M. Ide

Nagoya Math. J.
Vol. 190 (2008), 183-197

EVERY CURVE OF GENUS NOT GREATER THAN EIGHT LIES ON A K3 SURFACE

MANABU IDE

Abstract

Let C be a smooth irreducible complete curve of genus $g \geq 2$ over an algebraically closed field of characteristic 0 . An ample $K 3$ extension of C is a $K 3$ surface with at worst rational double points which contains C in the smooth locus as an ample divisor.

In this paper, we prove that all smooth curve of genera $2 \leq g \leq 8$ have ample $K 3$ extensions. We use Bertini type lemmas and double coverings to construct ample $K 3$ extensions.

§1. Introduction

Let C be a smooth irreducible complete curve of genus $g \geq 2$ over an algebraically closed field k of characteristic 0 . An ample $K 3$ extension of C is a $K 3$ surface S with at worst rational double points which contains C in the smooth locus as an ample divisor. If C is contained in a smooth $K 3$ surface, then we obtain an ample $K 3$ extension by contracting all (-2)curves disjoint from C.

The purpose of this paper is to show
Main Theorem. All smooth curves of genera $2 \leq g \leq 8$ have ample K3 extensions. Moreover, they have smooth ample extensions except the following cases;

- $g=6,7,8$ and $K_{C}=2 D$ where D is a g_{g-1}^{2}, or
- $g=8$ and $K_{C}=A+2 B$ where A is $a \mathrm{~g}_{4}^{1}$ and B is $a \mathrm{~g}_{5}^{1}$.

In these exceptional cases, the canonical model $C \subset \mathbb{P}^{g-1}$ is contained in a weighted projective variety. Rational double points come from the singularities of the weighted projective variety (Lemma 2.6).

Since the dimension of the moduli space of curves of genus g is $3 g-3$ and the dimension of the moduli space of pairs (S, C) of a $K 3$ surface S

[^0]and a curve $C \subset S$ of genus g is $19+g$, general smooth curves have no ample $K 3$ extensions for $g \geq 12$. For $g=10$, by [M4], general curves have no ample $K 3$ extensions. For $g=11,9$, by [MM] and [M4], general curves have ample $K 3$ extensions, but special cases are still unknown.

In [ELMS], D. Eisenbud, H. Lange, G. Martens, and F.-O. Schreyer studied curves of Clifford dimension r, genus $4 r-2$, degree $4 r-3$, and Clifford index $2 r-3$. They made an example of such a curve of Clifford dimension $r=6$ which does not lie on any $K 3$ surfaces. In [W], J. Wahl studied Gaussian map on a curve C, which is the map $\phi: \bigwedge^{2} H^{0}\left(\omega_{C}\right) \rightarrow$ $H^{0}\left(\omega_{C}{ }^{3}\right)$, essentially defined by $f d z \wedge g d z \mapsto\left(f g^{\prime}-f^{\prime} g\right) d z^{3}$. And he showed that if ϕ is surjective then C does not lie on any $K 3$ surface. An easiest example of a curve with surjective Gaussian map is a complete intersection of two quintic in \mathbb{P}^{3}.

In Section 2, we prepare some lemmas to construct ample $K 3$ extensions, namely, double covering and Bertini type lemmas. In Section 3, we study hyperelliptic curves, trigonal curves, and bielliptic curves, and construct $K 3$ extensions which preserve the hyperelliptic pencils, trigonal pencils, and 2:1-morphisms onto the elliptic curves respectively by these lemmas. In Section 4, we construct $K 3$ extensions of remaining curves.

Notation and conventions. For a smooth variety X, we denote by K_{X} the canonical divisor class of X and by $\omega_{X}:=\mathcal{O}_{X}\left(K_{X}\right)$ the canonical line bundle. $\mathrm{A} \mathrm{g}_{d}^{r}$ on a curve is a line bundle \mathcal{L} of degree d such that $h^{0}(\mathcal{L}) \geq r+1$.

§2. How to make a $K 3$ extension

2.1. K3 extension as a double cover

Let X be a scheme and \mathcal{L} a line bundle over X. A global section $s \in H^{0}\left(X, \mathcal{L}^{-2}\right)$ yields an algebra structure on $\mathcal{O}_{X} \oplus \mathcal{L}$. Then $\pi: Y=$ $\operatorname{Spec}\left(\mathcal{O}_{X} \oplus \mathcal{L}\right) \rightarrow X$ is a double covering branched along $B=(s)_{0}$.

Lemma 2.1. Let X be a smooth regular surface (i.e., smooth complete surface with $\left.H^{1}\left(X, \mathcal{O}_{X}\right)=0\right)$. Let B be a smooth member of $\left|-2 K_{X}\right|$. Then the double cover $\pi: Y \rightarrow X$ branched over B, obtained as above, is a smooth K3 surface.

Proof. The double covering Y is obviously smooth, and has the irregularity

$$
h^{1}\left(Y, \mathcal{O}_{Y}\right)=h^{1}\left(X, \mathcal{O}_{X} \oplus \mathcal{O}_{X}\left(K_{X}\right)\right)=h^{1}\left(X, \mathcal{O}_{X}\right)+h^{1}\left(X, \mathcal{O}_{X}\left(K_{X}\right)\right)=0
$$

by our assumption. Since the canonical divisor class K_{Y} of Y is linearly equivalent to $\pi^{*} K_{X}+R$ where R is the ramification divisor class, and R is linearly equivalent to $\pi^{*} \mathcal{O}_{X}\left(-K_{X}\right)$ in this situation, we conclude that K_{Y} is linearly equivalent to zero.

2.2. Bertini type lemmas for smooth extension

Let S be a surface in \mathbb{P}^{g} and C a hyperplane section of S. Then we have a commutative diagram;

$$
\begin{array}{llll}
& \subset & \mathbb{P}^{g} \\
& \cup & & \cup \\
S \cap \mathbb{P}^{g-1}= & C & \subset & \mathbb{P}^{g-1} .
\end{array} \text { hyperplane section }
$$

Lemma 2.2. ([R, 3.3]) Assume that $S \subset \mathbb{P}^{g}$ is a surface with at worst rational double points. Then the following conditions are equivalent;
(i) S is a $K 3$ surface embedded by a very ample complete linear system.
(ii) Every smooth hyperplane section is a canonical curve of genus g.
(iii) One smooth hyperplane section is a canonical curve of genus g.

According to this lemma, we only need to show that the extension S is smooth or S has at worst rational double points as its singularities for our main theorem. We shall often use Bertini's theorem which guarantees us the existence of smooth extensions; if Λ is a base point free linear system on a smooth variety X, then every general member of Λ is smooth ([GH, p. 137]). The same holds true under the weaker assumption that there exists a member which is smooth at p for every base point p of Λ.

Lemma 2.3. (Bertini type lemma for complete linear sections) Let Λ be a linear system of dimension n on X. Assume that the base locus B of the system Λ is smooth of codimension $n+1$, i.e., B is a complete intersection of basis divisors of Λ, then general members of Λ are smooth.

Proof. General members D of a linear system Λ are smooth away from the base loci. Since B is smooth complete intersection of D and n divisors of Λ, D is also smooth around B.

Lemma 2.4. (Bertini type lemma for two divisors) Let W be a smooth divisor and \mathcal{L} a line bundle on X. Let $D \subset W$ be a smooth member of the linear system $|\mathcal{L}|_{W} \mid$. Assume that $H^{1}(X, \mathcal{L}(-W))=0$ and the linear system $|\mathcal{L}(-W)|$ is base point free. Then D has a smooth extension, i.e., there is a smooth divisor $\widetilde{D} \in|\mathcal{L}|$ on X which satisfies $\widetilde{D} \cap W=D$.

Proof. Since $H^{1}(X, \mathcal{L}(-W))=0$, the restriction map

$$
H^{0}(X, \mathcal{L}) \longrightarrow H^{0}\left(W,\left.\mathcal{L}\right|_{W}\right)
$$

is surjective, and therefore there is a divisor $\bar{D} \in|\mathcal{L}|$ such that $\bar{D} \cap W=D$.
Consider the linear subsystem

$$
\Lambda=\langle\bar{D},| \mathcal{L}(-W)|+W\rangle \subset|\mathcal{L}|
$$

generated by \bar{D} and the members of $|\mathcal{L}(-W)|+W$. Since $|\mathcal{L}(-D)|$ is base point free, the base locus of Λ is $\bar{D} \cap W=D$. By Bertini's theorem, there is a divisor $\widetilde{D} \in \Lambda$ which is smooth away from $D=\widetilde{D} \cap W$. Since $D=\widetilde{D} \cap W$ is smooth complete intersection, \widetilde{D} is smooth around D, hence smooth everywhere.

Lemma 2.5. (Bertini type lemma for more divisors) Let D_{1}, \ldots, D_{s}, and W be divisors on X. Assume that $C:=W \cap D_{1} \cap \cdots \cap D_{s}$ is a smooth complete intersection, and $D_{i} \cap B s\left|D_{i}-W\right|=\emptyset$ for $i=1, \ldots, s$. Then there exist divisors $\widetilde{D}_{1}, \ldots, \widetilde{D}_{s}$ such that $\widetilde{D}_{i} \sim D_{i}$ for $i=1, \ldots, s$, $S:=\widetilde{D}_{1} \cap \cdots \cap \widetilde{D}_{s}$ is smooth, and $S \cap W=C$.

Proof. We prove the case $s=2$. Induction goes for $s \geq 2$.
First, consider the linear system

$$
\Lambda_{1}=\left\langle D_{1},\right| D_{1}-W|+W\rangle \subset\left|D_{1}\right|
$$

on X. Since $D_{1} \cap B s\left|D_{1}-W\right|=\emptyset$, we have $B s\left(\Lambda_{1}\right)=D_{1} \cap W$. Let \widetilde{D}_{1} be a general member of Λ_{1}, then \widetilde{D}_{1} is smooth away from $D_{1} \cap W=\widetilde{D}_{1} \cap W$.

Next, consider the linear system

$$
\Lambda_{2}=\left.\left(\left\langle D_{2},\right| D_{2}-W|+W\rangle\right)\right|_{\widetilde{D}_{1}} \subset\left|\left(\left.D_{2}\right|_{\widetilde{D}_{1}}\right)\right|
$$

on \widetilde{D}_{1}. Since $D_{2} \cap B s\left|D_{2}-W\right|=\emptyset$, we have $B s\left(\Lambda_{2}\right)=\widetilde{D}_{1} \cap D_{2} \cap W=$ C which is a smooth complete intersection. Therefore a general member $D^{\prime}{ }_{2} \in \Lambda_{2}$ satisfies $D^{\prime}{ }_{2} \cap W=\widetilde{D_{1}} \cap D_{2} \cap W=C$ and is smooth away from $\operatorname{Sing}\left(\widetilde{D}_{1}\right) \cup B s\left(\Lambda_{2}\right) \subset\left(W \cap \widetilde{D}_{1}\right) \cup C$. Since $D^{\prime}{ }_{2}$ meets W only at $C, D^{\prime}{ }_{2}$ is smooth away from C.

It is clear, from the definition of Λ_{2}, that there exist an extension $\widetilde{D}_{2} \in$ $\left|D_{2}\right|$ of $D^{\prime}{ }_{2}$, i.e., $\widetilde{D}_{2} \cap \widetilde{D}_{1}=D^{\prime}{ }_{2}$. Since $S=\widetilde{D}_{1} \cap \widetilde{D}_{2}=D^{\prime}{ }_{2}$ is smooth away from $C=W \cap \widetilde{D}_{1} \cap \widetilde{D}_{2}, S$ is smooth everywhere.

A weighted projective variety $X \subset \mathbb{P}\left(a_{1}: a_{2}: \cdots: a_{n}\right)$ is said to be quasi-smooth if its affine cone $\operatorname{Cone}(X) \subset \mathbb{A}\left(a_{1}: a_{2}: \cdots: a_{n}\right)=\mathbb{A}^{n}$ is smooth outside the vertex $0 \in \mathbb{A}^{n}$. If a weighted projective variety X is quasi-smooth, then X has at worst cyclic quotient singularities.

Lemma 2.6. (Bertini type lemma for weighted projective varieties) Let X be a quasi-smooth weighted projective variety. Assume that C is a smooth complete intersection of divisors in X, and satisfies the same assumptions as in Lemma 2.3, 2.4, or 2.5 .

Then there is an extension S of C which has at worst cyclic quotient singularities. Moreover, if C is smooth curve and X is Gorenstein, then the extension S has at worst rational double points.

Proof. Since C is smooth, its affine cone Cone (C) is smooth outside the vertex. By Bertini type lemmas, we can construct an extension Cone (S) of Cone (C), which is smooth outside the vertex. Therefore S has at worst cyclic quotient singularities.

If C is a curve and X is Gorenstein, then the extension S is a surface with at worst Gorenstein cyclic quotient singularities. Therefore these singularities are rational double points.

§3. Curves with very special linear systems

The main tool in this section is the rational normal scrolls $\mathbb{F}=\mathbb{F}\left(a_{1}, \ldots\right.$, $\left.a_{n}\right)$. We denote by H (instead of M in $\left.[\mathrm{R}]\right)$ the pull back of the hyperplane section divisor class by the natural projective morphism $\mathbb{F} \rightarrow \mathbb{P}^{N}(N=$ $\sum\left(a_{i}+1\right)-1$), and by L the fiber (class) of the projection $\mathbb{F} \rightarrow \mathbb{P}^{1}$. As in $[\mathrm{R}]$, we denote by F_{i} the i-th coordinate divisor $\left\{x_{i}=0\right\}$, which is a divisor of class $H-a_{i} L$.

3.1. Hyperelliptic cases

Let C be a smooth hyperelliptic curve of genus g. Then the canonical divisor K_{C} defines a two-to-one map $\Phi_{\left|K_{C}\right|}$ from C onto a rational normal curve \bar{C} of degree $g-1$ in \mathbb{P}^{g-1}. The morphism $\Phi_{\left|K_{C}\right|}: C \rightarrow \bar{C}\left(\subset \mathbb{P}^{g-1}\right)$ is branched over $2 g+2$ points $P_{1}, \ldots, P_{2 g+2}$. Since C is smooth, these points are distinct.

We consider a commutative diagram

$$
\begin{array}{rccc}
& \mathbb{F} & \longleftrightarrow & \mathbb{P}^{g} \\
& \cup & & \cup \\
C & \xrightarrow{2: 1} & \bar{C} & \longleftrightarrow
\end{array} \mathbb{P}^{g-1}, ~
$$

where \mathbb{F} is the two-dimensional rational normal scroll of degree $g-1$ and \bar{C} is embedded into \mathbb{F} as a hyperplane section. The canonical divisor of \mathbb{F} is $K_{\mathbb{F}}=-2 H+(g-3) L$. We take

$$
\begin{cases}\mathbb{F}\left(\frac{g-1}{2}, \frac{g-1}{2}\right) & \text { if } g \text { is odd } \\ \mathbb{F}\left(\frac{g}{2}, \frac{g}{2}-1\right) & \text { if } g \text { is even }\end{cases}
$$

as \mathbb{F}.
Proposition 3.1. If $2 \leq g \leq 9$, there is a smooth curve $B \in\left|-2 K_{\mathbb{F}}\right|$ which passes through $P_{1}, \ldots, P_{2 g+2}$.

Proof. Since $-2 K_{\mathbb{F}} \sim 4 H-2(g-3) L$ and $\bar{C} \sim H$, we have an exact sequence

$$
0 \longrightarrow \mathcal{O}_{\mathbb{F}}(3 H-2(g-3) L) \longrightarrow \mathcal{O}_{\mathbb{F}}\left(-2_{\mathbb{F}}\right) \longrightarrow \mathcal{O}_{\bar{C}}\left(-2 K_{\mathbb{F}}\right) \longrightarrow 0
$$

Since the degree of $\mathcal{O}_{\bar{C}}\left(-2 K_{\mathbb{F}}\right)$ is

$$
\begin{aligned}
(4 H-2(g-3) L) H & =4 H^{2}-2(g-3) H L \\
& =4(g-1)-2(g-3)=2 g+2
\end{aligned}
$$

on $\bar{C} \cong \mathbb{P}^{1}$, we have $\mathcal{O}_{\bar{C}}\left(-2 K_{\mathbb{F}}\right) \cong \mathcal{O}_{\mathbb{P}^{1}}(2 g+2)$ and $P_{1}+\cdots+P_{2 g+2}$ is a smooth member of the system $\left|\mathcal{O}_{\bar{C}}\left(-2 K_{\mathbb{F}}\right)\right|$.

If g is odd, we have

$$
\begin{aligned}
& H^{1}\left(\mathbb{F}, \mathcal{O}_{\mathbb{F}}(3 H-2(g-3) L)\right) \\
& \quad=H^{1}\left(\mathbb{P}^{1},\left(\operatorname{Sym}^{3}\left(\mathcal{O}_{\mathbb{P}^{1}}\left(\frac{g-1}{2}\right) \oplus \mathcal{O}_{\mathbb{P}^{1}}\left(\frac{g-1}{2}\right)\right)\right)(-2(g-3))\right) \\
& \quad=H^{1}\left(\mathbb{P}^{1}, \mathcal{O}_{\mathbb{P}^{1}}\left(\frac{9-g}{2}\right)^{\oplus 4}\right)
\end{aligned}
$$

and this vanishes for $g \leq 11$. Moreover, since

$$
3 H-2(g-3) L=3\left(H-\frac{g-1}{2} L\right)+\left(\frac{9-g}{2}\right) L
$$

the linear system $|3 H-2(g-3) L|$ is base point free for $g \leq 9$. Therefore there is a smooth extension $B \in\left|-2 K_{\mathbb{F}}\right|$ of $P_{1}+\cdots+P_{2 g+2} \in\left|-2 K_{\mathbb{F}}\right|_{\bar{C}} \mid$ by Lemma 2.4.

If g is even, since

$$
\begin{aligned}
& \pi_{*} \mathcal{O}_{\mathbb{F}}(3 H-2(g-3) L) \cong \\
& \quad \mathcal{O}_{\mathbb{P}^{1}}\left(6-\frac{g}{2}\right) \oplus \mathcal{O}_{\mathbb{P}^{1}}\left(5-\frac{g}{2}\right) \oplus \mathcal{O}_{\mathbb{P}^{1}}\left(4-\frac{g}{2}\right) \oplus \mathcal{O}_{\mathbb{P}^{1}}\left(3-\frac{g}{2}\right)
\end{aligned}
$$

$H^{1}\left(\mathbb{F}, \mathcal{O}_{\mathbb{F}}(3 H-2(g-3) L)\right)$ vanishes for $g \leq 8$, and the linear system $\mid 3 H-$ $2(g-3) L \mid$ is base point free for $g \leq 6$. Therefore, by Lemma 2.4, there is a smooth extension $B \in\left|-2 K_{\mathbb{F}}\right|$ for $g=2,4,6$.

If $g=8$, the system $|3 H-2(g-3) L|=|3 H-10 L|$ has $F_{1} \sim H-4 L$ as its base component, and the system $\left|3 H-10 L-F_{1}\right|=|2(H-3 L)|$ is base point free. We may assume that P does not intersect F_{1}, since there is an action of $P G L(1)$ on $\bar{C} \cong \mathbb{P}^{1}$. Let $B \subset \mathbb{F}$ be an extension of the 18 branch points $P=P_{1}+\cdots+P_{18} \subset \bar{C}$ such that $F_{1} \not \subset B$. We now consider the linear system

$$
\begin{aligned}
\Lambda & =\langle B,| 3 H-10 L|+\bar{C}\rangle \\
& =\langle B,| 2(H-3 L)\left|+F_{1}+\bar{C}\right\rangle
\end{aligned}
$$

By Lemma 2.4, we can choose B so general that B is smooth outside $B \cap F_{1}$. Since $F_{1} \cong \mathbb{P}^{1}$ is smooth, general members of Λ are smooth at $B \cap F_{1}$. Hence general members of Λ are smooth everywhere.

3.2. Trigonal cases

Let C be a smooth non-hyperelliptic trigonal curve of genus $g \geq 5$. Then C is contained in a 2 -dimensional rational normal scroll $\mathbb{F}=\mathbb{F}\left(a_{1}, a_{2}\right)$ of degree $a_{1}+a_{2}=g-2$, and C is a divisor linearly equivalent to $3 H-(g-4) L$. By [S], we have a bound

$$
\frac{2 g-2}{3} \geq a_{1} \geq a_{2} \geq \frac{g-4}{3}
$$

If $g=5, C$ is contained in $\mathbb{F}=\mathbb{F}(2,1)$ and C is a divisor of class $3 H-L$. There is a commutative diagram

and \mathbb{F} is a divisor linearly equivalent to the hyperplane section $\widetilde{\sim}$ on $\widetilde{\mathbb{F}}$. Since $2 \widetilde{H}-\widetilde{L}=2(\widetilde{H}-\widetilde{L})+\widetilde{L}$, the system $|2 \widetilde{H}-\widetilde{L}|$ is base point free. We have

$$
\begin{aligned}
H^{1}\left(\widetilde{\mathbb{F}}, \mathcal{O}_{\widetilde{\mathbb{F}}}(2 \widetilde{H}-\widetilde{L})\right) & =H^{1}\left(\mathbb{P}^{1}, \operatorname{Sym}^{2}\left(\mathcal{O}_{\mathbb{P}^{1}}(1)^{\oplus 3}\right)(-1)\right) \\
& =H^{1}\left(\mathbb{P}^{1}, \mathcal{O}_{\mathbb{P}^{1}}(1)^{\oplus 6}\right)=0
\end{aligned}
$$

and therefore by Lemma 2.4, there is a smooth surface S of class $3 \widetilde{H}-\widetilde{L}$ in $\widetilde{\mathbb{F}}$. Thus C has a smooth $K 3$ extension.

For a smooth trigonal curve of genus g, what we have to do is;
(1) classify the type $\left(a_{1}, a_{2}\right)$ of \mathbb{F} and find a type $\left(b_{1}, b_{2}, b_{3}\right)$ of $\widetilde{\mathbb{F}}$ suitable for extension,
(2) check the vanishing of $H^{1}\left(\mathbb{P}^{1},\left(\operatorname{Sym}^{2} \widetilde{\mathcal{E}}\right)(4-g)\right)$, and
(3) check the freeness of the system $|2 \widetilde{H}-(g-4) \widetilde{L}|$.
where $\widetilde{\mathcal{E}}=\mathcal{O}_{\mathbb{P}^{1}}\left(b_{1}\right) \oplus \mathcal{O}_{\mathbb{P}^{1}}\left(b_{2}\right) \oplus \mathcal{O}_{\mathbb{P}^{1}}\left(b_{3}\right)$.
The table below is the answer to (1). The condition (2) holds for $5 \leq$ $g \leq 9$, and (3) holds for $g=5,6,8$.

Table 1: trigonal curves

genus	F	\mathbb{F}	base locus	vanishing of H^{1}
5	$(2,1)$	(1, 1, 1)	\emptyset	$H^{1}\left(\mathbb{P}^{1},\left(\operatorname{Sym}^{2} \mathcal{E}\right)(-1)\right)=0$
6	$\begin{aligned} & (3,1) \\ & (2,2) \end{aligned}$	$(2,1,1)$	\emptyset	$H^{1}\left(\mathbb{P}^{1},\left(\operatorname{Sym}^{2} \widetilde{\mathcal{E}}\right)(-2)\right)=0$
7	$\begin{aligned} & (4,1) \\ & (3,2) \end{aligned}$	$(2,2,1)$	$F_{1} \cap F_{2}$	$H^{1}\left(\mathbb{P}^{1},\left(\operatorname{Sym}^{2} \widetilde{\mathcal{E}}\right)(-3)\right)=0$
8	$\begin{aligned} & (4,2) \\ & (3,3) \end{aligned}$	$(2,2,2)$	\emptyset	$H^{1}\left(\mathbb{P}^{1},\left(\operatorname{Sym}^{2} \widetilde{\mathcal{E}}\right)(-4)\right)=0$
9	$\begin{aligned} & (5,2) \\ & (4,3) \end{aligned}$	$\begin{aligned} & \hline(3,2,2) \\ & (3,3,1) \end{aligned}$	$\begin{gathered} F_{1} \\ F_{1} \cap F_{2} \end{gathered}$	$H^{1}\left(\mathbb{P}^{1},\left(\operatorname{Sym}^{2} \widetilde{\mathcal{E}}\right)(-5)\right)=0$
10	$\begin{aligned} & (6,2) \\ & (5,3) \\ & (4,4) \end{aligned}$	$\begin{aligned} & \hline(4,2,2) \\ & (3,3,2) \\ & (4,3,1) \\ & \hline \end{aligned}$	$\begin{gathered} F_{1} \\ F_{1} \cap F_{2} \\ F_{1} \cap F_{2} \end{gathered}$	$\begin{aligned} & h^{1}\left(\mathbb{P}^{1},\left(\operatorname{Sym}^{2} \widetilde{\mathcal{E}} \widetilde{ }\right)(-6)\right)=1 \\ & h^{1}\left(\mathbb{P}^{1},\left(\operatorname{Sym}^{2} \widetilde{\mathcal{E}}\right)(-6)\right)=0 \\ & h^{1}\left(\mathbb{P}^{1},\left(\operatorname{Sym}^{2} \widetilde{\mathcal{E}}\right)(-6)\right)=1 \end{aligned}$

For $g=7$, since $H^{1}\left(\widetilde{\mathbb{F}}, \mathcal{O}_{\widetilde{\mathbb{F}}}(2 \widetilde{H}-3 \widetilde{L})\right)=0$, there is an extension $S^{\prime} \in$ $|3 \widetilde{H}-3 \widetilde{L}|$ of C. The linear pencil

$$
\Lambda=\left\langle S^{\prime},\right| 2 \widetilde{H}-3 \widetilde{L}|+\mathbb{F}\rangle
$$

has the base locus $B s \Lambda=\left(S^{\prime} \cap \mathbb{F}\right) \cup\left(S^{\prime} \cap B s|2 \widetilde{H}-3 \widetilde{L}|\right)=C \cup\left(S^{\prime} \cap F_{1} \cap F_{2}\right)$.
We can choose the linear embedding $\mathbb{F} \subset \mathbb{F}(2,2,1)$ so that C does not contain $F_{1} \cap F_{2} \cap \mathbb{F}$. Therefore S^{\prime} does not contain $F_{1} \cap F_{2} \cong \mathbb{P}^{1}$. Since S^{\prime}
and $F_{1} \cap F_{2}$ have the intersection number

$$
\begin{aligned}
\left(S^{\prime}\right)\left(F_{1}\right)\left(F_{2}\right) & =(3 \widetilde{H}-3 \widetilde{L})(\widetilde{H}-2 \widetilde{L})^{2} \\
& =3 \widetilde{H}^{3}-15 \widetilde{H}^{2} \widetilde{L} \\
& =3 \cdot 5-15 \cdot 1=0
\end{aligned}
$$

we conclude that $S^{\prime} \cap F_{1} \cap F_{2}$ is empty. Hence a general member S of Λ is smooth by Lemma 2.4. Thus C has a smooth $K 3$ extension S.

3.3. Bielliptic cases

Let $C \subset \mathbb{P}^{g-1}$ be a smooth bielliptic canonical curve of genus g. By definition, there is a two-to-one morphism $f: C \rightarrow E$ from C onto an elliptic curve E. For any point p in E, set $f^{*}(p)=q_{1}+q_{2}$, and define the line l_{p} in \mathbb{P}^{g-1} as follows;

$$
l_{p}= \begin{cases}\text { the line passing through } q_{1} \text { and } q_{2} & \text { if } q_{1} \neq q_{2} \\ \text { the tangent line to } C \text { at } q_{1} & \text { if } q_{1}=q_{2}\end{cases}
$$

Let p, p^{\prime} be points in E and set $f^{*}(p)=q_{1}+q_{2}$ and $f^{*}\left(p^{\prime}\right)=q_{1}^{\prime}+q^{\prime}{ }_{2}$. Then

$$
h^{0}\left(C, \mathcal{O}_{C}\left(q_{1}+q_{2}+q_{1}^{\prime}+q_{2}^{\prime}\right)\right)=h^{0}\left(E, \mathcal{O}_{E}\left(p+p^{\prime}\right)\right)=2
$$

and therefore $q_{1}, q_{2}, q_{1}^{\prime}$, and $q^{\prime}{ }_{2}$ are all lie in a 2-plane by the geometric version of Riemann-Roch theorem ([ACGH]). Since C is non-degenerate, this implies that all the lines l_{p} 's pass through a common point $p \in \mathbb{P}^{g-1} \backslash C$. The projection from p gives a two-to-one map $\pi_{p}: C \rightarrow E_{g-1}$ from C onto an elliptic curve $E_{g-1} \subset \mathbb{P}^{g-2}$ of degree

$$
\operatorname{deg} E_{g-1}=\frac{1}{2} \operatorname{deg} C=g-1
$$

Every elliptic curves $E:=E_{g-1}$ of degree $g-1$ in \mathbb{P}^{g-2}, where $5 \leq g-1 \leq$ 8, is smoothly extended to del Pezzo surfaces $S:=S_{g-1}$ of degree $g-1$ in \mathbb{P}^{g-1}. The extension S is the blowing-up $\pi: S \rightarrow \mathbb{P}^{2}$ of \mathbb{P}^{2} at $9-(g-1)$ points, and the elliptic curve E is the strict transform of a nonsingular cubic curve which passes through all the center of the blowing-up.

Let $B=B_{1}+\cdots+B_{2 g-2}$ be the branch locus of $\pi_{p}: C \rightarrow E$, and $R=R_{1}+\cdots+R_{2 g-2}$ be the ramification locus. Then $K_{C} \sim \pi_{p}{ }^{*}\left(K_{E}\right)+R \sim R$ since E is elliptic. We distinguish the ambient spaces \mathbb{P}^{g-1} of C and S,
and denote them by \mathbb{P}_{1}^{g-1} and \mathbb{P}_{2}^{g-1} respectively. Let $H_{i}(i=1,2)$ be the hyperplane divisor classes of \mathbb{P}_{i}^{g-1}. Then $\left.H_{1}\right|_{C}=K_{C} \sim R$ and hence

$$
\left.\left.2 H_{2}\right|_{E} \sim \pi_{p_{*}} H_{1}\right|_{C} \sim \pi_{p_{*}} R \sim B
$$

On the other hand, we have $\left.H_{2}\right|_{E} \sim-\left.K_{S}\right|_{E}$, thus we conclude that

$$
\left.B \sim\left(-2 K_{S}\right)\right|_{E}
$$

Proposition 3.2. There is a smooth curve $X \in\left|-2 K_{S}\right|$ on S which passes through $B_{1}, \ldots, B_{2 g-2}$.

Proof. Let $h \in \operatorname{Pic}(S)$ be the pull-back of a line of \mathbb{P}^{2} and $e=e_{1}+$ $\cdots+e_{10-g}$ be the sum of all the exceptional divisors. Since $K_{S} \sim-3 h+e$ and $E \sim 3 h-e \sim-K_{S}$, there is an exact sequence

$$
0 \longrightarrow \mathcal{O}_{S}\left(-K_{S}\right) \longrightarrow \mathcal{O}_{S}\left(-2 K_{S}\right) \longrightarrow \mathcal{O}_{E}\left(-2 K_{S}\right) \longrightarrow 0
$$

Since $-\left.K_{S} \sim H_{2}\right|_{S}$, the system $\left|-K_{S}\right|=\left|\mathcal{O}_{S}\left(H_{2}\right)\right|=\left|\mathcal{O}_{S}(1)\right|$ is base point free and $H^{1}\left(\mathcal{O}_{S}\left(-K_{S}\right)\right)=H^{1}\left(\mathcal{O}_{S}(1)\right)$ vanishes. Therefore, by Lemma 2.5, $B \in\left|\left(-2 K_{S}\right)\right|_{E} \mid$ extends to a smooth curve $X \in\left|-2 K_{S}\right|$.

$\S 4$. Curves without very special linear systems

4.1. Genus ≤ 5

Every curve of genus 2 is hyperelliptic, so we have done before. Every non-hyperelliptic curve of genus 3 is a plane quartic, every non-hyperelliptic curve of genus 4 is a complete intersection of hypersurfaces of degree three and four in \mathbb{P}^{3}, and every non-hyperelliptic non-trigonal curve of genus 5 is a complete intersection three quadric hypersurfaces. Hence they are $K 3$ by Lemma 2.5.

4.2. Genus 6

Let C be a smooth non-hyperelliptic, non-trigonal, non-bielliptic canonical curve of genus 6 . There are two cases remaining;

1. C is not plane quintic, and
2. C is smooth plane quintic.

Case 1. In this case, by [M2], there is a commutative diagram

$$
\begin{array}{cccc}
& G=\operatorname{Grass}(5,2) & \subset & \mathbb{P}^{9} \\
& & \cup & \cup \\
C & S_{5}=G \cap \mathbb{P}^{5} & \subset & \mathbb{P}^{5}
\end{array}
$$

where S_{5} is a quintic del Pezzo surface and C is a hyperquadric section of S_{5}.

Let $H_{1}, H_{2}, H_{3}, H_{4}$ be the hyperplanes and Q the hyperquadric in \mathbb{P}^{9} such that $C=G \cap H_{1} \cap H_{2} \cap H_{3} \cap H_{4} \cap Q$. Then the systems |($H_{i}-$ $\left.H_{1}\right)\left.\left.\right|_{G}\left|=\left|\mathcal{O}_{G}\right|\right.$ and $|\left(Q-H_{1}\right)\right|_{G}\left|=\left|\mathcal{O}_{G}(1)\right|\right.$ are base point free and $H^{1}\left(\mathcal{O}_{G}\right)=$ $H^{1}\left(\mathcal{O}_{G}(1)\right)=0$. Therefore there are extensions $\widetilde{H}_{2}, \widetilde{H}_{3}, \widetilde{H}_{4}$ and \widetilde{Q} such that $S:=G \cap \widetilde{H}_{2} \cap \widetilde{H}_{3} \cap \widetilde{H}_{4} \cap \widetilde{Q}$ is a smooth surface. Thus C has a smooth $K 3$ extension.

Case 2. If C has a g_{5}^{2}, then there is an isomorphism from C onto a smooth plane quintic $C_{5}=\left\{f\left(x_{0}, x_{1}, x_{2}\right)=0\right\} \subset \mathbb{P}^{2}$, and the canonical model is the image of C_{5} under the Veronese embedding $\mathbb{P}^{2} \hookrightarrow \mathbb{P}^{5}$.

Let $L=\left\{l\left(x_{0}, x_{1}, x_{2}\right)=0\right\} \subset \mathbb{P}^{2}$ be a line which meets C_{5} transversally at 5 distinct points. Let $S \rightarrow \mathbb{P}^{2}$ be the blowing-up at $L \cap C_{5}$, and \bar{L} and $\overline{C_{5}}$ be the strict transform of L and C_{5} respectively. Then $\bar{L}+\overline{C_{5}}$ is a smooth member of $\left|-2 K_{S}\right|$, and therefore the double covering $X \rightarrow S$ is the smooth $K 3$ surface which contains a curve isomorphic to C.

Remark. The pull back of L is a (-2)-curve on the smooth $K 3$ surface X. Collapsing this and we get a singular ample $K 3$ extension $\widetilde{X}=\left\{l(x) y^{2}+\right.$ $\left.f_{5}(x)=0\right\}$ in the weighted projective space $\mathbb{P}(1: 1: 1: 2)$.

4.3. Genus 7

Let C be a smooth non-hyperelliptic non-trigonal non-bielliptic curve of genus 7. There are three cases remaining;

1. C has a g_{4}^{1} but no g_{6}^{2},
2. C has a g_{6}^{2} but is not bielliptic.
3. C is non-tetragonal (i.e., C has no g_{4}^{1} 's)

For Case 3, our main theorem is immediate from the Bertini type lemma 2.3 and the Mukai linear section theorem.

Theorem 4.1. ([M3]) A curve C of genus 7 is a transversal linear section of the 10-dimensional orthogonal Grassmannian $X \subset \mathbb{P}^{15}$ if and only if C is not tetragonal.

Case 1. Let α be a g_{4}^{1} and $\beta:=\omega_{C} \alpha^{-1}$ its Serre adjoint. Then β is a g_{8}^{3} by the Riemann-Roch theorem. Since C has no g_{6}^{2} the morphism $\Phi_{|\beta|}: C \rightarrow \mathbb{P}^{3}=\mathbb{P}^{*} H^{0}(\beta)$ is an embedding and the multiplication map

$$
\mu: H^{0}(\alpha) \otimes H^{0}(\beta) \longrightarrow H^{0}\left(\omega_{C}\right)
$$

is surjective by [M3]. Hence we have a linear embedding

$$
\mu^{*}: \mathbb{P}^{6}=\mathbb{P}^{*}\left(H^{0}\left(\omega_{C}\right)\right) \longrightarrow \mathbb{P}^{*}\left(H^{0}(\alpha) \otimes H^{0}(\beta)\right)
$$

and there is a commutative diagram

By [M3], C is a complete intersection of divisors of bidegrees $(1,1),(1,2)$ and $(1,2)$ in $\mathbb{P}^{1} \times \mathbb{P}^{3}$. Let $W=\left(\mathbb{P}^{1} \times \mathbb{P}^{3}\right) \cap \mu^{*}\left(\mathbb{P}^{6}\right)$ be the divisor of bidegree $(1,1)$ and D_{1}, D_{2} the divisors of degree $(1,2)$ such that $C=W \cap D_{1} \cap$ D_{2}. Since $\left|D_{i}-W\right|=\left|\mathcal{O}_{\mathbb{P}^{1} \times \mathbb{P}^{3}}(0,1)\right|$ is base point free for $i=1,2$ and $H^{1}\left(\mathcal{O}_{\mathbb{P}^{1} \times \mathbb{P}^{3}}(0,1)\right)=0$, by Lemma 2.5 , we have extensions \widetilde{D}_{1} and \widetilde{D}_{2} of D_{1} and D_{2} respectively such that $S=\widetilde{D}_{1} \cap \widetilde{D}_{2}$ is a smooth surface. Thus C has a $K 3$ extension.

Case 2. Let α be g_{6}^{2} and $\beta=\omega_{C} \alpha^{-1}$ its Serre adjoint. Then β is also a g_{6}^{2} by the Riemann-Roch theorem.

If α is not isomorphic to β, we have a commutative diagram

By [M3], all morphisms in the diagram are embeddings, and C is a complete intersection of divisors of bidegrees $(1,1),(1,1)$ and $(2,2)$ in $\mathbb{P}^{2} \times \mathbb{P}^{2}$. Let H_{1} and H_{2} be divisors of bidegree $(1,1)$ and D a divisor of bidegree $(2,2)$ such that $C=H_{1} \cap H_{2} \cap D$. Then the systems $\left|H_{2}-H_{1}\right|=\left|\mathcal{O}_{\mathbb{P}^{2} \times \mathbb{P}^{2}}\right|$ and $\left|D-H_{1}\right|=$ $\left|\mathcal{O}_{\mathbb{P}^{2} \times \mathbb{P}^{2}}(1,1)\right|$ are base point free and $H^{1}\left(\mathcal{O}_{\mathbb{P}^{2} \times \mathbb{P}^{2}}\right)=H^{1}\left(\mathcal{O}_{\mathbb{P}^{2} \times \mathbb{P}^{2}}(1,1)\right)=0$. Therefore, by Lemma 2.5, we have extensions \widetilde{H}_{2} and \widetilde{D} such that $S:=$ $\widetilde{H}_{2} \cap \widetilde{D}$ is a smooth $K 3$ extension of C.

If α is isomorphic to β, then by [M3] the canonical embedding $C \hookrightarrow \mathbb{P}^{6}$ factors through the weighted projective space $\mathbb{P}(1: 1: 1: 2)$, and C is a complete intersection of two divisors D_{3} and D_{4} in $\mathbb{P}(1: 1: 1: 2)$ of degree 3 and 4 respectively. By Lemma 2.6, we can extend these divisors to \widetilde{D}_{3} and \widetilde{D}_{4} in $\mathbb{P}(1: 1: 1: 2: 2)$ of degree 3 and 4 such that $S=\widetilde{D}_{3} \cap \widetilde{D}_{4}$ has at
worst cyclic quotient singularities. These singularities are Gorenstein since $\mathbb{P}(1: 1: 1: 2: 2)$ is so. Thus S has only rational double points as its singularities and S is an ample $K 3$ extension of C.

4.4. Genus 8

Let C be a non-hyperelliptic, non-trigonal, non-bielliptic smooth curve of genus 8 . We have one of the following;

1. C has a g_{4}^{1} but has no g_{6}^{2},
2. C has a g_{6}^{2} but is not bielliptic,

3-1. C has a $\mathrm{g}_{7}^{2} \alpha$ such that $\alpha^{2} \not \approx \omega_{C}$, but C has no g_{4}^{1},
3-2. C has a $g_{7}^{2} \alpha$ such that $\alpha^{2} \cong \omega_{C}$, but C has no g_{4}^{1}, or
4. C has no g_{7}^{2}.

For Case 4, it is immediate from Bertini type lemma 2.3 and the Mukai linear section theorem.

Theorem 4.2. ([M2]) A curve C of genus 8 is a transversal linear section of the 8-dimensional Grassmannian variety $\operatorname{Gr}(2,6) \subset \mathbb{P}^{14}$ if and only if it has no g_{7}^{2}

Case 1. In this case we have
ThEOREM 4.3. ([M1], [MI]) The canonical curve C is the complete intersection of four divisors in $\mathbb{P}^{1} \times \mathbb{P}^{4}$ of bidegrees $(1,1),(1,1),(1,2)$ and $(0,2)$.

Let X be the unique irreducible divisor of bidegree $(0,2)$ in $\mathbb{P}^{1} \times \mathbb{P}^{4}$ which contains C. Let $D_{1}^{\prime}, D_{2}^{\prime}$, and E^{\prime} be the divisors on X of bidegrees $(1,1),(1,1)$ and $(1,2)$ respectively, such that $C=D_{1}^{\prime} \cap D_{2}^{\prime} \cap E^{\prime}$ in X. Since $\left|E^{\prime}-D_{2}^{\prime}\right|$ and $\left|D_{1}^{\prime}-D_{2}^{\prime}\right|$ are base point free linear systems and since $H^{1}\left(\mathcal{O}_{X}\left(D_{1}^{\prime}-D_{2}^{\prime}\right)\right)=0$, there are divisors D_{0}^{\prime} and E_{0}^{\prime} of bidegrees $(1,1)$ and (1,2) such that $S=D_{0}^{\prime} \cap E_{0}^{\prime}$ is smooth away from the singular locus $\operatorname{Sing}(X)$ of X.

If X is $\mathbb{P}^{1} \times \mathbb{P}(1: 1: 2: 2)$, then $\operatorname{dim} \operatorname{Sing}(X)=2$ and we can choose D_{0}^{\prime} and E_{0}^{\prime} so general that $S=D_{0}^{\prime} \cap E_{0}^{\prime}$ has at worst ordinally double points as its singularities.

If X is $\mathbb{P}^{1} \times \operatorname{Cone}\left(\mathbb{P}^{1} \times \mathbb{P}^{1} \subset \mathbb{P}^{3}\right)$ or $\mathbb{P}^{1} \times($ smooth quadric), then $\operatorname{dim} \operatorname{Sing}(X) \leq 1$ and therefore a general intersection $S=D_{0}^{\prime} \cap E_{0}^{\prime}$ does not meet $\operatorname{Sing}(X)$. Hence S is smooth.

Case 2. By [M1], the canonical curve C is the complete intersection of two divisors in X of classes $\left|-K_{X}\right|$ and $\left|-\frac{1}{2} K_{X}\right|$, where X is a blowing-up of \mathbb{P}^{3} at a one point. Then $\left|-\frac{1}{2} K_{X}\right|$ is very ample and therefore C is a hyperplane section of D. Since $\left|-\frac{1}{2} K_{X}\right|=|2 h-e|$ is base point free, C has a smooth extension $\widetilde{D} \in\left|-K_{X}\right|$ by Lemma 2.5.

Case 3. Let α be a g_{7}^{2} and $\beta=\omega_{C} \alpha^{-1}$ its Serre adjoint. By the Riemann-Roch theorem, β is also a g_{7}^{2}.

Case 3-1. If α is not isomorphic to β, then by $[\mathrm{MI}]$, the canonical curve C is the complete intersection of three divisors in $\mathbb{P}^{2} \times \mathbb{P}^{2}$ of bidegrees $(1,1),(1,2)$ and $(2,1)$.

Let $W=\left(\mathbb{P}^{2} \times \mathbb{P}^{2}\right) \cap \mathbb{P}^{7}$ be the unique divisor of bidegree $(1,1)$, and D_{1}, D_{2} divisors of bidegrees $(1,2)$ and $(2,1)$ respectively such that $C=$ $W \cap D_{1} \cap D_{2}$. Then $\left|D_{i}-W\right|$ is base point free, $H^{0}\left(D_{i}-W\right) \neq 0$, and $H^{1}\left(D_{1}-D_{2}\right)=0$. Therefore, by the Lemma 2.5, there are divisors \widetilde{D}_{1}, \widetilde{D}_{2} of bidegrees $(1,2)$ and $(2,1)$ such that $S:=\widetilde{D}_{1} \cap \widetilde{D}_{2}$ is smooth and $\widetilde{D}_{1} \cap \widetilde{D}_{2} \cap W=C$. Thus S is a smooth $K 3$ extension of C.

Case 3-2. If α is isomorphic to β, then the canonical embedding factors through a weighted projective space

$$
\mathbb{P}(1: 1: 1: 2: 2)=\mathbb{P}\left(1^{3}: 2^{2}\right)=\operatorname{Proj} k\left[x_{0}, x_{1}, x_{2}, y_{0}, y_{2}\right]
$$

where $\left\{x_{0}, x_{1}, x_{2}\right\}$ is a basis of $H^{0}(\alpha)$ and $\left\{y_{0}, y_{1}, \operatorname{Sym}^{2}(x)\right\}$ that of $H^{0}\left(\alpha^{2}\right)=$ $H^{0}\left(\omega_{C}\right)$.

$$
C \hookrightarrow \mathbb{P}\left(1^{3}: 2^{2}\right) \longleftrightarrow \mathbb{P}\left(2^{6}: 2^{2}\right) \cong \mathbb{P}^{7}=\mathbb{P}^{*} H^{0}\left(\omega_{C}\right)
$$

Theorem 4.4. ([MI]) The canonical model C is the complete linear section of the weighted Grassmann $G:=\operatorname{Gr}\left(2,\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{3}{2}, \frac{3}{2}\right)\right) \subset \mathbb{P}\left(1^{3}: 2^{6}:\right.$ 3^{1}),

$$
\left[C \subset \mathbb{P}\left(1^{3}: 2^{2}\right)\right]=\left[G \subset \mathbb{P}\left(1^{3}: 2^{6}: 3^{1}\right)\right] \cap \mathbb{P}\left(1^{3}: 2^{2}\right)
$$

Since C is smooth, its affine cone

$$
\operatorname{Cone}(C)=\operatorname{Cone}(G) \cap \mathbb{A}(1: 1: 1: 2: 2) \subset \mathbb{A}\left(1^{3}: 2^{6}: 3^{1}\right)
$$

is smooth away from the vertex. By the Bertini type lemma 2.6 , there is a general 5 -dimensional plane $\mathbb{P}(1: 1: 1: 2: 2: 2)$ containing $\mathbb{P}(1: 1: 1: 2$: 2) such that $S:=G \cap \mathbb{P}(1: 1: 1: 2: 2)$ has at worst rational double points. Therefore C has an ample $K 3$ extension.

References

[ACGH] E. Arbarello, M. Cornalba, P. Griffiths and J. Harris, Geometry of Algebraic Curves Vol. I., Springer-Verlag, New York, 1985.
[ELMS] D. Eisenbud, H. Lange, G. Martens and F.-O. Schreyer, The Clifford dimension of a projective curve, Compositio. Math., 72 (1989), 173-204.
[GH] P. Griffiths and J. Harris, Principles of Algebraic Geometry, John Wiley \& Sons, Inc., New York, 1978.
[MM] S. Mori and S. Mukai, The uniruledness of the moduli space of curves of genus 11, Lecture Notes in Math. 1016, Springer-Verlag, 1983, pp. 334-353.
[M1] S. Mukai, Curves and symmetric spaces, Proc. Japan Acad., 68 (1992), 7-10.
[M2] S. Mukai, Curves and Grassmannians, Algebraic Geometry and Related Topics, Inchoen, Korea, 1992, International Press, Boston, 1993, pp. 19-40.
[M3] S. Mukai, Curves and symmetric spaces, I, Amer. J. Math., 117 (1995), 16271644.
[M4] S. Mukai, Curves, K3 surfaces and Fano 3-folds of genus ≤ 10, Algebraic Geometry and Commutative Algebra, Vol. 1, Kinokuniya, Tokyo, 1988, pp. 357-377.
[MI] S. Mukai and M. Ide, Canonical curves of genus eight, Proc. Japan Acad., 77 (2003), 59-64.
[R] M. Reid, Chapters on algebraic surfaces, Complex Algebraic Geometry (Park City, UT, 1993), IAS/Park City Math. Ser., 3, Amer. Math. Soc., Providence, RI, 1997, pp. 3-159.
[S] F.-O. Schreyer, Syzygies of canonical curves and special linear series, Math. Ann., 275 (1986), 105-137.
[W] J. Wahl, The Jacobian algebra of a graded Gorenstein singularity, Duke Math. J., 55 (1987), 843-871.

Graduate School of Mathematics
Nagoya University
Furō-chō, Chikusa-ku
Nagoya 464-8602
Japan
Current address:
Tokoha Gakuen University
1-22-1, Sena, Aoi-ku
Shizuoka-shi, 420-0911
Japan
m-ide@tokoha-u.ac.jp

[^0]: Received December 19, 2002.
 Revised October 1, 2007.
 2000 Mathematics Subject Classification: 14H45, 14C20, 14J28.

