x ∈
PGLn(q). As usual, we may replace x by δ = [λ, In−1] for some λ ∈ F

∗
q , so

g2 = (ιδ)2 = διδ = 1, and thus g is an involutory graph automorphism.

The PGLn(q)-classes of involutory graph automorphisms of G0 are

described in Lemma 6.1 below. First, we require some notation. For n even,

we define

(24) S =

⎛
⎜⎜⎜⎜⎜⎝

0 −1

1 0

0 −1

1 0
. . .

⎞
⎟⎟⎟⎟⎟⎠ , S+ =

⎛
⎜⎜⎜⎜⎜⎝

0 1

1 0

0 1

1 0
. . .

⎞
⎟⎟⎟⎟⎟⎠ ,
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and t= [J2, In−2]. In addition, if n is even and q is odd, we set

(25) S− =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1

1 0
. . .

0 1

1 0

μ

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where −μ/2 ∈ Fq is a nonsquare.

Lemma 6.1. Let g ∈Aut(G0) be an involutory graph automorphism.

(i) If n is odd, then g is PGLn(q)-conjugate to ι, and CG0(ι) is of type

On(q).

(ii) If n and q are even, then g is PGLn(q)-conjugate to ιS or ιSt, where

CG0(ιS) = Spn(q) and CG0(ιSt) =CSpn(q)
(t).

(iii) If n is even and q is odd, then g is PGLn(q)-conjugate to ιS, ιS+,

or ιS−, and the respective centralizers are of type Spn(q), O
+
n (q), and

O−
n (q).

Proof. This is well known. For example, see [2, Section 19], when q is

even, and [34, Lemma 3.7] when q is odd.

Our main result is the following. (Here PSL4(3).22 ∼= 〈PSL4(3), ι〉, where
ι is the inverse-transpose graph automorphism.)

Theorem 6.2. Let G0 =PSLn(q), and let G= 〈G0, g〉, where g = ιx is the

product of the inverse-transpose graph automorphism ι and x ∈ PGLn(q). If

we assume that G �= PSL4(2).2, PSL4(3).22, then there exists s ∈ G0 such

that

(26)
∑

H∈M(gs)

fpr(z,G/H)< 1/2

for all z ∈G of prime order. In particular, u(G) ≥ 2 for all G. Moreover,

u(G) is bounded as |G| →∞ if and only if q is bounded and n is odd.

Remark 6.3. The excluded cases G = PSL4(2).2 and PSL4(3).22 are

genuine exceptions to the bound in (26), but it is easy to check that u(G)≥ 2

(see Proposition 2.18).
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We partition the proof of Theorem 6.2 into a number of subcases. We

begin by assuming that n≥ 5 is odd.

Proposition 6.4. Theorem 6.2 holds when n≥ 5 is odd.

Proof. LetA= {(9,2), (7,2), (5,4), (5,3), (5,2)}. If (n, q) ∈A, then Propo-

sition 2.17 applies, so we may assume otherwise. Without loss of generality,

we may assume that g = ι (see Lemma 6.1), and thus CG0(g) is of type

On(q). In particular, we may choose s ∈ CG0(g) such that s= [A,1] (mod-

ulo scalars), where A ∈ SO−
n−1(q) is irreducible of order q(n−1)/2 + 1. Set

y = (gs)2 = s2 = [A2,1] and note that

(27) |y|= (q(n−1)/2 + 1)/(2, q− 1),

so some power of y has order r, where r is a primitive prime divisor of

qn−1 − 1.

Let M be the set of maximal subgroups of G containing gs, and suppose

that H ∈M. We claim that one of the following holds:

(i) H is a C1-subgroup of type GL1(q) × GLn−1(q); there is exactly one

such subgroup in M;

(ii) H is a C8-subgroup of type On(q), q is odd, and there are at most

2q(n−1)/2 such subgroups in M.

First, assume that H is reducible. Visibly, y fixes a decomposition V =

U ⊕W of the natural G0-module V , where dimU = n− 1. Moreover, U and

W are the only proper y-invariant subspaces of V since A2 acts irreducibly

on U . Since H is normalized by gs, it follows that M contains a unique

reducible subgroup, which is of type GL1(q)×GLn−1(q). For the remain-

der, we may assume that H ∈ M is irreducible; we consider each of the

Aschbacher families in turn, using [25] to restrict the possibilities.

If H is a C2-subgroup, then [25, Example 2.3] indicates that H is of type

GL1(q) �Sn with q ≥ 5, and we quickly deduce that |y| ≤ (q− 1)n. However,

this is incompatible with (27) unless n = 5 and q ≤ 8. If n = 5 and q = 5

or 8, then r = 13 does not divide |H ∩PGL(V )|. Similarly, if (n, q) = (5,7),

then |y| = 25, but |H ∩ PGL(V )| is not divisible by 25, so there are no

C2-subgroups in M.

We can eliminate subfield subgroups since |PGLn(q1)| is indivisible by r.

Similarly, there are no C8-subgroups of type GUn(q
1/2) in M, and the main

theorem of [25] immediately rules out any C4-, C6-, or C7-subgroups.
By [25, Example 2.4], if H is a C3-subgroup, then n = r and H is of

type GL1(q
r). Here H ∩PGL(V )≤B.r, where B is a cyclic group of order
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m= (qr − 1)/(q − 1). In view of (27), it follows that |y|> r (since (n, q) /∈
A), and thus yr ∈ B is nontrivial. In particular, 1 has multiplicity 1 as

an eigenvalue of yr, but all the eigenvalues of any element of B have the

same multiplicative order in F
∗
qr . This is a contradiction, so there are no

C3-subgroups in M.

Next, suppose that q is odd and that H ∈M is a C8-subgroup of type

On(q). Set c= (n, q− 1), and let N be the number of distinct G-conjugates

of H in M, so

(28) N ≤ |yG ∩H|
|yG| · [G :H].

By [33, Proposition 4.8.4], we have

[G :H] =
|SLn(q)|
c|SOn(q)|

< c−1q(n
2+n−2)/2,

and we calculate that

|yG ∩H|= |SOn(q)|
q(n−1)/2 + 1

< q(n
2−2n+1)/2, |yG|> 1

2
qn

2−n.

Therefore, (28) yields N < 2c−1q(n−1)/2. Finally, since there are at most c

distinct G-classes of such subgroups (see [33, Proposition 4.8.4]), it follows

that there are at most 2q(n−1)/2 subgroups of this type in M.

To complete the analysis of M, we may assume that H ∈ C9 is almost sim-

ple with socle H0. According to [25, Example 2.6], H0 is not an alternating

group. If H0 is a sporadic group, then by inspecting [25, Table 5], we reduce

to the case (G0,H0) = (PSL11(2),M24), which we can immediately eliminate

since |y|= 33 by (27) but |x| ≤ 23 for all x ∈M24. Now assume that H0 is

a simple group of Lie type in characteristic �. By inspecting [25, Table 6],

we see that no cases arise when �= p, so let us assume that � �= p. Here the

relevant cases are recorded in [25, Tables 7 and 8], and it is straightforward

to rule out them all. For example, suppose that H0 = PSLd(s), where s is

an �-power and d≥ 3 is prime. Then n= r = (sd−1)/(s−1), so (27) implies

that

|y|= 2(n−1)/2 + 1= 2((s
d−1)/(s−1)−1)/2 + 1> sd − 1

for all possible s and d. However, we have |x| ≤ sd−1 for all x ∈H∩PGL(V )

(indeed, |x| ≤ sd − 1 for all x ∈GLd(s)—see, e.g., [17, Corollary 2]), so this

case does not arise.
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We are now in a position to complete the proof of the proposition. Let

z ∈G be an element of prime order, and define α(z) as in (14). By applying

Proposition 2.8, we deduce that if (n, q) /∈A, then

α(z)< q−2 +
(
(2, q− 1)− 1

)
· 2q(n−1)/2 · 2q1−n ≤ q−1,

and the result follows.

Note that the above bound implies that α(z)→ 0 as q →∞. However,

we claim that if q is bounded, then α(z) does not tend to zero as n tends to

infinity. To do this, we prove that every element ιx ∈ ιPGLn(q) is contained

in at least one reducible subgroup of type P1,n−1 or GL1(q) × GLn−1(q).

First, note that if λ ∈ Fq is an eigenvalue of (ιx)2 on V , then λ−1 must also

occur as an eigenvalue (see [19, Theorem 4.2]). Since n is odd, it follows

that (ιx)2 has at least one eigenvalue equal to 1 or −1. In particular, (ιx)2

stabilizes a 1-dimensional subspace U of V , and we complete the argument

as in the proof of Proposition 5.8. Moreover, by repeating the final argument

in the proof of Proposition 5.8, we deduce that s(G)< (q + 1)2 if n≥ 5, so

indeed, we see that u(G) is bounded if q is bounded.

Proposition 6.5. Theorem 6.2 holds when n≡ 2 (mod 4).

Proof. Let B = {(10,2), (6,2), (6,3), (6,4)}. If (n, q) ∈ B, then Proposi-

tion 2.17 applies, so assume otherwise. Set t = [J2, In−2], and define the

matrix S as in (24). By Lemma 6.1, if q is even, then there are two PGLn(q)-

classes of involutory graph automorphisms, with representatives ιS and ιSt.

Clearly, these representatives are in the same G0-coset, so we may assume

that g = ιS and that CG0(g) is of type Spn(q). If q is odd and det(δ) = λ is a

square in Fq, then we may assume that g = ιS. Similarly, if λ is a nonsquare,

then we may assume that g = ιSδ. Now CPGLn(q)(ιS) = PGSpn(q) contains

an element δ of determinant λn/2, so if λ is a nonsquare, we may assume

that g = ιSδ with δ ∈CPGLn(q)(ιS).

Set k = n/2 + 1, so k is even and (k,n − k) = 2. If q is even, then set

s ∈ CG0(g) = Spn(q) with s = [A,B], where A ∈ Spk(q) and B ∈ Spn−k(q)

are irreducible. Similarly, if q is odd, we choose s ∈ CG0(ιS) so that s (or

δs if g = ιSδ) is of the form [A,B], with A,B as before. For all q, we set

y = (gs)2 = [A2,B2], and we note that A2 and B2 are irreducible. Now

(29) |y| ≥ (qk/2 + 1)/(2, q− 1)2,

and we see that some power of y has order r, where r is a primitive prime

divisor of pfk − 1 (where q = pf and p is a prime).
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As before, let M be the set of maximal subgroups of G containing gs.

We claim that if H ∈M, then one of the following holds:

(i) H is a C1-subgroup of type GLk(q)×GLn−k(q); there is exactly one

such subgroup in M;

(ii) H is a C3-subgroup of type GLn/2(q
2); there is exactly one such sub-

group in M;

(iii) H is a C8-subgroup of type Spn(q) or O
+
n (q) (q odd); there are at most

2qn/2−1 subgroups of each type in M.

To determine the reducible subgroups in M, we argue as in the proof of

Proposition 6.4. Now assume that H is irreducible. To determine the pos-

sibilities for H , we apply the main theorem of [25], considering the various

Ci families in turn.

Suppose thatH is a C2-subgroup. Then according to [25, Example 2.3], we

may assume that H is of type GL1(q) �Sn, so H ∩PGL(V )≤ (q− 1)n−1.Sn

and q ≥ 5 (see [33, Table 3.5.H]). If (n, q) �= (10,5), then [24, Lemma 2.1]

implies that some power of y has order r′, where either r′ is a primitive prime

divisor of qk−1 with r′ > 2k+1, or r′ is a product of primitive prime divisors

of qk − 1. In this case, C2-subgroups are ruled out by Theorem 2.12. Finally,

if (n, q) = (10,5), then the order of s= [A,B] is at least lcm(53+1,52+1) =

1638, so |y| ≥ 819. However, we have |x| ≤ 120 for all x ∈H ∩ PGL(V ), so

there are no C2-subgroups in M.

Next, suppose that H ∈M is a C3-subgroup. By [25, Example 2.3], H is

of type GLn/2(q
2) since (k,n− k) = 2, and [33, Proposition 4.3.6] indicates

that G has a unique conjugacy class of such subgroups. Now yG ∩H = yH

since any two semisimple elements in PGLn/2(q
2) with identical eigenvalues

are PSLn/2(q
2)-conjugate. In addition, CG(y) is of type Zqk−1 × Zqn−k−1,

so CG(y) is contained in a C3-subgroup of type GLn/2(q
2), and therefore we

may assume that CG(y) ≤H . By applying Corollary 2.5, it follows that y

is contained in a unique such subgroup.

By the main theorem of [25], there are no C4-, C6-, or C7-subgroups
in M, and we can eliminate subfield subgroups and C8-subgroups of type

GUn(q
1/2) since r must divide |H ∩ PGL(V )|. Next, suppose that H ∈M

is a C8-subgroup of type Spn(q) or Oε
n(q). In the latter case, note that q

is odd and that ε=+ is the only possibility since y fixes a decomposition

V = U ⊕W , where U and W are both nondegenerate orthogonal subspaces

of minus-type. Suppose that H ∈M is of type Spn(q). Set c= (q− 1, n/2),

and let N be the number of distinct G-conjugates of H containing y. By
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[33, Proposition 4.8.3], we have

[G :H] =
|SLn(q)|
c|Spn(q)|

< c−1q(n
2−n−2)/2,

while

|yG ∩H|= |Spn(q)|
(qk/2 + 1)(q(n−k)/2 + 1)

< qn
2/2,

|yG|= |GLn(q)|
(qk − 1)(qn−k − 1)

>
1

2
qn

2−n.

Therefore, (28) gives N < 2c−1qn/2−1. In addition, there are at most c dis-

tinct G-classes of subgroups of type Spn(q) in G (see [33, Proposition 4.8.3]),

so there are at most 2qn/2−1 such subgroups in M. Similarly, by applying

[33, Proposition 4.8.4], we also find that M contains at most 2qn/2−1 sub-

groups of type O+
n (q).

To complete the analysis of M, we may assume that H ∈ C9 is almost

simple with socle H0. First, assume that H0 =Ad is an alternating group.

(The various possibilities are described in [25, Example 2.6, cases (a)–(c)].)

No examples arise in cases (a) and (c) since H ∩ PGL(V ) fixes a nonde-

generate form on V in each relevant case. In case (b), there are a couple

of possibilities when n= 6 and d= 6 or 7. However, [25, Table 3] indicates

that q ≥ 7, so |y| ≥ 13 by (29), but |x| ≤ 12 for all x ∈H , so no examples

arise. Similarly, by inspecting [25, Table 5], we can rule out any possibilities

with H0 a sporadic group.

Finally, suppose thatH0 is a simple group of Lie type in characteristic �. If

�= p is the defining characteristic, then H must appear in [25, Table 6], but

there are no relevant cases. Finally, let us assume that � �= p. By inspecting

[25, Tables 7 and 8], and by considering the corresponding Frobenius–Schur

indicators (see [15] and [29]) to determine whether or not H ∩PGL(V ) fixes

an appropriate form on V , we reduce to the following cases:

H0 α n p

(i) PSU4(3) 28 6 p≡ 1 (mod 6)

(ii) PSL3(4) 21 6 p≡ 1 (mod 6)

(iii) PSL2(11) 12 6 p �= 2,11
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Here α denotes the maximal order of an element of Aut(H0). In cases (i)

and (ii), we have |y| > α if p > 7 (see (29)), so we may assume that G0 =

PSL6(7). Here |y| ≥ lcm((72 + 1)/2, (7 + 1)/2) = 100, so these cases do not

arise. Similarly, in case (iii), we may assume that q ≥ 5 (since (n, q) /∈ B);
hence, |y| ≥ 13, and this case can also be discarded.

Let z ∈G be an element of prime order. By applying Theorem 2.7 and

Proposition 2.8, we deduce that if (n, q) /∈ B, then

(30) α(z)< 2qk−n + 4q1−n/2 +
(
(2, q− 1)− 1

)
· 4q−n/2 + 2q8−2n < 1/2.

Moreover, it is straightforward to check that α(z)< q−n/6 if n > 12 or q > 5,

whence α(z)→ 0 as |G| →∞.

Proposition 6.6. Theorem 6.2 holds when n≡ 0 (mod 4) and n≥ 8.

Proof. If (n, q) = (8,2), then the desired result follows from Proposi-

tion 2.17, so we will assume otherwise. By Lemma 6.1, there are three

PGLn(q)-classes of involutory graph automorphisms, with representatives

ιS, ιS+, and ιS−, and respective centralizers of type Spn(q), O
+
n (q), and

O−
n (q). Now det(S+) = (−1)n/2 = 1, so ιS and ιS+ are in the same G0-coset,

and thus we reduce to the two cases g = ιS and g = ιS−.
First, assume that g = ιS. This is very similar to the proof of the previous

proposition. Set k = n/2+2, so k is even and (k,n− k) = 2 or 4. As before,

we may take s ∈G0 such that y = (gs)2 = [A2,B2], where A ∈ Spk(q) and

B ∈ Spn−k(q) are irreducible. Then (29) holds, and the subsequent analysis

of M is entirely similar, except that we need an additional argument to

eliminate C6 subgroups. Suppose that H ∈M is a C6-subgroup. According

to [25, Example 2.5], we may assume that q = p≡ 1 (mod 4) and that n= 2m

with m ≥ 3. Now H ∩ PGL(V ) ≤ 22m.Sp2m(2), where 22m is elementary

abelian of order 22m, so |z| ≤ 2α for all z ∈H ∩ PGL(V ), where α is the

maximal order of an element of Sp2m(2). Clearly, α≤ 22m− 1 (see, e.g., [17,

Corollary 2]), so by considering (29), we reduce to the case (n, q) = (8,5).

Here α= 15 and |y| ≥ (53+1)/4, so there are no C6-subgroups in M. In this

way, we deduce that (30) holds, and the result quickly follows. We leave the

reader to check the details.

For the remainder of the proof, we may assume that g = ιS−. Here CG0(g)

is of type O−
n (q), and we set y = (gs)2 = s2, where s ∈CG0(g) is irreducible.

Let M denote the set of maximal subgroups of G containing gs. Note that

there are no reducible subgroups in M, and also note that some power of
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y has order r, where r is a primitive prime divisor of pfn − 1. (Recall that

q = pf and that p is a prime.)

To begin with, let us assume that (n, q) �= (12,2) or (20,2). Then [24,

Lemma 2.1] implies that some power of y has order r′, where either r′ >
2n+ 1 is a primitive prime divisor of qn − 1, or r′ is a product of primitive

prime divisors of qn− 1. Therefore, Theorem 2.12 implies that each H ∈M
is of type GLn/k(q

k) (where k is a prime divisor of n), Spn(q), or O−
n (q)

(with q odd). Note that there are no subfield subgroups or C8-subgroups of
type GUn(q

1/2) in M since |H ∩PGL(V )| must be divisible by r. Also, since

y is irreducible, we deduce that M contains a unique C3-subgroup of type

GLn/k(q
k) for each prime divisor k of n, while the usual argument reveals

that there are at most 2qn/2−1 subgroups of type Spn(q) or O−
n (q) in M.

By applying Proposition 2.8 and Corollary 2.9, we deduce that

α(z)<
(
log(n) + 1

)
· f(n, q)

(31)
+ 2qn/2−1

(
2q2−n + ((2, q− 1)− 1) · 2q1−n

)
< 1/2

for all z ∈G of prime order. Moreover, if n > 12 or q > 4, then (31) yields

α(z)< q−n/4, so the desired asymptotic result also holds.

Finally, suppose that (n, q) = (12,2) or (20,2). By applying the main

theorem of [25], we calculate that in both of these cases there are no addi-

tional subgroups in M. For example, if (n, q) = (20,2), then r = 41, and by

inspecting [25], we deduce that each H ∈M is of type

GL10(4),GL4(32),Sp20(2), or PSL2(41).

Here the last case is a C9-subgroup appearing in [25, Table 8], but we

can eliminate it since the Frobenius–Schur indicator of the underlying irre-

ducible representation of SL2(41) is of minus type (see, e.g., [28, Table 2(b)]);

hence, H is contained in a C8-subgroup of type Sp20(2). The case (n, q) =

(12,2) is entirely similar. We conclude that (31) holds, and the result fol-

lows.

To complete the proof of Theorem 6.2, we may assume that n= 4 or 3.

Proposition 6.7. Theorem 6.2 holds when n= 4.

Proof. If q ≤ 9, then Proposition 2.17 applies, so let us assume that q ≥ 11.

As in the proof of Proposition 6.6, we may assume that g = ιS or ιS−. In
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both cases, we may choose s ∈G0 such that y = (gs)2 ∈G0 is irreducible on

V and

(32) |y|= (q2 + 1)/(2, q− 1).

As before, let M be the set of maximal subgroups of G containing gs. Since

we are assuming that q ≥ 11, [24, Lemma 2.1] implies that some power of y

has order r, where either r > 9 is a primitive prime divisor of q4 − 1, or r

is a product of primitive prime divisors of q4 − 1. Therefore, Theorem 2.12

applies, and we quickly deduce that each H ∈M is of type GL2(q
2), Sp4(q),

or O−
4 (q) (with q odd). (Note that |y| does not divide |PGL4(q1)| (where

q = qa1 for some prime a), |PGU4(q
1/2)|, or |O+

4 (q)|, so these subgroups do

not arise.)

Since y is irreducible, the usual argument reveals that M contains a

unique subgroup of type GL2(q
2). Next, assume that q is odd and that H

is of type O−
4 (q). Set c= (q − 1,4)/2, and let N be the number of distinct

G-conjugates of H containing y, so (28) holds. Now

[G :H] =
|SL4(q)|

2c|SO−
4 (q)|

, |yG ∩H| ≤ 2|SO−
4 (q)|

q2 + 1
, |yG|= |GL4(q)|

q4 − 1

(see [33, Proposition 4.8.4]), and thus N ≤ (q+1)/c. Since there are at most

c distinct G-classes of such subgroups, we conclude that there are at most

q+ 1 subgroups of type O−
4 (q) in M.

Now let N be the number of subgroups of type Sp4(q) in M. We claim

that N ≤ (2, q− 1)3. To see this, let G1 = 〈PGL4(q), g〉, and observe that all

subgroups of G1 of type Sp4(q) are G1-conjugate, so we have

N ≤ |(gs)G1 ∩H|
|(gs)G1 | · |G1|

|H| .

In order to derive an upper bound on |(gs)G1∩H|, we are free to assume that

H ≤CG1(ιS). Suppose that ιSt1, ιSt2 ∈ (gs)G1 ∩H , where t1, t2 ∈ PGL4(q).

Now (ιSt1)
2 = t21 and (ιSt2)

2 = t22 are elements of H ∩ PGL4(q) with the

same set of eigenvalues, say,

E = {λ,λq0 , λq20 = λ−1, λq30 = λ−q0}.

Therefore, it follows that the eigenvalues of t1 and t2 are either {μ,μq0 , μq20 ,

μq30} or {−μ, (−μ)q0 , (−μ)q
2
0 , (−μ)q

3
0}, where μ2 = λ. But any two irreducible
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semisimple elements in PGSp4(q) with the same eigenvalues are PGSp4(q)-

conjugate. (Since PGSp4(q)
∼= SO5(q), this follows from [47, Section 2.6];

it can also be deduced from [44, Table 1].) Thus, t1 and t2 are PGSp4(q)-

conjugate, and the same is true for ιSt1 and ιSt2. This implies that |(gs)G1 ∩
H| ≤ (2, q− 1)|(gs)PGSp4(q)|.

Let m= |gs|, and observe that m is even and that

CPGL4(q)(gs)≤CPGL4(q)

(
(gs)m/2

)
∩CPGL4(q)

(
(gs)2

)
.

Now CPGL4(q)((gs)
2) is cyclic of order (q4 − 1)/(q − 1), and (gs)m/2 is

an involution. Since CPGL4(q)((gs)
m/2) contains (gs)2, by inspecting the

involution classes in the full automorphism group of G0, we deduce that

CPGL4(q)((gs)
m/2) is of type GL2(q

2), Sp4(q), or O−
4 (q). Therefore,

CPGL4(q)(gs) is cyclic of order at most q2 + 1; hence, |CG1(gs)| ≤ 2(q2 + 1),

and thus

N ≤ (2, q− 1)|(gs)PGSp4(q)|
|(gs)G1 | · |G1|

|H| ≤ (2, q− 1)2|CG1(gs)|
|CH(gs)| .

But |CH(gs)| ≥ |gs|= 2(q2+1)/(2, q−1) sinceH contains gs, and this yields

N ≤ (2, q− 1)3 as claimed.

By applying Lemma 2.11, we conclude that if z ∈G has prime order, then

α(z)≤ d22q
2

q3 − 1
+

2d1(d2 − 1)(q+ 1)

q3 − 1
+

d1(q
3 + 2q+ 1)

q2(q3 − 1)
< q−1/3

for all q ≥ 11, where d1 = (4, q− 1) and d2 = (2, q− 1).

Proposition 6.8. Theorem 4.1 holds when n= 3.

Proof. If q ≤ 16, then Proposition 2.17 applies, so let us assume that

q ≥ 17. We may assume that g = ι (see Lemma 6.1). Take s= [A,1] ∈CG0(g),

where A ∈ SO−
2 (q) is irreducible of order q + 1, and set y = (gs)2 = [A2,1].

Define M in the usual way, and note that

(33) |y|= (2, q− 1)−1(q+ 1).

Clearly, if H ∈M is reducible, then H is of type GL1(q)×GL2(q), and there

is a unique such subgroup in M. Now assume that H ∈M is irreducible.

We claim that q is odd and that H is of type O3(q).

Suppose that H ∈ M is a C2-subgroup of type GL1(q) � S3. If x ∈ H ∩
PGL(V ), then |x| divides 2(q − 1) or 3(q − 1), but this is incompatible
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with (33) since q ≥ 17. Similarly, since |y| does not divide |PGL3(q1)| or
|PGU3(q

1/2)|, we deduce that there are no subfield subgroups or C8-
subgroups of type GU3(q

1/2) in M. We can also eliminate C3-subgroups
of type GL1(q

3) since |y| does not divide 3(q2 + q + 1). Similarly, if H is

a C6-subgroup of type 32.Sp2(3), then q = p ≡ 1 (mod 3), so q ≥ 19 and

|y| ≥ 10, but |x| ≤ 7 for all x ∈H . This rules out C6-subgroups.
Finally, suppose that H ∈M is a C9-subgroup with socle H0. The possi-

bilities for H are listed in [5, Table 7.4]; either H0 =PSL2(7) or A6. Suppose

that H0 = PSL2(7), so q = p ≡ 1,2,4 (mod 7). Here the congruence condi-

tion implies that q ≥ 23, and thus |y| ≥ 12, which is a contradiction since

|x| ≤ 8 for all x ∈H . Similar reasoning applies in the case H0 = A6. This

justifies the claim.

Suppose that gs is contained in a subgroup H of type O3(q), where q

is odd. Let N be the number of G-conjugates of H containing y = (gs)2.

Let c= (3, q− 1). By [33, Proposition 4.8.4], we have [G :H] = c−1[SL3(q) :

SO3(q)], and there are at most c distinct G-classes of these subgroups in G.

In addition, we compute

|yG ∩H|= |yH |= |SO3(q)|
|GU1(q)|

, |yG|= |GL3(q)|
|GL1(q)||GL1(q2)|

,

and thus there are at most q− 1 subgroups of type O3(q) in M.

By applying Theorem 2.7 and Lemma 2.10, we conclude that if z ∈G has

prime order, then

α(z)≤ q−1 + q−2 +
(
(2, q− 1)− 1

)
· q− 1

q2 + q+ 1
< 2q−1

for all q ≥ 16.

This completes the proof of Theorem 6.2. Furthermore, in view of Theo-

rems 3.1, 4.1, and 5.1, the proof of Theorem 2.3 is complete. As explained

in Section 2, Theorems 2 and 3 are easily deduced from Theorem 2.3.

§7. Proof of Corollary 5

In this final section, we explain how Corollary 5 quickly follows from

Theorems 2 and 3. Recall that Corollary 5 states that if G is an almost

simple group with socle G0 =PSLn(q), then

d(G) =max
{
2, d(G/G0)

}
≤ 3,

where d(L) is the minimal size of a generating set for the finite group L.
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Write d = d(G/G0). If d = 1, then G/G0 is cyclic, and thus Theorem 2

implies that G is 2-generated. Next, suppose that d = 2. Choose y1, y2 ∈
G such that G = 〈G0, y1, y2〉, and set k = [〈G0, y2〉 : G0]. Fix h ∈ G0 such

that |y2h| > k. (This is possible by the main lemma in [41, Section 2].)

By applying Theorem 3 to the group G1 = 〈G0, y1〉, with y = (y2h)
k ∈ G0

(note that y �= 1 since |y2h| > k), we deduce that there exists an element

s ∈ G0 and a conjugate z ∈ (y1s)
G1 such that G1 = 〈y, z〉. It follows that

G= 〈y2h, z〉 is 2-generated.
Finally, suppose that d= 3, say, G= 〈G0, y1, y2, y3〉 for some y1, y2, y3 ∈G.

Let G2 = 〈G0, y1, y2〉. Since d(G2/G0) = 2, the above argument implies that

there exists z1, z2 ∈G2 such that G2 = 〈z1, z2〉, and thus G= 〈z1, z2, y3〉.
This completes the proof of Corollary 5.
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cycles in the generating graph of finite groups, Bull. Lond. Math. Soc. 42 (2010),
621–633. MR 2669683. DOI 10.1112/blms/bdq017.

[9] T. C. Burness, Fixed point ratios in actions of finite classical groups, I, J. Algebra
309 (2007), 69–79. MR 2301233. DOI 10.1016/j.jalgebra.2006.05.024.

[10] , Fixed point ratios in actions of finite classical groups, II, J. Algebra 309
(2007), 80–138. MR 2301234. DOI 10.1016/j.jalgebra.2006.05.025.

http://www.ams.org/mathscinet-getitem?mr=0746539
http://dx.doi.org/10.1007/BF01388470
http://www.ams.org/mathscinet-getitem?mr=0422401
http://www.ams.org/mathscinet-getitem?mr=0257197
http://www.ams.org/mathscinet-getitem?mr=0372033
http://www.ams.org/mathscinet-getitem?mr=2422303
http://dx.doi.org/10.1016/j.jalgebra.2007.10.028
http://www.ams.org/mathscinet-getitem?mr=2669683
http://dx.doi.org/10.1112/blms/bdq017
http://www.ams.org/mathscinet-getitem?mr=2301233
http://dx.doi.org/10.1016/j.jalgebra.2006.05.024
http://www.ams.org/mathscinet-getitem?mr=2301234
http://dx.doi.org/10.1016/j.jalgebra.2006.05.025
http://dx.doi.org/10.1016/j.jalgebra.2007.10.028


ON THE UNIFORM SPREAD OF ALMOST SIMPLE LINEAR GROUPS 107

[11] , Fixed point ratios in actions of finite classical groups, III, J. Algebra 314
(2007), 693–748. MR 2344583. DOI 10.1016/j.jalgebra.2007.01.011.

[12] , Fixed point ratios in actions of finite classical groups, IV, J. Algebra 314
(2007), 749–788. MR 2344584. DOI 10.1016/j.jalgebra.2007.01.012.

[13] J. J. Cannon and D. F. Holt, Automorphism group computation and isomorphism
testing in finite groups, J. Symbolic Comput. 35 (2003), 241–267. MR 1962794.
DOI 10.1016/S0747-7171(02)00133-5.

[14] , Computing maximal subgroups of finite groups, J. Symbolic Comput. 37
(2004), 589–609. MR 2094616. DOI 10.1016/j.jsc.2003.08.002.

[15] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas
of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups,
Oxford University Press, Eynsham, 1985. MR 0827219.

[16] F. Dalla Volta and A. Lucchini, Generation of almost simple groups, J. Algebra 178
(1995), 194–223. MR 1358262. DOI 10.1006/jabr.1995.1345.

[17] M. R. Darafsheh, Orders of elements in the groups related to the general linear group,
Finite Fields Appl. 11 (2005), 738–747. MR 2181417. DOI 10.1016/j.ffa.2004.12.003.

[18] J. D. Dixon, The probability of generating the symmetric group, Math. Z. 110 (1969),
199–205. MR 0251758.

[19] J. Fulman and R. Guralnick, Conjugacy class properties of the extension of GL(n, q)
generated by the inverse transpose involution, J. Algebra 275 (2004), 356–396.
MR 2047453. DOI 10.1016/j.jalgebra.2003.07.004.

[20] D. Gorenstein and R. Lyons, The local structure of finite groups of characteristic 2
type, Mem. Amer. Math. Soc. 42 (1983), no. 276. MR 0690900.

[21] D. Gorenstein, R. Lyons, and R. Solomon, The Classification of the Finite Sim-
ple Groups, Math. Surveys Monogr. 40, Amer. Math. Soc., Providence, 1994.
MR 1303592.

[22] R. M. Guralnick, The spread of finite groups, in preparation.
[23] R. M. Guralnick and W. M. Kantor, Probabilistic generation of finite simple groups,

J. Algebra 234 (2000), 743–792. MR 1800754. DOI 10.1006/jabr.2000.8357.
[24] R. M. Guralnick and G. Malle, Products of conjugacy classes and fixed point

spaces, J. Amer. Math. Soc. 25 (2012), 77–121. MR 2833479. DOI 10.1090/
S0894-0347-2011-00709-1.

[25] R. Guralnick, T. Pentilla, C. E. Praeger, and J. Saxl, Linear groups with orders
having certain large prime divisors, Proc. Lond. Math. Soc. (3) 78 (1999), 167–214.
MR 1658168. DOI 10.1112/S0024611599001616.

[26] R. M. Guralnick and J. Saxl, Generation of finite almost simple groups by conjugates,
J. Algebra 268 (2003), 519–571. MR 2009321. DOI 10.1016/S0021-8693(03)00182-0.

[27] R. M. Guralnick and A. Shalev, On the spread of finite simple groups, Combinatorica
23 (2003), 73–87. MR 1996627. DOI 10.1007/s00493-003-0014-3.

[28] G. Hiss and G. Malle, Low-dimensional representations of quasi-simple groups, LMS
J. Comput. Math. 4 (2001), 22–63. MR 1835851.

[29] C. Jansen, K. Lux, R. Parker, and R. Wilson, An Atlas of Brauer Characters, Lon-
don Math. Soc. Monogr. Ser. (N.S.) 11 Oxford University Press, New York, 1995.
MR 1367961.

[30] W. M. Kantor, Subgroups of classical groups generated by long root elements, Trans.
Amer. Math. Soc. 248, no. 2 (1979), 347–379. MR 0522265. DOI 10.2307/1998972.

[31] W. M. Kantor and A. Lubotzky, The probability of generating a finite classical group,
Geom. Dedicata 36 (1990), 67–87. MR 1065213. DOI 10.1007/BF00181465.

http://www.ams.org/mathscinet-getitem?mr=2344583
http://dx.doi.org/10.1016/j.jalgebra.2007.01.011
http://www.ams.org/mathscinet-getitem?mr=2344584
http://dx.doi.org/10.1016/j.jalgebra.2007.01.012
http://www.ams.org/mathscinet-getitem?mr=1962794
http://dx.doi.org/10.1016/S0747-7171(02)00133-5
http://www.ams.org/mathscinet-getitem?mr=2094616
http://dx.doi.org/10.1016/j.jsc.2003.08.002
http://www.ams.org/mathscinet-getitem?mr=0827219
http://www.ams.org/mathscinet-getitem?mr=1358262
http://dx.doi.org/10.1006/jabr.1995.1345
http://www.ams.org/mathscinet-getitem?mr=2181417
http://dx.doi.org/10.1016/j.ffa.2004.12.003
http://www.ams.org/mathscinet-getitem?mr=0251758
http://www.ams.org/mathscinet-getitem?mr=2047453
http://dx.doi.org/10.1016/j.jalgebra.2003.07.004
http://www.ams.org/mathscinet-getitem?mr=0690900
http://www.ams.org/mathscinet-getitem?mr=1303592
http://www.ams.org/mathscinet-getitem?mr=1800754
http://dx.doi.org/10.1006/jabr.2000.8357
http://www.ams.org/mathscinet-getitem?mr=2833479
http://dx.doi.org/10.1090/S0894-0347-2011-00709-1
http://www.ams.org/mathscinet-getitem?mr=1658168
http://dx.doi.org/10.1112/S0024611599001616
http://www.ams.org/mathscinet-getitem?mr=2009321
http://dx.doi.org/10.1016/S0021-8693(03)00182-0
http://www.ams.org/mathscinet-getitem?mr=1996627
http://dx.doi.org/10.1007/s00493-003-0014-3
http://www.ams.org/mathscinet-getitem?mr=1835851
http://www.ams.org/mathscinet-getitem?mr=1367961
http://www.ams.org/mathscinet-getitem?mr=0522265
http://dx.doi.org/10.2307/1998972
http://www.ams.org/mathscinet-getitem?mr=1065213
http://dx.doi.org/10.1007/BF00181465
http://dx.doi.org/10.1090/S0894-0347-2011-00709-1


108 T. C. BURNESS AND S. GUEST

[32] N. Kawanaka, On the irreducible characters of the finite unitary groups, J. Math.
Soc. Japan 29 (1977), 425–450. MR 0450383.

[33] P. Kleidman and M. Liebeck, The Subgroup Structure of the Finite Classical Groups,
London Math. Soc. Lecture Note Ser. 129, Cambridge University Press, Cambridge,
1990. MR 1057341. DOI 10.1017/CBO9780511629235.

[34] M. W. Liebeck, The classification of finite simple Moufang loops, Math.
Proc. Cambridge Philos. Soc. 102 (1987), 33–47. MR 0886433. DOI 10.1017/
S0305004100067025.

[35] M. W. Liebeck and J. Saxl, Minimal degrees of primitive permutation groups, with an
application to monodromy groups of covers of Riemann surfaces, Proc. Lond. Math.
Soc. (3) 63 (1991), 266–314. MR 1114511. DOI 10.1112/plms/s3-63.2.266.

[36] M. W. Liebeck and A. Shalev, The probability of generating a finite simple group,
Geom. Dedicata 56 (1995), 103–113. MR 1338320. DOI 10.1007/BF01263616.

[37] , Classical groups, probabilistic methods, and the (2,3)-generation problem,
Ann. of Math. (2) 144 (1996), 77–125. MR 1405944. DOI 10.2307/2118584.

[38] , Simple groups, permutation groups, and probability, J. Amer. Math. Soc. 12
(1999), 497–520. MR 1639620. DOI 10.1090/S0894-0347-99-00288-X.

[39] , Random (r, s)-generation of finite classical groups, Bull. Lond. Math. Soc.
34 (2002), 185–188. MR 1874245. DOI 10.1112/S0024609301008827.
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