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A NEW VERSION OF a-TIGHT CLOSURE

ADELA VRACIU

Abstract. Hara and Yoshida introduced a notion of a-tight closure in 2003,

and they proved that the test ideals given by this operation correspond to mul-

tiplier ideals. However, their operation is not a true closure. The alternative

operation introduced here is a true closure. Moreover, we define a joint Hilbert-

Kunz multiplicity that can be used to test for membership in this closure. We

study the connections between the Hara-Yoshida operation and the one intro-

duced here, primarily from the point of view of test ideals. We also consider

variants with positive real exponents.

§1. Introduction

In [HY], Hara and Yoshida introduced a notion of a-tight closure, which

generalizes the “classical” tight closure of Hochster and Huneke introduced

in [HH1]. The main motivation for their work is the connection between the

test ideals given by this operation and multiplier ideals, which generalizes

previous results of Hara ([H2]) and Smith ([S2]). The advantage of this

version of test ideal is that it allows them to study multiplier ideals for

pairs, not only the multiplier ideal of a variety.

However, the Hara-Yoshida a-tight closure is not a true closure opera-

tion, since it gets (potentially) larger when iterated. The version introduced

in this paper is a true closure, and it is always contained in the Hara-Yoshida

a-tight closure. We establish several other connections between these oper-

ations. We prove that for a Gorenstein graded algebra of dimension at least

2, the test ideals given by these two operations are the same (Theorem 4.3).

The Hara-Yoshida a-tight closure of an ideal I is denoted I∗a, while the new

version introduced here will be denoted aI∗.

We define a joint Hilbert-Kunz multiplicity associated to two m-primary
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ideals a and I, and we prove that this multiplicity can be used to test for

membership in our version of a-tight closure. This is similar to the way

in which the Hilbert-Samuel multiplicity is used to test for membership in

the integral closure, and the Hilbert-Kunz multiplicity is used to test for

membership in tight closure.

There are versions of both closures, as well as of the joint multiplicity, in

which positive real numbers are allowed as exponents. For fixed ideals I and

a, we study the question of how I∗a
t

and at
I∗ vary with t. This question

is related to the notion of jumping exponents (in characteristic zero), or

F-thresholds (in positive characteristic).

In this paper, R will denote a Noetherian ring of positive characteristic

p > 0 and Krull dimension d > 0, and q = pe will always denote a power of

the characteristic. Most of the time, R will be assumed to be either local

or graded. Ro is the set of elements in R that are not in any minimal prime

of R. If I ⊂ R is an ideal, I [q] denotes the ideal generated by all iq, when

i ∈ I.

§2. Definitions and elementary properties

Definition 2.1. ([HY]) Let a, I be ideals in R, and x ∈ R. We say

that x ∈ I∗a if there exists c ∈ R0 such that caqxq ⊆ I [q] for all q = pe ≫ 0.

Definition 2.2. Let a, I be ideals in R, and x ∈ R. We say that

x ∈ aI∗ if there exists c ∈ R0 such that caqxq ⊆ a
qI [q] for all q = pe ≫ 0.

In the case when a = R, both of the above definitions coincide with

the definition of the usual tight closure of Hochster and Huneke ([HH1]),

which is denoted I∗. Some elementary properties of these operations are

summarized below.

Observation 2.3. (1) For all a and I, we have I∗ ⊆ aI∗ ⊆ I∗a.

(2) If a = (f) is a principal ideal, then I∗a = I∗ : f . In particular,

(I∗(f))∗(f) 6= I∗(f) when (R,m) is local, I is m-primary, and f ∈ m \ I∗.

(3) If a = (f) is a principal ideal, and f is a non-zerodivisor on R, then
aI∗ = I∗.

(4) For all a and I, a(aI∗)∗ = aI∗. In other words, aI∗ is a true closure

operation.
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Proof. (1), (2) and (3) are trivial.

(4) Let x ∈ a(aI∗)∗. Then there exists c ∈ Ro such that caqxq ⊆
a

q(aI∗)[q] for all q = pe. Also, there exists c′ ∈ Ro such that c′aq(aI∗)[q] ⊆
a

qI [q]. Combining these two inclusions, we get cc′aqxq ⊆ a
qI [q].

The notion of test element for tight closure was defined in [HH1], and it

was proved that test elements (for tight closure) exist in very general classes

of rings.

Definition 2.4. An element c ∈ Ro is called a test element for tight

closure if we have cx ∈ I for every ideal I and every x ∈ I∗.

Proposition 2.5. Assume that R has test elements for the usual tight

closure. Then for any ideals a and I, with I of positive height and a∩Ro 6= ∅,
we have aI∗ ⊆ I.

Proof. By the usual determinant trick, cxq
a

q ⊆ a
qI [q] implies cxq ∈

I [q] ⊆ Iq ⊆ (Iq−n+1)∗, where n is the minimal number of generators of

I. The last inclusion is by the tight closure version of the Briançon-Skoda

theorem ([HH1], Theorem 5.4). Let d ∈ Ro be a test element, and f ∈
In−1 ∩ Ro a fixed element. Then we have cdfxq ∈ Iq for all q = pe, which

shows that x ∈ I.

Versions in which positive real numbers occur as exponents can be de-

fined for both operations:

Definition 2.6. Let a, I ⊂ R be ideals, and let t > 0 be a real number.

Let x ∈ R. For any real number r, ⌈r⌉ denotes the smallest integer greater

than or equal to r.

(1) We say that x ∈ I∗a
t

if there exists c ∈ Ro such that cxq
a
⌈tq⌉ ⊆ I [q]

for all q = pe.

(2) We say that x ∈ a
t
I∗ if there exists c ∈ Ro such that cxq

a
⌈tq⌉ ⊆ a

⌈tq⌉I [q]

for all q = pe.

Each of these operations gives rise to a test ideal as follows:

Definition 2.7. Let a ⊆ R be an ideal, and let t > 0 be a real number.

We define

τ(at) :=
⋂

(I : I∗a
t
) Tat :=

⋂

(I : at
I∗),

where each intersection ranges over all the ideals I ⊆ R.
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Part (1) of the next observation was noted in [HT], where it was used

to prove Skoda’s theorem for test ideals. Part (2) is an analogue for the

new a-tight closure.

Observation 2.8. Let a, I ⊂ R be ideals, and t > ν(a) a real number,

where ν(a) denotes the minimal number of generators of a. Then:

(1) I∗a
t
= (I∗a

t−1
) : a.

(2) a
t
I∗ = (a

t−1
(aI)∗) : a.

Proof. (1) The proof of this statement can be found as part of the

proof of Theorem 4.1 in [HT].

(2) Note that we have a
r = a

[q]
a

r−q for all r > ν(a)q. We have

x ∈ at
I∗ ⇔ cxq

a
⌈tq⌉ ⊆ a

⌈tq⌉I [q] ⇔ c(ax)[q]a⌈tq⌉−q ⊆ a
⌈tq⌉−q(aI)[q] and the

conclusion follows since ⌈tq⌉ − q = ⌈(t − 1)q⌉.

We establish two connections between the two versions of a-tight clo-

sure. The first result, Proposition 2.9, shows that for elements of large

enough degree in a graded ring, membership in one of these closures is

equivalent to membership in the other. The second result, Proposition 2.12

shows that, under certain assumptions, every element in the Hara-Yoshida

a-tight closure must satisfy a stronger condition, which bridges the gap

between the Hara-Yoshida definition and the one introduced in this paper.

We establish the following notation, which will be in effect throughout

this paper when graded rings are considered.

Notation. If R is a finitely generated graded algebra over a field,

R =
⊕

n≥0 Rn, we will denote R+ :=
⊕

n>0 Rn the unique maximal homo-

geneous ideal of R. We will let y1, . . . , ys be algebra generators for R, and

let β1, . . . , βs be their degrees. Set β = max(βi), β′ = min(βi).

We say that R is standard graded if βi = 1 for all i.

Proposition 2.9. Let R be a finitely generated graded algebra over a

field and let a ⊂ R be a homogeneous R+-primary ideal, so that Rk
+
⊆ a ⊆

Rl
+

for some integers l ≤ k. Let I = (f1, . . . , fn) be a homogeneous ideal,

and x ∈ RN with N ≥ βk − β′l + max(deg(fi)). Then x ∈ I∗a ⇔ x ∈ aI∗.

Proof. Assume that x ∈ I∗a and deg(x) ≥ βk − β′l + max(deg(fi)).

For each homogeneous h ∈ a
q, we have deg(h) ≥ β′lq. We can write cxqh =
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∑n
i=1 aif

q
i with c ∈ Ro, ai ∈ R homogeneous elements, so that deg(ai) =

deg(c)+ q deg(x)+deg(h)− q deg(fi) ≥ βkq for each i. Thus, ai ∈ R≥βkq ⊆

Rkq
+ ⊆ a

q (the first inclusion follows because any element in R≥βkq can be

written as a linear combination of monomials yi1
1 · · · yis

s with i1β1 + · · · +

isβs ≥ βkq, which implies that i1 + · · · + is ≥ kq).

Observation 2.10. If R is standard graded, so β = β′, a = Rr
+
, and

all the generators of I have the same degree, then we have aI∗ = I∗a∩R≥N ,

where N denotes the common degree of the generators of I.

Proof. Let x ∈ aI∗, so there exists c ∈ Ro (which can be assumed

homogeneous) such that cxq
a

q ⊆ a
qI [q]. Taking degrees of both sides yields

deg(c) + q deg(x) + qr ≥ qr + qN , so that deg(x) ≥ N . This shows that
aI∗ ⊆ I∗a ∩ R≥N . The other inclusion is contained in Proposition 2.9.

This observation might suggest that aI∗ = I∗a ∩ I for m-primary ideals

I. This is in fact not true (however, aI∗ ⊆ I∗a ∩ I is always true), as seen

in the following example.

Example 2.11. Let R = k[x, y], I = (x2, y4), a = (x, y)3. Then we

have I∗a = I + (xy2, y3) = I : (x, y)2, I∗a ∩ I = I + (xy2), and aI∗ =

I + (xy3) = I : (x, y).

Proof. If i + j ≥ 3q, we have i ≥ q or j ≥ 2q. In either case we have

xiyjxqy2q ∈ (x2q, y4q), and thus xy2 ∈ I∗a. Similarly, if i + j ≥ 3q we have

i ≥ 2q or j ≥ q; in either case, xiyjy3q ∈ (x2q, y4q), and thus y3 ∈ I∗a. Also

note (xy2)2 ∈ I2, so xy2 ∈ I. However, y3 /∈ I (one can see this from the

Newton polygon, for instance).

To see that xy2 /∈ aI∗, we prove the stronger fact that xy2 /∈ (x,y)n
I∗ for

any n ≥ 3. This will suffice to prove the last statement, since all the ideals

under consideration are monomial. Assume the contrary, so that there exists

c ∈ Ro such that cxiyjxqy2q ∈ (x, y)nqI [q] for all i, j with i + j = nq, for

some n.

Choose i = ⌈ q
2⌉, j = (n−1)q+⌊ q

2⌋. We obtain cx⌈3q/2⌉y(n−3)q+⌊q/2⌋y4q =

ax2q + by4q with a, b ∈ (x, y)nq. This is clearly impossible since the degree

of x⌈3q/2⌉y(n−3)q+⌊q/2⌋ is (n − 1)q, and the degree of c is a constant.

Proposition 2.12. Let (R,m) be an excellent normal domain such

that its completion is a domain. Let I, a ⊂ R be ideals, and assume that

a is not a principal ideal. Then there exists a Q0 = pe0 and a c ∈ Ro such

that for all x ∈ I∗a we have cxq
a

q ⊆ m
q/Q0I [q] for all q ≫ 0.
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Note that if a is m-primary, then we can replace m
q/Q0 by a

q/Q0 by

choosing a possibly larger Q0.

Proof. First note that there is no loss of generality in assuming that I

is ∗-independent, i.e. I = (f1, . . . , fn) with fi /∈ (f1, . . . , f̂i, . . . , fn)∗ for all

i. That is because one can find a ∗-independent I0 ⊆ I with I∗0 = I∗ (by

omitting generators of I that are redundant up to tight closure), and it is

easy to see that I∗0 = I∗ implies I∗a0 = I∗a.

Let a = (a1, . . . , as), with s = ν(a) ≥ 2, and I = (f1, . . . , fn). The

∗-independence assumption implies that there exists q1 such that

(f q
1 , . . . , f̂i

q
, . . . , f q

n) : f q
i ⊆ m

[q/q1]

for all q and all i (cf. Proposition 2.4 in [Ab]).

Since R is normal, we have al /∈ (ak) for any 1 ≤ k 6= l ≤ s, and we can

choose q2 ≫ 0 such that al /∈ (ak,mq2/q1). Also choose q2 ≥ s. In particular,

al /∈ (ak,mq2/q1)∗ and thus we can choose q0 such that (aq
k,m

[qq2/q1]) : aq
l ⊆

m
q/q0 (using Proposition 2.4 in [Ab] again).

We have cxqq2a
qq2 ⊆ I [qq2] for a fixed c ∈ Ro and all q. Fix an element

ai1
1 · · · ais

s ∈ a
qq2 and write 2cxqq2ai1

1 · · · ais
s = b1f

qq2
1 +· · ·+bnf qq2

n . The choice

of q2 guarantees that ik ≥ q for some k. Choose an index l 6= k and consider

the element aj1
1 · · · ajs

s ∈ a
qq2 with jk = ik − q, jl = il + q, and jτ = iτ

for all other τ = 1, . . . , s. We have cxqq2aj1
1 · · · ajs

s = b′1f
qq2
1 + · · · + b′nf qq2

n .

Multiplying the first equation by aq
l and the second equation by aq

k yields

(bia
q
l − b′ia

q
k) ∈ (f qq2

1 , . . . , ˆf qq2

i , . . . , f qq2
n ) : f qq2

i ⊆ m
[qq2/q1], and therefore

bi ∈ (aq
k,m

[qq2/q1]) : aq
l ⊆ m

q/q0. This holds for all i = 1, . . . , n, and for

any choice of the multi-index (i1, . . . , is). We get the desired conclusion by

choosing Q0 = q2q0.

§3. Joint Hilbert-Kunz multiplicities

The idea of associating a multiplicity to a pair or more ideals (the

so-called mixed multiplicity) first appeared in [Bt], and the notion was ex-

tensively studied by many other authors, including B. Tessier, D. Rees and

I. Swanson. The idea of a multiplicity coming from length functions in-

volving both ordinary and Frobenius powers can be found in work of Hanes

([Hn]). The joint Hilbert-Kunz multiplicity introduced here bares a resem-

blance to each of these previous multiplicities, but is different from them.
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Assume that (R,m) is local with Krull dimension d ≥ 1, let I, a ⊂ R be

m-primary ideals, M a finitely generated R-module, and t > 0 a fixed real

number.

We study the function

ℓM (q) := λ

(

M

a⌈qt⌉I [q]M

)

,

where q = pe. Note that a
⌈qt⌉ is an ordinary power where the exponent is

obtained by taking the least integer which is greater than or equal to tq,

while I [q] is a Frobenius power. We will write ℓ(q) for ℓR(q).

Theorem 3.1. Let R, I, a, M , t be as above, and let d be the Krull

dimension of R. Then there is a c > 0 such that

ℓM (q) = cqd + O(qd−1).

If M = R, we call c the joint Hilbert-Kunz multiplicity of the pair

(at, I) and we denote it eHK(at, I). Note that the usual Hilbert-Samuel

and Hilbert-Kunz multiplicities can be recovered as special cases of joint

Hilbert-Kunz multiplicity: eHK(a, R) = e(a) and eHK(R, I) = eHK(I).

The proof of the Theorem follows essentially the same steps as in Mon-

sky’s paper ([Mo]). We will follow closely the outline of his paper.

Lemma 3.2. Assume that there is an h ∈ Ro such that hM = 0. Then

there exists a > 0 such that ℓM (q) ≤ aqd−1.

Proof. Let n be the number of generators of I. Then we have I [q] ⊇ Inq.

Also, ⌈t⌉q ≥ ⌈tq⌉, so a
⌈tq⌉ ⊇ a

⌈t⌉q, and it follows that

ℓM (q) ≤ λ

(

M

(a⌈t⌉In)qM

)

,

which is a Hilbert-Samuel function over the ring R/h, a ring of Krull di-

mension at most d− 1, and thus it is bounded by aqd−1 for some a > 0.

Lemma 3.3. Let M , N be finitely generated R-modules such that Mpi
∼=

Npi for every minimal prime pi of R. Then |ℓM (q) − ℓN (q)| ≤ O(qd−1).
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Proof. Let S = R \
⋃

pi. We have S−1M ∼= S−1N . Since

S−1 HomR(M,N) ∼= HomS−1R(S−1M,S−1N), we have a homomorphism

φ : M → N such that S−1φ is bijective. Unlocalizing, we get an element

h ∈ S such that h annihilates the cokernel C of φ. Consider the exact

sequence
M

a⌈tq⌉I [q]M
−→

N

a⌈tq⌉I [q]N
−→

C

a⌈tq⌉I [q]C
−→ 0

Lemma 3.2 gives

ℓN (q) − ℓM (q) ≤ ℓC(q) ≤ aqd−1

for some a > 0. Now repeat the argument with the roles of M , N reversed

in order to get

ℓM (q) − ℓN (q) ≤ bqd−1

for some b > 0.

Definition 3.4. Let M(e) be M viewed as an R-module via the Frobe-

nius map F e : R → R. Note that (e) is an exact functor, and, if we assume

that the residue field of R is perfect, we have

ℓM(e)
(q) = λ

(

M

(a⌈tq⌉)[pe]I [qpe]M

)

.

The following is the one essential ingredient we need in addition to

Monsky’s ideas:

Observation 3.5. Let R, a, I, t be as above, e > 0 a fixed integer. By

prime avoidance, we can choose generators f1, . . . , fn of a that are in Ro.

Let f := f1 · · · fn. Assume that e ≫ 0 so that n < pe. Then:

a. a
⌈tqpe⌉ ⊆ (a⌈tq⌉)[p

e] : fpe
.

b. Assume that the residue field of R is perfect. Then |ℓM(e)
(q) −

ℓM (peq)| ≤ O(qd−1).

Proof. a. The generators of a
⌈tqpe⌉ are of the form F = fa1pe+i1

1 · · ·
fanpe+in

n , where 0 ≤ ik ≤ pe − 1 for all k, and

(a1 + · · · + an)pe + i1 + · · · + in = ⌈tqpe⌉ ≥ (⌈tq⌉ − 1)pe,

with all ak, ik ∈ Z. It follows that a1 + · · ·+an ≥ ⌈tq⌉− 1−n+n/pe. Since

ak ∈ Z for all k, it must be that a1+· · ·+an ≥ ⌈tq⌉−n and thus (a1+1)+· · ·+
(an + 1) ≥ ⌈tq⌉, and so fpe−i1

1 · · · fpe−in
n F = (fa1+1

1 · · · fan+1
n )p

e
∈ (a⌈tq⌉)[p

e].
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b. We have

ℓM(e)
(q) − ℓM (peq) = λ

(

a
⌈tqpe⌉I [qpe]M

(a⌈tq⌉)[pe]I [qpe]M

)

≤ λ

(

(a⌈tq⌉)[p
e]I [qpe]M : fpe

(a⌈tq⌉)[pe]I [qpe]M

)

= λ

(

M

(a⌈tq⌉)[pe]I [qpe]M + (fpe)M

)

.

The inequality above follows from part a. The second equality follows

from the general fact that for any m-primary ideal J ⊂ R, and any element

g ∈ R, we have

λ

(

JM : g

JM

)

= λ

(

M

(J, g)M

)

applied to J = (a⌈tq⌉)[p
e]I [qpe] and g = fpe

. (Proof of the general fact:

consider the short exact sequence

0 −→
M

JM : g
−→

M

JM
−→

M

JM + (g)M
−→ 0

where the first map is multiplication by g.) Lemma 3.2 now gives the desired

conclusion, since

λ

(

M

(a⌈tq⌉)[pe]I [qpe]M + (fpe)M

)

is a joint Hilbert-Kunz function over the d−1 dimensional ring R/(fpe
).

Lemma 3.6. Assume that the residue field of R is perfect. Let

0 −→ M ′ −→ M −→ M ′′ −→ 0

be a short exact sequence of finitely generated R-modules. Then we have

ℓM (q) = ℓM ′(q) + ℓM ′′(q) + O(qd−1).

Proof. Case 1: Assume that R is reduced. For each minimal prime pi

of R, Rpi is a field and it follows that Mpi
∼= (M ′ ⊕ M ′′)pi . The conclusion

follows from Lemma 3.3.

Case 2: Let n denote the nilradical of R, and choose e such that

n
[pe] = 0. Note that M(e) is annihilated by n for every module M . We get

a short exact sequence of R/n modules:

0 −→ M ′
(e) −→ M(e) −→ M ′′

(e) −→ 0,

and now we can apply the result from case 1 in conjunction with Obs. 3.5.
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Lemma 3.7. Assume that R is a domain with perfect residue field.

Then there exists c > 0 such that

ℓ(q) = cqd + O(qd−1).

Proof. It is known that the rank of R(1) as an R-module is pd.

Apply Lemma 3.3 to the R-modules R(1) and Rpd
. We get

∣

∣

∣

∣

λ

(

R

(a⌈tq⌉)[p]I [pq]

)

− pdℓ(q)

∣

∣

∣

∣

= |ℓR(1)
(q) − pdℓ(q)| ≤ a′qd−1

for some a′ > 0, and by Obs. 3.5 it follows that

|ℓ(pq) − pdℓR(q)| ≤ aqd−1

for some a. Thus, we have
∣

∣

∣

∣

ℓ(pq)

(pq)d
−

ℓ(q)

qd

∣

∣

∣

∣

≤
a

pdq
.

It follows that
∣

∣

∣

∣

ℓ(q′q)

(q′q)d
−

ℓ(q)

qd

∣

∣

∣

∣

≤
a

pdq

1 − 1
q′

1 − 1
p

,

thus {ℓ(q)/qd} is a Cauchy sequence. Let c := limq→∞ ℓ(q)/qd. If we keep

q fixed and let q′ → ∞, we get

|ℓ(q)/qd − c| ≤
α′

q

for some α′ and all q, and thus |ℓ(q) − cqd| ≤ α′qd−1, or in other words

ℓ(q) = cqd + O(qd−1).

Now we are ready to prove the general case of Theorem 3.1.

Proof. Since every finitely generated module M has a filtration (0) =

M0 ⊂ M1 ⊂ · · · ⊂ Mn = M with quotients Mi+1/Mi
∼= R/Pi, with Pi prime

ideals, the general case follows from Lemma 3.7 by repeated application of

Lemma 3.6.

In order to remove the assumption that the residue field is perfect,

note that length is preserved by faithfully flat base change. Thus, we can

pass to completion, so that R is a quotient of a formal power series ring

K[[X1, . . . ,Xn]], and we can replace R by R⊗K F , where F is an algebraic

closure of K.
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Lemma 3.8. Let a ⊂ R be an m-primary ideal and t > 0 a real number.

Then

lim
q→∞

λ

(

R

a⌈tq⌉

)

/qd =
tde(a)

d!
.

Proof. First note that there exists a sequence of rational numbers

{kn/qn} with denominators of the form qn = pen such that kn/qn ≤ t <

(kn + 1)/qn, and qn < qn+1, so that t = limn→∞ qn/kn. For instance, take

qn = pn, kn = ⌊tpn⌋.

For n fixed and q = pe ≫ 0, we have kn
q
qn

≤ ⌈tq⌉ ≤ (kn + 1) q
qn

, and

λ

(

R

a(kn+1)q/qn

)

/qd = e(a)
(kn + 1)d(q/qn)d

d!
+ O(qd−1), and

λ

(

R

aknq/qn

)

/qd = e(a)
(kn)d(q/qn)d

d!
+ O(qd−1),

so for all n we have

e(a)
(kn)d

d!qd
n

≤ lim
q→∞

λ

(

R

a⌈tq⌉

)

/qd ≤ e(a)
(kn + 1)d

d!qd
n

and the desired result follows by taking the limit when n → ∞.

Theorem 3.9. If a, I are fixed m-primary ideals, then eHK(at, I) is a

continuous function of t.

Proof. Let t < t′ be positive real numbers. Then

eHK(at′ , I) − eHK(at, I) = lim
q→∞

λ
(

a
⌈tq⌉I [q]/a⌈t

′q⌉I [q]
)

qd
.

Let I = (f1, . . . , fn). Then we have a composition series

a
⌈t′q⌉I [q] ⊆ a

⌈t′q⌉I [q] + f q
1a

⌈tq⌉ ⊆ · · · ⊆ a
⌈t′q⌉I [q] + (f q

1 , . . . , f q
i )a⌈tq⌉

⊆ · · · ⊆ a
⌈tq⌉I [q].

For i = 1, . . . , n, let Ki = a
⌈t′q⌉I [q] + (f q

1 , . . . , f q
i−1)a

⌈tq⌉. Then we have

λ

(

a
⌈tq⌉I [q]

a⌈t
′q⌉I [q]

)

=
n

∑

i=1

λ

(

Ki + a
⌈tq⌉f q

i

Ki

)

.
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Note that we have a surjective map given by multiplication by f q
i :

a
⌈tq⌉

(Ki : f q
i ) ∩ a⌈tq⌉

→
a
⌈tq⌉f q

i

Ki ∩ a⌈tq⌉f q
i

∼=
Ki + a

⌈tq⌉f q
i

Ki
.

It is clear that a
⌈t′q⌉ ⊆ Ki : f q

i , so that the length of this term is bounded

above by the length of a
⌈tq⌉/a⌈t

′q⌉. Thus,

eHK(at′ , I) − eHK(at, I) ≤ n lim
q→0

λ(R/a⌈t
′q⌉) − λ(R/a⌈tq⌉)

qd

= ne(a)(t′d − td)

where the last equality is from Lemma 3.8.

We now show how the joint Hilbert-Kunz multiplicity is related to tight

closure, integral closure, and a-tight closure. The result pertaining to a-tight

closure, Proposition 3.11 is an analog of testing tight closure via Hilbert-

Kunz multiplicities (cf. [HH1], Theorem 8.17), and testing for integral clo-

sure via Hilbert-Samuel multiplicities (cf. [NR]).

Proposition 3.10. If I ⊆ J ⊆ I∗ and a ⊆ b ⊆ a, then eHK(at, I) =

eHK(bt, J) for all t > 0.

Proof. The hypothesis implies that there exists h ∈ Ro, such that

hb
⌈tq⌉J [q] ⊆ a

⌈tq⌉I [q] (if b = (b1, . . . , bn), for each bi there exists hi ∈ Ro such

that hib
n
i ∈ a

n for all n; b
⌈tq⌉ is generated by bi1

1 · · · bin
n with i1 + · · · + in =

⌈tq⌉, and choosing h′ = h1 · · ·hn we have h′bi1
1 · · · bin

n ∈ a
i1 · · · ain = a

⌈tq⌉.)

It follows that

λ

(

b
⌈tq⌉J [q]

a⌈tq⌉I [q]

)

≤ λ

(

a
⌈tq⌉I [q] : h

a⌈tq⌉I [q]

)

= λ

(

R

(a⌈tq⌉I [q], h)

)

,

which is a joint Hilbert-Kunz function over R/h, and thus bounded by

O(qd−1).

Proposition 3.11. Assume that R is analytically unramified and for-

mally equidimensional, and has test elements for the usual tight closure.

Let a, I, J be m-primary ideals in R and let t > 0. Assume I ⊆ J . Then

J ⊆ at
I∗ if and only if eHK(at, I) = eHK(at, J).
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Proof. Assume that J ⊆ at
I∗, so that ca⌈tq⌉J [q] ⊆ a

⌈tq⌉I [q] for some

c ∈ Ro. Then

λ

(

a
⌈tq⌉J [q]

a⌈tq⌉I [q]

)

≤ λ

(

a
⌈tq⌉I [q] : c

a⌈tq⌉I [q]

)

= λ

(

R

(c, a⌈tq⌉I [q])

)

,

which is a joint Hilbert-Kunz function over the d− 1 dimensional ring R/c,

and therefore it is bounded by O(qd−1). This shows that eHK(at, I) =

eHK(at, J).

Conversely, assume that eHK(at, I) = eHK(at, J). Fix an element x ∈
J . We want to show x ∈ at

I∗.

Fix q0 = pe0, and fix generators g1, . . . , gm for a
⌈tq0⌉. Let f denote

the product of a minimal set of generators for a, chosen in Ro. Note that

⌈tq0q⌉ ≤ ⌈tq0⌉q, and thus we have a
⌈tq0⌉q ⊆ a

⌈tq0q⌉ ⊆ (a⌈tq0⌉)[q] : f q (the last

inclusion is Observation 3.5 (a.)).

For each gi, we have

λ

(

(a⌈tq0q⌉I [q0q], a⌈tq0q⌉xq0q)

a⌈tq0q⌉I [q0q]

)

≥ λ

(

(a⌈tq0q⌉I [q0q], gq
i x

q0q)

a⌈tq0q⌉I [q0q]

)

= λ

(

R

a⌈tq0q⌉I [q0q] : gq
i x

q0q

)

≥ λ

(

R

a⌈tq0⌉[q]I [q0q] : (fgixq0)q

)

= λ

(

(a⌈tq0⌉I [q0], fgix
q0)[q]

(a⌈tq0⌉I [q0])[q]

)

.

On the other hand, our assumption implies that

λ

(

(a⌈tq0q⌉I [q0q], a⌈tq0q⌉xq0q)

a⌈tq0q⌉I [q0q]

)

≤ λ

(

a
⌈tqq0⌉J [qq0]

a⌈tqq0⌉I [qq0]

)

is bounded above by O(qd−1). Since q0 is fixed, Theorem 8.17 in [HH1]

implies fgix
q0 ⊆ (a⌈tq0⌉I [q0])∗.

Since gi ranges through the generators of a
⌈tq0⌉, we have fa

⌈tq0⌉xq0 ⊆
(a⌈tq0⌉I [q0])∗. But this is true for all q0; if we let c ∈ Ro be a test element

for R, we get

cfa
⌈tq⌉xq ⊆ a

⌈tq⌉I [q]

for all q ≫ 0. Since f ∈ Ro, this gives the desired conclusion.

We end this section with some formulas relating the joint Hilbert-Kunz

multiplicity to the usual Hilbert-Kunz multiplicity and Hilbert-Samuel mul-

tiplicity.
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Theorem 3.12. Assume that dim(R) ≥ 1. Let a, I ⊂ R be m-primary

ideals.

a. For all t > 0 we have

(1) eHK(at, I) ≤ eHK(I) +
ℓe(a)td

d!
,

where ℓ denotes the ∗-spread of I, i.e. the minimal number of generators of

an ideal J minimal with respect to the condition J∗ ⊇ I.

b. If we assume that R is excellent and analytically irreducible then

there exists a t0 > 0 such that the inequality in part a. is equality for all

0 ≤ t ≤ t0.

c.

lim
t→∞

eHK(at, I)

td
=

e(a)

d!
.

In particular, if ℓ > 1 then the inequality in part a. is strict for t ≫ 0.

Proof. First note that we can replace I by any ideal J with J ⊆ I ⊆ J∗

without affecting the result. Thus, we may assume that I = (f1, . . . , fℓ),

where f1, . . . , fℓ are ∗-independent, i.e. none of them is in the tight closure

of the ideal generated by the others. We can also choose all fi ∈ Ro by

prime avoidance.

We have a filtration

a
⌈tq⌉I [q] ⊆ (a⌈tq⌉I [q], f q

1 ) ⊆ · · · ⊆ (a⌈tq⌉I [q], f q
1 , . . . , f q

ℓ−1) ⊆ I [q],

and therefore we have

(2) λ

(

I [q]

a⌈tq⌉I [q]

)

=

ℓ
∑

i=1

λ

(

R

(a⌈tq⌉I [q], f q
1 , . . . , f q

i−1) : f q
i

)

.

Since the denominator in each term in the right hand sum contains a
⌈tq⌉,

the inequality follows by Lemma 3.8.

The second statement follows from Theorem 3.5 (a) in [Vr].

In order to see the last statement, it is enough to restrict to integer

exponents t. Note that the denominators appearing in the terms on the

right hand side of Equation (2) contain (atq , f q
1 , . . . , f q

i−1), and thus

λ

(

I [q]

atqI [q]

)

≤
ℓ

∑

i=1

λ

(

R

(atq , f q
1 , . . . , f q

i−1)

)



A NEW VERSION OF a-TIGHT CLOSURE 15

Consider i > 1. We have

lim
q→∞

λ

(

R

(atq, f q
1 , . . . , f q

i−1)

)

/qd ≤ eHK((at, f1, . . . , fi−1))

≤ λ

(

R

(at, f1, . . . , fi−1)

)

eHK(m)

(the last inequality follows by taking a filtration of R/(at, f1, . . . , fi−1) with

quotients equal to R/m; also see Lemma 4.2 in [WY]). As a function of t,

λ
(

R/(at, f1, . . . , fi−1)
)

is a Hilbert-Samuel function over the ring R/(f1, . . . ,

fi−1), which has Krull dimension less than d, and therefore dividing by td

and taking the limit when t → ∞ yields a limit equal to zero for each of the

terms corresponding to i > 1 in Equation (2).

Thus we have

lim sup
t→∞

eHK(at, I) − eHK(I)

td
= lim sup

t→∞
lim

q→∞
λ

(

R

atqI [q] : f q
1

)

/tdqd

≤ lim
t,q→∞

λ

(

R

atq

)

/tdqd =
e(a)

d!
.

On the other hand, we have a
tqI [q] ⊂ a

tq, and thus eHK(at, I) ≥ tde(a)/d!.

This proves the equality in part c.

The following provides a concrete example where part b. in Theo-

rem 3.12 works with t0 = 1.

Example 3.13. Assume (R,m) is a Cohen-Macaulay ring, and let a =

I = (x1, . . . , xd) be generated by a regular sequence. If 0 ≤ t ≤ 1, then

eHK(at, I) =
tde(a)

(d − 1)!
+ e(a).

More generally, assume that (R,m) is excellent equidimensional reduced

local ring, and x1, . . . , xd is a system of parameters. If a = I = (x1, . . . , xd),

and 0 ≤ t ≤ 1, then

eHK(at, I) =
tde(a)

(d − 1)!
+ e(a). 1

1We are grateful to the referee for pointing out this more general statement.
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Proof. For this choice of a and I, each term in the sum on the right

hand side of Equation (2) for 0 ≤ t ≤ 1 is equal to λ(R/a⌈tq⌉), and therefore

λ

(

R

a⌈tq⌉I [q]

)

= dλ

(

R

a⌈tq⌉

)

+ λ

(

R

I [q]

)

.

To prove the general case, note that the ith term in the sum on the right

hand side of Equation (2) is

bi,q := (a⌈tq⌉, xq
1, . . . , x

q
i1

) : xq
i ⊆ a

⌈tq⌉ + (xq
1, . . . , x

q
i−1) : xq

i

⊆ a
⌈tq⌉ + (xq

1, . . . , x
q
i−1)

∗ ⊆ a
⌈tq⌉ + (aq)∗

by the colon capturing property of systems of parameters.

Let c be a test element for R. By the Artin-Rees Lemma, there exists

an s > 0 such that c(aq)∗ ⊆ (c) ∩ a
q ⊆ (c)aq−s, and therefore (aq)∗ ⊆ a

q−s.

We have a
⌈tq⌉ ⊆ bi,q ⊆ a

⌈tq⌉ + a
q−s.

If t < 1, then for q ≫ 0 we have a
q−s ⊆ a

⌈tq⌉, and we get bi,q = a
⌈tq⌉ for

all i. If t = 1, then

λ(R/aq)

qd
≤

λ(R/bi,q)

qd
≤

λ(R/aq−s)

qd
.

The limit of each of the outer terms in the inequality above when q → ∞ is

equal to e(a)/d!, and the result follows.

§4. Test ideals

The main result of this section, Theorem 4.3 shows that the test ideal

for the new version of a-tight closure coincides with the test ideal for the

Hara-Yoshida a-tight closure for R+-primary ideals a in a graded Gorenstein

ring.

For the first lemma below, we recall that a local ring R is approximately

Gorenstein if there exists a sequence of m-primary irreducible ideals {It},
such that for every k there exists t with m

k ⊆ It. This is a relatively

weak condition; for instance normal rings are approximately Gorenstein.

Approximately Gorenstein rings were studied in [Ho].

Lemma 4.1. Let (R,m) be a local approximately Gorenstein ring of

characteristic p > 0. Let {It} be a sequence of m-primary irreducible ideals,

such that for every k there exists t with m
k ⊆ It.

Then τ(a) =
⋂

t(It : I∗at ) and Ta =
⋂

t(It : aI∗t ).
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Proof. We’ll prove the second statement (the proof for the first one

is slightly easier). The inclusion Ta ⊆
⋂

(It : aI∗t ) is clear by definition.

Consider c ∈
⋂

(It : aI∗t ). First we show that c(aI∗) ⊆ I, where I is an

arbitrary m-primary ideal. The assumption guarantees that there exists t

such that It ⊆ I, and since It is irreducible, we can write I = It : K for some

ideal K. Let x ∈ aI∗. Then there exists d ∈ Ro such that dxq
a

q ⊆ a
qI [q].

Thus, dxqK [q]
a

q ⊆ a
q(KI)[q] ⊆ a

qI
[q]
t , which shows that xK ⊆ a(It)

∗. We

have cxK ⊆ It by the choice of c, and thus cx ∈ It : K = I.

Now consider I an arbitrary ideal. We can write I =
⋂

n(I + m
n), an

intersection of m-primary ideals. Let x ∈ aI∗. We need to show that cx ∈ I.

Note that x ∈ a(I + m
n)∗ for all n, and therefore cx ∈ I + m

n for all n since

we have already proved this for m-primary ideals. Intersecting over all n

yields the desired conclusion.

Throughout the rest of this section, R will be assumed to be a Goren-

stein positively graded algebra over a field of Krull dimension d and a-

invariant a. We let x1, . . . , xd be a system of parameters with deg(xi) = α

for all i, and It := (xt
1, . . . , x

t
d). Let u denote a homogeneous socle generator

for (x1, . . . , xd), i.e. u ∈ (x1, . . . , xd) : R+ \ (x1, . . . , xd), and let δ := deg(u).

Note that δ = αd + a, since the a-invariant may be defined as the degree of
[

u

x1 · · · xd

]

∈ Hd
R+

(R).

Note that I
[q]
t = Itq, and its socle is generated by (x1 · · · xd)

tq−1u. We will

use δt to denote the degree of the socle generator for It. More precisely, δt =

deg((x1 · · · xd)
t−1u) = (t− 1)αd+ δ. Note that we have δtq = qδt − (q− 1)a.

Fix the notation established before Proposition 2.9.

Lemma 4.2. With notations as above, we have

It : RN
+

⊆ It + R≥δt−(N−1)β .

Moreover, if R is standard graded, then we have equality.

Proof. We prove the claim by induction on N . For the case N = 1,

It : R+ = (It, (x1 · · · xd)
t−1u) ⊆ It + R≥δt by the definition of δt.

To see that the other inclusion holds in the standard graded case, note

that every homogeneous element not in It must have a multiple in the socle

of It, and thus must have degree ≤ δt.
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Assume the claim is true for N − 1. Note that It : RN
+

= (It : RN−1
+

) :

R+ . By the induction hypothesis, we can write It : RN−1
+

= (It, v1, . . . , vr)

with deg(vi) ≥ δt−(N−2)β for all i. If v ∈ (It : RN
+

) \ It : R+ , then we have

vyj ≡ a1v1 + · · · + arvr (mod It) for some 1 ≤ j ≤ s, where ai ∈ R can be

assumed homogeneous and not all zero. Thus, deg(v) + deg(yj) ≥ deg(vi)

for some i, and the desired inclusion follows.

For the other inclusion in the standard graded case: if x ∈ R≥δt−(N−1),

then for all y ∈ R+ we have xy ∈ R≥δt−(N−2) ⊆ It : (R+)N−1 by the

induction hypothesis.

Theorem 4.3. Let R be a Gorenstein finitely generated graded algebra

over a field of positive characteristic. Assume that the Krull dimension d

of R is at least 2. Let a be a homogeneous ideal which is primary to R+ .

Then τ(a) = Ta.

Note 4.4. The statement of the theorem is not true if the Krull di-

mension is d = 1, since then we can take a = (f) to be a principal ideal, and

we have aI∗ = I∗ and I∗a = I∗ : f for every ideal I. It follows that Ta = τ ,

and τ(a) =
⋂

I(I : (I∗ : f)) =
⋂

I(I : (I : τf)) =
⋂

I(I, τf) = τf , where the

intersection is taken over all parameter ideals I (see Lemma 4.1).

Proof. Fix c ∈ Ro a homogeneous element such that for all ideals I ⊂ R

we have x ∈ I∗a ⇒ cxq
a

q ⊆ I [q]. Such a c is called a test element for a-tight

closure, and the existence of such an element is guaranteed by Theorem 1.7

in [HY]. Fix k ≥ l integers such that Rk
+
⊆ a ⊆ Rl

+
.

Due to Lemma 4.1, it is enough to prove that I∗at = aI∗t for all t ≫ 0.

Since both I∗at and aI∗t are homogeneous ideals, Proposition 2.9 implies that

it is enough to show that x ∈ I∗at ⇒ deg(x) ≥ kβ − lβ′ + tα when t ≫ 0.

Since Rk
+
⊆ a, we have x ∈ I∗at ⇒ cRkq

+
xq ⊆ I

[q]
t . Thus, it follows that

cxq ∈ Itq : Rkq
+

.

Applying Lemma 4.2, we see that x ∈ I∗at implies that for all q = pe we

have either cxq ∈ I
[q]
t , or else deg(c)+ q deg(x) ≥ d(tq− 1)α+ δ− (kq− 1)β.

If cxq ∈ I
[q]
t for all q = pe ≫ 0, then x ∈ I∗t ⊆ a(It)

∗. Otherwise, it follows

that deg(x) ≥ dtα − kβ. Since d > 1, when we choose t ≫ 0 we have

dtα − kβ ≥ tα + kβ − lβ′, and thus Proposition 2.9 can be applied to show

that x ∈ aI∗t .

We end this section with explicit an computation of test ideals for a =

Rr
+
, when R is a Gorenstein graded ring. We note that our result is similar

to that in Proposition 5.8 in [HY], but under different assumptions.
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Proposition 4.5. Let R be a standard graded Gorenstein algebra over

a field. With notations as above, we have

I
∗Rr

+
t = I∗t + It : Ra+1+⌊r⌋

+

for all r ≥ 0. Thus, τ(Rr
+
) = τ(R) ∩ Ra+1+⌊r⌋

+
.

In particular, if R is F-rational, we have τ(R) = R, and thus τ(Rr
+
) =

Ra+1+⌊r⌋
+

. This also follows from Proposition 5.8 in [HY], where R is not nec-

essarily graded (instead, F-rationality of the Rees ring R[R+t] is required).

Also, the results of [HS] and [H1] imply that when R is obtained from

a characteristic zero ring by reduction to positive characteristic p ≫ 0, we

have τ(R) = Ra+1
+

, and thus τ(Rr
+
) = Ra+1+⌊r⌋

+
also holds.

Proof. Let x ∈ I
∗Rr

+
t be a homogeneous element, so that cxqR⌈rq⌉

+
⊆

I
[q]
t = Itq for some homogeneous c ∈ Ro. Then cxq ∈ Itq : R⌈rq⌉

+
= Itq +

R≥δtq−⌈rq⌉+1 be Lemma 4.2. Thus we either have cxq ∈ I
[q]
t for all q ≫ 0,

in which case x ∈ I∗t , or else we have deg(c) + q deg(x) ≥ δtq − ⌈rq⌉ + 1 =

qδt − (q − 1)a− ⌈rq⌉+ 1 for infinitely many values of q = pe. Dividing each

side by q and taking the limits when q → ∞ yields deg(x) ≥ δt − a − r,

and since deg(x) is an integer, this means deg(x) ≥ δt − a − ⌊r⌋. For every

homogeneous element y ∈ Ra+1+⌊r⌋, we have xy ∈ R≥δt+1 ⊂ It. This proves

I
∗Rr

+
t ⊆ I∗t + It : Ra+1+⌊r⌋

+
.

Conversely, consider x ∈ It : Ra+1+⌊r⌋
+

= It + R≥δt−a−⌊r⌋. If x ∈ It,

there is nothing to prove. Otherwise, we have deg(xq) ≥ qδt − aq − ⌊r⌋q ≥
qδt−aq−⌈rq⌉. Choosing c ∈ R≥a+1 yields deg(cxq) ≥ δtq −⌈rq⌉+1, so that

cxqR⌈rq⌉
+

⊆ R≥δtq+1 ⊂ I
[q]
t , and thus x ∈ I

∗Rr
+

t . We note that this inclusion

can also be obtained as a Corollary of Theorem 2.7 in [HY].

§5. Jumping numbers

The results of this section address the following question:

Question. Given ideals a, I ⊂ R, and a fixed t0 ≥ 0, does there exist

an ǫ > 0 such that I∗a
t
= I∗a

t0 , and at
I∗ = at0 I∗ for all t ∈ [t0, t0 + ǫ]?

This question is somewhat related to the notion of jumping numbers

for test ideals. The jumping numbers are defined to be the positive real
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numbers c such that τ(ac) 6= τ(ac−ǫ) for any ǫ > 0 (a similar notion for

multiplier ideals has been introduced in [ELSV]). These have been studied

extensively in recent research ([MTW], [BMS]). In our context, if for a given

t0 an ǫ can be found that does not depend on the ideal I, it follows that there

are no jumping numbers between t0 and t0 + ǫ. We give positive answers to

our question in several particular cases. A positive answer implies that for

a given I, I∗a
t

and a
t
I∗ are constant on intervals of the form [t0, t1). We

will call t1 a jumping number for the ideal I if I∗a
t0 = I∗a

t
for all t ∈ [t0, t1)

for some t0 < t1, but I∗a
t0 6= I∗a

t1 (or a
t
0I∗ = a

t
I∗ but a

t0I∗ 6= a
t1I∗).

The following observation shows that it will be enough to check only

one inclusion in order to answer the above question in the affirmative.

Observation 5.1. Let I, a ⊂ R be fixed ideals, and 0 ≤ t < t′ real

numbers. Then I∗a
t
⊆ I∗a

t′

, and at
I∗ ⊆ at′

I∗.

However, note that it is not always true that a ⊆ b ⇒ bI∗ ⊆ aI∗, while

the corresponding statement is trivially true for the Hara-Yoshida version.

Proof. The statement for the Hara-Yoshida version is trivial, since

a
⌈t′q⌉ ⊆ a

⌈tq⌉.

Consider x ∈ at
I∗, so that cxq

a
⌈tq⌉ ⊆ a

⌈tq⌉I [q]. Multiplying each side by

arbitrary elements in a
⌈t′q⌉−⌈tq⌉ yields the desired conclusion.

For the claim in the last paragraph, take for example a = (f), with f ∈

(b) := (x, y)2, I = (x2, y2), in the ring R = k[x, y]. Then bI∗ = (x2, y2, xy),

while aI∗ = I.

Proposition 5.2. Assume that (R,m) is an excellent reduced equidi-

mensional local ring, and a, I are m-primary ideals. Then for every t0 ≥ 0,

there exists ǫ > 0 such that at
I∗ = at0 I∗ for all t ∈ [t0, t0 + ǫ].

Proof. First note that for each x /∈ a
t0I∗, there exists ǫ > 0 such that

x /∈ at0+ǫ
I∗. This follows from Theorem 3.9, and Proposition 3.11, applied

to the ideals I and J = (I, x).

Construct a sequence t1 > t2 > · · · > tn > · · · > t0 recursively as

follows: Choose x1 /∈ a
t0I∗, and let t1 > t0 such that x1 /∈ a

t1I∗ (the

existence of such a t1 is guaranteed by the previous claim). If t1, . . . , tk have

been constructed, then we either have at0 I∗ = a
tk I∗, in which case the proof

is complete (take ǫ = tk − t0), or else we can choose an xk+1 ∈ a
tk I∗ \ a

t0 I∗,

and, by the previous claim, there exists t′k+1 > t0 such that xk+1 /∈ a
tk+1

I∗
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(note that we must have tk > tk+1 by Observation 5.1). Thus, we have a

chain of ideals a
t0I∗ ⊆ · · · ⊆ a

tn
I∗ ⊆ · · · ⊆ a

t2 I∗ ⊆ a
t1I∗. Note that the

construction of tk shows that the inclusions are strict unless the recursive

process stops. This contradicts the fact that a
t0I∗ is m-primary.

The next result deals with the case when a = (f) is a principal ideal,

with f ∈ Ro. Note that in this case we only need to consider the Hara-

Yoshida version, since at
I∗ = I∗ for all t. It turns out that a positive

answer to the question considered here is related to the existence of test

exponents. We review the definition.

Definition 5.3. Let I ⊂ R be an ideal, and c ∈ Ro a test element for

the usual tight closure. We say that q0 = pe0 is a test exponent for the pair

(I, c) if cxq ∈ I [q] for any one choice of q ≥ q0 implies x ∈ I∗.

Test exponents were introduced in [HH2], where it is shown that their

existence is closely related to the localization problem for tight closure.

Lemma 5.4. Assume a = (f) is a principal ideal, with f ∈ Ro. Assume

that R has test elements for the usual tight closure. Then x ∈ I∗a
t
⇔

xqf ⌈tq⌉ ∈ (I [q])∗ for all q.

In particular, if there exists q1 such that tq1 ∈ Z, then x ∈ I∗a
t
⇔

xq1f tq1 ∈ (I [q1])∗.

Proof. Note that the following inequalities hold for all q:

⌈tq⌉ − 1 < tq ≤ ⌈tq⌉ < tq + 1.

It follows that

q1⌈tq2⌉ − q1 < ⌈tq1q2⌉ < q1⌈tq2⌉ + 1.

Assume that x ∈ I∗a
t
, and let q = q1q2. Then there exists c ∈ Ro such that

cxq1q2f ⌈tq1q2⌉ ∈ I [q1q2], which implies cfxq1q2f ⌈tq2⌉q1 ∈ I [q1q2]. Since cf ∈ Ro,

this shows that xq2f ⌈tq2⌉ ∈ (I [q2])∗ for all q2.

Conversely, assume that xq2f ⌈tq2⌉ ∈ (I [q2])∗ for some q2, and let c ∈ Ro

be a test element for the usual tight closure. Then cxq1q2f ⌈tq2⌉q1 ∈ I [q1q2],

which implies cxq1q2f ⌈tq1q2⌉+q1 ∈ I [q1q2] for all q1. Fix q1 and allow q2 to

vary cf q1xqf ⌈tq⌉ ∈ I [q] for all q ≫ 0. Since cf q1 ∈ Ro, this shows that

x ∈ I∗a
t
.
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Proposition 5.5. Let a = (f) with f ∈ Ro, I ⊂ R an arbitrary ideal,

and t0 ≥ 0. Assume that there exists q1 such that t0q1 is an integer, and

assume that c ∈ Ro is a test element for the closure such that there exists a

test exponent q0 for the ideal I [q1] and the test element cf q1.

Then we have I∗a
t
= I∗a

t0 for all t ∈ [t0, t0 + 1/q0].

Proof. Let t = t0+1/q0. Let q = q1q0 so that tq = t0q+q1 is an integer.

Assume that x ∈ I∗a
t
; by Lemma 5.4, this implies that xqf t0qf q1 ∈ (I [q])∗.

Since c is a test element, we have cf q1(xq1f t0q1)q0 ∈ (I [q1])[q0]. Since q0

is a test exponent, this implies xq1f t0q1 ∈ (I [q1])∗, and thus x ∈ I∗a
t0 by

Lemma 5.4.

Corollary 5.6. If (R,m) is a regular local ring, a = (f) is a principal

ideal, and t0 ≥ 0 is such that t0q1 ∈ Z for some q1 = pe1, and q0 is such

that f q1 /∈ m
[q0], then there are no jumping numbers for the test ideals τ(at)

in the interval [t0, t0 + 1/q0].

Proof. Since I∗ = I for every ideal I, we can take c = 1, and note that

a q0 with the property that f q1 /∈ m
[q0] is a test exponent for (I [q1], f q1) for

any ideal I. Indeed, if x /∈ I [q1] and f q1xq0 ∈ I [q1q0] ⇒ f q1 ∈ I [q1q0] : xq0 =

(I [q1] : x)[q0] ⊆ m
[q0], contradicting the choice of q0.

Note that if t0 = 0, then the converse of Proposition 5.5 holds, in the

sense that a positive answer to the question discussed here implies existence

of test exponents for the usual tight closure. Recall that I∗a
0

= I∗R = I∗ is

the usual tight closure.

Proposition 5.7. Let a = (f) with f ∈ Ro a test element for tight

closure, I ⊂ R an arbitrary ideal.

Assume that q0 = pe0 is such that I∗a
1/q0 = I∗. Then q0 is a test

exponent for the pair (I, f).

Proof. Let x ∈ R be such that fxq1 ∈ I [q1] for some q1 ≥ q0. Then for

all q ≥ q1 we have f q/q1xq ∈ I [q], and therefore f q/q0xq ∈ I [q], which shows

that x ∈ I∗a
1/q0 = I∗ by assumption.

In the next result, I and a are arbitrary ideals, but we restrict attention

to t0 = 0.
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Proposition 5.8. Assume that (R,m) is an excellent analytically ir-

reducible local domain. Let I, a ⊂ R be ideals, a 6= 0. Let x /∈ I∗. Then

there exists q0 = pe0 such that x /∈ I∗a
1/q0 .

Note that our result is not quite sufficient to give an affirmative answer

to the question raised in the beginning of the section for this case, since q0

is allowed to depend on x.

Proof. By Proposition 2.4 in [Ab], there exists q1 such that I [q] : xq ⊂

m
[q/q1] for all q ≥ q1. Assume by contradiction that x ∈ I∗a

1/q0 for every

q0. This means that cxq
a

q/q0 ⊂ I [q] for all q ≫ 0, so that caq/q0 ⊆ I [q] :

xq ⊆ m
[q/q1]. Let q = q0q1Q. Then we obtain caq1Q ⊆ m

[q0Q], which implies

a
q1 ⊆ (m[q0])∗. Since q1 is fixed, this is false for q0 ≫ 0.

At the other end of the spectrum, we ask the following question.

Question. If I, a are fixed ideals, and N is such that aN
I∗ = aN′

I∗

for all N ′ ≥ N (note that such an N exists by the Noetherian property)

describe a
N

I∗.

We will use a∞

I∗ to denote aN
I∗ when N is as above. Note that a similar

definition for the Hara-Yoshida version of a-tight closure would yield the

whole ring when I is an m-primary ideal, since for N ≫ 0 we have a
N ⊆ I,

and a
⌈Nq/k⌉ ⊆ I [q], where k is the number of generators of a. When a = (f)

is a principal ideal with f a non-zerodivisor, we have a
∞

I∗ = I∗ for every

ideal I.

We always have a
∞

I∗ ⊆ I. Observation 2.10 implies that when R is

standard graded, a = Rr
+

for some r > 0, and I is homogeneous with all

generators of the same degree, we have ∗a∞

I∗ = I. However, Example 2.11

shows that for R = k[x, y], I = (x2, y4), and a = (x, y) we have a
∞

I∗ 6= I.

In fact in this example it is easy to check that a∞

I∗ = (x2, y4, xy3). More

generally, we note the following:

Proposition 5.9. Let R be a two-dimensional standard graded nor-

mal domain, let I = (f1, f2) be a homogeneous parameter ideal. Let d =

max(deg(f1),deg(f2)). Then
R∞

+ I∗ = I + R≥d.

Proof. Say that d = deg(f1).
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Let x ∈
R∞

+ I∗, so x ∈
Rn

+ I∗ for some n. Assume that deg(x) < d. For

some homogeneous c ∈ Ro, and for all y among a minimal set of generators

of Rnq
+

we have cxqy = a1f
q
1 + a2f

q
2 with a1, a2 ∈ Rnq

+
. If deg(x) < d, it

follows by comparing degrees thatcxqy = a2f
q
2 , so that cRnq

+
xq ⊆ Rnq

+
f2
2 .

But this implies that x ∈ (f2) = (f2).

Conversely, assume that deg(x) ≥ d. For n ≫ 0 we have x ∈ I
∗Rn

+ , so

that there exists c ∈ Ro such that for all y ∈ Rnq
+

, cxqy = a1f
q
1 + a2f

q
2 with

a1, a2 ∈ R. Comparing degrees, we see that a1, a2 ∈ Rnq
+

.
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