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MOST OF THE MAPS NEAR THE EXPONENTIAL ARE

HYPERBOLIC

XIUMEI WANG and GAOFEI ZHANG

Abstract. Let fλ(z) = λez. In this short note, we consider those maps fλ

with λ close to 1. We show that the probability that fλ is hyperbolic approaches

1 as λ → 1.

§1. Introduction

In 1980, Misiurewicz solved a 60-year-old conjecture due to Fatou by

showing that the Julia set of the exponential map z 7→ ez is the whole

plane [10]. The dynamics of this map was then extensively studied by many

authors. For instance, R. Devaney showed that the exponential map is not

stable [3]. M. Rees showed that it is not recurrent [13], whereas E. Ghys,

L. Goldberg, and D. Sullivan showed that it is so under a larger equivalence

relation [8]. Almost at the same time, M. Lyubich showed that it is not

ergodic and has wandering sets with positive Lebesgue measure [9].

Let fλ(z) = λez. The aim of this paper is to investigate what happens

when one slightly perturbs the map z 7→ ez in the family fλ, λ ∈ C \ {0}.
It was proved by Devaney in [3] that in any small neighborhood of 1, there

is a λ such that fλ is hyperbolic. Here we say fλ is hyperbolic if fλ has an

attracting periodic cycle (Such a periodic cycle once exists, must be unique

and necessarily attracts the orbit of the origin, see [15]). In this paper, we

will show that the density of such hyperbolic parameters λ approaches 1 as

λ → 1. Before the formulation of the Main Theorem, let us introduce some

notations first.

For r > 0 and x ∈ C, let

Sr(x) = {z ∈ C | max{|ℜ(z − x)|, |ℑ(z − x)|} < r}
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denote the square with center x and side length 2r. For a bounded set

X ⊂ C, let area(X) and diam(X) denote the Euclidean area and Euclidean

diameter of X, respectively. For λ ∈ C \ {0}, let Jλ denote the Julia set of

fλ. Let

H = {λ ∈ C \ {0} | fλ is hyperbolic}.
The main result of the paper is

Main Theorem. area(Sr(1) ∩ H)/area(Sr(1)) → 1 as r → 0.

By the Main Theorem, it follows that if one takes randomly a parameter

value λ, the probability that Jλ = C is small provided that λ is near 1. This

leads us to pose the following question:

Question. Is there a positive measurable set Λ ⊂ C \ {0} such that

Jλ = C for every λ ∈ Λ ?

For rational maps, the question has a positive answer by M. Rees. The

reader may refer to [14] for the construction of the set Λ. But the method

used in [14] does not apply for the exponential family because of the presence

of an essential singularity at the infinity. It is also interesting to note that

a negative answer of the question would imply that hyperbolic maps are

dense in the exponential family.

The following is the structure of the proof.

In Section 2, we show that there is a C > 0 such that for any ǫ > 0, there

is an r0 > 0, such that for all 0 < r < r0, there is a subset Λr(1) ⊂ Sr(1)

satisfying the following two conditions,

1. area(Λr(1)) > (1 − Cǫ)area(Sr(1)), and

2. for every λ ∈ Λr(1), fλ is hyperbolic.

(Lemma 2.8). The strategy used in this step is the so called “parameter

exclusion”, which was first used by McMullen in [11], and later adapted by

other authors in some particular situations (For examples, see [12] and [16]).

In Section 3, we prove that for every r > 0 small, and every λ ∈ Λr(1),

the map fλ has an attracting periodic cycle (Lemma 3.1). The construction

used in this step is implicitly contained in Devaney’s proof in [3]. A similar

construction may also be found in [1] and [5].

The Main Theorem then follows from Lemmas 2.8 and 3.1.

For more relative knowledge about the dynamics of the exponential

maps, we refer the reader to [2], [6], [4], [7], and [17].
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§2. The set Λr(1)

2.1. Notations

Let N denote the set of the positive integers. Let a and b be two

positive quantities. We use a � b and a � b to mean that the ratio a/b has

a universal positive upper bound and a positive lower bound, respectively.

We use a ≍ b to mean that both such bounds exist.

2.2. The Construction of Λr(1)

For n ∈ N, define En(λ) = fn
λ (0). Take 0 < δ < 1/16 and let it be

fixed throughout the following. Let r > 0 be small. Recall that Sr(1) is the

square with center 1 and side length 2r. Let X0 = Sr(1) and for n ≥ 1,

define Xn = En(Sr(1)). Then there is a least integer n > 0 such that

(1) diam(Xn+1) > δπ.

By the choice of n, it follows that diam(Xn) ≤ δπ. Since δ is fixed, n

depends only on r. To simplify the notation, let us simply write it as n

instead of n(r).

Lemma 2.1. Let M > 1 be large. Then for all r > 0 small enough,

there is an R >
√

2r such that

mod(BR(1) \ Sr(1)) > M

and then En is univalent in BR(1) where BR(1) is the Euclidean disk with

center 1 and radius R.

Proof. Let K > 0 be an arbitrary number. Let R > 0 be such that

(2) En(1 + R) = En(1) + Kδ.

We claim

lim
r→0

sup
λ∈BR(1)

∣

∣

∣

∣

DEn(λ)

DEn(1)
− 1

∣

∣

∣

∣

= 0.

It follows that the map En is like a linear map in BR(1) when r > 0 is small.

In particular, En is univalent in BR(1) for all r > 0 small enough. Since

diam(Xn) < δ, it follows that

R/r � K
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and therefore mod(BR(1)\Sr(1)) can be as large as possible provided K is

large enough. The lemma thus follows.

Now it is sufficient to prove the claim. By a direct calculation, we have

(3) DEn(λ) =
1

λ

n−1
∑

k=1

Pk(λ) + Pn−1(λ),

where

(4) Pk(λ) =
n

∏

i=n−k+1

Ei(λ).

Obviously we have

(a) DEk(λ) > DEk(1) for any λ > 1 and k ∈ N,

(b) DEk+1(λ) > DEk(λ) for any λ > 1 and k ∈ N,

(c) DEk(1) > 2k−1 for k ∈ N.

It is also clear that

(5) En(1) > 2n−1.

From (2), (a), and (c), we have

(6) R < Kδ/DEn(1) < Kδ/2n−1.

Note that En(1 + R) = (1 + R)eEn−1(1+R), we have

(7) 1 +
En(1 + R) − En(1)

En(1)
=

En(1 + R)

En(1)
= (1 + R)eEn−1(1+R)−En−1(1).

Since En(1 + R) − En(1) = Kδ and n → ∞ as r → 0, from (5), (6), and

(7), we have

(8) |En−1(1 + R) − En−1(1)| � Kδ/2n.

From (b) and (8), we have

(9) |Ek(1 + R) − Ek(1)| � Kδ/2n

for all 1 ≤ k < n − 1.
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Now from (3) we need only to prove that as r → 0, Pk(λ)/Pk(1) → 1

uniformly for 1 ≤ k ≤ n − 1. In fact, for 1 ≤ k ≤ n − 1,
∣

∣

∣

∣

Pk(λ)

Pk(1)
− 1

∣

∣

∣

∣

=

∣

∣

∣

∣

n
∏

i=n−k+1

(

1 +
Ei(λ) − Ei(1)

Ei(1)

)

− 1

∣

∣

∣

∣

�
n

∑

i=1

|Ei(λ) − Ei(1)|
Ei(1)

.

By (3), |DEk(1 + z)| ≤ DEn(1 + |z|) holds for all for |z| < R and k ≥ 1, so

we have for all λ ∈ BR(1),

(10)
∣

∣Ei(1) − Ei(λ)
∣

∣ ≤ Ei(1 + R) − Ei(1).

This, together with (5), (8), (9), and the fact that n → ∞ as r → 0, implies

that
∣

∣

∣

∣

Pk(λ)

Pk(1)
− 1

∣

∣

∣

∣

� nKδ/2n → 0 as r → 0.

This proves the claim and thus completes the proof of the lemma.

Let ΦXn : Xn → Sr(1) be the inverse branch of En which maps Xn

to Sr(1). Recall that 0 < δ < 1/16 is the value taken in (1) and is fixed

throughout the paper.

Lemma 2.2. Let r > 0 be small. Then there is some R > r such that

mod(SR(1) \Sr(1)) > m(δ) where m(δ) > 0 depends only on δ and En+1 is

univalent in SR(1).

Proof. Let us take K = 1/
√

δ in (2). By the claim immediately after

(2), the assumption that 0 < δ < 1/16, and the fact that diam(Xn) < δ,

the map ΦXn can be defined in the larger square S√
δ/2(En(1)) ⊃ Xn for all

r > 0 small enough.

For ξ ∈ S√
δ/4(En(1)), let λ = ΦXn(ξ). Since En+1(λ) = λeEn(λ) and

Xn ⊂ S√
δ/4(En(1)) (This is because

√
δ/4 > δ), the lemma follows if we

can prove that for all r > 0 small enough, the map Fn(ξ) = En+1(λ) =

ΦXn(ξ)eξ is univalent in S√
δ/4(En(1)). To see this, first note that F ′

n(ξ) =

eξ(ΦXn(ξ) + Φ′
Xn

(ξ)). Since Φ′
Xn

(En(1)) = 1/DEn(1) → 0 as r → 0, from

Koebe’s distortion theorem, it follows that as r → 0, Φ′
Xn

(ξ) → 0 and

ΦXn(ξ) → 1 uniformly for ξ ∈ S√
δ/4(En(1)). This implies

lim
r→0

sup
ξ,z∈S√

δ/4
(En(1))

∣

∣

∣

∣

F ′
n(ξ)

F ′
n(z)

− 1

∣

∣

∣

∣

≤ lim
r→0

sup
ξ,z∈S√

δ/4
(En(1))

∣

∣eξ−z − 1
∣

∣ <
√

δ < 1/4.

It thus follows that for all r > 0 small, Fn is univalent in S√
δ/4(En(1)).

This completes the proof of the lemma.
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Let 0 < ǫ < 1/80 be an arbitrary small number. Let Γǫ denote the

family of the horizontal straight lines ℑ(z) = kǫ and the vertical straight

lines ℜ(z) = kǫ for k ∈ Z. It follows that the lines in Γ divide the complex

plane into infinitely many squares with side length ǫ. Let us call each of

these squares an ǫ-square.

Define

Aǫ = {z ∈ C | (2k + 1/2)π + ǫ < ℑ(z) < (2k + 3/2)π − ǫ for some k ∈ Z}

and

Bǫ = {z ∈ C | (2k − 1/2)π + ǫ < ℑ(z) < (2k + 1/2)π − ǫ for some k ∈ Z}.

Let S be an ǫ-square. Let c be the center of S. Then S = Sǫ/2(c).

We call S an expanding square of generation 1 if Sǫ(c) ⊂ Xn+1 ∩ Bǫ and a

contracting square of generation 1 if Sǫ(c) ⊂ Xn+1 ∩Aǫ (Note that S is well

contained in Sǫ, that is, there is a definite space around S in Sǫ(c)). From

now on, we call Sǫ(c) the ǫ-neighborhood of S.

Note that by Lemma 2.2, for any expanding square S = Sǫ/2(c) of

generation 1, there is an inverse branch of En+1, say ΦS , which is defined

in the larger square Sǫ(c), such that ΦS maps S into Sr(1). Let us call ΦS

the associated map to the expanding square S.

Lemma 2.3. There is a r0 > 0 such that for all 0 < r < r0, the map

En+2 ◦ ΦS can be univalently defined in the ǫ-neighborhood of S.

Proof. It is clear that the map En+2 ◦ΦS is holomorphic in Sǫ(c). Let

us show that it is univalent. To see this, note that for ξ ∈ Sǫ(c),

En+2 ◦ ΦS(ξ) = ΦS(ξ)eξ .

We thus have

D(En+2 ◦ ΦS)(ξ) = (Φ′
S(ξ) + ΦS(ξ))eξ .

From Lemma 2.2, it follows that there is an r0 > 0 small, such that when

0 < r < r0, |Φ′
S(ξ)| < 1/100 and |ΦS(ξ) − 1| < 1/100. We thus have

sup
ξ,z∈Sǫ(c)

∣

∣

∣

∣

(En+2 ◦ ΦS)′(ξ)
(En+2 ◦ ΦS)′(z)

− 1

∣

∣

∣

∣

<
51

49
sup

ξ,z∈Sǫ(c)

∣

∣eξ−z − 1
∣

∣ < 20ǫ < 1/4.

The last two inequalities come from the assumption that 0 < ǫ < 1/80

and the fact that |ez − 1| < 4|z| for |z| < 1/4. This implies that the map

En+2 ◦ ΦS is univalent in Sǫ(c) and completes the proof of the lemma.
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The proof of the following lemma is direct and we shall leave it to the

reader.

Lemma 2.4. Let 0 < ǫ < 1/80. Then there is a K > 100 such that for

any ǫ-square S ⊂ Bǫ with infz∈S ℜ(z) > K, the following inequality holds

ℜ(λez) > 2ℜ(z)

for any z ∈ S and λ ∈ S1/32(1).

Now we assume that 0 < r < r0 for some r0 > 0 small enough. We will

define expanding and contracting squares by induction. Let k ≥ 1. Suppose

all the expanding squares S = Sǫ/2(c) of generation k and their associated

maps ΦS are defined such that

1. ΦS is defined in the ǫ-neighborhood of S and maps S into Sr(1),

2. infz∈S ℜ(z) > K where K is the constant in Lemma 2.4,

3. |Φ′
S(z)| < 1/100 for every z ∈ S,

4. the map En+k+1 ◦ ΦS is univalent in the ǫ-neighborhood of S.

An ǫ-square T is called an expanding square generated by S if its ǫ-

neighborhood is contained in Bǫ ∩ (En+k+1 ◦ΦS)(S). Similarly, An ǫ-square

T is called an contracting square generated by S if its ǫ-neighborhood is

contained in Aǫ ∩ (En+k+1 ◦ ΦS)(S). All the expanding squares and con-

tracting squares generated by expanding squares of generation k are called

of generation k + 1. To each expanding square T of generation k + 1, we

define the associated map ΦT by

(11) ΦT = ΦS ◦ (En+k+1 ◦ ΦS)−1.

Lemma 2.5. We have

1. ΦT is defined in the ǫ-neighborhood of T and maps T into Sr(1),

2. infz∈T ℜ(z) > K where K is the constant in Lemma 2.4,

3. |Φ′
T (z)| < 1/100 for every z ∈ T ,

4. the map En+k+2 ◦ ΦT is univalent in the ǫ-neighborhood of T .

Proof. The first assertion follows from equation (11). The second as-

sertion follows from Lemma 2.4 by assuming that 0 < r < 1/32. To verify
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the third assertion, note that for z ∈ S, (En+k+1 ◦ ΦS)(z) = ΦS(z)ez . It

follows that

(12) (En+k+1 ◦ ΦS)′(z) = ez(Φ′
S(z) + ΦS(z)).

By induction, Φ′
S(z)+ΦS(z) is close to 1 and |ez | is large. It follows that for

any ξ ∈ T , |D(En+k+1 ◦ΦS)−1(ξ)| is small. The third assetion then follows

from the induction and the chain rule. The proof of the last assertion uses

the same argument as in the proof of Lemma 2.3 and the previous three

assertions.

From Lemma 2.5, it follows that there is an r0 > 0 such that for all

0 < r < r0, the expanding squares and contracting squares can be defined

inductively for generations of all k ≥ 1.

Remark 2.1. By the construction of the expanding squares S and their

associated maps ΦS, it follows that ΦS can be defined in the ǫ-neighborhood

of S, and thus has uniform distortion in S.

Definition 2.1. Let Λr(1) be the set which consists of all the points

z in Sr(1) for which there exist an integer k ≥ 1 and expanding squares Si,

1 ≤ i ≤ k − 1, and a contracting square Sk, such that Si is generated by

Si−1 for 2 ≤ i ≤ k, and En+i(z) ∈ Si for all 1 ≤ i ≤ k.

2.3. The area of Λr

Lemma 2.6. There is a uniform C > 0 such that for all r > 0 small

enough,

area(R)/area(Xn+1) < Cǫ

where R is the set of the points in Xn+1 which are contained in neither

contracting squares nor expanding squares of generation 1.

Proof. By Lemma 2.2 and Koebe’s distortion theorem, it follows that

there is a square T ⊃ Xn+1 with horizontal and vertical sides, such that

diam(T ) � diam(Xn+1). Moreover, area(T ) � area(Xn+1). Let

A′
ǫ = {z ∈ C | (2k + 1/2)π + 4ǫ < ℑ(z) < (2k + 3/2)π − 4ǫ for some k ∈ Z}

and

B′
ǫ = {z ∈ C | (2k − 1/2) + 4ǫ < ℑ(z) < (2k + 1/2)π − 4ǫ for some k ∈ Z}.
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Let R1 = T \ (A′
ǫ ∪ B′

ǫ). It follows that

area(R1) � ǫ area(T ) � ǫ area(Xn+1).

Note that diam(Xn+1) > δ. By Lemma 2.2 and Koebe’s distortion theo-

rem, there is some uniform C0 > 0 such that for any point z ∈ En+1(Sr′(1)),

S4ǫ(z) ⊂ Xn+1, where r′ = r(1 − C0ǫ/δ). Let R2 = Xn+1 \ En+1(Sr′(1)).

By Lemma 2.2 and Koebe’s distortion theorem again, we have

area(R2) � ǫ area(Xn+1).

Now it is sufficient to prove that R ⊂ R1 ∪ R2. In fact, for any point

z ∈ R, there is some ǫ-square S = Sǫ/2(c) which contains z. There are two

possibilities. The first one is that z /∈ R1. Then z ∈ Xn+1 ∩ (A′
ǫ ∪ B′

ǫ). By

the definition of A′
ǫ and B′

ǫ, it follows that Sǫ(c) ⊂ (Aǫ∪Bǫ). Since z belongs

to neither expanding squares nor contracting squares, Sǫ(c)∩∂Xn+1 6= ∅. It

follows that S4ǫ(z)∩ ∂Xn+1 6= ∅ also. In particular, z ∈ R2. This completes

the proof of the lemma.

For an expanding square S of generation k, let Im(S) = (En+k+1 ◦
ΦS)(S).

Lemma 2.7. Let r > 0 be small. Then for any k ≥ 1 and any expanding

square S of generation k,

(13) area(Im(S) \ X) � ǫ area(Im(S))

where X is the union of all the expanding and contracting squares of gener-

ation k + 1 generated by S, and

(14) area(Y ) ≍ area(Im(S)).

where Y is the union of all the contracting squares of generation k + 1

generated by S.

Proof. Let S = Sǫ/2(c). Let ǫ′ = ǫ−ǫ2 and S′ = Sǫ′/2(c). Let Im(S′) =

(En+k+1 ◦ ΦS)(S′).
Consider the straight vertical lines and horizontal lines x = 2kπ and

y = 2kπ for k ∈ Z. These lines divide the complex plane into disjoint

squares with side length 2π. Let Z denote the collection of all those squares

which are completely contained in Im(S). By Lemma 2.4 and induction, as
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r > 0 is small, Im(S) lies in the far right of the complex plane, and by (12),

|D(En+k+1 ◦ ΦS)| is large in S. It follows that

⋃

T∈Z

T ⊃ Im(S′)

for all r > 0 small enough. Since En+k+1 ◦ ΦS is defined in the ǫ-neighbor-

hood of S, by Koebe’s distortion theorem, we have

area(Im(S) \ Im(S′))/area(Im(S)) ≍ area(S \ S′)/area(S) ≍ ǫ,

and therefore

area(Im(S) \
⋃

T∈Z

T ) � ǫ area(Im(S)).

Now consider any square T ∈ Z. Let P and Q be the union of all the

contracting squares and expanding squares generated by S, and contained

in T , respectively. It is clear that

area(P ) ≍ area(Q) ≍ area(T )

respectively, and

area(T \ (P ∪ Q)) � ǫ area(T ).

This implies (13) and (14).

Now it is the time to prove

Lemma 2.8. There is a uniform C > 0 such that for any ǫ > 0 small,

lim inf
r→0+

area(Λr(1))

area(Sr(1))
> 1 − Cǫ.

Proof. Let T0 = Sr(1). Let R be the set in Lemma 2.6 and Y be

the set in Lemma 2.7. Let ΦXn+1
denote the inverse branch of En+1 which

maps Xn+1 to X0 = Sr(1). Let R0 = ΦXn+1
(R), and C0 = ΦXn+1

(Y ). Let

T1 = T0 \ (R0 ∪ C0).

Let k ≥ 1. Define Ck ⊂ Sr(1) to be the set consisting of all those

parameter values λ such that there is a sequence of expanding squares

S1, . . . , Sk and a contracting square Sk+1 such that Si is generated by Si−1

for 2 ≤ i ≤ k + 1, and En+i(λ) ∈ Si for 1 ≤ i ≤ k + 1.

Let k ≥ 2. Define Tk ⊂ Sr(1) to be the set consisting of all those param-

eter values λ such that there is a sequence of expanding squares S1, . . . , Sk
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such that Si is generated by Si−1 for 2 ≤ i ≤ k, and En+i(λ) ∈ Si for

1 ≤ i ≤ k.

It is clear that (Tk+1 ∪ Ck) ⊂ Tk for all k ≥ 0. Define

(15) Rk = Tk \ (Tk+1 ∪ Ck).

We claim that

(16) area(Ck) � area(Tk)

holds for all k ≥ 1, and

(17) area(Rk) � ǫ area(Tk)

holds for all k ≥ 0. Let us first see how the claim implies the lemma. In

fact, from (15), it follows that

Sr(1) = (
⋃

k≥0

Rk) ∪ (
⋂

k≥0

Tk) ∪ Λr(1).

From (15), (16), and (17), it follows that

area(
⋂

k≥0

Tk) = 0,

and

area(
⋃

k≥0

Rk) � ǫ area(Sr(1)).

The lemma then follows.

Now let us explain why the claim is true. Note that (16) comes directly

from (14), Koebe’s distortion theorem, and Remark 2.1. Let us see why

(17) is true also. In fact, for k = 0, it follows directly from Lemma 2.2

and Lemma 2.6. For k ≥ 1, it follows from Lemma 2.7, Koebe’s distortion

theorem, and Remark 2.1.

§3. The parameters in Λr(1) are hyperbolic

Lemma 3.1. For any ǫ > 0 small, there is an r0 > 0, such that for all

0 < r < r0 and λ ∈ Λr(1), the forward orbit {fn
λ (0)}n≥0 converges to some

attracting periodic orbit.
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Proof. Let λ ∈ Λr(1). By the construction of Λr(1), there is a sequence

of expanding squares S1, . . . , Sm−1, and a contracting square Sm, such that

Si+1 is generated by Si for 1 ≤ i ≤ m − 1, and En+i(λ) ∈ Si for 1 ≤ i ≤ m.

Let p = n+m+2. We will prove that fn
λ (0) is attracted to some attracting

periodic orbit of period p. Let zj = f j
λ(0) = xj + iyj where xj and yj are

real numbers.

It is sufficient to prove that there is an open topological disk, say U ,

such that fp
λ(U) ⊂ U . It then follows that there is a unique attracting

periodic orbit of period p which attracts the forward orbit of every point in

U . Now let us prove the existence of such U .

To show this, we claim that for any R large, as long as r > 0 is small,

the disk BR(zp−1) can be univalently pulled back to a small neighborhood

of the origin by the map fp−1
λ (z) along the orbit f j

λ(0), 0 ≤ j ≤ p − 1.

Let us first show the lemma by assuming the claim. In fact, we may

consider the pull back of B1(zp−1) to a small neighborhood V of the origin

along the orbit f j
λ(0), 0 ≤ j ≤ p− 1. From the claim(by taking R ≫ 1) and

Koebe’s distortion theorem, it follows that V is like a Euclidean disk, more

precisely,

(18) V ≈ Br′(0)

where r′ = 1/|Dfp−1
λ (0)|. But on the other hand, fλ(B1(zp−1)) ⊂ Br′′(0)

where

r′′ = Ce−|xp−1|

where C > 0 is some uniform constant.

Notice that

(19) r′′ ≪ r.

In fact, by Lemma 2.4, as r > 0 is small, p is large, and xp−2 ≻ 2p, and

xj+1 > 2xj for 0 ≤ j ≤ p − 3. It then follows that

∑

0≤j≤p−2

xj < 2xp−2.

But on the other hand, there is some ǫ0 > 0 dependent only on ǫ such that

|xp−1| > eǫ0xp−2 ≫ x2
p−2.
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From this, and the fact that λ is closed to 1, we have

|Dfp−1
λ (0)| ≺ |λ|pex1+···+xp−2 ≺ |λ|pe2xp−2 ≺ ex2

p−2 ≪ e|xp−1|.

This implies (19). From (18) and (19), we have Br′′(0) ⊂ V . The lemma

now follows by taking U = V since as r is small,

fp
λ(V ) = f(B1(zp−1)) ⊂ Br′′(0) ⊂ V.

Now it remains to prove the claim. For given R > 0, when r > 0 is

small, xp−2 ≫ 1, it follows that the disk BR(xp−1) can be univalently pulled

back into the disk B1/32(xp−2) by the map fλ(z) (This is because fλ(z)

is univalent in the square S1(zp−2), and Dfλ(zp−2) is large when r > 0 is

small). By Lemma 2.4, when r > 0 is small, |zj | > 8 for all 2 ≤ j ≤ p − 2.

Note that for ξ, z ∈ B1/32(zp−2), η = |ξ − z|/|z| < 1/32 is small, we thus

have

(20) | log(ξ/λ) − log(z/λ)| =
∣

∣

∣
log(1 +

ξ − z

z
)
∣

∣

∣
<

η

1 − η
< 1/32.

It follows from (20) that B1/32(zp−2) can be univalently pulled back into

the disk B1/32(zp−3). By induction, it follows that B1/32(xp−2) can be uni-

valently pull backed into the disk B1/32(x2) by fp−4
λ . But for r > 0 small,

that is, λ close to 1, the disk B1/32(x2) can be univalently pull backed to

some small neighborhood of the origin by f2
λ . This proves the claim and

thus completes the proof of Lemma 3.1.

The Main Theorem then follows from Lemmas 2.8 and 3.1.
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