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§ 1. Introduction

By focussing attention on indecomposable modular representations J. G.

Thompson [11] has recently simplified and generalized some classical results

of R. Brauer [1] concerning groups which have a Sylow group of prime order.

In this paper this approach will be used to prove some results which generalize

theorems of R. Brauer [2] and H. F. Tuan [12].

We will say that a finite group ($ is of type L2(p) if every composition

factor is either a ^-group or a ^'-group or is isomorphic to PSLι(p). Thus in

particular every ^-solvable group is of type L2(p). It is well known that

every subgroup of a group of type L2(p) is again of type L2(p).

THEOREM 1. Let ® be a finite group with a cyclic Sp-subgroup β̂ for some

prime p. Assume that % is not of type L2(p). Suppose that (§ has a faithful

indecomposable representation 2 of degree d<p in a field of characteristic p. Then

p*2, |$|=/>, 8 |φ is indecomposable and C@(φ) = φ x Z(<§). Furthermore

d>2/3(/>-l) and d>-~p- —• in case p> 13.

It is known [9] that the multiplier of 9ί5, 9I6, %, respectively has a non-

trivial complex representation of degree 2, 3, 4 respectively. Hence this is

the case in any algebraically closed field. The new simple group discovered

by Z. Janko [8] has a 7-dimensional representation in the field of 11 elements.

Thus for p<ll the estimate in Theorem 1 is the best possible (since d is an

integer). However it follows easily from the last statement that d>2/3(/> —1)

is never the best possible estimate for p>13. By modifying the argument in

section 4 slightly it can be shown that for £>13 the estimate can be improved
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provided |N@(φ) : C©($) | is sufficiently large. In particular it is easy to

show that if ® = ©', |N®($) : C®( φ )| - p - 1 and p> 13 then rf> 3 ( ^ 4 ~ 1 ) This

is in sharp contrast to the case of Janko's group where p = 11, rf = 7 and

|N©($) C@(φ)| = 10. It would be of interest to determine the best possible

lower bound for d in case p> 13. Since the Symmetric group on p letters has

a faithful representation of degree p - 2 in the field of p elements one cannot

do better than p - 3. However this is probably much too large in general.

Theorem 1 is easily seen to imply some results of Brauer [2] and Tuan

[12] concerning groups © which have a faithful irreducible complex represen-

tations of "small" degree relative to the size of some prime dividing |®|. As

another application of these methods the following can be proved.

THEOREM 2. Suppose the Sp-subgroup φ of © is not normal in ® and Z(®)

= <1>. Assume that © has a complex irreducible representation of degree d with

-^-~-ί < d < p - 1. Let |N©(<£) : C®(<β)| = e. Then ® is simple and e=p-^l s Q
Ld e

(mod 2). Ttes m particular p = l (mod 4).

The only known groups which satisfy the hypotheses of Theorem 2 are

PSLι(p) with p = l ' mod 4) and d - 1 = e = ^ Γ ^ ' a n d PSL2(p - 1) where £ - 1

= 2a for some integer # > 1 with e = 2 and d =p -2.

§ 2. Preliminaries

Let if be a field and © a group. If M, iV are if(§-modules then M + N

denotes their direct sum and aM-MΛ- + M a times for any nonnegative

integer a. The kernel of M is the kernel of the representation of ® corres-

ponding to M. If £> is a subgroup of © then M|$ denotes the restriction of

M to φ and for any ^-module L, L% is the iΓ®-module induced by L. The

contragradient module of M is denoted by M*. The remainder of the notation

and terminology is standard.

Basic properties of modules will be used continually. In particular the

Mackey decomposition [3, (44.2)] and a fundamental result of D. G. Higman

[3, (63.5)] are of importance. Also a theorem of Schanuel will be used [6,

(1.6 e)] or [10, p. 270]. The following result is a simple consequence of the

Mackey decomposition, the proof of [3, (51.2)] and Fitting's Lemma.

(2.1) Suppose that K is a field of characteristic p. Let φ be a p-group and £>
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a p'-group. A K(?$ x ξ>)-module is indecomposable if and only if it is of the form

V® W where V is an indecomposable Kty-module and W is an irreducible Kξ>-

module.

An exposition of the fundamentals of the theory of blocks can be found

in [3, Chapter XII]. The following special cases of some results of R. Brauer

[2] will be needed.

Suppose S^-subgroup $ of © has order p for some prime p. Assume

further that C®(φ) =$xZ«§). Let e= |N®'$) :

(2. 2) IfC is an irreducible complex character of ($ with 1<C (1) <p — 1 then

e<p — 1 and either Cil) = e or ζ(l) = p — e. In the latter case C does not contain

the principal Brauer character as a modular constituent. Furthermore if B is the

p-block of (S containing C then B contains exactly irreducible complex charac-

ter of degree C(l), any two of which are p-conjugate and hence coincide as Brauer

characters.

(2.3) If Z(@) = <1> and e = 2 then the degree of any irreducible modular

representation of (§ is 1, p - 2 or at least p.

The following result of Tuan [12, Theorem C] is also useful.

(2.4) Any modular irreducible representation of © in the principal block can

be written in the field of p elements.

T h e proofs of (2.2), (2.3) and (2.4) can be simplified considerably using

the methods of [11].

§ 3. Local Results

Throughout this section K is a field of characteristic p. (£$ is a Frobenius

group with Frobenius kernel 3̂ where |^| =p and 6 Π φ = <1>. The one dimen-

sional /^-representation a of ©φ is defined by

(3.1) G~]PG = PaiG) for P G % G e gφ.

The following result is a reformulation of [11, Lemma 2].

LEMMA 3.1. Let λ be a one dimensional K-representation of $® and let 1<

s<Lp. Then there exists an indecomposable K?$&-module Vs such that d i n u Vs =

5, Fsisβ is indecomposable and if U is the unique submodule of Vs with dim^ U
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= 1 then uG = λ(G)u for all u e Uf G e (5̂ p. Furthermore every nonzero indecom-

posable K^-module is isomorphic to some Vs \ Vλ

s^VΪ if and only if s = t,

Λ = μ Vs is projective if and only if s = p.

Throughout this section Vs will be defined as in Lemma 3.1 and for any

, Foλ = O. In case g = <1> we will write Vs = Vl If £ e g then det s

λ(£)

denotes the determinant of E acting as a linear transformation on Vs and ψs

denotes the Brauer character of $(£ corresponding to Vs.

LEMMA 3.2. Let 0<i<>s<p. Then Vs has a uniquesubmodule U% with ά\mκ U%

= /. Furthermore Ui^V) and VXslUi^Vx

s

a-V.

Proof, Since every irreducible /fφΦ-module is 1-dimensional Vl has an i

dimensional submodule Ui for 0<i<s. As Vl\<$ is indecomposable each 11% is

uniquely determined. By Lemma 3.1. Ui^Ui and so Ui^V).

If / = 0 or i = s the last statement is clear. Suppose that z '=l and s>2.

Since |©| \(p - 1) the iΓ@-module ί/2|@ is a direct sum of two iΓ(S-modules.

Choose a if-basis xy y of U2 such that y^Ui and xE = μ(E)x for all £ e @ and

some 1-dimensional K- re presentation of (£. Then for suitable P e φ, J P = Λ: + jy.

Thus f or £ e= g

Hence μ(E) =λ(E)cc~\E) for all £ e i . If x denotes the image of x in Vl/Uι

this implies that if G = P^1, P G $ , ̂ e g then

^ = λcc~\G)x

Thus Fs/K-FsίΓ 1 . Since VΪ/Ui^iVΪ/U^/iUi/Ui) for ι> 1 the result follows

by induction on i.

LEMMA 3.3. (Vir^vΓ^^. άetl(E) = rα- s ( s-1)/2(^) /or £ E £ L^ g

= <^o>. TΛe« ? J ( f i ) = e J ( Σ e fj /or β suitable primitive \&\th root of unity ε

and all s and j .

Proof. This is an immediate consequence of Lemma 3.2.

LEMMA 3.4. FsΘ V$^ Σ Vf^ for 0<s<p.
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Proof. Let Mμ be the 1-dimensional iΓ(£-module corresponding to the repre-

sentation μ\®. It is easily seen (and well known) that Vp^M^. By Lemma

3.2 Fsλ |@-ΣMλH. Thus [3, p. 325].

LEMMA 3.5. If 0<s<t and s + t<p then

Proof It suffices to prove the result in case |@| =/>- 1. If 5 = 0 or 1 it

is immediate.

Suppose 5 = 2. By [6, Theorem 3 (2.3 bΓj F2 ® Vt^ Vt-i + VW Thus by

Lemma 3.1 F2

X® Vΐ^ Vi-i + Fj+i for some β, γ. By Lemma 3.2 there exist

iί-bases {x0, Xi) of F2

λ and {̂ 0, . . . , yt-\) of F^ such that for £ e ^ and all i

XiE = ;αr"f'(J5:)Λ:, , ^ = μa~i(E)yi.

Furthermore if U is the submodule of Vl 0 V^ consisting of all u with uP=u

for all P G φ then dim^ ί/= 2. Let P E φ. Then there exist a, be K with ^

=̂ 0 such that

Define

- Ii0)Ό- y

Then viP-Vi for z = 0, 1, and so {vQ, Vι) is a basis of U. If £ e ® then

VQE = λμ(E)vo, ViE = λμa~1(E)vι

As l©| # 1, ^ F̂ ^^α"1. Therefore z;0 e Vt-i and |9 = ̂ ^ or vQ e Fj+i and r =

Let <Xu>~ V\ be the submodule of V\ generated by xQ. Let W

^ F ί λ . Thus W is indecomposable and z;0^ W. Since dim^ ίF=ί it follows

that (ΓίlC/m^O, where Z7ίM is a submodule of F ί 0 7f with ί/ίfi~Fj+i. By

Lemma 3.2 vo&WΓ\Un.i. Hence vo(=Un Utn and r = ̂  Thus β = λμa"1

and the result is proved in case 5 = 2.

We proceed by induction on s. Assume that 5>3 and the result has been

proved for 5 — 1 and 5 — 2. Then
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Vs-i ® Vl ® F ^ (F5

λίΓ ® F?) + (Fs

λ® Ff).

Thus by induction

s-2 . s-3

I V S + f-2-2i §9 V 2' ~~ -2j Ks + ί - 3 - 2 | + V K S QS> V t'
ί 0

Applying the first part of the lemma once again yields that

( at— 2 . v s — 3

-̂ -1 τrλμΛ-« \ , τrλμ«-l«-l) ^ ^ T/λμof'-1 . , / rrλ χ-v γrμ \

2LJ Ks + ί-i-2i I + K f-s+i ^ Z J K s+ί-3-2i + V^sQs) V t'
The result now follows from the Krull-Schmidt Theorem.

The next result is proved in a similar manner to [6, (2.5 a) ] .

k

LEMMA 3.6. Suppose that 1<6, c < # - l βwrf F ? ® F ί ^ Σ 3 F ? ; wiϊA βi>0 for
i-0

t = 0, . . . , * . 7%β«

fc c - l fc

Vp -r \ Vp-b® Vc) ~~ ZΔ Vp + 2^A Vρ-et

Pwo/. By Lemma 3.2

o-Frr->Fr~6->^-o.
is exact. Tensoring with VΊ yields that

is exact. Also

k k k

o -> Σ Vp-IT* -* Σ VpίΛV~H -» Σ Vei -» o
i=0 t=0

is exact. Thus SchanueΓs Theorem and Lemma 3.4 imply that

k _ g c - l k

Σ VpiΛ ' -h (Vp*-b ® FΪ) ̂  Σ FjTct j-f Σ F^i% '.
ί=0 j=0 »=0

The result follows by tensoring this equation with vf~P

LEMMA 3.7. // l<s< ^ y ^ then

Vs ® Vs ^ Σ F2

X ί+i+1"s

t = 0 * <=»2s
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Proof. The first statement is a special case of Lemma 3.5. Also Lemma

3.5 yields that

s-l
T/λ^-v T/ μ ^ NT"* -rrλμα-2

V sv9 V ρ-s^ 2_ι V p-i-n
ϊ = 0

Apply Lemma 3.6 with β = λ, γ = μ, b = s and c = p-s. Then

s-l . p-s-1 S-l

2_l K/) + V K ί - s Q 9 K ^ - s ) ^ 2_l Vp + 2 j K2J + 1
* = 0 j = 0 * = 0

Since α^HG) - 1 for all G e ^ $ the Krull Schmidt Theorem implies the result.

LEMMA 3.8. // l<s< ^ — then

Fs OS) ^ K s )

s-l . p-β-1

/)-sQs) \ V p-sf ~~ 2-i V 2i+i~r
i0

2LJ V P

Proof. This follows directly from Lemmas 3. 3 and 3. 7 and the fact that

\ = l for all Geft

§ 4. Proof of Theorem 1

Throughout this section S is a group which satisfies the hypotheses of

Theorem 1. $ is a Si>-subgroup of ©. Since d<.p in Theorem 1 $ has exponent

p and so | φ I = p as φ is cyclic. 91 = N®( $ ^ and % = C®(φ) = $ x €>. By assump-

tion W # © and by Burnside's transfer theorem ϊί # ©. ϋί is a field of characteri-

stic p.

^ f = {M\M is an indecomposable iΓS-module with dimAM<^> and $ is not

in the kernel of M).

By assumption ^£ is nonempty. If M E ̂ £ then M is a direct summand

of (M|E)® by D. G. Higman's Theorem [3. §63]. Thus M\w is indecomposable

by the Mackey decomposition and if dim* M</> then M is uniquely determined

by M\yι. The Mackey decomposition and (2.1) imply that Λf|@; = Σ ί / , 0I7,

where for each / Ui is an indecomposable K^-moάvλe and T^ is an irreducible

iΓO-module. Furthermore ί// ® Wi is conjugate to f/y ® Wj for all /, j under

the action of 5Ϊ/S. Thus dimκί/ί = c, dim^ PFi = Z> are both independent of i and

in the notation of section 3 Ui^Vc for all i. Therefore
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(4.1) \^ (

The triple a-a(M), b = b(M), c=c(M) is a set of invariants attached to M

and (4.1) implies that

(4.2) άimκM=a(M)b(M)c(M).

LEMMA 4.1. Suppose that p>5. If M e <J£ then dim*M> 2.

Proof. Suppose dimκM<2 for some M e J . Let ® be the kernel of M.

Then ©/$ is isomorphic to a subgroup of GL2(K). All finite subgroups of

GL2(K) are known and it is easily seen that ©/$ and hence ©, is of type

L2(p) contrary to assumption.

LEMMA 4.2. Suppose that p>5. If M e <J£ with © in the kernel of M then

dim*M>3.

Proof. Let M^^ with Q in the kernel of M. Suppose that dinuM<3.

By Lemma 4.1 it may be assumed that diniA:M=3 and M is absolutely ir-

reducible. We will reach a contradiction by showing that © is of type L2(p).

By changing notation it may be assumed that ©' = © and M is faithful. Thus

C®($) = φ. Let Ώ = $£ with $ Π g = <1>. Let © = <E>. Let a be defined as

in (3.1). Then M\yι^V\ for some one dimensional /^-representation / by

Lemma 3.1 and (4.1). Lemmas 3.1, 3.3 and 3.8 imply that M 0 M ^ L o +

Li + L2 where άimκLi -2i-\-l and L, $ = Li\yι. Thus M may be chosen so that

Since C®($) = φ there is only one block of defect 1 [3, (86. 10)1 Hence

M is in the principal block of ©. Thus if Ko is the field of p elements there

exists a iΓ0-representation g of © corresponding to M b y (2.4). Since M\^^

M|$ it follows from Lemma 3.3 that £y is equivalent to g*. An argument of

R. Brauer [2, p. 438] now implies that © is isomorphic to a subgroup of OΛp).

Since Osip) is of type L2(p) so is © contrary to assumption.

LEMMA 4.3. Suppose that p>5. If M<=^£ then c(M) > ^ ^ L

Proof. Suppose M e= o f̂ with c = c(M) < ̂ -~~> By Lemma 3.8 and (4.1)
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Thus no direct summand of M®M*|® is projective. Let Wo be the trivial 1-

dimensional K(&-modu\e. Then

M®M*\£- Σ (F2/-M® Wo) + U

where t/ is a direct sum of indecomposable modules none of which are pro-

jective. Since M e c^#, c>\. Thus F3® Wo is isomorphic to a direct summand

of M®M*\$. Let L be a direct summand of M®M* such that F3(g> Wo is

isomorphic to a direct summand of Ljg. Since no direct summand of L\%ι is

projective, L\yι is indecomposable. As £> is in the kernel of Vs® Wo £> is also

in the kernel of L|^. Thus L|g is indecomposable by Lemma 3.1. Hence

dim#L = 3 contrary to Lemma 4.2.

LEMMA 4.4. If M&^€, M\<$ is indecomposable and £> = Z((S).

Proof. If dimκM = £ then M is projective and so M\% is projective and

hence indecomposable. Suppose that dim / £ M<^-l. If p = 3 then Mjsβ is

indecomposable since $ is not in the kernel of M. If ^ > 5 then (4.2) and

Lemma 4. 3 imply that a(M) = MM) = 1. Thus by (4.1) M|φ is indecomposable

in any case. If 5 is the iΓ-representation of ® corresponding to M this implies

that any ^'-element in the commuting ring of 3iφ is a scalar. Thus £> = Z((S)

as required.

The proof of Theorem 1 can now be given. If p = 2 then (S is 2-solvable

since \ψ\ =2 contrary to assumption. Thus p^2. In view of Lemma 4.4 it

only remains to prove the inequalities. If p = 3 the result is trivial and if p

- 5 it follows from Lemma 4.1. Hence it may be assumed that p>7. It may

further be assumed that % = ®' and K is algebraically closed without loss of

generality.

Choose L<=c^f with dinu-L minimal. Let d = p -s - dim^L. It may be

assumed that L is faithful. By Lemma 4.3 and (4.1)

(4.3) L\a^Vp-s® W, p

Since Ϊί/S is cyclic and €>cz(Ή) it follows that 9ί/φ is abelian. Thus there

exists a K)l-module Wi whose kernel contains % such that Wi\§ = PF. Then

( 4 . 4 )
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Furthermore

where Wo denotes the trivial 1-dimensional if€>-module. Let 5R = 9t/©. Thus

L\9ft® Wΐ is a ULSΪ-module. Hence (4.3), (4.4) and Lemma 3.8 imply that in

the notation of section 3

(4.5) U F l

where each V) is a if SJ?-module.

Higman's Theorem and (4.5) imply that

where each Li is indecomposable, A is protective and Li\gt has F?/+i has a

direct summand. Let

Thus Lo is the 1-dimensional trivial iΠS-module. By (4.5)

(4.7) {μij\j=l, . . . ,πii ί = 0, . . . , 5~ l}c{

Suppose that p-s<2/3(p-l). Then/><35-1. By (4.7)

s - 1

Hence at least (s — 1) - (p - 2s) of the m, are zero. Thus m^ = 0 for some

with

Thus by (4.6)

dim*!,*. = 2k + \<2p - 45 + 1 = (p - 5) + (p f 1 - 3s) <p - s = A

Hence L& e 0 / contrary to the minimality of d. Therefore in proving Theorem 1

it may be assumed that p>!3 and d =p -s>2/3ip- 1) or equivalently

(4.8) s
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Choose E e © so that ϊϊ = <Ef (£>. Since © = (§' £ must have determinant 1

when considered as a linear transformation on the if-space Li for z' = 0, . . . , 5 - 1 .

Thus by (4.6) and Lemma 3.3.

(
mi \ / mi \

Π Mϋ)«miip-ul\E) = ( Π Wjp )a-
m'piβ-ι"t(E) = 1.

Hence if w, = 1 then μn(E) =» α { / )"1 ) / 2(£:) = ± 1. Since ® is not of type L2(p),

Thus for any k either «*(£) W^"" 1 ) / 2 (£) or ak"\E) ^a{p~1]l\E). Con-

sequently (4.5) and (4.6) imply that at most - 2 ~̂ of mjs are equal to 1.

Suppose first that 2 s - l < j £ - s = d. The minimality of d and (4.6) yield

that m, * 0 for / = 1, . . . , s - 1. Thus by (4.6)

Λ , p + l-2s , 1 ί . o (j> + l - 2 5 ) \ 1 , Q . Λ ,-v
5 - 1<— s h -^-[ί - 2s o j = ~4 V3jζ> — 65+ 1).

Hence 5 < — ~ — and so d = p - s> ~~ - -^ as required.

Assume now that 2s - \>p - s. Thus s>;5. The minimality of d yields

that πii # 0 for / = 1, . . . , 5 - 2.

Thus by (4.6)

s - 2 ^ ^ ± ^ 2 — — +γiP -2s - {p + 1-25)} = -j

Therefore

Hence 5<6 and^>^13 so ^ < 3 s - l < 1 7 . Thus 5 = 6 and £ = 17. Furthermore

dim^Lδ =11 = 6?. Since £> is in the kernel of L5 it may be assumed L was chosen

initially such that £> is in the kernel of L. Hence since L is faithful it may

be assumed that ξ> = <1>. Thus L is in the principal />-block. The minimality

of d implies that L is an irreducible itfS-module. Therefore |<£>| = \ςR : φ| > 2

by (2.3). Thus for any £ either «*(£) *a{p~1)l2{E) or a f e + 1(E) ^α: ( ^ 1 ) / 2 (E) or

o: f e + 2 (E)^« ( ^ 1 ) / 2 (£:) . Thus by (4.9) at most ^^f-- < 3 of the w. 's are

equal to 1 and so by (4.6).

4 = s - 2 < 2 + ~r (5 —2) <4.

This contradiction establishes Theorem 1 in all cases,
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§ 5. Proof of Theorem 2

Throughout this section ® is a group which satisfies the hypotheses but not

the conclusion of Theorem 2. $ is a S/>-subgroup of ® and 9ί = N®(^). C is

an irreducible faithful complex character of degree d.

LEMMA 5.1. ® is simple. | φ | = p and C®($> - φ

Proof. Let ®0 be the subgroup of ® generated by all ^-elements in ®.

Thus ®0<l®. Let C|®0= Σαι, where each ω, is an irreducible character of ®0.
t = l

Since the ωι are conjugate under the action of ® they all have the same degree.

Thus if n>l, α>/( 1) < ̂ ^ — for each i and so by [5] $<\ ® contrary to assump-

tion. Hence C|©0 = ω is irreducible. Thus Z(®0) = Z(®) = <1>.

Suppose that | $ | * £ . Then there exists φi<® with |φ : φi l=£ [4].

Hence φ c c ® ^ ) <1® and so ®ocC©(^). Thus ^iCZ(®0) = <1> and so |φ| = />.

Suppose that 9l<|®o, ?I*®o Then % is a £'-group. Hence 91<]?iφ and %<$

is ^-solvable. Since %*$ has a faithful complex representation of degree d<p - 1

it follows that %ty has a if-representation whose kernel is in $ for a

suitable field K of characteristic p. Thus by Theorem 5 of Hall and Higman

[7] (see also [11] for a simplification of part of the proof.) Sβc

Thus 9ί^Z(®0) = <1>. Therefore ®0 is simple.
By (2.2)

Since ® = ®0^ this yields that ® = ®0C®($). If ® is not of type L2(p) then

Theorem 1 implies that ® = ®o and $ = C®(φ) completing the proof of the Lemma.

Suppose that ® is of type L*(p). Thus ®o^PSL2(p). Since PSL2(p) admits

no outer automorphism which leaves all the elements in a ^-subgroup fixed

it follows that ® = ®o^PSL2(/>). Thus ® is simple since p>3 and C©($) = $

as required.

Let F be a finite extension field of the field of ̂ -adic numbers which is a

splitting field for © and all its subgroups and contains all the |(S|th roots of

unity. Let R be the ring of local integers in F, let p be the maximal ideal

in R and let K=R/p. It is well known that there exists an i?®-module Z

which affords the character C. Let Z = Z/pZ.

LEMMA 5,2. Z is absolutely irreducible,



GROUPS WITH A CYCLIC SYLOW SUBGROUP 583

Proof. Since F contains all |®|th roots of unity K is a splitting field of

©. Thus it suffices to show that Z is irreducible. By (2.2) and Lemma 5.1

every modular irreducible constituent of Z is faithful. Hence if Z is reducible

then ® has a faithful K-representation of degree at most d/2< ^-9— Hence

by Theorem 1 ® is of type L2(p) and so ® is isomorphic to PSLzip) by Lemma

5.1. In this case it is well known that e= ?-*— and p = \ (mod 4) contrary

to assumption.

Let m = φ@ with φ Π g = <i> and let ® = <E>. Let α be defined as in (3.1).

Let ε be a primitive eth root of unity in R such that the image of ε in R/p is

LEMMA 5.3.

Proof. Suppose that Z|^-F)>- e.. Let JC/U = 1, . . . , j be all the ir-

reducible complex characters of ® which are algebraically conjugate to C.

Then by (2.2) the C, are all equal as Brauer characters. Thus if U is an i?®-

module affording the character Φ such that Z7= U/pU is the projective inde-

composable 7£®-module corresponding to Z then Φ = Σ Cί -f θ for some charac-

ter 0. Thus [11, Theorem 1] there exists an i?S-module M which affords the
p-l/β

character Σ C, such that M=M/pM is indecomposable. Since dinWVf =

\^—^— - l)p + 1 Higman's theorem and Lemma 3.1 imply that
/

Σ
for suitable & and #(/). Let ̂  be the Brauer character afforded by M. Then

Lemma 3.3 implies that

p-e-1

= Σ ê  = l

ί = 0

(p-D/e

Since 0(E) = Σ C, ( JB) this yields that & = 1 and α(;) = 1 for all j . Hence
» = 1

^Vl-i A for some projective iO-module A. Let Lo be the trivial 1-dimensional

iΓ®-module. Then Z,0 |^-Fί + i? for some projective iΓsJ?-module B. Hence by

Higman's Theorem M and Lo are both direct summands of (Fl)® contrary to

the Mackey decomposition. This contradiction establishes the lemma.
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LEMMA 5.4. e = 0 (mod 2), Z^VpH and £^- = 0 (mod 2)

Proof. Let Z\κ^vf-e By Lemma 3.3 C(E) = e*. Since C@(φ) = $ (2.2)

implies that ζ(E) is rational. Hence e* = ± 1. If εk = 1 then g|& and so

Z\w^Vp-e contrary to Lemma 5.3. Hence εk = - 1. Therefore e = 0 (mod 2)

Since © is simple άetf-liE) = 1. Thus by Lemma 3.3

Thus ~—o =e/2 (mod e) and so -•£-=— ΞO (mod e). Hence — = 0
£ Δ e

(mod 2) as required.
Theorem 2 now follows from Lemmas 5.1 and 5.4.
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