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KUMMER SURFACES ASSOCIATED TO
(1,2)-POLARIZED ABELIAN SURFACES

AFSANEH MEHRAN

Abstract. The aim of this paper is to describe the geometry of the generic
Kummer surface associated to a (1,2)-polarized abelian surface. We show that

it is the double cover of a weak del Pezzo surface and that it inherits from the
del Pezzo surface an interesting elliptic fibration with twelve singular fibers of
type I2.

§1. Introduction

The extensive study of Kummer surfaces is explained by their rich geom-
etry and their multiple roles in the theory of K3 surfaces and beyond (see
[H], [PŠŠ], [B]).

In this paper, all the Kummer surfaces considered are algebraic. Let A be
an abelian surface, and consider the involution which maps a to −a for any a

in A. This involution has sixteen fixed points, namely, the sixteen 2-torsion
points, of A. The quotient surface has sixteen ordinary double points, and
its minimal resolution is a smooth algebraic K3 surface called the Kummer
surface associated to A and denoted by Kum(A). Nikulin gave a clear way to
detect Kummer surfaces among all K3 surfaces. Indeed, he proved that any
K3 surface containing sixteen disjoint smooth rational curves is a Kummer
surface (see [Ni1]). However, identifying the associated abelian surface can
be a difficult problem. In this paper, we will address this problem in the
most generic case.

In Section 1, we use Nikulin’s criterion to construct new Kummer surfaces
from a given Kummer surface. The idea is to take the minimal model of
the double cover of the latter surface branched along eight disjoint smooth
rational curves C1, . . . ,C8, that are even (see Definition 2.1). If the eight
curves are chosen properly, we obtain in this way a new Kummer surface
together with a rational map between the two surfaces.
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In Section 2 of this paper, we explain this construction in detail, and
we show that the abelian surface associated to the new Kummer surface is
isogenous to A. In fact, we prove that the rational map is induced by an
isogeny of degree 2 on the associated abelian surfaces.

In Section 3, we describe the geometry of a generic Jacobian Kummer
surface and explain its classical double plane model. We also recall a theorem
of Naruki [Na, Theorem 1] giving explicit generators of the Néron-Severi
lattice of a generic Jacobian Kummer surface.

In Section 4, we apply the construction of Section 2 to the generic Jaco-
bian Kummer surface. We obtain in this way fifteen nonisomorphic Kummer
surfaces which are associated to (1,2)-polarized abelian surfaces.

Finally, in Section 5 we show that the Kummer surfaces of Section 4
admit an elliptic fibration with twelve singular fibers of type I2. We also
prove that these Kummer surfaces are double covers of a weak del Pezzo
surface (i.e., the blowup of P

2 at seven points) and that, for each of our
Kummer surfaces, there exists a decomposition of a very degenerate sextic
S into a quartic Q and a conic C for which we have the following theorem.

Theorem 1.1. Let S be a reducible plane sextic, which is the union of
six lines all tangent to a conic. Let Kum(A) be a generic Kummer surface,
and let B → A be an isogeny of degree 2.

(i) The isogeny of abelian surfaces induces a rational map of degree 2
Kum(B)

τ��� Kum(A) which decomposes as

Kum(B)

τ

ϕ

T

ζ

Kum(A)
φ

P
2

where φ is the canonical resolution of the double cover of P
2 branched

along S.
(ii) There exists a decomposition of S into a quartic Q and a conic C such

that the maps ζ and ϕ are the canonical resolutions of the double covers
branched along Q and ζ∗(C), respectively.
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§2. Even eight and Kummer surface

We now introduce the notion of an even eight and the double cover con-
struction associated to it. By applying this construction to special even
eights of a Kummer surface, we obtain new Kummer surfaces.

Definition 2.1. Let Y be a K3 surface. An even eight on Y is a set of
eight disjoint smooth rational curves C1, . . . ,C8 for which C1 + · · · + C8 ∈
2SY . Here, SY denotes the Néron-Severi group of Y.

If C1, . . . ,C8 is an even eight on a K3 surface Y , then there is a double
cover Z

p→ Y branched on C1 + · · · + C8. If Ei denotes the inverse image of
Ci, then p∗(Ci) = 2Ei and E2

i = −1. Hence, we may blow down Ei to the
surface X and obtain the diagram

Z

p

ε
X

2:1

Y

It turns out that the surface X is again a K3 surface and that the covering
involution ι : X → X is symplectic with eight fixed points (see [Ni1]).

Suppose now that the K3 surface Y is a Kummer surface. We want to
exhibit natural even eights lying on it. For this purpose, we recall a central
lemma of Nikulin.

Lemma 2.2 ([Ni1, Lemma 3]). Let Y be a Kummer surface, and let
E1, . . . ,E16 ⊂ Y be sixteen smooth disjoint rational curves. Denote by I =
{1, . . . ,16} the set of indices for the curves Ei and denote Q = {M ⊂ I |
(1/2)

∑
i∈M Ei ∈ SY }. Then for every M in Q, we have #|M | = 8 or 16,

and there exists on I a unique 4-dimensional affine geometry structure over
F2 whose hyperplanes consist of the subsets M ∈ Q containing eight ele-
ments.

The existence of such a 4-dimensional affine geometry implies that I ∈ Q

or, equivalently, that
∑16

i=1 Ei ∈ 2SY . We can proceed exactly as for an even
eight and take the double cover V

p→ Y branched along E1 + · · · + E16.
Again, we blow down the preimage of Ei to a surface A, and we obtain the
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diagram

V

p

ε
A

πA

Y

The difference between this diagram and the previous one is that now the
surface A is an abelian surface and the map πA realizes Y as the Kummer
surface associated to A. We point out that, by uniqueness, the affine geom-
etry on I corresponds to the one existing on A2, the set of 2-torsion points
on A (see [Ni1]).

It also follows from the lemma that there exist on Y , with Y � Kum(A),
thirty even eights denoted by M1, . . . ,M30, that is, the thirty affine hyper-
planes of I .

Let M ∈ {M1, . . . ,M30} be one of these even eights. We can assume that
M consists of the curves E1, . . . ,E8. The curves E9, . . . ,E16 are then orthog-
onal to M , that is, we have

Ei · Ej = 0 if 1 ≤ i ≤ 8 and 9 ≤ j ≤ 16.

If X
τ��� Kum(A) is the double cover associated to M , then the K3 surface

X contains again sixteen disjoint smooth rational curves. Indeed, since the
curves E9, . . . ,E16 do not intersect the branch locus of the double cover
p : Z → Y , they split under p and pull back to sixteen disjoint smooth
rational curves on Z. These sixteen curves are then isomorphically mapped
by the blowdown Z

ε→ X to sixteen curves on X . It follows that X contains
sixteen disjoint smooth rational curves, and hence that it is a Kummer
surface.

Proposition 2.3. Let M be an even eight on a Kummer surface Kum(A)
such as above. Then the K3 surface X associated to M is a Kummer surface.
Moreover, there is an abelian surface B associated to X for which we have
the commutative diagram

B

πB

p

A

πA

X = Kum(B)
τ

Kum(A)

where B
p→ A is an isogeny of degree 2.
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Proof. Since we have already shown that X is a Kummer surface, we
only have to prove that B is degree 2 isogenous to A. Write the abelian
surface A as the complex torus C2/Λ, and let E9, . . . ,E16 ⊂ Kum(A) be the
eight disjoint smooth rational curves orthogonal to M . These curves also
form an even eight, and hence they correspond to an affine hyperplane H

in A2. Up to translation, we can fix the origin of A in H . Let [v]/2 be the
generator of A2/H (it defines a sublattice Λ′ ⊂ Λ). Explicitly, we have that
Λ′ = Zh1 ⊕ Zh2 ⊕ Zh3 ⊕ Z2v, where H = 〈[h1]/2, [h2]/2, [h3]/2〉 ⊂ A2. The
canonical inclusion Λ′ ↪→ Λ induces the commutative diagram

C
2/Λ′

π′

p

C
2/Λ

π

Kum(C2/Λ′)
q

Kum(C2/Λ)

where p is an isogeny of degree 2. The covering involution of p is given by
the translation by the 2-torsion point [v] in C

2/Λ′. It induces the symplectic
involution on Kum(C2/Λ′)

σ : Kum(C2/Λ′) → Kum(C2/Λ′)

which has exactly eight fixed points (see [Ni2]), namely, the projection of
the sixteen points on C

2/Λ′ satisfying

[z] + [v] = −[z] or equivalently 2[z] = [v].

The isogeny p maps the set {[z] ∈ C2/Λ′ | 2[z] = [v]} to A2 − H . In other
words, the affine hyperplane A2 − H corresponds to the even eight M in
Kum(C2/Λ). Hence the resolution of the rational map q is exactly the double
cover of Kum(A) branched along M , and the abelian surface C/Λ′ is B.

§3. Jacobian Kummer surface

In this section, we briefly expose the classical geometry of a Jacobian
Kummer surface and its beautiful 166-configuration. We describe its double
plane model, and we give explicit generators for its Néron-Severi lattice.
This description follows Naruki [Na].

A Kummer surface Kum(A) is said to be a Jacobian Kummer surface
if the surface A is the Jacobian of a curve C of genus 2. Moreover, it is a
generic Jacobian Kummer surface if its Picard rank is 17.
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Recall that the degree 2 map given by the linear system |2C|, A
|2C|→ P

3,
factors through the involution a

i
→ −a and hence defines an embedding
A/{1, i} ↪→ P

3. The image of this map is a quartic Y0 ⊂ P
3 with sixteen

nodes. Denote by L0 the class of a hyperplane section of Y0. Projecting Y0

from a node defines a rational map Y0
2:1��� P

2. We blow up the center of
projection

Y1

Y0 P
2

and we call E1 ⊂ Y1 the exceptional divisor and L1 ⊂ Y1 the pullback of a line
in P

2. Finally, we resolve the remaining fifteen singularities of Y1, and we
obtain the Kummer surface Kum(A) and a map of degree 2 Kum(A)

φ→ P
2.

The map φ is given by the linear system |L − E0|, where L and E0 are the
pullbacks of L1 and E1, respectively.

The branch locus of the map φ is a reducible plane sextic S , which is the
union of six lines l1, . . . , l6, all tangent to a conic W .

Let pij = li ∩ lj ∈ P
2, where 1 ≤ i < j ≤ 6. Index the ten (3,3)-partitions

of the set {1,2, . . . ,6} by the pair (i, j) with 2 ≤ i < j ≤ 6. Each pair (i, j)
defines a plane conic lij passing through the sixtuplet p1i, p1j , pij , plm, pln,

pmn, where {l,m,n} is the complement of {1, i, j} in {1,2, . . . ,6} and where
l < m < n. The map φ factors as

Kum(A)
φ̃−→ P̃

2 η−→ P
2,

where η is the blowup of P
2 at pij and where φ̃ is the double cover of P̃

2

branched along the strict transform of the plane sextic S in P̃
2. Denote by

Eij ⊂ Kum(A) the preimage of the exceptional curves of P̃
2. The ramifi-

cation of the map φ̃ consists of the union of six disjoint smooth rational
curves C0 + C12 + C13 + C14 + C15 + C16. The preimage of the ten plane
conics lij defines ten more smooth disjoint rational curves Cij ⊂ Kum(A),
with 2 ≤ i < j ≤ 6. Finally, note that φ(E0) = W . The sixteen curves E0,Eij ,
2 ≤ i < j ≤ 6 are called the nodes of Kum(A), and the sixteen curves C0,Cij ,
2 ≤ i < j ≤ 6 are called the tropes of Kum(A). These two sets of smooth
rational curves satisfy a beautiful configuration called the 166-configuration,
that is, each node intersects exactly six tropes and vice versa.
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It is now possible to fully describe the Néron-Severi lattice SKum(A) of a
general Jacobian Kummer surface.

Theorem 3.1 ([Na, Theorem 1]). Let Kum(A) be a generic Jacobian
Kummer surface. Its Néron-Severi lattice SKum(A) is generated by the classes
of E0,Eij , C0,Cij , and L, with the relations

(1) C0 = (1/2)(L − E0 −
∑6

i=2 E1i);
(2) C1j = (1/2)(L − E0 − E1j − · · · − Ej−1j − Ejj+1 − · · · − Ej6), where 2 ≤

j ≤ 6;
(3) Cjk = (1/2)(L − E1j − E1k − Ejk − Elm − Eln − Emn), where 2 ≤ i < j ≤ 6

and where {l,m,n} are as described above.

The intersection pairing is given by the following:

(1) the E0,Eij are mutually orthogonal;
(2) 〈L,L〉 = 4, 〈L,E0〉 = 〈L,Eij 〉 = 0;
(3) 〈E0,E0〉 = 〈Eij ,Eij 〉 = −2;
(4) the C0,Cij are mutually orthogonal;
(5) 〈L,C0〉 = 〈L,Cij 〉 = 2.

The action on SKum(A) of the covering involution α of the map φ is given by

α(C0) = C0 α(C1j) = C1j 2 ≤ j ≤ 6
α(Eij) = Eij 1 ≤ i < j ≤ 6 α(L) = 3L − 4E0

α(E0) = 2L − 3E0 α(Cij) = Cij + L − 2E0 2 ≤ i < j ≤ 6.

Remark 3.2. The minimal resolution of the double cover of P
2 branched

along the sextic S in Figure 1 is a Kummer surface (see [H] for a proof).

§4. (1,2)-polarized Kummer surfaces

In this section, we apply the construction of Section 2 to a generic Jaco-
bian Kummer surface. We identify all the even eights made out of its nodes
and study the associated Kummer surfaces. First, we recall some standard
facts about the polarization of abelian varieties.

A polarization on a complex torus C
g/Λ is the class of an ample line

bundle L in the Néron-Severi group. As the latter group is equal (for
abelian varieties) to the group of Hermitian forms H on C

g satisfying
E = ImH(Λ,Λ) ⊂ Z, the ample line bundle L corresponds to a positive
definite Hermitian form EL. According to the elementary divisor theorem,
there exists a basis λ1, . . . , λg, μ1, . . . , μg of Λ with respect to which EL is
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l1

l2

l3

l4

l5

l6

W

Figure 1: The sextic S

given by the matrix

(
0 D

−D 0

)
with D =

⎛
⎜⎜⎜⎜⎝

d1 0 0 . . .

0 d2 0 . . .
... 0

. . . 0
...

... 0 dg

⎞
⎟⎟⎟⎟⎠ ,

where di ≥ 0 and di | di+1 for i = 1, . . . , g − 1. The vector (d1, d2, . . . , dg) is
the type of the line bundle L.

Example 4.1 (see [BL]). We have the following.
(1) If J(C) is the Jacobian of a curve C of genus 2, then the line bundle

associated to the divisor C is a polarization of type (1,1).
(2) If L is a polarization of type (d1, . . . , dg) on a complex torus, then χ(L) =

d1 · · · dg.
(3) If X1

p→ X2 is an isogeny of degree 2 of abelian surfaces and if L is a
polarization of type (1,1) on X2, then χ(p∗(L)) = 2χ(L) = 2 · 1. Hence
p∗(L) is a polarization of type (1,2) on X1.

Proposition 4.2. Let Kum(A) be a generic Jacobian Kummer surface,
and let E0,Eij , 1 ≤ i < j ≤ 6 be its sixteen nodes. There exist fifteen even
eights made out of its nodes that do not contain E0. These even eights are
of the form

Δi,j = E1i + · · · + Êij + · · · + Ei6 + E1j + · · · + Êij + · · · + Ej6,

where 1 ≤ i < j ≤ 6 and E11 = 0.
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The Kummer surface Kum(Bij) obtained from the double cover branched
along Δij is associated to an abelian surface Bij with a (1,2)-polarization.

Proof. For any couple (i, j) with 1 ≤ i < j ≤ 6, consider the divisor 2C1i +
2C1j , where we set C11 := C0. According to the description of the Néron-
Severi lattice of a general Jacobian Kummer surface in Section 3, we have
the equality

2C1i + 2C1j = 2(L − E0) − (E1i + · · · + Eij + · · · + Ei6

+ E1j + · · · + Eij + · · · + Ej6).

Therefore, we have

2C1i + 2C1j − 2(L − E0) + 2Eij = E1i + · · · + Êij + · · · + Ei6

+ E1j + · · · + Êij + · · · + Ej6,

and consequently

E1i + · · · + Êij + · · · + Ei6 + E1j + · · · + Êij + · · · + Ej6

is an even eight not containing E0. As there are exactly fifteen choices for i

and j, we obtain all of the possible even eights this way.
Let Kum(Bij) be the Kummer surface obtained by taking the double

cover branched along such an even eight. By Proposition 2.3, the surface
Bij is degree 2 isogenous to A. Since A has a (1,1)-polarization, it follows
from Example 4.1 that Bij has a (1,2)-polarization.

The reason why we only consider the even eights not containing E0 is
because we would obtain the exact same Kummer surface whether we take
the double cover branched along an even eight or its complement (see the
proof of Proposition 2.3).

For the remainder of this section, we will prove that no two Kummer
surfaces Kum(Bij) are isomorphic.

Definition 4.3. The Nikulin lattice is an even lattice N of rank 8 gener-
ated by {ci}8

i=1 and d = (1/2)
∑8

i=1 ci, with the bilinear form ci · cj = −2δij .

Remark 4.4. If C1, . . . ,C8 is an even eight on a K3 surface, then the
primitive sublattice generated by the class of Ci in the Néron-Severi group
of X is a Nikulin lattice.
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The following proposition gives a condition on two even eights which give
rise to nonisomorphic K3 surfaces.

Proposition 4.5. Let Y = Kum(A) be a Kummer surface, and let Δ1

and Δ2 be two even eights on Y . Denote by X1 and X2 the respective double
covers of Y . If N1,N2 ⊂ SY are the two Nikulin lattices corresponding to Δ1

and Δ2, then

X1 � X2 ⇐⇒ ∃f ∈ Aut(Y ) such that f ∗(N1) = N2.

Proof. We suppose that X1 is isomorphic to X2, and we denote by X2
g→

X1 an isomorphism between X2 and X1. Let X1
i1→ X1 and X2

i2→ X2 be the
covering involutions with respect to the rational double covers X1

τ1��� Y

and X2
τ2��� Y .

Claim. The following diagram is commutative:

H2(X1,Z)
g∗

i∗
1

H2(X2,Z)

i∗
2

H2(X1,Z)
g∗

H2(X2,Z)

Proof of the claim. Suppose that the above diagram does not commute.
Then the surface X1 would admit two distinct symplectic involutions,
namely, i1 and g ◦ i2 ◦ g−1. The quotient of X1 by both of these invo-
lutions would be birational to the same Kummer surface Y . However, it
follows from [M, Theorem 3.1] that the rational double cover of the Kum-
mer surface Kum(A) is determined by an embedding TX ↪→ TA preserving
the Hodge decomposition of TX and TA. Since there is a unique embedding
of TX into TA which preserves the Hodge decomposition, it follows that
i1 = g−1 ◦ i2 ◦ g.

Hence i2 ◦ g = g ◦ i1, and the isomorphism g descends to an isomorphism
on the quotients

X2/i2
g→ X1/i1.

Since this isomorphism maps the eight singular points of X2/i2 to the eight

singular points of X1/i1, it extends to an automorphism Y
f→ Y for which

f ∗(N1) = N2.
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Conversely, let Y
f→ Y be an automorphism of Y for which f ∗(N1) = N2.

Denote by Zi
pi→ Y the double cover of Y branched along the even eight Ni

for i = 1,2. Consider the fiber product

Z1 ×Y Y
q

p

Z1

p1

Y
f

Y

The map Z1 ×Y Y
p→ Y is a double cover of Y branched along the even

set N2 or, equivalently, Z1 ×Y Y = Z2. Similarly, by considering the fiber
product

Z2 ×Y Y
h

r

Z2

p2

Y
f

Y

we see that Z2 ×Y Y = Z1. The maps h and q = h−1 define an isomorphism
between Z1 and Z2 which induces the required isomorphism between X1

and X2.

Using the same notation as in Proposition 4.2, we prove the following.

Proposition 4.6. Let Δij and Δi′j′ be two even eights defined as in
Proposition 4.2. We have

Kum(Bij) � Kum(Bi′j′ ) ⇔ {i, j} = {i′, j′ }.

Proof. It is clear that if {i, j} = {i′, j′ }, then the corresponding Kummer
surfaces are equal. Thus we only have to prove the other direction. Without
loss of generality, we may assume that Δi′j′ = Δ12, and we suppose that
there exists an automorphism f of Kum(A) for which f ∗(Δ12) = Δij .

Claim. We have

{
f ∗(E13), f ∗(E14), f ∗(E15), f ∗(E16), f ∗(E23), f ∗(E24), f ∗(E25), f ∗(E26)

}
= {E1i, . . . , Êij , . . . ,Ei6,E1j , . . . , Êij , . . . ,Ej6}
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Proof of the claim. Let N be a Nikulin lattice, and let D ∈ N be a divisor
represented by a smooth rational curve. Note that since D is an effective
reduced divisor and N is negative definite, then D2 = −2. It is therefore
sufficient to show that the only −2-classes in N are the ci, and the claim
follows. We write D as D =

∑8
i=1 λici + εd, where λj ∈ Z and ε = 0 or 1. If

ε = 1, then the equality

D2 = −2
8∑

i=1

λ2
i − 2

8∑
i=1

λi − 4 = −2

implies that
∑8

i=1 λ2
i + λi = −1. Since the latter equation has no integer

solution, we conclude that ε = 0. Hence we have

D2 = −2
8∑

i=1

λ2
i = −2

or, equivalently,
∑8

i=1 λ2
i = 1. Therefore, there exists a unique λk for which

λk = 1 and λi = 0 for i �= k.

In [K], it is proved that any automorphism of a Jacobian generic Kummer
surface induces ±identity on DSKum(A)

, where DSKum(A)
is the discriminant

group
S∗

Kum(A)/SKum(A).

We want to apply this fact to the automorphism f . We consider the action
of f ∗ on the following two independent elements of DSKum(A)

:

1
2
(E13 + E14 + E23 + E24) and

1
2
(E12 + E23 + E15 + E35).

From the claim, we deduce that

f ∗(E13 + E14 + E23 + E24) = Ei1i + Ei2i + Ej1j + Ej2j

for some classes Ei1i,Ei2i,Ej1j ,Ej2j ∈ Δij .
From the identity f ∗

DSKum(A)
= ±idDSKum(A)

, we also deduce that

f ∗
(1

2
(E13 + E14 + E23 + E24)

)
= ± 1

2
(E13 + E14 + E23 + E24).

Combining these two elements, we find that

E13 + E14 + E23 + E24 + Ei1i + Ei2i + Ej1j + Ej2j ∈ 2SY .



KUMMER SURFACES ASSOCIATED TO (1,2)-POLARIZED ABELIAN SURFACES 139

Since the only even eights containing E13,E14,E23,E24 are Δ12 and Δ34, we
deduce that Δij = Δ34. We proceed similarly for f ∗(E12 +E23 +E13 +E35),
and we find that Δij must be equal to Δ25, which yields a contradiction.

Corollary 4.7. The fifteen Kummer surfaces Kum(Bij) are not iso-
morphic.

§5. Elliptic fibration and weak del Pezzo surface

In this section, we provide an alternate description of the Kummer sur-
faces Kum(Bij) as the double cover of a weak del Pezzo surface. We relate
this construction to the projective double plane model of the generic Jaco-
bian Kummer surface of Section 3. First, we note the existence on Kum(Bij)
of an elliptic fibration that will be useful later. For simplicity, we always
argue for the Kummer surface Kum(B12).

Proposition 5.1. Let Kum(B12) be the Kummer surface constructed
in Proposition 4.2. The surface Kum(B12) admits a Weierstrass elliptic
fibration with exactly twelve singular fibers of type I2.

Proof. Let Kum(A)
φ→ P

2 be the double plane model of the generic Jaco-
bian Kummer surface introduced in Section 3. Consider the pencil of lines
passing through the point p12 in P

2. Its preimage in Kum(A) defines an
elliptic fibration given by the divisor class F = L − E0 − E12. The divisors

F1 = E15 + E16 + 2C0 + E13 + E14

and
F2 = E25 + E26 + 2C12 + E23 + E24

define two fibers of type I∗
0 of this fibration. Moreover, the six divisors

F3 = L − E0 − E12 − E45 + E45,

F4 = L − E0 − E12 − E46 + E46,

F5 = L − E0 − E12 − E35 + E35,

F6 = L − E0 − E12 − E36 + E36,

F7 = L − E0 − E12 − E34 + E34,

F8 = L − E0 − E12 − E56 + E56
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define six I2 fibers. Since the Euler characteristics of the Fi add up to
twenty-four (which is equal to the Euler characteristic of a K3 surface),
we conclude by Shioda’s formula [SI, Lemma 1.3] that the Fi are the only
singular fibers of the elliptic fibration defined by the linear system |F |. Note
also that the curves C13, C14, C15, and C16 are sections of this fibration.

We now analyze the induced fibration τ ∗F on Kum(B12), where
Kum(B12)

τ��� Kum(A) is the rational double cover defined by the even
eight Δ12. We remark that the even eight Δ12 satisfies

Δ12 = F1 + F2 − 2(C0 + C12),

which means that the eight components of Δ12 are exactly the eight com-
ponents of the fibers F1 and F2 that appear with multiplicity 1. Hence τ ∗F1

and τ ∗F2 are just smooth elliptic curves. However, the six fibers F3, . . . , F8

split under the cover and define twelve I2 fibers of the elliptic fibration on
Kum(B12) defined by τ ∗F . Again, a computation of Euler characteristics
shows that these twelve I2 fibers are the only singular fibers of the linear
system |τ ∗F |. Also, the sections C13, C14, C15, and C16 of |F | pull back to
sections of τ ∗F . Hence τ ∗F defines a Weierstrass elliptic fibration.

We now proceed to the realization of the surface Kum(B12) as a double
cover of a weak del Pezzo surface.

Theorem 5.2. Let S be a reducible plane sextic, which is the union of
six lines all tangent to a conic (see Figure 1). Let Kum(A) be a generic
Kummer surface, and let B12 → A be the isogeny of degree 2 defined in
Proposition 4.2.

(i) The isogeny of abelian surfaces induces a rational double cover
Kum(B12)

τ��� Y which decomposes as

Kum(B12)

τ

ϕ

T

ζ

Y
φ

P
2

where φ is the canonical resolution of the double cover of P
2 branched

along S.
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(ii) There exists a decomposition of S into a quartic Q and conic C such
that the maps ζ and ϕ are the canonical resolutions of the double covers
branched along Q and ζ∗(C), respectively.

Proof. We decompose the sextic S into the quartic Q = l3 + l4 + l5 + l6
and the conic C = l1 + l2. Let T0 → P

2 be the double cover of P
2 ramified

over the reducible quartic Q. Its canonical resolution induces the diagram

T
ζ

T0

P̃
2 P

2

where P̃
2 → P

2 is the blowup of P
2 at the six singular points of Q. The

surface T is a nonminimal rational surface containing six disjoint smooth
rational curves. Indeed, by Hurwitz’s formula, the canonical divisor of T is
given by

KT = ζ∗
(
KP2 +

1
2
(l3 + l4 + l5 + l6)

)
= −ζ∗(H),

where H is a hyperplane section. Thus, K2
T = 2,H2 = 2, and P2(T ) = 0.

Denote by Q̃ the proper transform of Q in T . Using the additivity of the
topological Euler characteristic and the Noether formula, we have that

e(T ) = e(T − Q̃) + e(Q̃) = 10 ⇒ X (OT ) = 1 ⇒ q(T ) = 0.

By Castelnuovo’s rationality criterion, T is a rational surface. In fact, we
show that T is a weak del Pezzo surface of degree two, that is, the blowup
of P

2 at seven points with nef canonical divisor. Indeed, we successively
blow down the preimages in T of the four lines l3, l4, l5, and l6 as well as
the preimages in T of the three “diagonals” of the complete quadrangle
formed by l3, l4, l5, l6. The surface obtained after these seven blowdowns is
a projective plane.

Consider the following curves of T

ζ∗(C) = ζ∗(l1 + l2) = E1 + E2,

where E1 and E2 are smooth elliptic curves and

ζ∗(W ) = W1 + W2,
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where W1 and W2 are smooth rational curves with the following intersection
properties:

E2
i = 2, W 2

i = 0, E1 · E2 = 2,

W1 · W2 = 4, Wi · Ej = 2 for i �= j

(recall that W is the plane conic tangent to the six lines l1, . . . , l6). The linear
system |E1| defines an elliptic fibration on T with six singular fibers of type
I2. Take the double cover branched along the two fibers E1 +E2 ∈ 2Pic(T ).
It induces the canonical resolution commutative diagram

X
ϕ

X0

T̃ T

where T̃ → T is the blowup of T at the two singular points of E1 + E2.

Claim. X is a Kummer surface.

Proof of the claim. Clearly, KX = ϕ∗(ζ∗(−H) + (1/2)(E1 + E2)) = OX .
(1) The pull back by ϕ of the six exceptional curves on T defines twelve

disjoint smooth rational curves on X .
(2) The two exceptional curves of X give two more rational curves disjoint

from (1).
(3) Let ϕ∗(W1) = W ′

1 +W ′ ′
1 and ϕ∗(W2) = W ′

2 +W ′ ′
2 , and let σ be the lift

on X of the covering involution of ζ. Then σ(W ′
1) = W ′

2 or σ(W ′
1) = W ′ ′

2 .
Without loss of generality, we can assume that σ(W ′

1) = W ′
2, and hence we

get the following intersection numbers

W ′2
i = W ′ ′2

i = −2, W ′
i · W ′ ′

i = 2 for i = 1,2

W ′
1 · W ′

2 = W ′ ′
1 · W ′ ′

2 = 4 and W ′
1 · W ′ ′

2 = W ′ ′
1 · W ′

2 = 0.

One easily checks that W ′
1 and W ′ ′

2 do not intersect the fourteen curves from
(1) and (2).

In particular, the K3 surface X contains sixteen disjoint smooth rational
curves. Consequently, X is a Kummer surface.

Moreover, the surface X contains an elliptic fibration with twelve I2 fibers.
It also admits two nonsymplectic involutions θ and σ, where θ is the cover-
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ing involution of the map ϕ and where σ is the lift of the covering involution
of ζ on T encountered earlier. The composition ι = ϕ ◦ σ defines a symplec-
tic involution on X whose quotient is a K3 surface admitting an elliptic
fibration with singular fibers identical to the one defined by F on Y in
Proposition 5.1.

In fact, we can now recover sixteen disjoint rational curves on the quotient
and conclude that it is our original general Kummer surface Y and that
X � Kum(B12).

Acknowledgment. This paper is part of the author’s Ph.D. dissertation
work. The author would like to thank her advisor Igor Dolgachev for intro-
ducing her to the beautiful world of K3 surfaces.

References
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