THE NORM OF A REE GROUP

TOM DE MEDTS and RICHARD M. WEISS

Abstract

We give an explicit construction of the Ree groups of type G_{2} as groups acting on mixed Moufang hexagons together with detailed proofs of the basic properties of these groups contained in the two fundamental papers of Tits on this subject (see [7] and [8]). We also give a short proof that the norm of a Ree group is anisotropic.

§1. Introduction

The finite Ree groups of type G_{2} were introduced by Ree in [5]. In [8], Tits showed how to construct these groups over an arbitrary field K of characteristic 3 having an endomorphism whose square is the Frobenius endomorphism of K. His result can be summarized as follows.

Theorem 1.1. Let K be a field of characteristic 3, and suppose that K has an endomorphism θ such that

$$
x^{\theta^{2}}=x^{3}
$$

for all $x \in K$. Let U denote the set $K \times K \times K$ endowed with the multiplication

$$
\begin{equation*}
(a, b, c) \cdot(x, y, z)=\left(a+x, b+y+a x^{\theta}, c+z+a y-b x-a x^{\theta+1}\right) \tag{1.2}
\end{equation*}
$$

and let

$$
\begin{equation*}
H=\left\{h_{t} \mid t \in K^{*}\right\} \tag{1.3}
\end{equation*}
$$

where for each $t \in K^{*}, h_{t}$ is the map from U to itself given by the formula

$$
(a, b, c)^{h_{t}}=\left(t a, t^{\theta+1} b, t^{\theta+2} c\right) .
$$

Let

$$
\begin{equation*}
N(a, b, c)=-a c^{\theta}+a^{\theta+1} b^{\theta}-a^{\theta+3} b-a^{2} b^{2}+b^{\theta+1}+c^{2}-a^{2 \theta+4} \tag{1.4}
\end{equation*}
$$

Received June 2, 2009. Revised September 18, 2009. Accepted October 22, 2009. 2000 Mathematics Subject Classification. 20E42, 51E12, 51E24.
for all $(a, b, c) \in U$, and let X denote the disjoint union of U and a symbol ∞. Then the following hold.
(i) U is a group with identity $(0,0,0)$ (which we denote by 0) and inverses given by

$$
(a, b, c)^{-1}=\left(-a,-b+a^{\theta+1},-c\right)
$$

and H is a group of automorphisms of U.
(ii) The map N is anisotropic. This is to say, $N(a, b, c)=0$ if and only if $(a, b, c)=0$.
(iii) Let ω be the map from X to itself that interchanges ∞ and 0 and maps an arbitrary element (a, b, c) of U^{*} to

$$
\begin{equation*}
(-v / w,-u / w,-c / w) \tag{1.5}
\end{equation*}
$$

where $v=a^{\theta} b^{\theta}-c^{\theta}+a b^{2}+b c-a^{2 \theta+3}, u=a^{2} b-a c+b^{\theta}-a^{\theta+3}$, and $w=$ $N(a, b, c)$. Let U be identified with the permutation group of X that fixes ∞ and acts on $X \backslash\{\infty\}$ by right multiplication. Let H be identified with the permutation group of X that fixes ∞ and acts on $X \backslash\{\infty\}$ by the formula (1.3) (and thus fixes also 0). Let K^{\dagger} be the subgroup of K^{*} generated by $\left\{N(a, b, c) \mid(a, b, c) \in U^{*}\right\}$, and let

$$
\begin{equation*}
H^{\dagger}=\left\{h_{t} \mid t \in K^{\dagger}\right\} \subset H \tag{1.6}
\end{equation*}
$$

Then ω is a permutation of X of order 2, and the subgroup G of $\operatorname{Sym}(X)$ generated by U and ω has the following properties.
(I) G is a 2-transitive permutation group on X.
(II) U is a normal subgroup of the stabilizer G_{∞} and $G_{\infty}=U H^{\dagger}$.
(III) $G=\left\langle U, U^{\omega}\right\rangle$.
(IV) H normalizes G.
(V) ω inverts every element of H.
(VI) If $|K|>3$, then G is simple.

Tits's proof of Theorem 1.1 in [8] is based on the standard embedding of the split Moufang hexagon in six-dimensional projective space (see also [10, Section 7.7]). The purpose of this note is to give an alternative proof of Theorem 1.1 in which we construct the set X inside the mixed hexagon defined over the pair $\left(K, K^{\theta}\right)$, which we construct directly without reference to projective space.

Our motivation is threefold. First, since the Ree groups of type G_{2} continue to be the center of lively interest (see especially [2]), we want to give a proof of Theorem 1.1 in which many of the details left to the reader in [8] are filled in. We also want to provide independent confirmation of the accuracy of the formulas occurring in Theorem 1.1. (In fact, in [8] a θ is missing in the second term in the definition of the norm, and a minus sign is missing in front of the whole expression on page 12 , where θ is called σ and the norm N is called w.) Second, we want to examine the fact that the map N, which we call the norm of G, is anisotropic. As in [8], this fact emerges "geometrically" in the course of our proof of Theorem 1.1; in Section 6, we give a short algebraic proof. Third, we hope that the method we use to prove Theorem 1.1 can serve as a model for other calculations in Moufang polygons and in more general types of buildings.

If $|K|=3$, then the endomorphism θ is trivial and the group G is not simple; in fact, it is isomorphic to $\operatorname{Aut}\left(L_{2}(8)\right)$ in this case and thus has a normal subgroup of index 3 (which is simple).

If K is finite, then $H^{\dagger}=H$ and thus $H \subset G$ (by [5, (8.4)]). It is not true in general, however, that $H=H^{\dagger}$. We say a few words about this in Section 7. (For another approach to the finite Ree groups, see [4].)

We mention that there are also Ree groups of type F_{4}. The canonical reference for these groups is [7].

We would also like to bring the reader's attention to Remark 3.11 below.

§2. The hexagon of mixed type

Let K be a field of characteristic 3 , and let θ be a square root of the Frobenius endomorphism of K. We now begin our proof of Theorem 1.1 by constructing the mixed hexagon associated with the pair (K, θ). (See [9, (16.20) and (41.20)] for the definition of a mixed hexagon.) Let $U_{1}, U_{2}, \ldots, U_{6}$ be six groups isomorphic to the additive group of K, and for each $i \in[1,6]$, let x_{i} be an isomorphism from K to U_{i}. Let U_{+}be the group generated by the groups $U_{1}, U_{2}, \ldots, U_{6}$ subject to the commutator relations

$$
\begin{align*}
& {\left[x_{1}(s), x_{5}(t)\right] }=x_{3}(-s t) \\
& {\left[x_{2}(s), x_{6}(t)\right] }=x_{4}(s t), \text { and } \tag{2.1}\\
& {\left[x_{1}(s), x_{6}(t)\right]=x_{2}\left(-s^{\theta} t\right) x_{3}\left(-s^{2} t^{\theta}\right) x_{4}\left(s^{\theta} t^{2}\right) x_{5}\left(s t^{\theta}\right) }
\end{align*}
$$

for all $s, t \in K$ and $\left[U_{i}, U_{j}\right]=1$ for all other pairs i, j such that $1 \leq i<j \leq 6$. (We are using the convention that $[a, b]=a^{-1} b^{-1} a b=\left(b^{-1}\right)^{a} b$.) By Propositions 2.2 and 2.5 below and [9, (5.6)], every element of U_{+}can be written uniquely as an element in the product $U_{1} U_{2} \cdots U_{6}$. It is easily checked that there is an automorphism ρ of U_{+}interchanging $x_{i}(t)$ and $x_{7-i}(t)$ for all $i \in[1,6]$ and all $t \in K$. We will see below that the group U in Theorem 1.1 is the centralizer of ρ in U_{+}.

Let $U_{i, j}$ denote the subgroup $U_{i} U_{i+1} \cdots U_{j}$ of U_{+}for all i, j such that $1 \leq i \leq j \leq 6$ (so that $U_{i, i}=U_{i}$ for each i). For each $i \in[1,5]$, let W_{i} denote the set of right cosets in U_{+}of $U_{1,6-i}$. For each $i \in[6,10]$, let W_{i} denote the set of right cosets in U_{+}of $U_{12-i, 6}$. Let W be the disjoint union of $W_{1}, W_{2}, \ldots, W_{10}$ together with two symbols • and \star. For each $i \in[1,9]$, let E_{i} be the set of pairs $\{x, y\}$ such that $x \in W_{i}, y \in W_{i+1}$ and the intersection of x and y is nonempty. Let E be the set of (unordered) 2-element subsets of W consisting of $\{\bullet, \star\},\{\bullet, x\}$ for all $x \in W_{1},\{\star, y\}$ for all $y \in W_{10}$ together with all the pairs in $E_{1} \cup E_{2} \cup \cdots \cup E_{9}$. Finally, let Γ be the graph with vertex set W and edge set E.

Figure 1: The graph Γ

Proposition 2.2. The graph Γ is the Moufang hexagon associated with the hexagonal system $\left(K / K^{\theta}\right)^{\circ}$ as defined in $[9,(15.20)$ and (16.8)].

Proof. Let \tilde{U}_{+}and $\tilde{U}_{1}, \ldots, \tilde{U}_{6}$ be the groups obtained by setting $F=K^{\theta}$, $J=K, T(a, b)=0, a^{\#}=a^{2}, N(a)=a^{3}$, and $a \times b=2 a b$ for all $a, b \in K$ in $[9,(16.8)]$. By $[9,(8.13)]$, the maps $x_{i}(s) \mapsto x_{i}\left(s^{\theta}\right)$ for $i=2,4$, and 6 ; $x_{i}(s) \mapsto x_{i}(-s)$ for $i=3$ and 5 ; and $x_{1}(s) \mapsto x_{1}(s)$ extend to an isomorphism ψ from U_{+}to \tilde{U}_{+}mapping U_{i} to \tilde{U}_{i} for all $i \in[1,6]$. The graph Γ is precisely the graph called $\mathcal{G}\left(U_{+}, U_{1}, \ldots, U_{6}\right)$ in [9, (8.1)] and the Moufang hexagon
associated with the hexagonal system $\left(K / K^{\theta}\right)^{\circ}$ is $\mathcal{G}\left(\tilde{U}_{+}, \tilde{U}_{1}, \ldots, \tilde{U}_{6}\right)$ (see [9, Chapter 16, page 163]). Hence, the isomorphism ψ induces an isomorphism from Γ to this Moufang hexagon.

Notation 2.3. Let $D=\operatorname{Aut}(\Gamma)$, and let D^{\dagger} denote the subgroup of D generated by all the root groups of Γ.

From now on, we will write $U_{i j}$ in place of $U_{i, j}$. The group U_{+}acts faithfully by right multiplication on the elements of

$$
W_{1} \cup \cdots \cup W_{10}
$$

and maps the set E of edges of Γ to itself. This allows us to identify U_{+} with a subgroup of the stabilizer $D_{\bullet, \star}$ (which we continue to denote by U_{+}). Just to fix notation, we observe, for example, that

$$
\begin{equation*}
U_{15}^{x_{6}(t)}=U_{15} x_{6}(t) \tag{2.4}
\end{equation*}
$$

where the cosets U_{15} and $U_{15} x_{6}(t)$ are vertices in the set W_{1} and the expression on the left means the image of the vertex U_{15} under the action of the element $x_{6}(t) \in U_{+}$.

Proposition 2.5. The groups $U_{1}, U_{2}, \ldots, U_{6}$ are the root groups of Γ corresponding to the six roots of Σ that contain the edge $\{\bullet, \star\}$.

Proof. This holds by [9, (8.2)].
We mention that by $[9,(35.13)$ and $(36.1)]$, the extension K / K^{θ} is an invariant of the quadrangle Γ, from which it follows that Γ is a split Moufang hexagon if and only if the field K is perfect.
§3. The automorphisms m_{1} and m_{6}
Let Σ denote the apartment of Γ spanned by the vertices $\bullet, \star, U_{1,6-i} \in W_{i}$ for all $i \in[1,5]$ and $U_{12-i, 6} \in W_{i}$ for all $i \in[6,10]$. Let

$$
m_{1}=\mu\left(x_{1}(1)\right) \quad \text { and } \quad m_{6}=\mu\left(x_{6}(1)\right)
$$

where the map μ is defined (with respect to the apartment Σ) as in $[9$, (6.1)]. Both of these elements are contained in the group D^{\dagger}, and both induce reflections on $\Sigma ; m_{1}$ induces the reflection fixing \star and U_{1}, and m_{6} induces the reflection fixing \bullet and U_{6}. By $[9,(32.12)]$, we have

$$
x_{6}(t)^{m_{1}}=x_{2}(t) \quad \text { and } \quad x_{5}(t)^{m_{1}}=x_{3}(t)
$$

and

$$
x_{1}(t)^{m_{6}}=x_{5}(-t) \quad \text { and } \quad x_{2}(t)^{m_{6}}=x_{4}(t)
$$

for all $t \in K$. Thus the action of m_{1} on the vertices in W_{1} is given by

$$
\begin{equation*}
\left(U_{15} x_{6}(t)\right)^{m_{1}}=U_{15}^{x_{6}(t) m_{1}}=U_{15}^{m_{1} x_{2}(t)}=U_{36} x_{2}(t) \tag{3.1}
\end{equation*}
$$

(see (2.4) above), and the action of m_{6} on the vertices in W_{10} is given by

$$
\begin{equation*}
\left(U_{26} x_{1}(t)\right)^{m_{6}}=U_{26}^{x_{1}(t) m_{6}}=U_{26}^{m_{6} x_{5}(-t)}=U_{14} x_{5}(-t) \tag{3.2}
\end{equation*}
$$

for all $t \in K$. Similarly, we have

$$
\begin{equation*}
\left(U_{14} x_{5}(t)\right)^{m_{1}}=U_{46} x_{3}(t) \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(U_{36} x_{2}(t)\right)^{m_{6}}=U_{13} x_{4}(t) \tag{3.4}
\end{equation*}
$$

for all $t \in K$.
Proposition 3.5. The maps m_{1} and m_{6} are as in Tables 1 and 2. (For use in Section 4, we have also recorded the product $m_{1} m_{6}$ in Table 3.)

Proof. Let ξ denote the permutation of W given in Table 1. We claim that ξ maps edges to edges and is thus an automorphism of Γ. To begin, we choose an edge e containing one vertex in W_{5} and one vertex in W_{6}. Thus $e=\left\{U_{1} g, U_{6} g\right\}$ for some

$$
g=x_{1}(s) x_{2}(t) x_{3}(r) x_{4}(u) x_{5}(v) x_{6}(w) \in U_{+}
$$

We have

$$
U_{1} g=U_{1} x_{2}(t) x_{3}(r) x_{4}(u) x_{5}(v) x_{6}(w)
$$

and hence

$$
\left(U_{1} g\right)^{\xi}=U_{1} x_{2}(w) x_{3}(v) x_{4}(u+w t) x_{5}(-r) x_{6}(-t)
$$

By (2.1), we have

$$
\begin{aligned}
U_{6} g & =U_{6} x_{1}(s) x_{2}(t) x_{3}(r) x_{4}(u) x_{5}(v) x_{6}(w) \\
& =U_{6} x_{1}(s) \cdot x_{6}(w) x_{2}(t) \cdot x_{3}(r) x_{4}(u+w t) x_{5}(v)
\end{aligned}
$$

Table 1: The action of m_{1} on Γ

$$
\begin{aligned}
& \begin{array}{l}
\star \mapsto \star \\
\bullet \mapsto U_{26}
\end{array} \\
& U_{15} x_{6}(t) \mapsto U_{36} x_{2}(t) \\
& U_{14} x_{5}(s) x_{6}(t) \mapsto U_{46} x_{2}(t) x_{3}(s) \\
& U_{13} x_{4}(r) x_{5}(s) x_{6}(t) \mapsto U_{56} x_{2}(t) x_{3}(s) x_{4}(r) \\
& U_{12} x_{3}(u) x_{4}(r) x_{5}(s) x_{6}(t) \mapsto U_{6} x_{2}(t) x_{3}(s) x_{4}(r) x_{5}(-u) \\
& U_{1} x_{2}(v) x_{3}(u) x_{4}(r) x_{5}(s) x_{6}(t) \mapsto U_{1} x_{2}(t) x_{3}(s) x_{4}(r+v t) x_{5}(-u) x_{6}(-v) \\
& U_{6} x_{1}(s) x_{2}(t) x_{3}(r) x_{4}(u) x_{5}(v) \stackrel{s=0}{\longmapsto} U_{12} x_{3}(v) x_{4}(u) x_{5}(-r) x_{6}(-t) \\
& \stackrel{s \neq 0}{\longrightarrow} U_{6} x_{1}\left(-s^{-1}\right) x_{2}\left(-s^{-\theta} t\right) x_{3}\left(v+s^{-2} t^{\theta}\right) \\
& \text { - } x_{4}\left(u-s^{-\theta} t^{2}\right) x_{5}\left(s^{-1} t^{\theta}-r\right) \\
& U_{56} x_{1}(s) x_{2}(t) x_{3}(r) x_{4}(u) \stackrel{s=0}{\longmapsto} U_{13} x_{4}(u) x_{5}(-r) x_{6}(-t) \\
& \stackrel{s \neq 0}{\longmapsto} U_{56} x_{1}\left(-s^{-1}\right) x_{2}\left(-s^{-\theta} t\right) x_{3}\left(-s^{-1} r-s^{-2} t^{\theta}\right) \\
& \text { - } x_{4}\left(u-s^{-\theta} t^{2}\right) \\
& U_{46} x_{1}(s) x_{2}(t) x_{3}(r) \stackrel{s=0}{\longmapsto} U_{14} x_{5}(-r) x_{6}(-t) \\
& \stackrel{s \neq 0}{\longmapsto} U_{46} x_{1}\left(-s^{-1}\right) x_{2}\left(-s^{-\theta} t\right) x_{3}\left(-s^{-1} r-s^{-2} t^{\theta}\right) \\
& U_{36} x_{1}(s) x_{2}(t) \stackrel{s=0}{\longmapsto} U_{15} x_{6}(-t) \\
& \stackrel{s \neq 0}{\longrightarrow} U_{36} x_{1}\left(-s^{-1}\right) x_{2}\left(-s^{-\theta} t\right) \\
& U_{26} x_{1}(s) \stackrel{s=0}{\longmapsto} \bullet \\
& \stackrel{s \neq 0}{\longrightarrow} U_{26} x_{1}\left(-s^{-1}\right)
\end{aligned}
$$

Table 2: The action of m_{6} on Γ

$$
\begin{aligned}
& \star \mapsto U_{15} \\
& U_{15} x_{6}(w) \stackrel{w=0}{\longmapsto} \star \\
& \stackrel{w \neq 0}{\longmapsto} U_{15} x_{6}\left(-w^{-1}\right) \\
& U_{14} x_{5}(v) x_{6}(w) \stackrel{w=0}{\longmapsto} U_{26} x_{1}(-v) \\
& \stackrel{w \neq 0}{\longmapsto} U_{14} x_{5}\left(-v w^{-\theta}\right) x_{6}\left(-w^{-1}\right) \\
& U_{13} x_{4}(u) x_{5}(v) x_{6}(w) \stackrel{w=0}{\longmapsto} U_{36} x_{1}(-v) x_{2}(-u) \\
& \stackrel{w \neq 0}{\longmapsto} U_{13} x_{4}\left(-v^{\theta} w^{-2}-w^{-1} u\right) x_{5}\left(-v w^{-\theta}\right) \\
& \text { - } x_{6}\left(-w^{-1}\right) \\
& U_{12} x_{3}(r) x_{4}(u) x_{5}(v) x_{6}(w) \stackrel{w=0}{\longmapsto} U_{46} x_{1}(-v) x_{2}(-u) x_{3}(r) \\
& \stackrel{w \neq 0}{\longrightarrow} U_{12} x_{3}\left(r-v^{2} w^{-\theta}\right) x_{4}\left(-v^{\theta} w^{-2}-w^{-1} u\right) \\
& \text { - } x_{5}\left(-v w^{-\theta}\right) x_{6}\left(-w^{-1}\right) \\
& U_{1} x_{2}(t) x_{3}(r) x_{4}(u) x_{5}(v) x_{6}(w) \stackrel{w=0}{\longmapsto} U_{56} x_{1}(-v) x_{2}(-u) x_{3}(r) x_{4}(t) \\
& \stackrel{w \neq 0}{\longmapsto} U_{1} x_{2}\left(v^{\theta} w^{-1}-u-t w\right) x_{3}\left(r-v^{2} w^{-\theta}\right) \\
& \text { - } x_{4}\left(-v^{\theta} w^{-2}-w^{-1} u\right) x_{5}\left(-v w^{-\theta}\right) \\
& \text { - } x_{6}\left(-w^{-1}\right) \\
& U_{6} x_{1}(s) x_{2}(t) x_{3}(r) x_{4}(u) x_{5}(v) \mapsto U_{6} x_{1}(-v) x_{2}(-u) x_{3}(r-s v) x_{4}(t) x_{5}(s) \\
& U_{56} x_{1}(s) x_{2}(t) x_{3}(r) x_{4}(u) \mapsto U_{1} x_{2}(-u) x_{3}(r) x_{4}(t) x_{5}(s) \\
& U_{46} x_{1}(s) x_{2}(t) x_{3}(r) \mapsto U_{12} x_{3}(r) x_{4}(t) x_{5}(s) \\
& U_{36} x_{1}(s) x_{2}(t) \mapsto U_{13} x_{4}(t) x_{5}(s) \\
& U_{26} x_{1}(s) \mapsto U_{14} x_{5}(s)
\end{aligned}
$$

Table 3: The action of $m_{1} m_{6}$ on Γ

$$
\begin{aligned}
& \star \mapsto U_{15} \\
& \text { - } \mapsto U_{14} \\
& U_{15} x_{6}(t) \mapsto U_{13} x_{4}(t) \\
& U_{14} x_{5}(s) x_{6}(t) \mapsto U_{12} x_{3}(s) x_{4}(t) \\
& U_{13} x_{4}(r) x_{5}(s) x_{6}(t) \mapsto U_{1} x_{2}(-r) x_{3}(s) x_{4}(t) \\
& U_{12} x_{3}(u) x_{4}(r) x_{5}(s) x_{6}(t) \mapsto U_{6} x_{1}(u) x_{2}(-r) x_{3}(s) x_{4}(t) \\
& U_{1} x_{2}(v) x_{3}(u) x_{4}(r) x_{5}(s) x_{6}(t) \stackrel{v=0}{\longmapsto} U_{56} x_{1}(u) x_{2}(-r) x_{3}(s) x_{4}(t) \\
& \stackrel{v \neq 0}{\longmapsto} U_{1} x_{2}\left(u^{\theta} v^{-1}-r\right) x_{3}\left(s+u^{2} v^{-\theta}\right) \\
& \text { - } x_{4}\left(u^{\theta} v^{-2}+v^{-1} r+t\right) x_{5}\left(-u v^{-\theta}\right) x_{6}\left(v^{-1}\right) \\
& U_{6} x_{1}(s) x_{2}(t) x_{3}(r) x_{4}(u) x_{5}(v) \stackrel{s=0, t=0}{\longrightarrow} U_{46} x_{1}(r) x_{2}(-u) x_{3}(v) \\
& \stackrel{s=0, t \neq 0}{\longmapsto} U_{12} x_{3}\left(v+r^{2} t^{-\theta}\right) x_{4}\left(r^{\theta} t^{-2}+t^{-1} u\right) \\
& \text { - } x_{5}\left(-r t^{-\theta}\right) x_{6}\left(t^{-1}\right) \\
& \stackrel{s \neq 0}{\longrightarrow} U_{6} x_{1}\left(r-s^{-1} t^{\theta}\right) x_{2}\left(s^{-\theta} t^{2}-u\right) \\
& \text { - } x_{3}\left(v-s^{-2} t^{\theta}-s^{-1} r\right) x_{4}\left(-s^{-\theta} t\right) x_{5}\left(-s^{-1}\right) \\
& U_{56} x_{1}(s) x_{2}(t) x_{3}(r) x_{4}(u) \stackrel{s=0, t=0}{\longmapsto} U_{36} x_{1}(r) x_{2}(-u) \\
& \xrightarrow{s=0, t \neq 0} U_{13} x_{4}\left(r^{\theta} t^{-2}+t^{-1} u\right) x_{5}\left(-r t^{-\theta}\right) x_{6}\left(t^{-1}\right) \\
& \stackrel{s \neq 0}{\longmapsto} U_{1} x_{2}\left(-u+s^{-\theta} t^{2}\right) x_{3}\left(-s^{-1} r-s^{-2} t^{\theta}\right) \\
& \text { - } x_{4}\left(-s^{-\theta} t\right) x_{5}\left(-s^{-1}\right) \\
& U_{46} x_{1}(s) x_{2}(t) x_{3}(r) \stackrel{s=0, t=0}{\longmapsto} U_{26} x_{1}(r) \\
& \stackrel{s=0, t \neq 0}{\longmapsto} U_{14} x_{5}\left(-r t^{-\theta}\right) x_{6}\left(t^{-1}\right) \\
& \stackrel{s \neq 0}{\longmapsto} U_{12} x_{3}\left(-s^{-1} r-s^{-2} t^{\theta}\right) x_{4}\left(-s^{-\theta} t\right) x_{5}\left(-s^{-1}\right)
\end{aligned}
$$

Table 3: (continued)

$$
\begin{aligned}
U_{36} x_{1}(s) x_{2}(t) & \stackrel{s=0, t=0}{\longrightarrow} \star \\
& \stackrel{s=0, t \neq 0}{\longrightarrow} U_{15} x_{6}\left(t^{-1}\right) \\
& \stackrel{s \neq 0}{\longrightarrow} U_{13} x_{4}\left(-s^{-\theta} t\right) x_{5}\left(-s^{-1}\right) \\
U_{26} x_{1}(s) & \stackrel{s=0}{\longrightarrow} \bullet \\
& \stackrel{s \neq 0}{\longrightarrow} U_{14} x_{5}\left(-s^{-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
= & U_{6} x_{1}(s) \cdot x_{2}\left(t-s^{\theta} w\right) x_{3}\left(r-s^{2} w^{\theta}\right) \\
& \cdot x_{4}\left(u+w t+s^{\theta} w^{2}\right) x_{5}\left(v+s w^{\theta}\right)
\end{aligned}
$$

If $s=0$, then

$$
\begin{aligned}
\left(U_{6} g\right)^{\xi} & =\left(U_{6} x_{2}(t) x_{3}(r) x_{4}(u+w t) x_{5}(v)\right)^{\xi} \\
& =U_{12} x_{3}(v) x_{4}(u+w t) x_{5}(-r) x_{6}(-t)
\end{aligned}
$$

and thus $\left(U_{1} g\right)^{\xi} \subset\left(U_{6} g\right)^{\xi}$. Suppose, instead, that $s \neq 0$, and let

$$
\hat{g}=x_{1}\left(-s^{-1}\right) x_{2}(w) x_{3}(v) x_{4}(u+w t) x_{5}(-r) x_{6}(-t)
$$

Note that $\hat{g} \in\left(U_{1} g\right)^{\xi}$. By (2.1) again, we have

$$
\begin{aligned}
U_{6} \hat{g} & =U_{6} x_{1}\left(-s^{-1}\right) \cdot x_{6}(-t) x_{2}(w) \cdot x_{3}(v) x_{4}(u) x_{5}(-r) \\
& =U_{6} x_{1}\left(-s^{-1}\right) \cdot x_{2}\left(w-s^{-\theta} t\right) x_{3}\left(v+s^{-2} t^{\theta}\right) x_{4}\left(u-s^{-\theta} t^{2}\right) x_{5}\left(-r+s^{-1} t^{\theta}\right)
\end{aligned}
$$

Therefore, $\left(U_{6} g\right)^{\xi}=U_{6} \hat{g}$ by Table 1 and a bit of calculation. Thus

$$
\hat{g} \in\left(U_{1} g\right)^{\xi} \cap\left(U_{6} g\right)^{\xi} .
$$

We conclude that $e^{\xi}=\left\{\left(U_{1} g\right)^{\xi},\left(U_{6} g\right)^{\xi}\right\}$ is an edge of Γ whether $s=0$ or not. It is now an easy task to check in a similar fashion that ξ maps all the remaining edges to edges; we leave this to the reader.

Next we observe that the automorphism ξ induces the same reflection of the apartment Σ as does m_{1}, and it agrees with m_{1} on the set of neighbors of \bullet and on the set of neighbors of U_{15} by (3.1) and (3.3). By [9, (3.7)], it follows that $\xi=m_{1}$. (In fact, Table 1 was created by starting with the action of m_{1} on Σ, the set of neighbors of \bullet, and the set of neighbors of U_{15} and working backward.) By (3.2), (3.4), and a similar argument, the claim holds for m_{6}.

Now let ρ be the automorphism of U_{+}mentioned above. Thus

$$
\begin{equation*}
x_{i}(t)^{\rho}=x_{7-i}(t) \tag{3.6}
\end{equation*}
$$

for all $i \in[1,6]$ and all $t \in K$. By $[9,(7.5)]$, there exists a unique automorphism of Γ that maps the apartment Σ to itself, interchanges \bullet and \star, and induces ρ on U_{+}. We denote this automorphism of Γ also by ρ. Thus, in particular, $U_{1}^{\rho}=U_{6}$ and $U_{6}^{\rho}=U_{1}$.

From now on, we set

$$
\begin{equation*}
\omega=\left(m_{1} m_{6}\right)^{3} \tag{3.7}
\end{equation*}
$$

Proposition 3.8. The automorphisms ρ and ω commute with each other, and both have order 2.

Proof. Since ρ has order 2 as an automorphism of U_{+}, it also has order 2 as an automorphism of Γ. By [9, (6.9)], $\omega=\left(m_{6} m_{1}\right)^{3}$, and by [9, (6.2)], $m_{1}^{\rho}=m_{6}$ and $m_{6}^{\rho}=m_{1}$. Thus $\omega^{\rho}=\left(m_{6} m_{1}\right)^{3}=\omega$. Let $d=m_{1}^{2}$ and $e=m_{6}^{2}$ (so that $\left.\left[m_{1}, d\right]=\left[m_{6}, e\right]=1\right)$. Then d and e both act trivially on the apartment Σ, and by $[9,(29.12)], d$ centralizes U_{1} and U_{4} and inverts every element of U_{i} for all other $i \in[1,6]$ and e centralizes U_{3} and U_{6} and inverts every element of U_{i} for all other $i \in[1,6]$. By [9, (6.7)], d and e are elements of order 2 (so $m_{1}^{-1}=d m_{1}$ and $m_{6}^{-1}=e m_{6}$), and their product (in either order) is the unique element of D acting trivially on Σ that centralizes U_{2} and U_{5} and inverts every element of U_{i} for all other $i \in[1,6]$. Since $U_{i}^{m_{1}}=U_{8-i}$ for all $i \in[2,6]$ and $U_{i}^{m_{6}}=U_{6-i}$ for all $i \in[1,5]$, both $e^{m_{1}}$ and $d^{m_{6}}$ centralize U_{2} and U_{5} and invert every element of U_{i} for all other $i \in[1,6]$. Thus $e^{m_{1}}=e d=d^{m_{6}}$. It follows by repeated use of these relations that

$$
\left(m_{1}^{-1} m_{6}^{-1}\right)^{3}=\left(d m_{1} \cdot e m_{6}\right)^{3}=\left(m_{1} m_{6}\right)^{3}
$$

and hence $\omega^{-1}=\left(m_{6} m_{1}\right)^{-3}=\omega$.

Proposition 3.9. Let φ be the map from U to U_{+}given by

$$
\varphi(a, b, c)=x_{1}(a) x_{2}(b) x_{3}\left(c-a b+a^{\theta+2}\right) x_{4}(c+a b) x_{5}\left(b-a^{\theta+1}\right) x_{6}(a) .
$$

Then φ is an injective homomorphism whose image is the centralizer of ρ in U_{+}.

Proof. By (1.2) and (2.1) and a bit of calculation, φ is a homomorphism. It is clearly injective. Now choose $a, b, c, d, e, f \in K$, and let

$$
g=x_{1}(a) x_{2}(b) x_{3}(c) x_{4}(d) x_{5}(e) x_{6}(f)
$$

By (2.1) and (3.6), we have

$$
\begin{aligned}
g^{\rho}= & x_{6}(a) x_{5}(b) x_{4}(c) x_{3}(d) x_{2}(e) x_{1}(f) \\
= & x_{5}(b) x_{4}(c-a e) x_{3}(d) x_{2}(e) \cdot x_{6}(a) x_{1}(f) \\
= & x_{2}(e) x_{3}(d) x_{4}(c-a e) x_{5}(b) \cdot x_{1}(f) x_{6}(a) \cdot x_{2}\left(a f^{\theta}\right) x_{3}\left(a^{\theta} f^{2}\right) x_{4}\left(-a^{2} f^{\theta}\right) \\
& \cdot x_{5}\left(-a^{\theta} f\right) \\
= & x_{1}(f) x_{2}(e) x_{3}(d+b f) x_{4}(c-a e) x_{5}(b) \cdot x_{2}\left(a f^{\theta}\right) x_{3}\left(a^{\theta} f^{2}\right) x_{4}\left(a^{2} f^{\theta}\right) \\
& \cdot x_{5}\left(-a^{\theta} f\right) x_{6}(a) \\
= & x_{1}(f) x_{2}\left(e+a f^{\theta}\right) x_{3}\left(d+b f+a^{\theta} f^{2}\right) x_{4}\left(c-a e+a^{2} f^{\theta}\right) x_{5}\left(b-a^{\theta} f\right) x_{6}(a) .
\end{aligned}
$$

Thus $g^{\rho}=g$ if and only if $a=f, e=b-a^{\theta+1}$, and $c=d+a b+a^{\theta+2}$. We conclude that g commutes with ρ if and only if $g=\varphi(a, b, d-a b)$.

From now on, we identify U with its image in U_{+}under the map φ in Proposition 3.9.

Proposition 3.10. Let X be the set of edges of Γ fixed by ρ, let ∞ denote the edge $\{\bullet, \star\}$, and let $G=\langle U, \omega\rangle$, where ω is as in (3.7). Then the following hold:
(i) U acts regularly on $X \backslash\{\infty\}$;
(ii) G acts 2-transitively on X;
(iii) $G=B \cup B \omega B$, where $B=G_{\infty}$;
(iv) U is a normal subgroup of the stabilizer G_{∞};
(v) G acts faithfully on X.

Proof. Since ρ interchanges the vertices \bullet and \star, all the edges in X other than $\infty=\{\bullet, \star\}$ are 2-element subsets containing a right coset of U_{1} and a right coset of U_{6}. Since $U_{1} \cap U_{6}=1$, the intersection of a right coset of U_{1} and a right coset of U_{6} is either empty or consists of a unique element. It follows that

$$
X=\left\{\left\{U_{1} g, U_{6} g\right\} \mid g \in U\right\} \cup\{\infty\}
$$

In particular, (i) holds, and we can identify U with $X \backslash\{\infty\}$ via the map that sends $g \in U$ to $\left\{U_{1}, U_{6}\right\}^{g}=\left\{U_{1} g, U_{6} g\right\}$. In particular, $0=(0,0,0) \in U$ now denotes the edge $\left\{U_{1}, U_{6}\right\}$ itself. By Proposition 3.8, ω acts on the set X. Since ω interchanges the edges ∞ and 0 (by Table 3) and U acts transitively on $X \backslash\{\infty\}$, we conclude that (ii) and (iii) hold. Since U_{+}is normal in D_{∞} (by $[9,(4.7)$ and (5.3)]) and G is contained in the centralizer of ρ, (iv) also holds.

Note that ω maps each vertex of Σ to a vertex at distance 6 from itself. Since the elements of U all fix the vertex \bullet and Γ is bipartite, it follows that the distance from x to x^{g} is even for every vertex x and every $g \in\langle U, \omega\rangle$. In particular, no element of G interchanges the two vertices of an edge.

For each $x \in X \backslash\{\infty\}$, there exists a unique apartment Σ_{x} of Γ containing the edges x and ∞. For each $(a, b, c) \in U$, we have $U_{15} \varphi(a, b, c)=U_{15} x_{6}(a)$ and $U_{26} \varphi(a, b, c)=U_{26} x_{1}(a)$ by Proposition 3.9. For each vertex u adjacent to • or \star, therefore, there exists an edge $x \in X \backslash\{\infty\}$ such that $u \in \Sigma_{x}$. If an element of G acts trivially on X, then it acts trivially on all these apartments; thus it also acts trivially on the set of all vertices adjacent to - or \star, and hence it is itself trivial by [9, (3.7)]. Thus (v) holds.

Remark 3.11. The permutation group on U obtained by letting U act on itself by right multiplication is of course the same as the permutation group on U obtained by letting $U^{\text {opp }}$ act on itself by left multiplication. It follows that Theorem 1.1 is equivalent to the assertion obtained by replacing the multiplication on U defined in (1.2) by the opposite multiplication and, in part (iii), letting U act on $U=X \backslash\{\infty\}$ by left rather than right multiplication, and this "left-handed" version of Theorem 1.1 produces the same group G. We have chosen to work with right cosets and to let U_{+}act by right multiplication in order to conform to [9] and to the recent literature on Moufang sets, whereas Tits [8] chose to work with left multiplication. This explains why the group U in Theorem 1.1 is the opposite of the group U in [8, Example 3, pages 210-215].

Proposition 3.12. Let H be as in (1.3), let D^{\dagger} be as in Notation 2.3, let D° denote the centralizer of ρ in D^{\dagger}, and let T denote the two-point stabilizer $D_{\infty, 0}^{\circ}$. Then there is a canonical isomorphism π from H to T that is compatible with the map φ in Proposition 3.9.

Proof. Let $g \in D_{\infty, 0}^{\dagger}$. Thus g acts trivially on the apartment Σ. By [9, (15.20) and (33.16)] and the isomorphism described in the proof of Proposition 2.2, there exist $a, u \in K^{*}$ such that $x_{1}(s)^{g}=x_{1}\left(a^{2} u^{-\theta} s\right)$ and $x_{6}(s)^{g}=$ $x_{6}\left(a^{-\theta} u^{2} s\right)$ for all $s \in K$. By [9, (33.5)], the centralizer of $\left\langle U_{1}, U_{6}\right\rangle$ in $D_{\infty, 0}$ is trivial. By (3.6), therefore, g commutes with ρ (and hence is contained in T) if and only if $a^{2} u^{-\theta}=a^{-\theta} u^{2}$. Since the maps $x \mapsto x^{2+\theta}$ and $x \mapsto x^{2-\theta}$ from K^{*} to K^{*} are inverses of each other, we conclude that $a=u$ and that the map $g \mapsto a^{2-\theta}$ is an isomorphism from T to K^{*}. Now let $t=a^{2-\theta}$, so that $x_{1}(s)^{g}=x_{1}(t s)$ and $x_{6}(s)^{g}=x_{6}(t s)$ for all $s \in K$. By the commutator relations (2.1), it follows that $x_{2}(s)^{g}=x_{2}\left(t^{\theta+1} s\right), x_{3}(t)^{g}=x_{3}\left(t^{\theta+2} s\right)$, $x_{4}(s)^{g}=x_{4}\left(t^{\theta+2} s\right)$, and $x_{5}(s)^{g}=x_{5}\left(t^{\theta+1} s\right)$. By Proposition 3.9, therefore, $(a, b, c)^{g}=(a, b, c)^{h_{t}}$, where h_{t} is as in (1.3).

From now on we identify H with the two-point stabilizer T via the map π in Proposition 3.12.

§4. The formula (1.5)

In this section we show that the norm N defined in (1.4) is anisotropic and that the automorphism ω satisfies (1.5). We do this by computing explicitly the action of ω on X using Table 3.

For each $g=(a, b, c) \in U$, we have

$$
\begin{equation*}
U_{1} g=U_{1} x_{2}(b) x_{3}\left(c-a b+a^{\theta+2}\right) x_{4}(c+a b) x_{5}\left(b-a^{\theta+1}\right) x_{6}(a) \tag{4.1}
\end{equation*}
$$

by Proposition 3.9 and

$$
\begin{equation*}
U_{1} g \cap U=\{g\} \tag{4.2}
\end{equation*}
$$

by Proposition 3.10(i).
LEmmA 4.3. Suppose that $U_{1} x_{2}(\ddot{v}) x_{3}(\ddot{u}) x_{4}(\ddot{r}) s_{5}(\ddot{s}) x_{6}(\ddot{t})=U_{1} g$ for some $g \in U$. Then $g=(\ddot{t}, \ddot{v}, \ddot{r}-\ddot{v} \ddot{t})$.

Proof. This holds by (4.1) and (4.2).

We now fix $g=(a, b, c) \in U^{*}$, and let u, v, and $w=N(a, b, c)$ be as in Theorem 1.1(iii). Observe first that the following curious identity holds:

$$
\begin{equation*}
w=a v+b u+c^{2} \tag{4.4}
\end{equation*}
$$

Let $m=m_{1} m_{6}$ (so that $\omega=m^{3}$), let α denote the vertex $U_{1} g$, let $\beta=\alpha^{m}$, and let $\gamma=\beta^{m}$. Our goal is to show that $w \neq 0$ and that

$$
\begin{equation*}
(a, b, c)^{\omega}=(-v / w,-u / w,-c / w) \tag{4.5}
\end{equation*}
$$

Lemma 4.6. Suppose that $w \neq 0$ and that

$$
\alpha^{\omega}=U_{1} x_{2}(\ddot{v}) x_{3}(\ddot{u}) x_{4}(\ddot{r}) x_{5}(\ddot{s}) x_{6}(\ddot{t})
$$

Then (4.5) holds if and only if

$$
\begin{align*}
\ddot{t} & =-v / w, \tag{4.7}\\
\ddot{v} & =-u / w, \text { and } \tag{4.8}\\
\ddot{r} & =-c / w+(-v / w)(-u / w) . \tag{4.9}
\end{align*}
$$

Proof. Since ω maps $X \backslash\{\infty, 0\}$ to itself, we have $\alpha^{\omega}=U_{1} e$ for some $e \in$ U^{*}. The claim holds, therefore, by Lemma 4.3.

To begin, we assume that

$$
\begin{equation*}
b \neq 0 \tag{4.10}
\end{equation*}
$$

so by Table 3 applied to (4.1), we have

$$
\beta=\alpha^{m}=U_{1} x_{2}(\hat{v}) x_{3}(\hat{u}) x_{4}(\hat{r}) x_{5}(\hat{s}) x_{6}(\hat{t})
$$

where

$$
\begin{align*}
\hat{v}= & b^{-1} c^{\theta}-a^{\theta} b^{\theta-1}+a^{2 \theta+3} b^{-1}-c-a b, \\
\hat{u}= & b-a^{\theta+1}+b^{-\theta} c^{2}+a^{2} b^{-\theta+2}+a^{2 \theta+4} b^{-\theta} \\
& +a b^{-\theta+1} c-a^{\theta+2} b^{-\theta} c+a^{\theta+3} b^{-\theta+1}, \\
\hat{r}= & b^{-2} c^{\theta}-a^{\theta} b^{\theta-2}+a^{2 \theta+3} b^{-2}+b^{-1} c-a, \\
\hat{s}= & -b^{-\theta} c+a b^{-\theta+1}-a^{\theta+2} b^{-\theta}, \text { and } \\
\hat{t}= & b^{-1} . \tag{4.11}
\end{align*}
$$

It is straightforward to check that the following identities hold:

$$
\begin{align*}
w & =b \hat{u}^{\theta}-\hat{v}(\hat{v}-c), \tag{4.12}\\
b \hat{r} & =\hat{v}-c \tag{4.13}\\
b \hat{s}^{\theta} & =-a-b^{-1}(\hat{v}+c), \text { and } \tag{4.14}\\
\hat{v} & =-b^{-1} v \tag{4.15}
\end{align*}
$$

Next we assume that

$$
\begin{equation*}
v \neq 0 \tag{4.16}
\end{equation*}
$$

Thus also $\hat{v} \neq 0$ (by (4.15)), so by a second application of Table 3, we have

$$
\gamma=\beta^{m}=U_{1} x_{2}(\tilde{v}) x_{3}(\tilde{u}) x_{4}(\tilde{r}) x_{5}(\tilde{s}) x_{6}(\tilde{t})
$$

where

$$
\begin{align*}
& \tilde{v}=\hat{u}^{\theta} \hat{v}^{-1}-\hat{r}, \tag{4.17}\\
& \tilde{u}=\hat{s}+\hat{u}^{2} \hat{v}^{-\theta}, \tag{4.18}\\
& \tilde{r}=\hat{u}^{\theta} \hat{v}^{-2}+\hat{v}^{-1} \hat{r}+\hat{t}, \tag{4.19}\\
& \tilde{s}=-\hat{u} \hat{v}^{-\theta}, \text { and } \\
& \tilde{t}=\hat{v}^{-1} . \tag{4.20}
\end{align*}
$$

Note that

$$
\begin{aligned}
\tilde{v} & =\hat{u}^{\theta} \hat{v}^{-1}-\hat{r} & & \text { by }(4.17) \\
& =\hat{v}^{-1} b^{-1} \cdot\left(b \hat{u}^{\theta}-b \hat{r} \hat{v}\right) & & \\
& =\hat{v}^{-1} b^{-1} \cdot\left(b \hat{u}^{\theta}-\hat{v}(\hat{v}-c)\right) & & \text { by }(4.13), \\
& =\hat{v}^{-1} b^{-1} \cdot w & & \text { by }(4.12), \text { and } \\
& =-w / v & & \text { by }(4.15) .
\end{aligned}
$$

In particular, we have

$$
\begin{equation*}
\tilde{v}=b^{-1} \hat{v}^{-1} w \tag{4.21}
\end{equation*}
$$

as well as

$$
\begin{equation*}
\tilde{v}=-w v^{-1} \tag{4.22}
\end{equation*}
$$

and $\hat{u}^{\theta} \hat{v}^{-1}=\hat{r}+b^{-1} \hat{v}^{-1} w$, so

$$
\begin{equation*}
b^{2} \hat{u}^{2 \theta} \hat{v}^{-2}=b^{2} \hat{r}^{2}-b \hat{r} \hat{v}^{-1} w+\hat{v}^{-2} w^{2} \tag{4.23}
\end{equation*}
$$

Moreover,

$$
\begin{array}{rlr}
\tilde{r} & =\hat{u}^{\theta} \hat{v}^{-2}+\hat{v}^{-1} \hat{r}+\hat{t} & \\
& \text { by (4.19), } \hat{u}^{\theta} \hat{v}^{-2}+\hat{v}^{-1} \hat{r}+b^{-1} & \text { by (4.11), } \\
& =(\tilde{v}-\hat{r}) \hat{v}^{-1}+b^{-1} & \\
\text { by }(4.17) ;
\end{array}
$$

hence,

$$
\begin{equation*}
\tilde{r}=b^{-1} \hat{v}^{-2} w-\hat{r} \hat{v}^{-1}+b^{-1} \quad \text { by }(4.21) \tag{4.24}
\end{equation*}
$$

and thus

$$
\begin{equation*}
b \tilde{r} w=\hat{v}^{-2} w^{2}-b \hat{r} \hat{v}^{-1} w+w \tag{4.25}
\end{equation*}
$$

We record also that

$$
\begin{equation*}
b^{2} \hat{s}^{\theta} \hat{v}=-a b \hat{v}-\hat{v}^{2}-\hat{v} c \quad \text { by (4.14). } \tag{4.26}
\end{equation*}
$$

The vertex $\alpha^{\omega}=\gamma^{m}$ lies on an edge contained in X. Hence, $\alpha^{\omega} \in W_{5}$ (where W_{5} is as in Figure 1). It follows that $\tilde{v} \neq 0$, since otherwise $\gamma^{m} \in W_{7}$ by Table 3 . By (4.22), we conclude that

$$
w \neq 0
$$

and by a final application of Table 3, we have

$$
\alpha^{\omega}=\gamma^{m}=U_{1} x_{2}(\ddot{v}) x_{3}(\ddot{u}) x_{4}(\ddot{r}) x_{5}(\ddot{s}) x_{6}(\ddot{t}),
$$

where

$$
\begin{aligned}
& \ddot{v}=\tilde{u}^{\theta} \tilde{v}^{-1}-\tilde{r}, \\
& \ddot{u}=\tilde{s}^{2}+\tilde{u}^{2} \tilde{v}^{-\theta}, \\
& \ddot{r}=\tilde{u}^{\theta} \tilde{v}^{-2}+\tilde{v}^{-1} \tilde{r}+\tilde{t}, \\
& \ddot{s}=-\tilde{u} \tilde{v}^{-\theta}, \text { and } \\
& \ddot{t}=\tilde{v}^{-1} .
\end{aligned}
$$

We now observe that $\ddot{t}=\tilde{v}^{-1}=-v / w$ by (4.22), so (4.7) holds. Furthermore,

$$
\begin{array}{rlrl}
-b \ddot{v} w & =-b\left(\tilde{u}^{\theta} \tilde{v}^{-1}-\tilde{r}\right) w & \\
& =-b^{2} \tilde{u}^{\theta} \hat{v}+b \tilde{r} w & & \text { by (4.21) } \\
& =-b^{2}\left(\hat{s}+\hat{u}^{2} \hat{v}^{-\theta}\right)^{\theta} \hat{v}+b \hat{r} w & & \text { by (4.18) } \\
& =-b^{2} \hat{s}^{\theta} \hat{v}-b^{2} \hat{u}^{2 \theta} \hat{v}^{-2}+b \tilde{r} w . &
\end{array}
$$

Applying (4.23), (4.25), and (4.26) to the three terms in this last expression, we find that

$$
\begin{aligned}
-b \ddot{v} w & =a b \hat{v}+\hat{v}^{2}+c \hat{v}-b^{2} \hat{r}^{2}+w & & \\
& =a b \hat{v}+\hat{v}^{2}+c \hat{v}-(\hat{v}-c)^{2}+w & & \text { by (4.13) } \\
& =-a v-c^{2}+w & & \text { by (4.15) } \\
& =b u & & \text { by (4.4). }
\end{aligned}
$$

Thus (4.8) holds. Finally, we have

$$
\begin{align*}
w \ddot{r} & =w\left(\tilde{u}^{\theta} \tilde{v}^{-2}+\tilde{v}^{-1} \tilde{r}+\tilde{t}\right) & & \\
& =w \tilde{v}^{-1}(\ddot{v}-\tilde{r})+w \tilde{t} & & \\
& =-\tilde{v}^{-1}(u+w \tilde{r})+w \tilde{t} & & \text { by }(4.8) \\
& =u v w^{-1}+v \tilde{r}+w \tilde{t} & & \text { by }(4.22) \\
& =u v w^{-1}+v \tilde{r}+w \hat{v}^{-1} & & \text { by }(4.20) \\
& =u v w^{-1}+v\left(b^{-1} \hat{v}^{-2} w-\hat{v}^{-1} \hat{r}+b^{-1}\right)+w \hat{v}^{-1} & & \text { by }(4.24) \\
& =u v w^{-1}+\left(-\hat{v}^{-1} w+b \hat{r}-\hat{v}\right)+w \hat{v}^{-1} & & \text { by }(4.15) \\
& =u v w^{-1}-c & & \text { by }(4.13), \tag{4.13}
\end{align*}
$$

so (4.9) also holds. By Lemma 4.6, it follows that (4.5) holds. We conclude that $w \neq 0$ and that the identity (1.5) holds for all "generic" points in U^{*}, that is, for all $g=(a, b, c)$ in U^{*} satisfying (4.10) and (4.16).

Next we consider the case that $b \neq 0$ but $v=0$. By (4.15), we have $\hat{v}=0$ as well, and hence

$$
\beta=\alpha^{m}=U_{1} x_{3}(\hat{u}) x_{4}(\hat{r}) x_{5}(\hat{s}) x_{6}(\hat{t}) .
$$

It follows from Table 3 that

$$
\gamma=\beta^{m}=U_{56} x_{1}(\hat{u}) x_{2}(-\hat{r}) x_{3}(\hat{s}) x_{4}(\hat{t})
$$

If $\hat{u}=0$, it would follow from Table 3 that $\alpha^{\omega}=\gamma^{m} \in W_{3} \cup W_{9}$. This is impossible since the vertex α^{ω} lies on an edge contained in X. We conclude that $\hat{u} \neq 0$. It follows from (4.12) (with $\hat{v}=0$) that $w \neq 0$. From Table 3 we now obtain

$$
\alpha^{\omega}=\gamma^{m}=U_{1} x_{2}(\ddot{v}) x_{3}(\ddot{u}) x_{4}(\ddot{r}) x_{5}(\ddot{s}),
$$

where

$$
\begin{aligned}
& \ddot{v}=-\hat{t}+\hat{u}^{-\theta} \hat{r}^{2}, \\
& \ddot{u}=-\hat{u}^{-1} \hat{s}+\hat{u}^{-2} \hat{r}^{\theta}, \\
& \ddot{r}=\hat{u}^{-\theta} \hat{r}, \text { and } \\
& \ddot{s}=-\hat{u}^{-1} .
\end{aligned}
$$

Remembering that $v=\hat{v}=0$, we calculate that

$$
\begin{array}{rlrl}
\ddot{r} & =\hat{u}^{-\theta} \hat{r} \\
& =w^{-1} b \cdot \hat{r} & \text { by }(4.12) \\
& =-w^{-1} c & \text { by }(4.13)
\end{array}
$$

and that

$$
\begin{array}{rlr}
\ddot{v} & =-\hat{t}+\hat{u}^{-\theta} \hat{r}^{2} & \\
& =-b^{-1}+w^{-1} b \cdot\left(-b^{-1} c\right)^{2} & \text { by }(4.11)-(4.13) \\
& =-b^{-1} w^{-1} \cdot\left(w-c^{2}\right) & \\
& =-b^{-1} w^{-1} \cdot b u & \text { by }(4.4) \tag{4.4}\\
& =-w^{-1} u . &
\end{array}
$$

By Lemma 4.6, we conclude that (4.5) holds.
We can thus assume from now on that $b=0$, so

$$
\alpha=U_{1} x_{3}\left(c+a^{\theta+2}\right) x_{4}(c) x_{5}\left(-a^{\theta+1}\right) x_{6}(a),
$$

as well as

$$
\begin{align*}
& v=-c^{\theta}-a^{2 \theta+3}=-z^{\theta} \tag{4.27}\\
& u=-a c-a^{\theta+3}, \text { and } \tag{4.28}\\
& w=-a c^{\theta}+c^{2}-a^{2 \theta+4}=c^{2}-a z^{\theta} \tag{4.29}
\end{align*}
$$

where

$$
z=c+a^{\theta+2}
$$

From Table 3 we now obtain

$$
\beta=\alpha^{m}=U_{56} x_{1}(z) x_{2}(-c) x_{3}\left(-a^{\theta+1}\right) x_{4}(a)
$$

Note that a and c cannot both be 0 , since otherwise $g=(a, 0, c)=0 \in U$.
Suppose that $c=-a^{\theta+2}$ or, equivalently, that $z=0$. Then $a \neq 0$, and Table 3 tells us that

$$
\begin{aligned}
\beta & =\alpha^{m}=U_{56} x_{2}\left(a^{\theta+2}\right) x_{3}\left(-a^{\theta+1}\right) x_{4}(a), \\
\gamma & =\beta^{m}=U_{13} x_{5}\left(a^{-\theta-2}\right) x_{6}\left(a^{-\theta-2}\right), \\
\alpha^{\omega} & =\gamma^{m}=U_{1} x_{3}\left(a^{-\theta-2}\right) x_{4}\left(a^{-\theta-2}\right) .
\end{aligned}
$$

By (4.27)-(4.29), we have $v=0, u=0$, and $w=a^{2 \theta+4} \neq 0$, and by Lemma 4.6, we conclude once again that (4.5) holds.

Suppose, finally, that $c \neq-a^{\theta+2}$ or, equivalently, that $z \neq 0$. From Table 3 we obtain

$$
\gamma=\beta^{m}=U_{1} x_{2}(\tilde{v}) x_{3}(\tilde{u}) x_{4}(\tilde{r}) x_{5}(\tilde{s})
$$

where

$$
\begin{align*}
& \tilde{v}=-a+z^{-\theta} c^{2}, \tag{4.30}\\
& \tilde{u}=z^{-1} a^{\theta+1}+z^{-2} c^{\theta} \tag{4.31}\\
& \tilde{r}=z^{-\theta} c, \text { and } \tag{4.32}\\
& \tilde{s}=-z^{-1}
\end{align*}
$$

It follows from (4.29) and (4.30) that

$$
\begin{equation*}
w=z^{\theta} \tilde{v} \tag{4.33}
\end{equation*}
$$

Observe that $\tilde{v} \neq 0$, since it would otherwise follow from Table 3 again that $\alpha^{\omega}=\gamma^{m} \in W_{7}$, which is impossible. Therefore, $w \neq 0$ also in this last case. By one final application of Table 3, we obtain

$$
\alpha^{\omega}=\gamma^{m}=U_{1} x_{2}(\ddot{v}) x_{3}(\ddot{u}) x_{4}(\ddot{r}) x_{5}(\ddot{s}) x_{6}(\ddot{t})
$$

where

$$
\begin{aligned}
& \ddot{v}=\tilde{u}^{\theta} \tilde{v}^{-1}-\tilde{r}, \\
& \ddot{u}=\tilde{s}+\tilde{u}^{2} \tilde{v}^{-\theta}, \\
& \ddot{r}=\tilde{u}^{\theta} \tilde{v}^{-2}+\tilde{v}^{-1} \tilde{r}, \\
& \ddot{s}=-\tilde{u} \tilde{v}^{-\theta}, \text { and } \\
& \ddot{t}=\tilde{v}^{-1} .
\end{aligned}
$$

By (4.27) and (4.33), we have

$$
\begin{equation*}
\ddot{t}=\tilde{v}^{-1}=z^{\theta} / w=-v / w \tag{4.34}
\end{equation*}
$$

Furthermore,

$$
\begin{aligned}
\ddot{v} & =\tilde{u}^{\theta} \tilde{v}^{-1}-\tilde{r} & & \\
& =\left(z^{-1} a^{\theta+1}+z^{-2} c^{\theta}\right)^{\theta} \cdot(-v / w)-z^{-\theta} c & & \text { by }(4.31),(4.32), \\
& =w^{-1} \cdot\left(\left(z^{-\theta} a^{\theta+3}+z^{-2 \theta} c^{3}\right) \cdot z^{\theta}-z^{-\theta} c w\right) & & \text { by }(4.27) \\
& =w^{-1} \cdot\left(a^{\theta+3}+z^{-\theta} c^{3}-z^{-\theta} c^{3}+a c\right) & & \text { by }(4.29) \\
& =-u / w & & \text { by }(4.28)
\end{aligned}
$$

and

$$
\begin{array}{rlrl}
\ddot{r} & =\tilde{u}^{\theta} \tilde{v}^{-2}+\tilde{v}^{-1} \tilde{r} & \\
& =(-v / w) \cdot\left(\tilde{u}^{\theta} \tilde{v}^{-1}+\tilde{r}\right) & & \text { by }(4.34) \\
& =(-v / w) \cdot((-u / w)-\tilde{r}) & & \text { by }(4.35) \\
& =(-v / w)(-u / w)+(v / w) \cdot z^{-\theta} c & & \text { by }(4.32) \\
& =-c / w+(-v / w)(-u / w) & & \text { by }(4.27) .
\end{array}
$$

By Lemma 4.6, we conclude that (4.5) holds also in this last case.
This completes the proof that $w \neq 0$ and that the identity (1.5) holds for every $g=(a, b, c)$ in U^{*}.

§5. Properties (I)-(VI)

By Proposition 3.8, ω is a permutation of X of order 2. To conclude our proof of Theorem 1.1, it thus remains only to show that (I)-(VI) hold. By Proposition 3.10(ii),(v), (I) holds. For each $x \in X$, there exists $g \in G$ mapping ∞ to x; let $U_{x}=U^{g}$. If g_{1}, g_{2} are two elements of G mapping ∞ to the same element of X, then $g_{1} g_{2}^{-1} \in G_{\infty}$ and thus $U^{g_{1}}=U^{g_{2}}$ (by Proposition 3.10(iv)). By Proposition 3.10(i), it follows that $\left(X,\left(U_{x}\right)_{x \in X}\right)$ is a Moufang set (as defined, e.g., in [1, Section 2.1]). Let $G^{\dagger}=\left\langle U_{x} \mid x \in X\right\rangle$, and let μ be as in [1, Definition 3.1]. Thus for each $a \in U^{*}, \mu(a)$ is the unique element of $U_{0} a U_{0}=U^{\omega} a U^{\omega}$ that interchanges ∞ and 0 . (Note that this is not the same μ as in the definition of m_{1} and m_{6} at the beginning of Section 3 above.) By [1, Theorem 3.1(ii)], we have

$$
\begin{equation*}
G_{\infty}^{\dagger}=U \cdot\left\langle\mu(a) \mu(b) \mid a, b \in U^{*}\right\rangle \tag{5.1}
\end{equation*}
$$

Proposition 5.2. The following hold.
(i) $G_{\infty}^{\dagger}=U H^{\dagger}$, where H^{\dagger} is as defined in (1.6).
(ii) $\omega \in\left\langle U, U^{\omega}\right\rangle$ (so $G=G^{\dagger}$).

Proof. We have $\left\langle\mu(a) \mu(b) \mid a, b \in U^{*}\right\rangle=H^{\dagger}$ by [3, Proposition 6.12(ii)], whose proof depends only on knowing that the norm N is anisotropic. By (5.1), therefore, (i) holds. At the conclusion of the proof of [3, Proposition 6.12 (ii)], it is observed that $\omega=\mu(0,0,1)$. Hence, (ii) holds.

By Propositions 3.10(iv) and 5.2, (II) and (III) hold. Let

$$
\begin{equation*}
t \cdot(a, b, c)=(a, b, c)^{h_{t}} \tag{5.3}
\end{equation*}
$$

for each $(a, b, c) \in U$ and each $t \in K^{*}$. By (1.5), we have

$$
\begin{equation*}
\omega(t \cdot(a, b, c))=t^{-1} \cdot \omega(a, b, c) \tag{5.4}
\end{equation*}
$$

for all $(a, b, c) \in U$ and all $t \in K^{*}$. Thus (V) holds. Since H normalizes U, it follows that H also normalizes U^{ω}. Hence, (IV) follows from (III).

Suppose, finally, that $|K|>3$. Let K^{\dagger} be as in (1.6). Thus, in particular, $\left(K^{*}\right)^{2}=N\left(0,0, K^{*}\right) \subset K^{\dagger}$. Since $|K|>3$, it follows that we can choose $t \in$ K^{\dagger} such that $t^{\theta+1} \neq 1$. Thus $t \neq 1$, so also $t^{\theta+2} \neq 1$. We have

$$
\begin{aligned}
& {\left[h_{t},(a, 0,0)\right]=\left((1-t) a,(t-1) t^{\theta} a^{\theta+1}, 0\right),} \\
& {\left[h_{t},(0, b, 0)\right]=\left(0,\left(1-t^{\theta+1}\right) b, 0\right), \text { and }}
\end{aligned}
$$

$$
\left[h_{t},(0,0, c)\right]=\left(0,0,\left(1-t^{\theta+2}\right) c\right)
$$

for all $a, b, c \in K$. Hence, $U \subset[G, G]$. By Proposition 3.10(iii), $\left(G_{\infty},\langle\omega\rangle\right)$ is a $B N$-pair (as defined in [6, Definition 2.1]). The group U is nilpotent. By [6, Proposition 2.8] and Proposition 3.10(iv),(v), it follows that G is simple. Thus (VI) holds.

§6. A more elementary reason that the norm is anisotropic

In this section we give a short algebraic proof that the norm N defined in (1.4) is anisotropic. Let

$$
\begin{equation*}
\Omega(a, b, c)=\left(-v,-u w^{\theta},-c w^{\theta+1}\right) \tag{6.1}
\end{equation*}
$$

for all $(a, b, c) \in U$, where, as in (1.4) and (1.5),

$$
\begin{aligned}
& v=a^{\theta} b^{\theta}-c^{\theta}+a b^{2}+b c-a^{2 \theta+3} \\
& u=a^{2} b-a c+b^{\theta}-a^{\theta+3}
\end{aligned}
$$

and $w=N(a, b, c)=-a c^{\theta}+a^{\theta+1} b^{\theta}-a^{\theta+3} b-a^{2} b^{2}+b^{\theta+1}+c^{2}-a^{2 \theta+4}$. Note that

$$
\begin{equation*}
N(t \cdot(a, b, c))=t^{2 \theta+4} N(a, b, c) \tag{6.2}
\end{equation*}
$$

for all $(a, b, c) \in U$, where $t \cdot(a, b, c)$ is as in (5.3), and

$$
\begin{equation*}
N\left((a, b, c)^{-1}\right)=N(a, b, c) \tag{6.3}
\end{equation*}
$$

for all $(a, b, c) \in U^{*}$, where $(a, b, c)^{-1}$ is as in Theorem 1.1(i).
Our proof rests on the observation that

$$
\begin{equation*}
N(\Omega(a, b, c))=N(a, b, c)^{2 \theta+3} \tag{6.4}
\end{equation*}
$$

for all $(a, b, c) \in U$. This can be checked simply by plugging the definitions of v, u, and w into (6.1). (That this identity ought to hold follows from [3, (6.18)] and (5.4).)

Now fix $(a, b, c) \in U^{*}$ such that $w=0$.
Lemma 6.5. $v=0$.
Proof. By (6.1) and (6.4), we have

$$
N(-v, 0,0)=N(\Omega(a, b, c))=0
$$

By (1.4), on the other hand, $N(-v, 0,0)=-v^{2 \theta+4}$.

Lemma 6.6. $a \neq 0$.
Proof. Suppose that $a=0$. Since $(a, b, c) \neq 0$ and $w=0$, we have $c \neq 0$. By (6.2), the norm of $c^{\theta-2} \cdot(0, b, c)$ is zero. We can thus assume that $c=1$. It follows by (1.4) that $b \neq 1$, but Lemma 6.5 implies that $b=1$.

By (6.2) and Lemma 6.6, we can assume from now on that $a=1$. Hence, $v=0$ means that

$$
\begin{equation*}
b^{\theta}-c^{\theta}+b^{2}+b c-1=0 \tag{6.7}
\end{equation*}
$$

and $w-v=0$ means that

$$
\begin{equation*}
b^{\theta+1}+b^{2}-b-b c+c^{2}=0 \tag{6.8}
\end{equation*}
$$

By (6.3) and Lemma 6.5, we also have $v(-1,-b+1,-c)=v\left((1, b, c)^{-1}\right)=0$, and thus

$$
\begin{equation*}
b^{\theta}+c^{\theta}-b^{2}-b-1+b c-c=0 \tag{6.9}
\end{equation*}
$$

Adding (6.7) and (6.9), we find that

$$
\begin{equation*}
b^{\theta}+b-1=-b c-c \tag{6.10}
\end{equation*}
$$

Multiplying this last equation by b and comparing with (6.8), we obtain

$$
\begin{equation*}
c\left(c-b^{2}+b\right)=0 . \tag{6.11}
\end{equation*}
$$

Assume first that $c=0$. Then by (6.7), we have $b^{\theta}+b^{2}-1=0$, whereas by (6.10), we have $b^{\theta}+b-1=0$. We find that $b^{2}=b$ and thus $b \in\{0,1\}$, contradicting the equality $b^{\theta}+b-1=0$.

Hence, $c \neq 0$, and it follows from (6.11) that $c=b^{2}-b$. By (6.7), we now obtain

$$
b^{2 \theta}=b^{3}-1-b^{\theta} ;
$$

from (6.10), on the other hand, we get

$$
b^{3}-1=-b^{\theta}
$$

Combining the last two equations, we obtain $b^{2 \theta}=b^{\theta}$, but then $c^{\theta}=0$, and hence $c=0$ after all. With this contradiction, we conclude that the norm N is anisotropic.

§7. The subgroup H^{\dagger}

If K is finite, then $|K|$ is an odd power of 3 , from which it follows that K^{*} is generated by $\left(K^{*}\right)^{2}=N\left(0,0, K^{*}\right)$ and $-1=N(0,1,1)$, so $K^{\dagger}=K^{*}$ and $H^{\dagger}=H$. (This is [5, (8.4)].) It is not necessarily true, however, that $H^{\dagger}=H$ if K is infinite. In this section we illustrate this with an example. As Tits suggests in [7, Section 1.12], we need to modify what he does there only slightly.

Let F be an odd degree extension of the field with three elements, and let K be the field of quotients of the polynomial ring $F[s, t]$ in two variables s and t. Since $|F|$ is an odd power of 3 , there exists a unique endomorphism θ of K mapping F to F, t to s, and s to t^{3} whose square is the Frobenius endomorphism. (In what follows, the reader may wish to think of s as being formally equal to $t^{\sqrt{3}}$.)

Proposition 7.1. The group $K^{\dagger} \cap F(t)$ is generated by $\left(F(t)^{*}\right)^{2}$ and all irreducible polynomials in $F[t]$ of even degree.

Proof. Since F is finite, we have $F^{*} \subset K^{\dagger}$. Let $f \in F[t]$ be an irreducible polynomial of even degree over F, and let α be a root of f in some splitting field L. Then $L=F(\alpha)$ and $[L: F]=\operatorname{deg}(f)=2 d$ for some d. Thus L contains an element β whose square is -1 . Since $[L: F(\beta)]=d$, there are nonzero polynomials $p, q \in F[t]$ of degree at most d such that $p+\beta q$ is the minimal polynomial of α over $F(\beta)$. Thus $p+\beta q$ divides f. Hence, $p-\beta q$ also divides f. Since the polynomial $p+\beta q$ is irreducible over $F(\beta)$, it follows that it is relatively prime to the polynomial $p-\beta q$. Thus f / e equals the product of these two polynomials for some $e \in F^{*}$. Hence,

$$
f=e\left(p^{2}+q^{2}\right)=e N\left(0, p^{\theta-1}, q\right) \in K^{\dagger}
$$

Since $h^{-1}=h \cdot h^{-2}$ for all $h \in F[t]^{*}$ and $\left(K^{*}\right)^{2} \subset K^{\dagger}$, it will now suffice to show that no product in $F[t]$ of distinct irreducible polynomials of odd degree is contained in K^{\dagger}. Let $g \in F[t]$ be such a product, let F_{1} be the splitting field of g over F, and let $K_{1}=F_{1}(s, t)$. The extension F_{1} / F is of odd degree by the choice of g, so θ has a unique extension to an endomorphism of K_{1} (which we continue to call θ) whose square is the Frobenius map. Let c be an arbitrary root of g in F_{1}, and let $d=c^{\theta}$. We define a valuation ν on K_{1} with values in $\mathbb{Z}[\sqrt{3}]$. First, we declare the degree of a monomial $e(s-d)^{m}(t-c)^{n}$ (for $\left.e \in F_{1}^{*}\right)$ to be $n+m \sqrt{3}$. If $p \in F_{1}[s, t]^{*}$, we write p as a sum of monomials in the variables $t-c$ and $s-d$ and define $\nu(p)$ to be
the minimum of the degrees of these monomials (minimum with respect to the natural ordering of $\mathbb{Z}[\sqrt{3}]$ as a subset of \mathbb{R}). Finally, we set $\nu(p / q)=$ $\nu(p)-\nu(q)$ for all $p, q \in F_{1}[s, t]^{*}$. Then ν is a well-defined valuation on K_{1}. Since g is a product of distinct irreducibles, c is a simple root of g. Since the variable s does not occur in g, we conclude that $\nu(g)=1$. Since

$$
\begin{aligned}
\left(e(s-d)^{m}(t-c)^{n}\right)^{\theta} & =e^{\theta}\left(t^{3}-c^{3}\right)^{m}(s-d)^{n} \\
& =e^{\theta}(t-c)^{3 m}(s-d)^{n}
\end{aligned}
$$

for all $e \in F_{1}$ and all $m, n \geq 0$, it follows that $\nu\left(u^{\theta}\right)=\sqrt{3} \cdot \nu(u)$ for all $u \in K_{1}^{*}$.
Now let $w=N(a, b, c)$ for $a, b, c \in K_{1}$. By [3, (9.3)] (whose proof depends only on the fact that the norm is anisotropic), $\nu(w)$ is equal to the minimum of $(2 \sqrt{3}+4) \nu(a),(\sqrt{3}+1) \nu(b)$, and $2 \nu(c)$. Since $(\sqrt{3}+1)^{2}=2 \sqrt{3}+4$ and $(\sqrt{3}+1)(\sqrt{3}-1)=2$, it follows that $\nu\left(K_{1}^{\dagger}\right)=(\sqrt{3}+1) \mathbb{Z}[\sqrt{3}]$. Since $\nu(g)=$ $1 \notin(\sqrt{3}+1) \mathbb{Z}[\sqrt{3}]$, we conclude that $g \notin K_{1}^{\dagger}$. Hence, $g \notin K^{\dagger}$.

Corollary 7.2. K^{*} / K^{\dagger} is infinite.
Proof. There are infinitely many pairwise nonproportional irreducible polynomials of odd degree in $F[t]$. By Proposition 7.1, these polynomials have pairwise distinct images in K^{*} / K^{\dagger}.

Acknowledgment. We thank the referee for many valuable suggestions and observations.

References

[1] T. De Medts and R. M. Weiss, Moufang sets and Jordan division algebras, Math. Ann. 335 (2006), 415-433.
[2] R. M. Guralnick, W. M. Kantor, M. Kassabov, and A. Lubotzky, Presentations of finite simple groups: A quantitative approach, J. Amer. Math. Soc. 21 (2008), 711774.
[3] P. Hitzelberger, L. Kramer, and R. M. Weiss, Non-discrete Euclidean buildings for the Ree and Suzuki groups, to appear in Amer. J. Math., preprint, arXiv:math/0810.2725 [math.GR]
[4] G. Kemper, F. Lübeck, and K. Magaard, Matrix generators for the Ree groups ${ }^{2} G_{2}(q)$, Comm. Algebra 29 (2001), 407-413.
[5] R. Ree, A family of simple groups associated with the simple Lie algebra of type $\left(G_{2}\right)$, Amer. J. Math. 83 (1961), 432-462.
[6] J. Tits, Algebraic and abstract simple groups, Ann. Math. 80 (1964), 313-329.
[7] J. Tits, Moufang octagons and Ree groups of type F_{4}, Amer. J. Math. 105 (1983), 539-594.
[8] J. Tits, "Les groupes simples de Suzuki et de Ree" in Séminaire Bourbaki, Vol. 6 (1960/1961), no. 210, Soc. Math. France, Paris, 1995, 65-82.
[9] J. Tits and R. M. Weiss, Moufang Polygons, Springer, Berlin, 2002.
[10] H. Van Maldeghem, Generalized Polygons, Birkhäuser, Basel, 1998.

Tom De Medts
Department of Mathematics
Ghent University
Krijgslaan 281, S22
9000 Gent
Belgium
tdemedts@cage.ugent.be
Richard M. Weiss
Department of Mathematics
Tufts University
Medford, Massachusetts 02155
USA
rweiss@tufts.edu

