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ON EELLS-SAMPSON’S EXISTENCE THEOREM FOR
HARMONIC MAPS VIA EXPONENTIALLY

HARMONIC MAPS

TOSHIAKI OMORI

Abstract. In this note, we introduce an approximation of harmonic maps via
a sequence of exponentially harmonic maps. We then reestablish the existence
theorem of harmonic maps due to Eells and Sampson.

§1. Introduction

Throughout this article, let (M,g) be an m-dimensional compact con-
nected Riemannian manifold without boundary, and let (N,h) be an n-
dimensional compact Riemannian manifold. A classical definition says that
u : (M,g) → (N,h) is harmonic if it is a smooth critical point of the Dirich-
let energy functional

E(u) :=
∫

M
|du|2 dμg,

where |du| is the Hilbert-Schmidt norm of the differential du and where dμg

is the Riemannian volume element on (M,g). A smooth map u : M → N is
harmonic if and only if it satisfies the Euler-Lagrange equation

(1.1) τ(u) = divg(du) = 0.

One of the most interesting and important subjects for harmonic maps
is their existence. A typical existence problem can be formulated in the
following manner:

Can a given map f : M → N be continuously deformed into a harmonic
map u : (M,g) → (N,h)?

In their famous paper, Eells and Sampson [4] first concerned themselves
with such a problem in the general case and proved, under the assump-
tion that (N,h) is nonpositively curved, that a given map f : M → N can
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be deformed into a harmonic map in its homotopy class. Their method is
based on an analysis of the time-evolution problem corresponding to the
harmonic map equation (1.1). They then proved, under the above curva-
ture restriction, that such a time-evolution equation has a global regular
solution, which converges to a harmonic map as time goes to infinity.

In this note, we consider a sequence uε : (M,g) → (N,h) of critical points
of the parameterized exponential energy functional

Eε(u) :=
∫

M
eε|du|2 dμg

for ε > 0. The corresponding Euler-Lagrange equation is given by

divg(eε|du|2 du) = eε|du|2{τ(u) + ε〈 ∇ |du|2, du〉
}

= 0,

where τ(u) = divg(du) is the tension field given in (1.1). This sequence
{uε}ε>0 is then expected to approximate a harmonic map as ε → 0. We
actually have the following.

Theorem 1.1. Assume that the sectional curvature of (N,h) is nonpos-
itive: RiemN ≤ 0. Let {uε}ε>0 be a sequence of smooth critical points of
the functional Eε for ε → 0 satisfying the uniform boundedness condition of
energy ∫

M

eε|duε |2 − 1
ε

dμg ≤ E0

with some constant E0 > 0. Then there exists a subsequence {uε(k)}∞
k=1 ⊆

{uε}ε>0, ε(k) → 0 as k → ∞, and a harmonic map u : (M,g) → (N,h) such
that

uε(k) → u(k → ∞) in C∞(M,N).

This theorem will be found to give another approach to the Eells-Sampson
existence theorem in [4]. That is to say, Theorem 1.1 implies the following.

Corollary 1.2. Assume that RiemN ≤ 0. Then any homotopy class of
continuous maps from M to N admits a harmonic map.

The organization of this article is as follows. Section 2 is devoted to some
preliminary issues about exponentially harmonic maps needed in the sequel.
Section 3 gives complete proofs of Theorem 1.1 and Corollary 1.2.
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§2. Exponentially harmonic maps

This section provides some known results on exponentially harmonic
maps, a part of which will be needed later. We start with the definition
of exponentially harmonic maps, which was first introduced by Eells and
Lemaire [3].

Definition 2.1. An exponentially harmonic map u : (M,g) → (N,h) is
a smooth critical point of the exponential energy functional

E(u) :=
∫

M
e|du|2 dμg.

The Euler-Lagrange equation of this problem can be written as

(2.2) divg(e|du|2 du) = e|du|2{τ(u) + 〈 ∇ |du|2, du〉
}

= 0,

where τ(u) = divg(du) is the tension field of u.

One of the reasons why it is interesting to study the functional E is that
the existence of its minima in a given homotopy class is always guaranteed
without any special assumptions.

Proposition 2.3 (see [3]). For any homotopy class H ∈ [M,N ] of con-
tinuous maps from M to N , there exists an E-minimizer u in H, which is
necessarily α-Hölder-continuous for any exponent 0 < α < 1.

This proposition follows essentially from the inequality

1
k!

∫
M

|du|2k dμg ≤
∫

M

∞∑
k=0

1
k!

|du|2k dμg = E(u),

which guarantees that a minimizing sequence for E is uniformly bounded in
each Sobolev space W 1,2k(M,N). From the proof of this proposition in [3],
however, it does not immediately follow that u is smooth, or even Lipschitz-
continuous, or that it satisfies the Euler-Lagrange equation (2.2), even in a
weak sense.

However, the faster the growth of a functional, the higher the regularity of
its minima that we can expect. Indeed, in the case of N = R, Duc and Eells
[2] showed that an E-minimizer u : (M,g) → R of the Dirichlet problem
is smooth in the interior of M , where (M,g) is a compact Riemannian
manifold with boundary, and Lieberman [7] showed the global regularity
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for u : Ω → R, where Ω ⊆ R
m is an open subset. Also, for n ≥ 2, Naito

[8] showed that an E-minimizer u : Ω → R
n, where Ω ⊆ R

m is a bounded
domain, is smooth in the interior of Ω. Thereafter, Duc [1] at last showed
the following strongest regularity theorem for E-minimizers.

Theorem 2.4 (see [1]). Let H ∈ [M,N ] be a given homotopy class. Then
an E-minimizer u : (M,g) → (N,h) in H is necessarily smooth.

Remark 2.5. (1) Combining this theorem with Proposition 2.3, we see
that there always exists an exponentially harmonic map in a given homotopy
class, which solves (2.2) in the classical sense.

(2) As mentioned in [1, Section 3], the Hölder norm ‖du‖Cα of the gradient
of an exponentially harmonic map u is estimated by a constant depending
only on (M,g), (N,h), E(u), and the Lipschitz constant ‖du‖L∞ . Therefore,
in order to verify Theorem 1.1, it suffices to show that ‖duε‖L∞ is uniformly
bounded as ε → 0.

Also, we need the following lemmas in the proof of Theorem 1.1. Their
proofs are direct calculations, so we omit them.

Lemma 2.6. If u : (M,g) → (N,h) is an exponentially harmonic map,
and if we consider a homothetic transformation h → ε−1h, for ε > 0, then
u : (M,g) → (N,ε−1h) is a critical point of the functional Eε.

Lemma 2.7. An exponentially harmonic map u : (M,g) → (N,h) satisfies
the following identity of Bochner-Weitzenböck type:

Sij ∇i∇je
|du|2 = 2e|du|2 |∇ du|2 + 2e|du|2 |τ(u)|2

+ 2e|du|2
m∑

i,j=1

〈
du

(
RicM (ei, ej)ej

)
, du(ei)

〉

− 2e|du|2
m∑

i,j=1

〈
RN

(
du(ei), du(ej)

)
du(ej), du(ei)

〉
,

where RicM stands for the Ricci curvature of (M,g), RN stands for the
curvature tensor of (N,h), {ei}m

i=1 is a local orthonormal frame field on M ,
and S ∈ Γ(TM ⊗ TM) is given by

(2.8) Sij := gij + 2〈du(ei), du(ej)〉 (i, j = 1,2, . . . ,m).
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We end this section by noting some basic properties similar to those
of harmonic maps, which can be proved from the Bochner-Weitzenböck
identity.

Corollary 2.9 (see [6]). Let u : (M,g) → (N,h) be an exponentially
harmonic map. If RicM ≥ 0 and RiemN ≤ 0, then the following hold.
(1) u is totally geodesic.
(2) If RicM is positive at some point in M, then u is constant on M.

(3) If RiemN < 0 everywhere, then u is either a constant or a map onto a
closed geodesic in N .

§3. Proof of the main theorem

This section is devoted to the proof of Theorem 1.1. In what follows, by
using the Nash isometric embedding i : (N,h) ↪→ R

N , we identify i ◦ u with
u for a map u : M → N . We mean by du the derivative of u : M → N , and
by ∇u the gradient of the function u : M → N ⊆ R

N .
Let Br ⊆ M be an open ball of radius r > 0 (centered at a fixed point of

M ). We need the Euler-Lagrange equation of the form

(3.1) 0 =
∫

Br

∇iu
A∇iϕAe| ∇u|2 dμg +

∫
Br

∇ dΠA(u)(∇u, ∇u)ϕAe| ∇u|2 dμg,

(A = 1,2, . . . ,N ), for any test function ϕ ∈ C∞
0 (Br,R

N ), where Π : Uδ(N) →
N is the nearest projection from a tubular neighborhood Uδ(N) of N onto
N. Note the relation ∇ di(X,Y ) = ∇ dΠ(di(X), di(Y )) for X,Y ∈ Γ(TN).

Our first task is to show, under the assumption that RiemN ≤ 0, that
the gradient of an exponentially harmonic map is bounded by a constant
depending only on (M,g) and its total energy and not on the target metric h.
That is to say, we have the following.

Lemma 3.2. Assume that RiemN ≤ 0. Then for any exponentially har-
monic map u : (M,g) → (N,h), there exists a constant C0 depending only
on (M,g), the total energy E(u), and not on h such that

sup
M

|∇u|2 ≤ C0

∫
M

(e| ∇u|2 − 1)dμg.

Remark 3.3. Our proof of Lemma 3.2 is mainly due to the arguments
in [8], which are for the case that (M,g) is a Euclidean domain Ω and that
u : Ω → R

n is an exponentially harmonic function.
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Proof of Lemma 3.2. We first consider the case of m = dimM ≥ 3. The
proof has four steps.

Step 1. There exists δ0 = δ0(m) > 0 such that

(3.4)
(
(σr)−m

∫
Bσr

e(1+δ)| ∇u|2 dμg

)(m−2)/m
≤ C1

r−m

(1 − σ)2
E(u)

for all 0 < δ ≤ δ0 and 0 < σ < 1, where C1 = C1(M) > 0.
As in the proof of [8, Proposition 2.10], choose γ < 0 so that γ > −(2/m)

and

(3.5) ϕA = ∇k(wγ/2η2∇ku
A)

as a test function in (3.1), where w := e| ∇u|2 and where η : Br → R is a
cutoff function satisfying

0 ≤ η ≤ 1, η = 1 on Bσr, suppη ⊆ Br, |∇η| ≤ 1
(1 − σ)r

.

First we note that it follows from the Ricci identity that

∇iϕA = ∇i∇k(wγ/2η2∇ku
A)

= ∇k ∇i(wγ/2η2∇ku
A) − gijgklRM s

jlk(w
γ/2η2∇su

A),

where RM l
ijk∂l = ∇∂i

∇∂j
∂k − ∇∂j

∇∂i
∂k is the curvature tensor of (M,g).

Then, after the integration by parts with respect to ∇k, (3.1) becomes

0 =
∫

Br

(∇k ∇iu
A + ∇iu

A∇k |∇u|2)∇i(wγ/2η2∇ku
A)e| ∇u|2 dμg

+
∫

Br

m∑
i,j=1

〈
du

(
RicM (ei, ej)ej

)
, du(ei)

〉
w(γ/2)+1η2 dμg

−
∫

Br

∇ dΠA(u)(∇u, ∇u)∇k(wγ/2η2∇ku
A)e| ∇u|2 dμg

=
∫

Br

(∇k ∇iu
A + ∇iu

A∇k |∇u|2)∇i∇ku
Aw(γ/2)+1η2 dμg

+
γ

2

∫
Br

(∇k ∇iu
A + ∇iu

A∇k |∇u|2)∇ku
A∇i|∇u|2w(γ/2)+1η2 dμg

+ 2
∫

Br

(∇k ∇iu
A + ∇iu

A∇k |∇u|2)∇ku
Aw(γ/2)+1η∇iη dμg(3.6)
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+
∫

Br

m∑
i,j=1

〈
du

(
RicM (ei, ej)ej

)
, du(ei)

〉
w(γ/2)+1η2 dμg

−
∫

Br

∇ dΠA(u)(∇u, ∇u)∇k(wγ/2η2∇ku
A)e| ∇u|2 dμg

for each A = 1,2, . . . ,N . Since ∇ dΠ(u)(∇u, ∇u) is the vertical part of Δu

to N , the last term becomes

−
∫

Br

|∇ dΠ(u)(∇u, ∇u)|2w(γ/2)+1η2 dμg

after taking the summation with respect to A = 1,2, . . . ,N . Also, by the
Leibniz rule,

|∇∇(i ◦ u)|2
(3.7)

= |∇ du|2 + gikgjl〈 ∇ dΠ(u)(∇iu, ∇ju), ∇ dΠ(u)(∇ku, ∇lu)〉,

and by the Gauss formula,

m∑
i,j=1

〈
RN

(
du(ei), du(ej)

)
du(ej), du(ei)

〉

= |∇ dΠ(u)(∇u, ∇u)|2(3.8)

− gikgjl〈 ∇ dΠ(u)(∇iu, ∇ju), ∇ dΠ(u)(∇ku, ∇lu)〉.

Substituting (3.7) and (3.8) into (3.6) after taking the summation then
yields

0 =
∫

Br

{
|∇ du|2 +

γ

2

∣∣〈 ∇| ∇u|2, ∇u〉
∣∣2}w(γ/2)+1η2 dμg

+
1
2

(γ

2
+ 1

)∫
Br

∣∣∇|∇u|2
∣∣2w(γ/2)+1η2 dμg

+
∫

Br

{
〈 ∇|∇u|2, ∇η〉

+ 2
N∑

A=1

〈 ∇|∇u|2, ∇uA〉 〈 ∇uA, ∇η〉
}
w(γ/2)+1η dμg
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+
∫

Br

m∑
i,j=1

〈
du

(
RicM (ei, ej)ej

)
, du(ei)

〉
w(γ/2)+1η2 dμg

−
∫

Br

m∑
i,j=1

〈
RN

(
du(ei), du(ej)

)
du(ej), du(ei)

〉
w(γ/2)+1η2 dμg.

Here the first term is nonnegative by the choice of γ > −(2/m) because u

solves the Euler-Lagrange equation τ(u) + 〈∇|∇u|2, ∇u〉 = 0. The last term
is also nonnegative because (N,h) is assumed to be nonpositively curved,
so that
1
2

(γ

2
+ 1

)∫
Br

∣∣∇|∇u|2
∣∣2w(γ/2)+1η2 dμg

≤ −
∫

Br

{
〈 ∇|∇u|2, ∇η〉 + 2

N∑
A=1

〈 ∇| ∇u|2, ∇uA〉 〈 ∇uA, ∇η〉
}
w(γ/2)+1η dμg

−
∫

Br

m∑
i,j=1

〈
du

(
RicM (ei, ej)ej

)
, du(ei)

〉
w(γ/2)+1η2 dμg

≤ C(m)
∫

Br

∣∣∇|∇u|2
∣∣(1 + |∇u|2)w(γ/2)+1|∇η|η dμg

+ C(M)
∫

Br

|∇u|2w(γ/2)+1η2 dμg

≤ C(m)
δ

∫
Br

∣∣∇|∇u|2
∣∣w(γ/2)+1+δ |∇η|η dμg +

C(M)
δ

∫
Br

w(γ/2)+1+δη2 dμg

=
C(m,γ)

δ

∫
Br

|∇(w((γ/2)+1)/2)|η · w((γ/2)+1)/2+δ |∇η| dμg

+
C(M)

δ

∫
Br

w(γ/2)+1+δη2 dμg,

where we used xex ≤ (1/δ)e(1+δ)x for all δ > 0 and x ≥ 0, and ∇(|∇u|2) · w =
∇w. If we choose δ = −(γ/4) > 0, then since ((γ/2) + 1)/2 + δ = 1/2 and
(γ/2) + 1 + δ < 1,

(RHS) ≤ 4C(m,γ)
−γ

∫
Br

|∇(w((γ/2)+1)/2)|η · e(1/2)| ∇u|2 |∇η| dμg

+
4C(M)

−γ

∫
Br

e| ∇u|2η2 dμg.
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On the other hand, the left-hand side can be written as

1
2

(γ

2
+ 1

)∫
Br

∣∣∇|∇u|2
∣∣2w(γ/2)+1η2 dμg = C(γ)

∫
Br

|∇(w((γ/2)+1)/2)|2η2 dμg.

Therefore, after using the Young inequality, we obtain

(3.9)
∫

Br

|∇(ηw((γ/2)+1)/2)|2 dμg ≤ C(M,γ)
(1 − σ)2r2

∫
Br

e| ∇u|2 dμg.

Applying the Sobolev embedding theorem to this yields

(
(σr)−m

∫
Bσr

w((γ/2)+1)m/(m−2) dμg

)(m−2)/m

≤ C(M,γ)
r−m

(1 − σ)2

∫
Br

e| ∇u|2 dμg,

which proves (3.4) if we put 1 + δ0 := ((γ/2) + 1)m/(m − 2) > 1 because
γ > −(4/m).

Step 2. There exists 1 < p < m/(m − 2) such that

(
(σr)−m

∫
Bσr

eαm/(m−2)| ∇u|2 dμg

)(m−2)/m

(3.10)

≤ C2

(
r−m

∫
Br

eαp| ∇u|2 dμg

)1/p

for all α ≥ 1 and 0 < σ < 1, where

C2 =
C(M,α)
(1 − σ)2

(
r−m

∫
Br

e(1+δ0)| ∇u|2 dμg

)1/q

((1/p) + (1/q) = 1), and C(M,α) is a constant depending only on m and
‖RicM ‖L∞ and admits at most polynomial growth in α.

As a test function, we choose (3.5) with w = e| ∇u|2 and γ ≥ 0. Then by a
similar calculation,

∫
Bσr

|∇(w((γ/2)+1)/2)|2 dμg

≤ C(M,γ)
δ

1
(1 − σ)2r2

∫
Br

w(γ/2)+1+δ dμg
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for any δ > 0, where C(M,γ) is a constant which admits at most polynomial
growth in γ. After putting α = (γ/2)+1 ≥ 1, we use the Sobolev embedding
theorem to obtain

(
(σr)−m

∫
Bσr

wαm/(m−2) dμg

)(m−2)/m

≤ C(M,α)
δ(1 − σ)2

(
r−m

∫
Br

wα+δ dμg

)

≤ C(M,α)
δ(1 − σ)2

(
r−m

∫
Br

wαp dμg

)1/p(
r−m

∫
Br

wδq dμg

)1/q
,

where (1/p) + (1/q) = 1. If we choose p so that 1 < p < m/(m − 2) and
subsequently δ > 0 so that δq < 1 + δ0, then (3.10) is obtained.

Step 3 (Moser’s iteration). There exists C3 = C3(M,E(u)) > 0 such that

(3.11) sup
M

|∇u| ≤ C3.

By Step 2, there exists 1 < p < m/(m − 2) such that
(
(σr)−m

∫
Bσr

wαm/(m−2) dμg

)(m−2)/m

≤ C(M,α,E(u), r)
(1 − σ)2

(
r−m

∫
Br

wαp dμg

)1/p

for all α ≥ 1 and 0 < σ < 1, where w = e| ∇u|2 and where C(M,α,E(u), r)
is a constant which admits at most polynomial growth in α. Now we set
r0 := r, and for every k ∈ N, we set

rk := r
k∏

j=1

σj , σj :=
1 + 2−j

1 + 21−j
, Bk := Brk

, αk :=
(1

p
· m

m − 2

)k
.

Then by noting that αk ≥ 1 and that αkp = αk−1m/(m − 2),

(
r−m
k

∫
Bk

wαkm/(m−2) dμg

)α−1
k (m−2)/m

≤
(C(M,αk,E(u), rk−1)

(1 − σk)2
)α−1

k

×
(
r−m
k−1

∫
Bk−1

wαk−1m/(m−2) dμg

)α−1
k−1(m−2)/m

(3.12)
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≤
{ k∏

j=1

(C(M,αj ,E(u), rj−1)
(1 − σj)2

)α−1
j

}

×
(
r−m

∫
Br

wm/(m−2) dμg

)(m−2)/m
.

Claim. The coefficient
∏k

j=1

(
(C(M,αj ,E(u), rj−1))/(1 − σj)2

)α−1
j is

bounded as k → ∞.

To this end, it suffices to prove that

k∑
j=1

1
αj

log
[C(M,αj ,E(u), rj−1)

(1 − σj)2
]

is bounded as k → ∞. Since αj = sj , s > 1, while C(M,αj ,E(u), rj−1)
admits at most polynomial growth in αj , it clearly follows that

k∑
j=1

1
αj

logC
(
M,αj ,E(u), rj−1

)

is bounded as k → ∞. Furthermore, by the choice of σj , we see that

k∑
j=1

1
αj

log
1

(1 − σj)2
=

k∑
j=1

1
sj

log
(1 + 2−j)2

2−2j
≤

k∑
j=1

1
sj

log(4j+1),

which is clearly bounded as k → ∞. This proves the claim.
Hence, we can take the limit k → ∞ in (3.12) to obtain

sup
Br/2

|∇u|2 ≤ sup
Br/2

w

≤ C
(
r−m

∫
Br

em/(m−2)| ∇u|2 dμg

)(m−2)/m

≤ C3

(
M,E(u)

)
,

proving (3.11).
Step 4. There exists a constant C0 = C0(M,E(u)) > 0 such that

(3.13) sup
M

|∇u|2 ≤ C0

∫
M

(e| ∇u|2 − 1)dμg,
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which proves Lemma 3.2.
Lemma 2.7 and (3.11), combined with the curvature assumption that

RiemN ≤ 0, imply that

Sij ∇i∇j(e| ∇u|2 − 1) = Sij ∇i∇je
| ∇u|2

≥ 2e| ∇u|2
m∑

i,j=1

〈
du

(
RicM (ei, ej)ej

)
, du(ei)

〉

≥ −C(m, ‖RicM ‖L∞ )e| ∇u|2 |∇u|2

≥ −C(m, ‖RicM ‖L∞ , e‖∇u‖2
L∞ )(e| ∇u|2 − 1).

In the fourth line, we have used the inequality |∇u|2 ≤ e| ∇u|2 − 1. Moreover,
(3.11) then guarantees that the leading term Sij of (2.8),

Sij = gij + 2hαβ ∇eiu
α∇eju

β,

has the bounded eigenvalues both from above and from below by a con-
stant depending only on (M,g) and E(u). This observation enables us to
successfully apply the maximum principle (see [5, Theorem 9.20]) to acquire

|∇u|2 ≤ e| ∇u|2 − 1 ≤ C0

(
M,E(u)

)∫
M

(e| ∇u|2 − 1)dμg.

This proves (3.13), and we now complete the proof of Lemma 3.2 in the case
of m ≥ 3.

The proof in the case of m = 2 is a slight modification of the above
arguments.

Step 1. Fix 1 < q0 < 2. Then there exists δ0 = δ0(q0) > 0 such that

(3.14)
(
(σr)−2

∫
Bσr

e(1+δ)| ∇u|2 dμg

)1/q0

≤ C1
r−2

(1 − σ)2
E(u)

for all 0 < δ ≤ δ0 and 0 < σ < 1, where C1 = C1(M).
To this end, taking 0 > γ > 2(1/q0 − 1) and applying the Sobolev embed-

ding theorem to (3.9), we obtain

(
(σr)−2

∫
Bσr

e((γ/2)+1)q0| ∇u|2 dμg

)1/q0

≤ C(M,γ)
r−2

(1 − σ)2

∫
Br

e| ∇u|2 dμg,

which proves (3.14) if we put 1 + δ0 = ((γ/2) + 1)q0 > 1.
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Step 2. There exists 1 < p < q0 such that

(3.15)
(
(σr)−2

∫
Bσr

eαq0| ∇u|2 dμg

)1/q0

≤ C2

(
r−2

∫
Br

eαp| ∇u|2 dμg

)1/p

for all α ≥ 1 and 0 < σ < 1, where

C2 =
C(M,α)
(1 − σ)2

(
r−2

∫
Br

e(1+δ0)| ∇u|2 dμg

)1/q

((1/p) + (1/q) = 1), and C(M,α) is a constant depending only on (M,g)
and admits at most polynomial growth in α.

By using (3.15), we can apply Moser’s iteration to obtain the bound (3.11)
of the gradient of u, and the same argument as in Step 4 above is also valid
in this case, which proves Lemma 3.2 in the case of m = 2.

Proof of Theorem 1.1. Let uε : (M,g) → (N,h) be a sequence of critical
points of the functional Eε as ε → 0 satisfying

(3.16)
∫

M

eε| ∇uε |2 − 1
ε

dμg ≤ E0.

As is mentioned in Remark 2.5(2), to complete the proof, it is enough to
show that ‖∇uε‖L∞ is uniformly bounded as ε → 0.

If we consider the homothetic transformation h → hε := εh, then by
Lemma 2.6, each uε : (M,g) → (N,hε) is an exponentially harmonic map.
Then as a consequence of Lemma 3.2, we have

ε|∇uε|2h = |∇uε|2hε
≤ C(M,E0)

∫
M

(e| ∇uε|2hε − 1)dμg(3.17)

= C(M,E0)
∫

M
(eε| ∇uε |2h − 1)dμg.

(Note that (3.16) implies that the total energy E(uε) with respect to hε,
which is equal to Eε(uε) with respect to h, is bounded by E0. Also, note
that the curvature assumption that RiemN ≤ 0 does not change under the
homothetic transformation.)

Dividing (3.17) by ε yields

|∇uε|2h ≤ C(M,E0)
∫

M

eε| ∇uε |2h − 1
ε

dμg ≤ C(M,E0)E0

for all ε > 0, which proves Theorem 1.1.
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Proof of Corollary 1.2. Let ϕ ∈ H be any smooth map. Theorem 2.4 then
implies that there exists, for each ε > 0, a smooth map uε : (M,g) → (N,h)
which minimizes Eε in H. Since the resulting sequence {uε}ε>0 satisfies

∫
M

eε|duε |2 − 1
ε

dμg ≤
∫

M

eε|dϕ|2 − 1
ε

dμg,

taking the limit as ε → 0 yields

limsup
ε→0

∫
M

eε|duε |2 − 1
ε

dμg ≤ limsup
ε→0

∫
M

eε|dϕ|2 − 1
ε

dμg =
∫

M
|dϕ|2 dμg.

This implies that some subsequence of {uε}ε>0 satisfies the uniform bound-
edness condition of energy in Theorem 1.1, so that it moreover contains a
subsequence which converges uniformly to some harmonic map u : (M,g) →
(N,h). The obtained harmonic map u represents the homotopy class H.
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