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SHARP EXPONENTIAL INTEGRABILITY FOR

TRACES OF MONOTONE SOBOLEV FUNCTIONS
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KAI RAJALA

Abstract. We answer a question posed in [12] on exponential integrability

of functions of restricted n-energy. We use geometric methods to obtain a

sharp exponential integrability result for boundary traces of monotone Sobolev

functions defined on the unit ball.

§1. Introduction

The following result answered a problem of A. Beurling, mentioned by

J. Moser in a famous paper [10].

Theorem A. (Chang-Marshall (1985), [1]) There is a universal con-

stant C <∞ so that if f is analytic in the unit disc D, f(0) = 0, and

(1.1)

∫

D

|f ′(z)|2
dA(z)

π
≤ 1,

then
∫ 2π

0
exp
(

|f⋆(eiθ)|2
)

dθ ≤ C,

where f⋆ is the trace of f on ∂D, i.e., f⋆(ζ) = limt↑1 f(tζ) for H1-a.e.

ζ ∈ ∂D.

This result is moreover “sharp” in the following sense: the Beurling

functions,

Ba(z) :=

(

log
1

1 − az

)(

log
1

1 − a2

)−1/2

0 < a < 1
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are analytic in D, satisfy Ba(0) = 0 and (1.1), and have the property that

for any given α > 1, one can choose a so that the integral

∫ 2π

0
exp
(

α|Ba(e
iθ)|2

)

dθ

is as large as desired.

The following is an easy corollary of the Chang-Marshall Theorem.

Corollary A. There is a universal constant C < ∞ so that if u :

D → R is harmonic with u(0) = 0 and

∫

D

|∇u(z)|2
dA(z)

π
≤ 1,

then
∫ 2π

0
exp
(

u⋆(eiθ)2
)

dθ ≤ C,

where u⋆ is the trace of u on ∂D, i.e., u⋆(ζ) = limt↑1 u(tζ) for H1-a.e.

ζ ∈ ∂D.

This can also be shown to be sharp by considering the real parts of the

Beurling functions.

In [12] the last two authors generalized the Chang-Marshall theorem

to quasiregular mappings in all dimensions. They asked in [12] whether

Corollary A also generalizes, perhaps substituting “harmonic” with “n-

harmonic”. In this note we show that this is indeed possible. The key

concept is that of a monotone Sobolev function, whose definition we recall

below, and which is quite general, and includes for instance n-harmonic

functions.

§2. Main results

Let Ω be an open and connected set. For a continuous function u : Ω →

R, we define the oscillation of u on a compact set K ⊂ Ω by

osc
K
u = max

x,y∈K
|u(x) − u(y)|.

We say that u : Ω → R is monotone if osc∂B u = oscB̄ u for all n-balls B

compactly contained in Ω.
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By integrating the gradient over radial segments and changing variables,

we see that, for a continuous u : Bn → R in the Sobolev space W 1,n(Bn),

the radial limit

ũ(y) = lim
r→1

u(ry)

exists at Hn−1-a.e. point y ∈ Sn−1. We denote by ũ the almost everywhere

defined trace of u. Moreover, we denote the Lp-norm of a p-integrable

g : Ω → R
n by ‖g‖p = ‖g‖Ω,p. The surface measure Hn−1(Sn−1) of the unit

sphere Sn−1 is ωn−1. The notations Bn(r) = Bn(0, r), Bn = Bn(1) for

n-dimensional balls will be used.

Theorem 1. There exists a constant C = C(n) > 0 so that if u ∈

W 1,n(Bn) is a non-constant continuous monotone function such that u(0) =

0, then

(2.2)

∫

Sn−1

exp
(

α(|ũ(y)|/‖∇u‖n)
n/(n−1)

)

dHn−1(y) ≤ C,

where

(2.3) α = (n− 1)
(ωn−1

2

)1/(n−1)
.

The continuity assumption in Theorem 1 is of technical nature. By

a theorem of Manfredi [8], so-called weakly monotone functions in W 1,n

are always continuous and monotone in the above sense. In general, W 1,n-

functions need not be continuous.

The monotonicity assumption in Theorem 1 cannot be dropped al-

together, since the n-capacity of a point is zero. Indeed, if we define

ui : B
n → R,

ui(x) =

{

log(1/|x|)
log i , 1/i ≤ |x| < 1,

1, 0 ≤ |x| < 1/i,

and vi = 1 − ui, we see that vi(0) = 0, ṽi = 1 on the unit sphere, and

‖∇vi‖n → 0 as i→ ∞.

Our method of proof for Theorem 1 has a similar geometric flavor as

in [9] and in [12], and the end-game is again to appeal to Moser’s original

one-dimensional proof. However, the so-called “egg-yolk” property, which

was the hardest part to establish in the two papers cited above, can be

quickly established in our present case. It might come as a surprise then
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that Theorem 1 is sharp, as we will see in Theorem 2 below, as opposed to

the situation in [12].

A function u ∈W 1,p
loc (Ω) is called p-harmonic, 1 < p <∞, if
∫

Ω
|∇u|p−2∇u · ∇φ dx = 0

for every C∞-smooth test function φ with compact support in Ω, see [6].

Since p-harmonic functions are continuous and satisfy the maximum prin-

ciple ([6, 6.5]), they are, in particular, monotone.

The next result shows that the constant α in Theorem 1 is sharp.

Theorem 2. Let α be as in Theorem 1. There exists a sequence of

n-harmonic functions ui ∈ W 1,n(Bn) satisfying ‖∇ui‖n ≤ 1 and ui(0) = 0,

so that
∫

Sn−1

exp
(

β|ũi(y)|
n/(n−1)

)

dHn−1(y) → ∞ as i→ ∞

whenever β > α.

§3. Proof of Theorem 1

In this section we assume that u satisfies the assumptions of Theorem 1.

Moreover, by considering balls Bn(0, 1−1/j), for j large, and using Fatou’s

lemma, we may assume that the function u in Theorem 1 is defined in a

neighborhood of the unit ball.

Lemma 3. There exists a constant r0 = r0(n) > 0 so that if M0 :=

maxB̄n(r0) |u|, then
∫

{|u|≤M0}
|∇u|n dx ≥Mn

0 .

Proof. For 0 < r < 1 let m := maxB̄n(r) |u| and set v := min{|u|,m}.

By monotonicity, and since u(0) = 0, oscSn−1(t) v = m for every t ≥ r. By

the Sobolev embedding theorem on spheres, see e.g. [5, Lemma 1] or [11],

there exists a constant a depending only on n such that

∫

Bn\B̄n(r)
|∇v|n dx =

∫ 1

r

(

∫

Sn−1(t)
|∇v|n dHn−1

)

dt

≥

∫ 1

r

(

oscSn−1(t) v
)n

at
dt =

mn

a
log

1

r
.

The claim follows by choosing r0 := exp(−a).
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Let Γ be a family of paths in an open and connected set Ω. The n-

modulus Mn(Γ) of Γ is defined as follows:

Mn(Γ) = inf
ρ

∫

Ω
ρn dx,

where ρ : Ω → [0,∞] is an admissible function for Γ, i.e. a Borel function

satisfying

(3.4)

∫

γ
ρds ≥ 1

for every locally rectifiable γ ∈ Γ. The family of all paths joining two sets

A,B ⊂ Ω̄ in Ω is denoted by ∆(A,B; Ω). We say that a given property

holds for n-almost every path in a path family Γ if the property holds for

all paths in Γ \ Γ0, where Γ0 is a subfamily of Γ having n-modulus zero.

Lemma 4. For every r ∈ (0, 1), there exists a constant c = c(n, r), so

that

(3.5) Hn−1
(

{y ∈ Sn−1 : |u(y)| ≥ s}
)

≤ c exp
(

−αIsM (u)
)

for s ≥M . Here α is as in (2.3), M = M(r, u) = maxSn−1(r) |u|, and

IsM (u) =

∫ s

M

dt
(

∫

{|u|=t} |∇u|
n−1 dHn−1

)1/(n−1)
.

Proof. Fix r ∈ (0, 1) and s > M = M(r, u). Write

E = Es := {y ∈ Sn−1 : |u(y)| ≥ s}

and

UM := {x ∈ Bn : M ≤ |u(x)| ≤ s}.

Also, in what follows we write

(3.6) At :=

∫

{|u|=t}
|∇u|n−1 dHn−1.

The fact that At is a Borel function of t is standard, see for instance [2]

p. 117. By the coarea formula, cf. [7], and the n-integrability of |∇u|, At is

an integrable function of t.
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We construct an admissible function ρ for ∆(Bn(r), E;Bn) as follows:

Let I = IsM (u), and set

ρ(x) :=
|∇u(x)|

IA
1/(n−1)
|u(x)|

χUM
(x).

Recall that, by Fuglede’s theorem [3, Theorem 3], u is absolutely contin-

uous on n-almost every path. So, for n-almost every γ ∈ ∆(Bn(r), E;Bn)

parameterized by arc length ℓ(γ), we have, by change of variables

∫

γ
ρds =

∫ ℓ(γ)

0

|∇u(γ(t))|

IA
1/(n−1)
|u(γ(t))|

χUM
(γ(t)) dt

≥ I−1

∫ ℓ(γ)

0

|(u ◦ γ)′(t)|

A
1/(n−1)
|(u◦γ)(t)|

χUM
(γ(t)) dt ≥ I−1

∫ s

M

dt

A
1/(n−1)
t

= 1.

Thus ρ is an admissible function for ∆(Bn(r), E;Bn), by the definition of

n-modulus. By the coarea formula, we have

Mn(∆(Bn(r), E;Bn)) ≤

∫

UM

ρn dx = I−n
∫

UM

|∇u(x)|n

A
n/(n−1)
|u(x)|

dx

= I−n
∫ s

M

∫

{|u|=t}

|∇u(y)|n−1

A
n/(n−1)
t

dHn−1(y) dt

= I−n
∫ s

M

At

A
n/(n−1)
t

dt = I1−n.

By the conformal invariance of n-modulus, taking inversion with respect

to the unit sphere yields

2Mn(∆(Bn(r), E;Bn)) ≥ Mn(∆(Sn−1(r) ∪ Sn−1(1/r), E; Rn)).

By spherical symmetrization and [4, Theorem 4],

2I1−n ≥ Mn(∆(Sn−1(r) ∪ Sn−1(1/r), E; Rn))

≥ ωn−1

(

log
c2

Hn−1(E)1/(n−1)

)1−n

,

where c2 depends only on n and r. See [12] for further details. This implies

(3.5).
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Proof of Theorem 1. We will use the following result of Moser [10, Equa-

tion (6)]: If ω : [0,∞) → [0,∞) is absolutely continuous and satisfies ω(0) =

0, ω′ ≥ 0 almost everywhere, and

∫ ∞

0
(ω′(t))n dt ≤ 1,

then

(3.7)

∫ ∞

0
exp
(

ω(t)n/(n−1) − t
)

dt ≤ C,

where C > 0 depends only on n. By scaling invariance of (2.2), we may

assume that

(3.8)

∫

Bn

|∇u|n dx = 1.

Moreover, we fix r = r0 and M = M0 as in Lemma 3. Then, in particular,

M ≤ 1.

By the Cavalieri principle,

∫

Sn−1

exp
(

α|u(x)|n/(n−1)
)

dHn−1(x)

= ωn−1 +
αn

n− 1

∫ ∞

0
s1/(n−1)Hn−1(Es) exp

(

αsn/(n−1)
)

ds,

where

Es = {y ∈ Sn−1 : |u(y)| ≥ s}.

Then, by Lemma 4, it suffices to bound

(3.9)

∫ ‖u‖∞

0
s1/(n−1) exp

(

α(sn/(n−1) − IsM (u))
)

ds,

where ‖u‖∞ = maxy∈Sn−1 |u(y)|, and IsM (u) = 0 for 0 < s < M . We define

a function ψ : [0,∞) → [0,∞),

ψ(s) =











µs, 0 < s < M

αIsM (u) + µM, M ≤ s ≤ ‖u‖∞

αI
‖u‖∞
M (u) + µM, s > ‖u‖∞,
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where

(3.10) µ = α

(

M
∫

{|u|≤M} |∇u|
n dx

)1/(n−1)

.

Then, by Lemma 3, µM ≤ α, and thus we may consider

(3.11)

∫ ‖u‖∞

0
s1/(n−1) exp

(

αsn/(n−1) − ψ(s)
)

ds

instead of (3.9). We define φ by φ(y) = ψ−1(y) for 0 < y < ‖ψ‖∞, and

φ(y) = ‖u‖∞ for y ≥ ‖ψ‖∞. Then, changing variables y = ψ(s) in (3.11)

yields

(3.12)

∫ ∞

0
exp
(

αφ(y)n/(n−1) − y
)

φ′(y)φ(y)1/(n−1) dy.

Integrating by parts, we then have that (3.12) equals C1(n) + C2(n)T ,

T =

∫ ∞

0
exp
(

(α(n−1)/nφ(y))n/(n−1) − y
)

dy.

Now, since φ is absolutely continuous and increasing, and φ(0) = 0, Theo-

rem 1 follows from Moser’s result (3.7) if we can show that

(3.13)

∫ ∞

0

(

α(n−1)/nφ′(y)
)n

dy ≤ 1.

We have

α(n−1)/nφ′(y) =











α(n−1)/nµ−1, 0 < y < µM

α−1/nA
1/(n−1)
φ(y) , µM < y < ‖ψ‖∞

0, y > ‖ψ‖∞,

where Aφ(y) as in (3.6). Hence,

(3.14) αn−1

∫ ∞

0
φ′(y)n dy = αn−1µ1−nM + α−1

∫ ‖ψ‖∞

µM
A
n/(n−1)
φ(y) dy.

By our choice of µ, the first term equals
∫

{|u|≤M} |∇u|
n dx. Also, by changing

variables φ(y) = s in the right hand integral, and using the coarea formula,
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we have

α−1

∫ ‖ψ‖∞

µM
A
n/(n−1)
φ(y) dy =

∫ ‖ψ‖∞

µM
Aφ(y)φ

′(y) dy(3.15)

=

∫ ‖u‖∞

M
As ds =

∫

{|u|≥M}
|∇u|n dx.

Combining (3.14), (3.15), (3.10) and (3.8) then yields (3.13). The proof is

complete.

§4. Proof of Theorem 2

Fix β > α. For notational convenience, we consider first functions in

Bn(en, 1) instead of Bn. Fix 2 ≤ i ∈ N, and denote ε = εi = i−1. Define

v = vi : B
n(−εen, 2 + ε) → R,

v(x) = − log |x+ εen|.

Then v is n-harmonic in Bn(−εen, 2 + ε) \ {−εen}. We first show that

(4.16)

∫

Bn(en,1)
|∇v|n dx ≤

ωn−1

2
log

2 + ε

ε
.

Clearly,
∫

Bn(en,1)
|∇v|n dx ≤

1

2

∫

A
|∇v|n dx,

where

A = Bn(−εen, 2 + ε) \ B̄n(−εen, ε).

Since

|∇v(x)|n = |x+ εen|
−n,

we have

1

2

∫

A
|∇v|n dx =

1

2

∫

Bn(0,2+ε)\B̄n(0,ε)
|x|−n dx =

ωn−1

2
log

2 + ε

ε
.

Hence (4.16) holds.

To study exponential integrability of v, set

γ = β

(

ωn−1

2
log

2 + ε

ε

)1/(1−n)
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and τ = γ/(n− 1).

By the choice of γ, (4.16), and the Cavalieri principle,

∫

Sn−1(en,1)
exp
(

β (|v|/‖∇v‖n)
n/(n−1)) dHn−1(4.17)

≥ ωn−1 +
nγ

n− 1

∫ ∞

0
Hn−1(Es)s

1/(n−1) exp
(

γsn/(n−1)
)

ds,

where

Es = {x ∈ Sn−1(en, 1) : |v(x)| ≥ s}.

Since

Es = Sn−1(en, 1) ∩ B̄
n(−εen, exp(−s))

∪ Sn−1(en, 1) \B
n(−εen, exp(s)),

we have

(4.18) Hn−1(Es) ≥ C(n)(exp(−s))n−1 = C(n) exp((1 − n)s)

for 0 ≤ s ≤ log(1/(2ε)).

Combining (4.17) and (4.18) yields

1

C(n)

∫

Sn−1(en,1)
exp
(

β(|v|/‖∇v‖n)n/(n−1)
)

dHn−1

≥
nγ

n− 1

∫ log(1/(2ε))

0
s1/(n−1) exp

(

γsn/(n−1) + (1 − n)s
)

ds

= nτ

∫ log(1/(2ε))

0
s1/(n−1) exp

(

(n− 1)(τsn/(n−1) − s)
)

ds

=

∫ log(1/(2ε))

0
(nτs1/(n−1) − (n− 1)) exp

(

(n− 1)(τsn/(n−1) − s)
)

ds

+ (n − 1)

∫ log(1/(2ε))

0
exp
(

(n− 1)(τsn/(n−1) − s)
)

ds

≥ exp

(

(n− 1)

(

τ
(

log
1

2ε

)n/(n−1)
− log

1

2ε

))

− 1.

Since
(

log
2 + ε

ε

)1/(1−n)(

log
1

2ε

)1/(n−1)

≥ 1 − δ(ε),
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where δ(ε) → 0 as ε→ 0, we have

(4.19)

∫

Sn−1(en,1)
exp
(

β(|v|/‖∇v‖n)
n/(n−1)

)

dHn−1 ≥ C(n)ε−T −C(n),

where

T = (β − α)(2/ωn−1)
1/(n−1) − δ′(ε),

and δ′(ε) → 0 when ε→ 0.

To prove Theorem 2, we consider the sequence ui : B̄
n → R,

ui(x) = vi(x+ en) − vi(en),

where vi(en) = − log(1 + εi) ≥ − log 2 for all i. We fix M such that

β′ = β

(

M − log 2

M

)n/(n−1)

> α.

Set also Ei = {y ∈ Sn−1(en, 1) : |vi(y)| ≥M}. Then

β|vi(y) − vi(en)|
n/(n−1) ≥ β′|vi(y)|

n/(n−1)

on Ei for every i. Thus

∫

Sn−1

exp
(

β(|ui|/‖∇ui‖n)
n/(n−1)

)

dHn−1

=

∫

Sn−1(en,1)
exp
(

β(|vi(y) − vi(en)|/‖∇vi‖n)
n/(n−1)

)

dHn−1(y)

≥

∫

Ei

exp
(

β′(|vi(y)|/‖∇vi‖n)
n/(n−1)

)

dHn−1(y)

≥

∫

Sn−1(en,1)
exp
(

β′(|vi(y)|/‖∇vi‖n)
n/(n−1)

)

dHn−1(y)

− ωn−1 exp
(

β′(M/‖∇vi‖n)
n/(n−1)

)

.

Since β′ > α and εi = i−1 in (4.19), the claim now follows from (4.19).

Acknowledgements. We thank the referee for valuable comments.
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