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1. Introduction. Let R be a field and S a separable algebraic closure of

R with galois group (Si?. In [8] Harrison succeeded in describing ($W®'f? in

terms of R only. More precisely, he constructed a certain complex ξ>{R, Q/Z)

and proved Homc(©i?, Q/Z) = H2(R, Q/Z), where Homc denotes continuous

homomorphisms and H2 stands for the second cohomology group of the complex

£). In this paper, which is mainly expository in nature, we reexamine Harrison's

proof and show how [8] connects with Kummer theory and the theory of galois

algebras [16]. We emphasize that most of the ideas on which this paper is

based originate in [8].

In 2. the complex £>(i?, /) is introduced for any commutative ring R and

abelian group /. If / is a finite abelian group of exponent e and R a field of

characteristic prime to e, we show that ξ)(R, /) is isomorphic to a complex

arising in ordinary group cohomology. This enables us to compute Hn{R, J)

in case R is a field of characteristic prime to e and containing the eth-roots of

unity. In 3. we consider a field R and a galois extension field 5 with galois

group (§. We give two proofs, one using spectral sequences, of the existence

of an exact sequence

/) -+H\Ry J) ->#*(S, /) .

From this we can already deduce Harrison's result in case R has characteristic

0 and also obtain the main exact sequence of Kummer theory. Section 4 is

devoted to a new exposition of the foundation of the theory of galois algebras

[16] over a commutative ring. It turns out that the dual concept, that of

galois coalgebra, is much more amenable to treatment and we accordingly
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treat matters in this way. The connection of this theory with the complex £>

is also given. In the last section we show that galois algebras with cyclic

galois groups are necessarily commutative and complete the proof of Harrison's

theorem in the general case. The main result of 5. for algebras over fields

has recently been generalized in [10].

A treatment of this material from the viewpoint of category theory will

be published by S. U. Chase in the Proceedings of the Conference on Categorical

algebra held at Lajolla, California, in June 1965.

All commutative rings occuring in this paper have identities.

2. Harrison cohomology and group cohomology. Let R be a commutative

ring and / an abelian group. In [8] Harrison defined a cochain complex £>(i?,

A) as follows. Let U denote the functor which assigns the multiplicative

group of units to any ivNalgebra, / " the direct product of / with itself n times,

R(Jn) the group algebra of Jn over Ry and let #(/°) = R. We shall often

identify R(Jn) with R(J) ® ®R(J)2) via the usual natural isomorphism.

Then £>"(#, / ) , the Acocham group is U(R(Jn))y ^ = 0, 1,2, . . . . Let

Δ : R(J)->R{J2) denote the usual diagonal map and let Δ\ : R(Jn) ->i?(/w f l),

i = 1, 2, . . . , n, denote the "diagonal map applied at the ί'ίΛ-place". Explicitly,

J, is defined by linearity and J/( 0i® ®an^ -ax®
 %ai-χ®ai®ai® ®an,

for an in /. Furthermore, let ΔQ, Δn+ι. : R(Jn) ->R(Jn+1) be defined by

Δ0(a) = 1®Λ, Δn+i(a) = a®l. Then the coboundary operator 8B of $(R, ]) is

defined by

(2.1) dB(x)=nΏΔi{xY'1)i

9 » = 0, 1, . . .
o

for * i n U(R(Jn)). Note that for x in U(R) - U(R(J0)), δB(x) = 1. The

cohomology groups of ©(!?, /) will be denoted by Hn(R, / ) , Λ = 0, 1, 2, . . . .

In this section we show that if / is a finite abelian group and R a field of

characteristic prime to the exponent of /, then the complex ξ>(R, J) is isomor-

phic to a more familiar one arising in group cohomology. The latter arises

as follows. Let G be a group, M a left G-module, and © a group operating

on both G and M as group automorphisms such that

ω(σrn) = ω(σ) ω(m)

2) The unadorned ® always means tensor over R.
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for all ω in ®, a in G, and m in M. An equivariant ^-cochain of G to M is

a function / : Gn ->Λf, such that for all ω in ® and #1, . . . , an in G

ω(f(σif . . . , <;«)) = f{ω(ai)> . . . , ω(ί;«)).

Under pointwise addition these form a group which is denoted by C^Gt M).

Note that if Cn(G, M) is the ordinary w-cochain group, (S acts on it via

and that C& G, M) = (CΛ(G, Λf))®. The usual coboundary operator, δ, of group

cohomology [11, (5.8) p. 116] sends C®{G, M) to C®+\Gf M) and we thus

obtain a complex C®iG, M) whose cohomology groups are denoted by H®(G,

M), n = 0, 1, 2, . . . . If © = 1 we clearly obtain the usual cohomology groups

£Γ(G, M) [11, p. 115].

Returning now to §(i?, /), let S^R be a commutative ring and ® a group

of iv?-automorphisms of S. By /(S) we shall mean the group of characters of

/ to S. It is clear that ® operates on J(S), and so viewing 5 as a trivial JiS)-

module, C@(/(5), S) is defined and indeed is an ivNalgebra under pointwise

operations. We define

T: R(J)->Cb(J(S), S)

by Γ ( Σ v ) α ) = Σ ^ ( f l ) for a in J, X in /(S), rα in i?.

LEMMA 2.1. T /s β homomorphism of R-algebras. If J is a finite abelian

group of exponent e, R a field of characteristic prime to e, S the field obtained by

adjoining the eth-roots of unity to Ry and (S the galois group of S over R, then T

is an isomorphism.

Proof The first statement is clear. Under the further hypotheses, it is

well known that JiS) is the full character group of J and that the square

matrix LX(a)l, X in JiS). a in /, is nonsingular [15, §126, p. 181]. Therefore

it follows that for any function / : J(S) ->S, the equations

(2.2) f(X) =Σ**Z(α) I in J(S)

have unique solutions sa in S. Hence, if T(^raa) =0, we have rα = 0 and so

T is injective. Now for an / in C©(/(S), 5),

= f(ω7) = ^5 f f(
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for all ω in ©. Since ωX runs through J(S) as X does, this means t h a t {ω(sa)}

is another set of solutions of (2.2) . T h u s ω(sa) = sa for all ω in © so t h a t sa

= rG lies in i?. Hence T is surjective, proving Lemma 2.1.

Next, let maps 0/ : C®<G9 M ) -^C®+ 1(G, Λf), i = 0, 1, 2, . . . , » + 1, be defined

by

{θjf)(σly - . . , <rΛ + i) = / ( t f i , . . . , <7ι-i, aiΰi+i, <7*+2, . . , <r«+i), / = 1, 2, . . . , »

As usual we identify (/(S))" with /M(S) by setting

Let ΓΛ : i?(/^)->C@((/(5))w, S1) denote the i?-algebra homomorphism defined

just before Lemma 2.1. Then it is easily verified that all the diagrams

R(Jn) -^Cfe((/(S))n, S)

ί = 0, 1, . . . , » + l , are commutative. Furthermore, C/(C@((/(S))n, S)) =

C@((7(5))n, £7(S)) with U(S) viewed as a trivial /(S)-module. Since the
n + l _ f

coboundary operator of C%(j(S), U(S)) is Π ^ ( 1 } , the above commutativity

shows that the mappings Tn induce a complex homomorphism ©(i?,/)->

Since the exponent of Jn is that of /, Lemma 2.1 then yields

THEOREM 2.2. Let J be a finite abelian group of exponent e, R a field of

characteristic prime to e, S the field obtained by adjoining the eth-roots of unity to

R, and © the galois group of S over R. The map defined by linearity and
n

tfiΘ * Θ ^ n - ^ / with f(X\,. . . , Kn) = TlXλai) (#/ in ]-> /% in J(S)) induces an
1

isomorphism of complexes ξ>{R, J) =C®(J(S), U(S)), with U{S) being viewed

as trivial J{S)-module. Hence Hn(R, J)=H®(JiS), U{S)), » = 0, 1, 2,

COROLLARY 2.3. Let J be a cyclic group of order n, and R be a field of

characteristic prime to n containing the nth-roots of unity. Then

H2k(Rt J)^U(R)/(U(R))n, ft = 1 , 2 , . . .

H2k+\R, J)=J ft = 0, 1, . . . f
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Proof. Theorem 2.1 with R = S and © = 1 is applicable. Since J(R)=J

[15, p. 180] is cyclic, the groups Hn{j{R), U(R)) are well known [11, p. 122]

and the result follows upon noting that, since J(R) acts trivially, the norm is

just raising to nth-powers and the elements annihilated by the norm are precisely

the nth-roots of unity in R, a group isomorphic to /.

Remark. The isomorphism H*(R, J) = H*(J(R), U(R)) in case R is a

field of characteristic prime to e and contains the eth-roots of unity has already

been noted in a slightly different form in [16, p. 82].

3. An exact sequence and Kummer theory.

LEMMA 3.1. (cf. [8, Lemma, p. 233]) Let R be a commutative ring con-

taining no idempotent but 0 and 1. Then H\R, /) =/.

Proof. Let x=*Σraa in U{R(J)) be a 1-cocycle. Applying (2.1), we have

JoU) Δ2(x) = Jι{x) or

Since {(a®b)\a, b in /} is a basis of R(J2) over R, the ra are a system of

orthogonal idempotents. Hence x=a is in/. Since δH : U(R) ->U(R(J)) is

the trivial map, 1 is the only 1-coboundary and the lemma is proved.

Now let R be a field and 5 a galois extension field with galois group ©.

We allow © to be inήnite and then view it as a pro-finite group, i.e. as a

compact totally disconnected topological group [14]. For any abelian group/,

the action of © on 5 turns U(S{JQ)) into a ©-module. Moreover, © operates

continuously on the discrete space U(S{JQ)), since it is clear that if {Si} is

the family of finite galois extensions of R contained in 5, then U(S(JQ)) is

the union of the U(Si(Jq)). If M is any discrete ©-module on which © operates

continuously, we denote the complex of continuous cochains of © in M by

C(©, M), and the cohomology groups of this complex by Hp{(&, M), p =

0, 1, 2 [14, 1-9].

Now consider, for any abelian group /, the bigraded group

Eo = ΈEt\ p,q = 0, 1, 2, . . . , where EtQ = Cp(®, U{S(JQ+1)))

There are two derivations on £Ό,
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being the usual one of group cohomology [11, p. 116] and,

δH : Et'η-+Et'Q+1

defined by (δnf) Uu . . . , βp) = fo(/(</i, . . . , σp)), with 8H as in (2.1). It is

easily verified that δHδ = 8nδ and, making an obvious change in sign, we obtain

a bicomplex (EQt δ, ± δH) Ell, p. 340] whose associated total complex { Σ Et'Q,

δ ± δh} we denote by Tot. As usual there are two spectral sequences, both

converging to H{Tot). Letting Hs and HSH stand for cohomology with respect

to δ and δu respectively, their E2 -terms are given by HδHδBEo and HδEHδEo

[4, p. 331].

PROPOSITION 3.2. There is a spectral sequence

Hp(%, Hq+\S,
P

Proof. It is readily seen that Cp(®f ) is an exact functor on the category

of discrete ©-modules on which ® operates continuously. Hence by [4, Thm.

7.2, p. 681, HδHEξ Q^Cp(®9 HQ+1(S, /)). For the first of the above spectral

sequences, therefore

Ep

2>
q = Hp{®, HQ+1(S, / ) ) ,

which proves the proposition.

Before dealing with the second spectral sequence we note the following

generalization of Hubert's theorem 90:

LEMMA 3.3. If Jis a torsion group, then H\(&, U{S(Jη+1))) = 0, q = 0,1, 2,....

Proof. Let {Si} be the family of finite gaϊois extensions of R contained in

5 with galois groups <S, . Then ([14, Prop. 8, p. 1-9]) HH®, U(S(JQ+1))) =

lim H\®if U(Si(Jq+1))). Since / is torsion, / = lim/y where the //s are finite

abelian groups. Once more by [14, Prop. 8, p. 1-9], H\®i9 U{Si(JQ+1))) =lim

Hι(($l9 U(Si(J]+1))). It therefore suffices to prove Lemma 3.3 assuming that

both © and / are finite. In this form the lemma is a special case of [13, Exc.

2, p. 160] or also follows from [5]. Indeed, by [5, Lemma 1.7], S(/<?+1) =

S®R(JQ+1) is a galois extension of R(JQ+1) with galois group (S. Hence by

Corollary 5.5 of [5], H\®, U(S(Γ+1))) is a subgroup of P(R(Γ+1)), the group

of finitely generated projective R(Jq+1)-modules of rank one, But the latter
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is 0, since R(JQ+1) is a finite-dimensional algebra over a field and thus is a

semilocal ring Π3, Prop. 5, p. 143].

PROPOSITION 3.4. // / is a torsion group there is a spectral sequence

Et>q =>Hn{Tot)
q

with E\-q = HQ+1(R, J) and E\ q = 0, q = 0, 1, 2, . . . .

Proof. Clearly HδEt'q^Hp{®, U(S(Jq+1))). Hence HδEl' q= UiSiΓ*1))®

= U(R(fq+1)) and so for the second of the above spectral sequences, El'q =

Hq+1(R, J). By Lemma 3.3, HδEl' q = 0 and so E\ q = 0 for this spectral sequence.

COROLLARY 3.5. If R is a field, S a galois extension field with galois group

®, and J an abelian torsion group viewed as trivial © -module there is an exact

sequence

O- f̂fH®, J)->H\R, f)-+H\S, J)%

Proof. The five term exact sequence of low degree terms [7, Thm. 4.5.1,

p. 82] of the spectral sequence in Lemma 3.4 yields an exact sequence

In view of Lemma 3.4, this shows that the edge homomorphism H2(R, J)-*

/fHTot) is an isomorphism. Applying the same exact sequence in the case of

the spectral sequence of Proposition 3.2 and keeping Lemma 3.1 in mind, then

yields the exactness of

0->i/H®, J)-*H2(R, J)->H\S, /)®.

Remark. It should be noted that since (S operates trivially on /, iJ^®, /)

is simply the group of continuous homomorphisms of (§ to /, denoted by

Homc(®, /) in [8].

We proceed to compute the above map ϋfH®, /)-^ϋΓ2(i?, /) explicitly in

order to see that it is the same as the map A of [8, p. 232], and at the same

time sketch a proof of Corollary 3.5 that does not use spectral sequences.

The two edge homomorphisms E\*-j>H\Ύoϊ) andES'^ίΓHTot) in the two

spectral sequences arise from injecting the d^-cycles on the Λ:-axis and the d-

cycles on the y-axis into Tot [7, p. 89].

An arbitrary element of degree 1 in Tot has the form (u, v) with u in
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CH®, U(S(J))) and υ in C°(®, UiSiJ2))) = U(SiJ2)). Hence the isomorphism

/f2(ie, /) -^i/HTot) arises from mapping a 2-cocycle v in £Λ2?(/2)), the d-cocycles

of U(S(J2)), to (1, t;), and the mapping #H®, /) ->Hι(Tot) is given by sending

a continuous homomorphism / : ®-*/, to (/, 1). Hence, for a given / in

#*(©, / ) , there is a unit i; in R(J2) and a unit w in S(J) such that

= (δw, δntv)(l, v).

Thus, for all a in ® we have f(a) = -^^- andδniw) = v. The mapping #H®,

J)->H2{Ry J) then sends the class of / to that of v in U(R(J2)), which is

precisely the mapping A of [8, p. 232]. Furthermore, this immediately suggests

the following alternate proof of Corollary 3.5. The residue class of w modulo

U(R(J)) is clearly a 1-cocycle in £>(S, J)/φ(R, /) , a complex which we denote

by V. The exact sequence of complexes

yields the exact cohomology sequence

H\R, J)-+H\S, J)-*H\V)-*H\R, J)->H2(S, /).

In view of Lemma 3.1, this becomes the exact sequence

To prove HH(§>, J)^H\V) we proceed as follows: given a 1-cocycle of V, let

w b e a representative in U(SIJ)) and define / : ®-»ϊ/(S(/)) by / U ) = ^ ^ L

Since 5je(^) is in U(R(J2)), it is readily verified that f(σ) is a 1-cocycle in

£>(S, /) and thus, by Lemma 3.1, lies in /. Hence / is in i/1!®, /) . Conversely,

given / in iJ !(®, /) , it may be viewed as a 1-cocycle of ® in U(S(J)). By

Lemma 3.3, there is a unit w in S( J) with f{a) = ^ for all a in ®. Since

f(σ) is in / it follows readily that the class of w modulo UiR(J)) is a 1-cocycle

in V. It is then straightforward to verify that the correspondence f<*w induces

an isomorphism i/1!®, J)^HX(V). Except for the use of Lemma 3.3, this is

the essential idea of Harrison's proof that "the map is one-one".

COROLLARY 3.6. Let R be a field, S a separable algebraic closure of R with

galois group ®i?. Then in order to prove Harrison's theorem, Homc(®i?, Q/Z) =

H\$R, Q/Z) =H2(R, Q/Z), it is sufficient to show H2(S, /) = 0 for all unite

cyclic groups J.
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Proof. By Corollary 3.5, it is clearly sufficient to show H2(S, Q/Z) = 0.

Now if J-^limJi, it is clear that ${R, /)^l im ©(#, /,-) and by [4, Prop. 5.9.3*,
- > -*•

p. 100] it follows that Hn(R, J) = lim Hn(R, /,-), n = 0, 1, 2, . . . . Since Q/Z

is t h e direct limit of all finite cyclic groups the result now follows.

COROLLARY 3.7. If R is a field of characteristic zero, S an algebraic closure

of R with galois group ®Λ, then H\®s, Q/Z)=H2(R, Q/Z).

Proof. Let / be a cyclic group of order n. By Corollary 2.3, i72(5, /) =

U(S)/(U(S))n and this is 0 since 5 is algebraically closed. This together with

Corollary 3.6 proves the result.

COROLLARY 3.8. Let J be a cyclic group of order n, R a field of characteristic

prime to n containing all the nth-roots of unity, and S a galois extension field of

R with galois group ©. Viewing J as a trivial ^-module, there is an exact sequence

O-^i/1!®, J)^U(R)/(U(R))n->mS)/(U(S))n

Proof. This follows immediately from Corollaries 2.3 and 3.5.

Remark. Since #*(©, J) is the group of continuous homomorphisms of ®

to /, and / may be identified with the group of the n-th roots of unity in R,

this exact sequence is the basic part of Kummer theory [1, p. 19 13, p. 163].

4. Galois algebras and coalgebras. In order to prove Harrison's theorem

for fields of arbitrary characteristic, it is necessary to study H2{R, J) in greater

detail. In this section we follow up the original ideas in C8] and exhibit a

close connection between H°'(R, J) and the theory of galois algebras initiated

by Hasse and his school [16].

Let R be a commutative ring and G a finite group. As before, R{Gn)

denotes the group ring of Gn = Gx x G (n times) over R, and R{Gn) will

be viewed as an i?(G)-module via diagonal action, i.e.

0 τn) = tfri 0 * * # ®ύτn.

By a galois R-coalgebra (R(G), D), we mean R{G) together with an R(G)-

homomorphism

D :

The coalgebra is coassociative if the diagram
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(4.1) 11

is commutative. Two galois i?-coalgebras (R(G), D), (R(G), D) are defined

to be isomorphic if there is an R(G) -module automorphism Φ of R(G) rendering

the diagram

(4.2) JΦ _ ]

commutative.

Isomorphism classes of galois i?-coalgebras are easily described in terms of

elements of R(G2). Indeed, since D is an i?(G)-homomorphism, for any x in

R(G) we have

(4.3) D(x) = J(x) D(l)

where A is the usual diagonal map, as in 2. Let D(ϊ) = u. Then it is immediate

that (4.1) is commutative if and only if (Z>(g)l)(Z>(l)) = (1®Z>)(ZK1)), since

all the mappings are i?(G)-homomorphisms. This last equation is equivalent

to

(4.4) A(u)Mu) ^MU)JQ(U)

in the notation of 2. Conversely, given any element u in R(G2) satisfying

(4.4), define D{u)(x) = J(x)u. Then it is clear that {R{G)> D{u)) is a coas-

sociative galois ϋNcoalgebra.

If (R{G), D) = (R(G), D), then, since Φ is an i?(G)-module automorphism

(4.5) Φ(x) =xΦ(l) =xv

for all x in R(G), where v =• Φ(l) is a unit in R{G). Since all maps in the

diagram (4.2) are i?(G)-homomorphisms, commutativity of (4.2) is equivalent

to the condition that D(Φ{1)) = (0®0)(/5(l)), i.e. that

(4.6) Δ(v)u = ϊί(v®v).

Again it is quite clear that, given two galois coalgebras (R(G), D)y {R(G)t D)

and a unit υ in R(G) satisfying (4.6), then defining Φ by (4.5) yields an
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isomorphism between them. Since (4.6) is easily seen to be an equivalence

relation, we have established

PROPOSITION 4.1. There is a bijection of pointed sets between the set of iso-

morphism classes of coassociative galois R coalgebras (RiG), D) and equivalence

classes of elements of R{G2) satisfying (4.4), the equivalence relation being given

by (4.6). The isomorphism class of (R(G), Δ) corresponds to the equivalence

class of 1. The bijection is implemented via (4.3).

Unfortunately, coalgebras are not very familiar objects. In order to obtain

more precise results we find it necessary to deal with better known objects,

and so we examine the dual of a coalgebra.

For any i?-module M we set M* = Hom^Λf, R). If M is also an R(G)-

module, M* carries the usual R(G)-module structure defined by

(4.7) {σψ){m) = ψXa^m) for ψ in M*, m in Mt and a in G.

It is well known that if M is isomorphic to R{G), then Λf* is also [6, p. 7].

Let (R(G), D) be a coassociative galois i?-coalgebra. Set A(D) = R(G)*.

Then there is a R{G)-isomorphism p : A{D) ->R(G) and the transpose of D,

the mapping D* : A(D) ® A(D)-»A(D) yields a multiplication on A{D).

Transposing the commutative diagram (4.1) shows that this multiplication is

associative and since D is an i?(G)-homomorphism, G acts as a group of R-

algebra automorphisms on AiD). Explicitly the product on A(D) is given by

(4.8) (h g)(x) = (h®g)(D(x)) =

for h, g in A(D) and x in RiG). In contradistinction to the commutative rings

occurring in this papery AiD) need not have an identity. Finally, if Φ

(R(G),D) ->(R{G), D) is an isomorphism of galois i?-coalgebras, transposing the

commutative diagram (4.2) shows that Φ* : A(D) ->A{D) is both an RiG)-module

and i?-algebra isomorphism.

The foregoing leads to the following

DEFINITION 4.2. Let R be a commutative ring and G a finite group. An

associative i?-algebra A (not necessarily with identity) is called a galois R-

algebra with galois group G if

(i) G acts as a group of i?-algebra automorphisms of A and
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(ii) there is an R(G)-isomorphism p : R(G)->A or equivalently

(iiO A has a normal basis.

Two galois i?-algebras A and Ά with galois group G are said to be isomorphic

if there is an i?-algebra isomorphism A->Ά which is also an R{G)-isomorphism.

THEOREM 4.3. The set of isomorphism classes of galois R-algebras with galois

group G is bijective with the set of isomorphism classes of coassociative galois R-

coalgebras, (R(G), D). The bisection from coalgebras to algebras is given by

sending the isomorphism class of iR{G)> D) to the isomorphism class of A{D).

Under this map the isomorphism class of (R(G), Δ) corresponds to the isomorphism

class of the algebra Σ (&Reσ with eaeτ = δσ,τea and σ{ex) =eσχ. This algebra is
n in G

called the trivial galois R-algebra with galois group G.

Proof. Let A be a galois ivNalgebra with galois group G. By (ii) there

is an R(G)-isomorphism p* : A* ->i?(G)* = i?(G), hence an R(G)-isomorphism

•η : A*-+R{G). Denoting the multiplication of A by μ, there is a unique map-

pingD(A, -η) - R(G) ->R{G2) which makes the following diagram commutative,

A*—£—,A

D(A,V)

R(G) >R(G)®R(G)

The associativity of μ implies the coassociativity of (i?(G), D(A, η))f and, since

for all a in G we have σ(μ(x®y)) = μ(σ(x) ®σ(y)), the mapping μ* and hence

also D{Ay -η) is an i?(G)-homomorphism. Thus (R{G)y D(A, γ)) is a coas-

sociative galois i?-coalgebra.

Now let Ai, i= 1, 2, be galois i?-algebras with galois group G and τ?, : A*

-*R(G), i = 1, 2, be iv?(G)-module isomorphisms. Suppose that there is an R-

algebra and R(G)-module isomorphism λ ' A\-*A2. We shall show

{R(G),D{AU vi))-=* {R(G), D{A2, yz)). Let Φ : R{G) ->R{G)2 be the composite

If μiy i= 1, 2, denote the multiplications of Ai, then the properties of yu r}2t λ

ensure the commutativity of
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R(G) -» At -> A? ->Λ(G)

\D{Aι,Vt) [μt L* \D(ΛI,VI)

v'1^v-1 * a*®** ^ ^(g^ y

where, as usual, we have identified (Ai®Ad* with A*®A*. But this is

equivalent to the commutativity of

Since Φ is obviously an i?(G)-automorpism, this proves (R(G), D(Ai, ηι)) =

(i?(G), D(A2, y2)).

Hence, A->(i?(G), D{A, γ)) induces a well denned mapping Ft from iso-

morphism classes of galois algebras to isomorphism classes of galois coalgebras.

As was noted above Definition 4.2, (R{G), D)-+A(D) induces a well defined

mapping Ff, from isomorphism classes of galois coalgebras to isomorphism

classes of galois algebras. To prove that F'F is the identity, we note that

transposing the diagram used to define D(Af -η) yields a commutative diagram

„**

A * * « - - — * * *

V
1 D(A,V)*

< R{G)*®R(G)*.

Since A is a finitely generated free i?-module there is a natural, whence also

R(G)-, isomorphism A** = A which takes μ¥* to μ. Identifying ^4** with A

then shows that η* : i?(G)*->A is an algebra isomorphism of A(D(A, η)) with

A which is also an R{G)-isomorphism. To show FF' is the identity, let τ>

R(G)**-+R(G) be the natural isomorphism. Then D(A(D), -η) is defined by

the commutative diagram

® R(G)**

I V I
* D(A(D),V) *

R(G) >

Again, identifying R(G)** with i?(G) and £>** with Z) shows Z)(A(Z)), vj) = D,

and thus F' = F" 1 .
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Finally, to compute F~\(R(G), j ) ) , let {hσ} be the i?-basis of R(G)* dual

to the i?-basis {σ\σ in G) of R(G), i.e. Aσ(τ ) = δ o , τ . By (4.8), (Ao Aτ)(p) =

ha(p)h-z(β), so that the hσ are orthogonal idempotents. By (4.7), (<r/^)(p) =

hτ(σ~1p) so that <τ(Aτ) = Aστ. This completes the proof of Theorem 4.3.

Proposition 4.1 and Theorem 4.3 immediately yield

PROPOSITION 4.1Λ There is a bisection of pointed sets between the set of iso-

morphism classes of galois R-algebras with galois group G and equivalence classes

of elements of R(G2) satisfying (4.4), the equivalence relation being given by (4.6).

The isomorphism class of the trivial galois R-algebra with galois group G corresponds

to the class of the identity element of R{G2).

Remark. Proposition 4.1' is equivalent to Satz 1 and Satz 2 of Chapter 1

of [16]. The element u~D(l) or D(Λy τ?)(l), is called a "Resolventenfaktor"

there. The use of coalgebras seems to simplify notations and proofs considerably.

Now if G=J is an abelian group and u is a unit in i?(G2), the relation

(4.4) is simply the condition that u be a 2-cocycle in €>(i?, / ) , while (4.6)

then asserts that u and u are cohomologous. Hence

COROLLARY 4.4. If J is α finite αbeliαn group, there is α bijection between

H2{R, J) and the isomorphism classes of galois R-coalgebras (R(J), D) Γgalois

R-algebras with galois group / ] for which D(l) is a unit LD{A, ??)(l) is a unit].

The element 0 of H'iR, J) corresponds to the class of (i?(/), Δ) ίthe trivial

galois R-algebras with galois group / ] .

In order to characterize those algebras and coalgebras for which u is a

unit we introduce

DEFINITION 4.5. Let A be a ring with identity, G a finite group of ring

automorphisms of A and R = AG. Let E be the ring of functions from G to A

under pointwise operations. Then A is called a galois extension of R with

galois group G if

(i) R is in the centre of A

(ii) the mapping A : A&A-+E defined by A{x®y)(σ) = xσ{y) for x, y in

A, a in G

is an ivNmodule isomorphism.

Remark. This is a slight generalization of a concept introduced in [5]. It
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is not difficult to see that the conditions (b) and (c) of [5, Thm. 1.3] are still

equivalent to (ii) above, assuming (i).

THEOREM 4.6. A galois R-algebra with galois group G is a galois extension

of R with galois group G if and only if the class of elements in R(G2) corresponding

to its isomorphism class consists of units.

Proof It is clear from (4.6) that if the equivalence class of an element

of R{G2) contains one unit then the entire class consists of units. Hence we

may assume that our galois algebra is of the form A-A{D(u)) with u in

R(G2) satisfying (4.4). Thus A = i?(G)* with multiplication defined by (4.8).

Let h be the element of A defined by Ml) = 1, h(σ) = 0 for a#1 in G. Then

a(h) = hoy where ho is defined by hσ{τ) = δσ,χ. Clearly, the elements hσ {hi =h)

form an i?-basis of A. Now, let u = Σ^σ,τ(<7®r) with ro,x in R, and a, τ in

G. Then it is easily checked that

and so

(4.9) ho*hτ = ro τ/z + Σr p/zP rp in R.
pφl

As usual, we identify {A® A)* with R(G)®R(G) by setting

(σ®τ)(hλ®hP) =hλ(σ)h?(τ).

Next, we define an i?-module homomorphism Γ : R(G2) ->£*, where E is the

ring of functions from G to A, by

Γ(σ<S>τ)(ψ) =φ(σ)(τ) for a, τ in G and ψ in E.

Γ Λ*

Consider the composite map R(G2)—>£*—>(A ®A)* = R(G2). We shall com-

pute Λ*Γ explicitly in a number of steps,

(i) (Λ*Γ)(1®1) = «

Proof For any σ, τ, A, p in G we have

In particular, (Λ*Γ) (1 ® l) (AA® Ap) = n.P by (4.9). In view of the identification

of {A® A)* with R{G2) this means that (Λ*Γ)(1® 1) = 5>x.PU® p) = «,
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(ii) Define a left R{G2)-module structure on Eby L(λ®p)φl(σ) =

for λ, p, a in G, φ in E. That this is indeed a well defined left R(G2)-module

structure follows from the fact that this is just the tensor product of the two

standard left module structures

(λφ)(a)^λlφ{λ"1σ)l and (μψ)(σ) =ψ(op)

which clearly commute. Then E* becomes a right R(G2) -module in the usual

way, viz. for ψ in E*, φ in E and z in R(G2)

(ψz)(φ) = ψ{zψ).

Now, define a right R{G2)-module structure on R(G2) by

(</®r)*Q®p) = U" 1 ^)® U~M for <τ, r, Λ, p in G.

Again, this is a tensor product of two standard R{G)-module structures.

Keeping the R{G)-module structure of A, (4.7), in mind, it is then easily

verified that Γ : R(G2)-»E* is a right i?(G2)-module homomorphism.

(iii) A® A has a left R{G2)-module structure given by

(4.10) U®p)(Aβ® Aτ) = Λ(**)®p(*τ) = Aλσ ® Apτ

With this module structure Λ : 4̂ 0 A ̂ £ is an i?(G2)-module homomorphism

using the R{G2)-module structure of £ defined in (ii), as can readily be checked.

Now, when {A® A)* is identified with R(G)®R(G), the right i?(G2)-module

structure of (A®A)* arising from (4.10) carries over to the right R{G2)-

module structure of R(G2) given by

(a ® τ) ° U ® β) = ^

Hence, ^* : E*-+R(G2) is a right i?(G2)-module homomorphism, using the

°i?(G2) -module structure on R{G2).

(iv) U*Γ)(<J®Γ) = (τ^στ'^u and so (yi*Γ)(i?(G2)) = R{G2)u.

Proof. Combining (iii) and (ii) shows that U*Γ)(ΛΓ* U® p)) = CU*Γ)U)]<>

^®p, for ΛΓ in 7?(G2) and ,̂ <o in G. Now (T0r= (1® l)*(r" 1® r"1^), hence

(yl*Γ)(ί;Or) = [(ylV)(l(g)l)3o(r-
1

(g)r-
1

ί;) = (Γ®< ;-
1

r)^by (iii) and (i). Choosing

τ - /t and a = pA, leads to (Λ*Γ) (pλ ® A) = (A 0 p)κ, proving (/ί*D {R(G2)) = R(G2)u.

(v) Γ is an isomorphism of i?(G2)-modules.

Proof. Since £ and i?(G2) are finitely generated free 7?-modules we may
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identify £** with E and R(G2)* with A® A. It will therefore be sufficient to

show Γ* : E-*A®A is an isomorphism. To this end, define ψσ,τ in E by

ψo,τ{λ) = δa,τhτ, a, τ,λ in G. Since {/ẑ } is an i?-basis of A, it is clear that

{ψo,,} is an ie-basis of E. Now (Γ*(?>σ,τ))U® p) = y><,fτ(ΓU® p)) = {ψn,~Λλ))(p)

= δπ,χδ-:tP=(hf,<g>hχ)(λ®p). Thus Γ*\ψo,τ) = /zσ(g>/zτ and so Γ* carries an /?-

basis of £ to one of A® A and is, consequently, an isomorphism,

(vi) A is an isomorphism if and only if u is a unit.

Proof. If Λ is an isomorphism then, in view of (v) so is Λ*Γ, and thus

by (iv), R(G2)u - R{G2). Hence there is an element u' in R{G2) with u'u = 1.

Now, if for an element 2 = Σ n , P U 0 p ) in R(G2),zu = 0, then by (iv)

(Λ*Γ)(5>λ,p(ιyΛ®Λ)) =0, so that Σn fP(pyt® Λ) = 0 or n,P = 0, i.e. £ = 0. But

(&&' -- ί)u = 0 and so w^; = 1 also, which proves that u is a unit.

By (iv) Λ*Γ is the composite of the left multiplication by u and the R-

module homomorphism defined by linearity and a® r-» τ®στ~1. But the latter

is an isomorphism whose inverse is defined by a ® τ -> τa 0 a and linearity. Thus,

if u is a unit, Λ*Γ is an isomorphism, and since by (v), Γ is an isomorphism,

A* and hence also A must be one too.

(vii) If u is a unit, then 4̂ = A(Z)(«)) has an identity.

Proof. Let ε : R(G) ->i? be the algebra homomorphism defined by linearity

and ε(<;) - 1 for a in G. A routine computation then yields the following

formulae, valid for any element u in R{G2).

(e®e®ϊ)(Jι(u)) = (ε<g>l)(«) (1 ® e® ε) (A^u)) = (l®e)(«)

(ε®e® 1)(J8(«)) = (e®e)(a) (1® e® e)(A(«)) = (l®e)(«)

(ε®e® 1)(J2(«)) = (e® 1)(«) (1® ε® e) (J2(«)) = (l®ε)(«)

Applying the two i?-algebra homomorphisms ε®ε®l and l®ε®ε R(G3) ->

i?(G) to (4.4) and bearing in mind that both (ε®l)(«) and (l®ε)(«) are

units in R(G) then shows

- (ε® 1)(«) = (1®

For & = Σ ^ τ U ® r) this implies, Σ τ \ τ = 0, σ±el, Σ ^ , t = 0, r ^ l and Σ*Ί,τ
τ σ τ

= Σ ^ . i = (ε® ε){u) a unit, r, in R. Now ε is an element of A = R{G)* and
(7
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we compute ε hi and hx e. By (4.8), (ε hι)(λ) = (ε®hι)((λ® λ)u) = (e®hι)

(Σra,τλσ®λτ) =Σr σ ,x- i = rδλ,u Similarly, (Ai e)U) = rό\,i. Hence {r~xe)hi
n

= hι{r'xε) = Ai. Now set 0 = r~xe. Then for all <y in G, <;(*?) = e and so eho =

h<,e = σ(hι) = h0. Thus e is the identity of A, cf. [16. §7].

Steps (vi) and (vii) complete the proof of Theorem 4.6.

An associative i?-algebra with identity, A, is a separable ivNalgebra if the

two-sided A -module A is protective [4, Chap. IX, §7]. If R is a field this is

equivalent to the usual definition, i.e. [_A '. R] < °° and A ® R1 is semisimple

for every extension field R' of R [12, Thm. 1 and 4, Thm. 7.10, p. 179].

LEMMA 4.7. A galois extension of R with galois group G is a separable R-

algebra.

Proof. By [4, Prop. 7.7, p. 179] an algebra A is separable if and only if

there are elements #, , #•, i- 1, . . . , n in A such that Σ */.)>/ = 1 and *Σxxi®yi

= Σ^ί®3Ί"^ in A® A for all Λ: in A. Now let y be the element of E defined

by φ(σ) = da,i for a in G and let (yΓ 1)^) =Σ*/®.y/. Then for all a in G,

Σ^ί^^i) = <5σ,i. Hence, Σ ^ / = l Moreover, y 4 ( Σ ^ ®3Ί')(<;) = 'Σxxiσ(yi) =

ΛΓ̂i.σ and ^(Σ^/Θ^/^)(^) = Σ ^ ( ^ W =tfU)ίi,«. Thus ^(Σ^/®^/) =

Λ(ΣiXi®yix) and since yi is an isomorphism, ^xxi®yi = *Σxi®yiX, which proves

the lemma.

Corollary 4.4, Theorem 4.6 and Lemma 4.7 yield

COROLLARY 4.8. If u is a unit of R(G2), A = A(D{u)) is a separable R-algebra.

If J is a finite abelian group, H2(Rf J) is bijective with the set of isomorphism

classes of galois R-algebras with galois group J which are also galois extensions

with galois group J. The bijection carries 0 in H2(R, J) to the trivial galois

algebra.

Remarks. 1. If u is not a unit there are galois algebras which fail to be

galois extension. The algebra of dual numbers over a field is an example of

this.

2. In case R is a field, the first result of Corollary 4.8 is contained in [16,

Satz 3, p. 33].

5. Galois extensions with cyclic galois groups. We begin with two lemmas

which are slight adaptations of [5, Lemma 1,7 and Thmt 4,2] to the non-
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commutative case. Their proofs are given here for the reader's convenience.

LEMMA 5.1. Let A be a galois extension of R with galois group G and R1 a

commutative R-algebra. Let G act on A®R' via the formula a {a® r') = a(a)®rl

for a in A, rf in Rf, a in G. Then A®R' is a galois extension of R' with galois

group G.

Proof. As in the proof of Lemma 4.7, there are elements xu . . . t xn ',

yu . . . , yn in A such that ^Xia{yt) - δi,o. As usual let tr •' A^R denote the

trace, i.e. tr(x) = Σ a{x). Then ^xιtr{yd - 1, so tr(A)A = A. It is clear
σ laG

that tr(A) is an ideal of R. Moreover, for any x in A, *ΣiXia{yi)a{x) = a(x)di,o,

so by summing over all a in G we have Σ xϊtr(yix) = x> which proves that A

is a finitely generated i?-module. By [17, Lemma 2, p. 215] there is an element

r of tr(A) such that (1 - r)A = 0. Thus r- 1 and there is an element a in A

with tr(a) = 1. It is then clear that R is an i?-module direct summand of A,

a complement being the kernel of the map A-^R defined by x->tr(ax).

Since R is a direct summand of A, it follows that l®Rf = R' as R'-algebras

and we identify the two objects by means of this isomorphism. Now let z be

in (A®R')°, then z = z{(tr®l)(a®l)} = {tr®l)(z{a®l)) clearly lies in R®R'

= R', which proves (A®R')G = R'.

Let ψn be the elements of E defined by ψo(τ) = flσ,τ. Then clearly the φσ

are orthogonal central idempotents in E and E= 'ΣΏAψα. Hence if E' denotes

the ring of functions from G to A®R\ it is clear that Ef~E®Rf and that

A® I : A ® A ® R' = (A ® Rf) ® R,(A ® R') -> E® R' = E' is still an isomorphism,

which proves the lemma.

LEMMA 5.2. Let R be α field and A a galois extension of R with galois group

Gf then A is a galois R-algebra with galois group G.

Proof. From the definitions it is clear that we must prove A = R(G) as

R(G)-modules. Define an i?(G)-module structure on A® A by (rσ)(x®y) =

x®ra(y) for r in R} x, y in A, a in G, and an R{G)-module structure on Eby

L(rσ)(<p)l(τ) ̂ rφ(τύ) for r in R, a, τ in G and φ in E. It is readily verified

that A is then an R{G)-isomorphism. Moreover, the mapping E-* A®R(G)

defined by φ-+ Σ ψio)®^'1 is easily seen to be an isomorphism of left R(G)-
o in G

modules where A®R(G) is viewed as R(G) -module via the action of R(G) on
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the second factor. Hence A® A = A®R{G) as R(G)-modules. If the order of

G is n, this means that the direct sum of n copies of the R(G)-module A is a

free R(G) -module on n generators. By the Krull-Schmidt theorem, which is

applicable because R is a field, A = R{G).

The main result of this section is

THEOREM 5.3. Let R be a commutative ring, J a finite cyclic group and A a

galois extension of R with galois group J. Then A is commutative.

The proof will be conducted in a series of lemmas.

LEMMA 5.4. Let A be a separable R-algebra which is a finitely generated R-

module. Then A is commutative if and only if A® R/m is commutative for all

maximal ideals m of R.

Proof Let C be the centre of A. Then the exact sequence 0-+C-+A-*

A/C->0 splits as an exact sequence as C-, and hence also as R-, modules [2,

Prop. 1.21 Thus the sequence 0->C®R/m-*A®R/m-*(A/C)®R/m-*0.is

still exact, i.e. (A®R/m)/{C®R/m)^(A/C)®R/m. By [2, Cor. 1.6], C®R/m

is still the centre of A®R/m and thus, if A®R/m is commutative, we have

(A/C)®R/m = 0. If -Rm is the local ring of R at m, this is equivalent to

(A/C)®Rm = M(A/C)®Rm). Since A/C is a finitely generated i?-module,

Nakayama's lemma shows that (A/C) ®Rm = 0. Hence if A®R/m is com-

mutative for all m, (A/C)®Rm= 0 for all m, so that A/C = 0 [4, Exc. 11, p.

1421 i.e. A = C and so is commutative. The converse is obvious.

COROLLARY 5.5. It is sufficient to prove Theorem 5.3 assuming that R is a

field and A a separable galois algebra with galois group J.

Proof. Let A be a galois extension of R with galois group /. By Lemma

5.1, A® Rim is a galois extension of R/m and so by Lemma 5.2, A®R/m is

a galois algebra. By Lemma 4.7, A and A®R/m are both separable algebras,

hence Lemma 5.4 completes the proof of the corollary.

LEMMA 5.6. Let R be a field, / a finite abelian group and A a galois R-

algebra with galois group J. Let e be a minimal central idempotent of A and let

H be the isotropy subgroup of e, i.e. H={σ in J\σ(e) = e}. If A contains an

identity, A is the algebra direct sum of galois R-algebras isomorphic to Ae which

is a ξalois R-algebra with galois group IJ.
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Proof. Let ai = 1, <r2, - . . , ok be distinct coset representatives of / modulo

H, i.e. / = UύjH. The elements σi(e) are clearly distinct minimal central
k

idempotents of A, and so are orthogonal. Hence e1 = Σ ^ (̂ ) is an idempotent
1

of A. Now for α in /, σσi = σn{i)V with π a permutation of {l, . . . , k) and η

in a Thus e' is in A7. But, since A^R{J) as /?(/)-module, A7 = 2M and

since R is a field, e1 = 0 or 1. The hypothesis <?' = 0 yields £ = 0 upon multiplica-

tion by e, a contradiction, so e' = 1. Therefore <7, (<?), z = l, 2 . . . , k, is the

set of all primitive central idempotents of A. It follows that A ^ Σ ® ^ / W

as i?-algebra and since a A0->.A<Ji(0) is an algebra isomorphism, A is the

direct sum of k copies of Ae.

For η in H, we have ^-(β) = σi(e) and thus Aσi(e) is an //"-module. Moreover,

tfϊ : Ae-^AσXe) is an ϋΓ-module isomorphism Hence the R{H)-module A is

isomorphic to the direct sum of k copies of the R{H)-module Ae. But A is

also i?(i7)-isomorphic to R(J) which in turn is R{H)-isomorphic to the direct

sum of k copies of R(H). Thus the Krull-Schmidt theorem shows Ae = R{H),

proving the lemma.

Remarks. Lemma 5.6 is also proven, assuming A separable, in [10, Lemma

4]. In the terminology of [16], the lemma asserts that under its hypotheses,

A is "kerngaloissch" cf. [16, Satz 3, p. 48].

COROLLARY 5.7. It is sufficient to prove Theorem 5.3 assuming that R is a

field and A a simple galois R algebra with cyclic galois group.

Proof. Let R be a field and A a separable galois i?-algebra with cyclic

galois group. By Corollary 5.5 it is sufficient to consider this situation. Lemma

5.6 shows that A is a direct sum of indecomposable galois algebras with

galois groups subgroups of the galois group of A. Since A is separable, so

are its indecomposable direct summands and they are therefore simple. The

galois group of A is cyclic and so is, therefore, that of each indecomposable

summand.

Proof of Theorem 5.3. Let A be a simple galois algebra over a field R

whose galois group / is cyclic. Denote the centre of A by C. Then C is a

field extension of R and / induces a group of automorphisms on C whose fixed

field is R, since AJ = R. Let K = {a in J\ a(c) = 1 for all c mC). Then C is

a normal separable extension of R with galois group J/K and so [C : Rl -
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[/•* Kl. Now, as a subgroup of /, the group K is also cyclic generated by κy say.

By the Skolem-Noether theorem K is an inner automorphism, κ{x) = axa'1 for

x, a in A. Clearly a is in Aκ and so Aκ^C(a) =>C which implies ίAκ : i?]>

[/ : iΠ. On the other hand, A = R{J) as R(J)-module and it is readily seen

that {R(J))K =*ΣRNσi where N = Σ * and *,- are coset representatives of /
σ in K

modulo K Thus C(i?(/))κ : # ] = [/: Ή . Hence L4* : # ] = [/ : iΠ = [C : i?]

and so Aκ = C(α) = C. This forces ϋΓ= 1, and so [C : i?] ••= [/ : 1] = LA : i?]

or A = C, τ4 is commutative.

Remarks. 1. The main ideas of the last part of the proof of Theorem 6.3

are already found in [8, Lemma, p. 234]. The theorem for galois algebras over

rings has also been noted by F. de Meyer, [Osaka Math. J., 2 (1965), pp. 117-127].

2. There are examples of noncommutative galois extensions with non-cyclic

abelian galois groups: The four group can be made to act on the 2 x 2 matrix

algebra over a field in such a manner as to turn it into a galois algebra.

Hoechsmann in [10] has determined the number of non-commutative separable

galois algebras over a field for all finite abelian groups. Quotation of his

result makes the last part of the proof of Theorem 5.3 unnecessary.

THEOREM 5.8. (Harrison). Let R be a field, S a separable algebraic closure

of R with galois group @Λ. Then Homc(®β, Q/Z)3) = H\®B, QlZ) =

H\R, Q/Z).

Proof. By Corollary 3.6 it is sufficient to show H2{S, J) = 0 for any finite

cyclic group /. By Corollary 4.8, H2(S, J) is bijective with the isomorphism

classes of galois extensions of S with galois group / which are also galois S-

algebras with galois group /. But these algebras are, by Theorem 5.3, com-

mutative, and by Corollary 4.8, separable. Since S is separably closed, such
n

an algebra may be written as Σ ® Se/ where n is the order of / and etej — <5,y.

Lemma 5.6 shows that eL is not left fixed by any element of / besides 1 and

that, renumbering if necessary, βi = σi(eι) where / = {l, <r2, . . , <rM}. Thus

there is only the trivial galois algebra over S and so by Corollary 4.8,

H\S, J) = 0.

*> fίomc(®, Q/Z) means the group of continuous homomorphisms from ® to Q/Z.
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