ON MEROMORPHISMS OF ALGEBRAIC SYSTEMS

JUNJI HASHIMOTO

Dedicated to the memory of Professor TADASI NAKAYAMA

1. Introduction

In the present paper by an algebraic system (algebra) A we shall mean a system with a set F of operations $f_{\lambda} : (x_1, \ldots, x_n) \in A \times \cdots \times A \to f_{\lambda}(x_1, \ldots, x_n) \in A$. A polynomial $p(x_1, \ldots, x_r)$ is a function of variables x_1, \ldots, x_r which is either one of the x_i , or (recursively) a result of some operation $f_{\lambda}(p_1, \ldots, p_n)$ performed on other polynomials p_i . An algebra A may satisfy a set Rof identities $p(x_1, \ldots, x_r) = q(x_1, \ldots, x_s)$, and then A shall be called an (F, R)-algebra.

By a *meromorphism* between two algebras admitting the same operations, we mean a many-many correspondence of elements which preserves all algebraic combinations. If φ is a meromorphism of A onto B, under which the correspondence of elements shall be written $a \rightarrow b(\varphi)$ or $a\varphi b$, then $a_i\varphi b_i$ $(i = 1, \ldots, n)$ imply $f_{\lambda}(a_1, \ldots, a_n)\varphi f_{\lambda}(b_1, \ldots, b_n)$. We shall write $b\overline{\varphi}a$ to mean $a\varphi b$, and then $\overline{\varphi}$ becomes a meromorphism of B onto A. Let φ and ψ be meromorphisms from A onto B and from B onto C respectively, and define $a\varphi\psi c$ to mean $a\varphi b$ and $b \not c$ for some $b \in B$. Then $\varphi \psi$ becomes a meromorphism from A onto C.

Now on a meromorphism of any algebra the following theorem similar to the Homomorphism Theorem holds.

MEROMORPHISM THEOREM. Let φ be a meromorphism of A onto B. If we define the relation φ^* in A by

 $a\varphi^*a'$ means that for some finite number of elements $a_0, a_1, \ldots, a_n \in A$ and $b_1, \ldots, b_n \in B$,

 $a_0 = a, a' = a_n, a_{i-1}\varphi b_i, a_i\varphi b_i$ (i = 1, ..., n),

then φ^* is a congruence relation on A, and similarly $\overline{\varphi}^*$ is that on B. Further their homomorphic images are isomorphic: $\varphi^*(A) \cong \overline{\varphi}^*(B)$.

Received June 30, 1965.

If, given $b \in B$, $\{x ; x\varphi b\}$ is necessarily a congruence class under φ^* in the above theorem and, given $a \in A$, $\{y ; a\varphi y\}$ is necessarily that under $\overline{\varphi}^*$, then φ is called a *class-meromorphism*. As is already known, a meromorphism φ is a class-meromorphism if and only if $a\varphi b$, $a'\varphi b$ and $a'\varphi b'$ imply $a\varphi b'$. When φ and ψ are two meromorphisms of A onto B, we define $\varphi \leq \psi$ to mean that $a\varphi b$ implies $a\psi b$. Then the above condition that φ be a class-meromorphism is written $\varphi \overline{\varphi} \varphi \leq \varphi$.

In Shoda's theory for abstract algebraic systems the following condition on an algebra A is often assumed:

 (α) Every meromorphism between two homomorphic images of A is a class-meromorphism.

In the present paper we shall deal with meromorphisms of an algebra A onto itself. We shall first show in §2 that the above condition (α) is equivalent to the condition

 (β) Every meromorphism of A onto itself is a class-meromorphism.

A meromorphism φ of A onto itself may be regarded as a relation between elements of A. If φ is reflexive, i.e. $a\varphi a$ holds for all $a \in A$, we shall call φ a *quasi-congruence*. We shall show that a quasi-congruence on A is a classmeromorphism if and only if it is a congruence relation. We shall inquire in §2 mainly into the symmetricity and transitivity of quasi-congruences in abstract algebras, and discuss the connections among the transitivity, symmetricity and permutability of quasi-congruences.

In §3 and §4 we shall deal with quasi-congruences on some real algebraic systems. Especially we shall discuss in §3 the conditions that quasi-congruences on a semigroup be symmetric and in §4 that quasi-congruences on a lattice be transitive. The lattice of quasi-congruences on a lattice is not necessarily distributive. We shall lastly give some sufficient conditions for that lattice to be distributive.

2. Meromorphisms of an abstract algebra onto itself

Let φ and ψ be homomorphisms of A and θ a meromorphism between $\varphi(A)$ and $\psi(A)$. If we define $a\Theta b$ to mean $\varphi(a)\theta\psi(b)$, then it is easy to see that Θ is a meromorphism of A onto itself. Suppose that $\varphi(a)\theta\psi(b)$, $\varphi(a')\theta\psi(b)$ and $\varphi(a')\theta\varphi(b')$. Then $a\Theta b$, $a'\Theta b$ and $a'\Theta b'$; hence if Θ is a class-meromorphism

we get $a \otimes b'$ and $\varphi(a) \theta \psi(b')$, which shows that θ is a class-meromorphism between $\varphi(A)$ and $\psi(A)$. Thus we have

THEOREM 2.1. Every meromorphism between two homomorphic images of an algebra A is a class-meromorphism if and only if every meromorphism of A onto itself is a class-meromorphism.

Meromorphisms of A onto itself form a partially ordered semigroup M(A)under the multiplication and the ordering defined in §1:

> $a\varphi\psi b$ means that $a\varphi c$ and $c\psi b$ for some $c \in A$; $\varphi \leq \psi$ means that $a\varphi b$ implies $a\psi b$.

Further, it is rather evident that $\varphi \leq \varphi_1$ and $\psi \leq \psi_1$ imply $\varphi \psi \leq \varphi_1 \psi_1$.

A meromorphism θ of A onto itself is regarded as a relation in A, and it becomes a congruence relation if it is reflexive, symmetric (symbolically $\overline{\theta} \leq \theta$) and transitive ($\theta^2 \leq \theta$). A quasi-congruence on A is a meromorphism of A onto itself which is reflexive. The set Q(A) of quasi-congruences on A becomes a subsemigroup of M(A) mentioned above and a complete lattice under the ordering defined in M(A). In $Q(A) \ a \rightarrow b(\Lambda_{\alpha}\theta_{\alpha})$ means that $a\theta_{\alpha}b$ for all θ_{α} .

Now let P be a set of ordered pairs (a, b) of elements of A, and define the relation θ in the following way:

 $u\theta v$ means that a polynomial $p(x_1, \ldots, x_m, y_1, \ldots, y_n)$ exists such that

$$u = p(a_1, \ldots, a_m, c_1, \ldots, c_n)$$
 and $v = p(b_1, \ldots, b_m, c_1, \ldots, c_n)$
for some $(a_i, b_i) \in P$.

Then it is easily seen that θ becomes a quasi-congruence, which is the least of elements φ of Q(A) satisfying $a\varphi b$ for every pair $(a, b) \in P$. This θ is called the quasi-congruence generated by P and denoted by $\theta(P)$. It follows that $\theta(P) = V_{(a, b) \in P} \theta(a, b)$, where $\theta(a, b)$ is the quasi-congruence generated by one pair (a, b).

We intend to discuss the symmetricity and transitivity of quasi-congruences. We first show

THEOREM 2.2. Let $\{\theta_{\alpha}\}$ be a set of quasi-congruences on an algebra A. Then $\overline{\Lambda_{\alpha}\theta_{\alpha}} = \Lambda_{\alpha}\overline{\theta}_{\alpha}$ and $\overline{V_{\alpha}\theta_{\alpha}} = V_{\alpha}\overline{\theta}_{\alpha}$; accordingly symmetric quasi-congruences form a closed sublattice of Q(A).

Proof. It is clear by the meaning that $\overline{A_a \theta_a} = A_a \overline{\theta}_a$. Let P be a set of ordered pairs (a, b) of elements of A and put $\overline{P} = \{(b, a) ; (a, b) \in P\}$. If $u \to v(\theta(P))$, then a polynomial p exists such that $u = p(a_1, \ldots, a_m, c_1, \ldots, c_n)$, $v = p(b_1, \ldots, b_m, c_1, \ldots, c_n)$ and $(a_i, b_i) \in P$. Then $(b_i, a_i) \in \overline{P}$ and hence we infer $v \to u(\theta(\overline{P}))$, which shows $\overline{\theta(P)} = \theta(\overline{P})$. Now put $\theta_a = \theta(P_a)$. Then $V_a \theta_a = \theta(V_a P_a)$, where $V_a P_a$ is the set-sum of P_a . So we can deduce

$$\overline{V_{\alpha}\theta_{\alpha}} = \overline{\theta(V_{\alpha}P_{\alpha})} = \theta(\overline{V_{\alpha}P_{\alpha}}) = \theta(V_{\alpha}\overline{P}_{\alpha}) = V_{\alpha}\theta(\overline{P}_{\alpha}) = V_{\alpha}\overline{\theta}_{\alpha},$$

completing the proof.

If quasi-congruences θ_{α} are transitive, then $\Lambda_{\alpha}\theta_{\alpha}$ is also transitive but $V_{\alpha}\theta_{\alpha}$ is not necessarily transitive; hence the set $\Theta(A)$ of congruences on A is meetclosed in Q(A) but not always a sublattice of Q(A).

Now let S be a subalgebra of an algebra A and every quasi-congruence on S be transitive. Suppose $x, y, z \in S$, $x \theta y$ and $y \theta z$ under a quasi-congruence θ on A. Since θ can be regarded as a quasi-congruence θ_0 on S, provided the range of elements is restricted in S, and θ_0 is transitive, we infer $x \theta_0 z$ and $x \theta z$. So we have

THEOREM 2.3. Quasi-congruences on an algebra A are transitive if every triple $\{x, y, z\}$ is contained in a subalgebra S = S(x, y, z) on which quasi-congruences are transitive.

And similarly,

THEOREM 2.4. Quasi-congruences on an algebra A are symmetric if every pair $\{x, y\}$ is contained in a subalgebra S = S(x, y) on which quasi-congruences are symmetric.

Two quasi-congruences φ and ψ are called *permutable* if and only if $\varphi \psi = \psi \varphi$. We see some connections among the transitivity, symmetricity and permutability of quasi-congruences.

THEOREM 2.5. If the join $\varphi \cup \psi$ of two quasi-congruences φ and ψ is transitive, then $\varphi \psi = \psi \varphi = \varphi \cup \psi$.

Proof. When φ and ψ are quasi-congruences on A, $a\varphi b$ implies $a\varphi b\psi b$; hence we have $\varphi \leq \varphi \psi$, $\psi \leq \varphi \psi$ and $\varphi \cup \psi \leq \varphi \psi$. So we can deduce from $(\varphi \cup \psi)^2 \leq \varphi \cup \psi$, $\varphi \psi \leq (\varphi \cup \psi)^2 \leq \varphi \cup \psi \leq \varphi \psi$.

562

THEOREM 2.6. If quasi-congruences φ , ψ and $\varphi \psi$ are symmetric, then φ and ψ are permutable.

Proof. It is easily seen that $\overline{\varphi}\overline{\psi} = \overline{\psi}\overline{\varphi}$. Hence the symmetricity implies $\varphi\psi = \overline{\varphi}\overline{\psi} = \overline{\psi}\overline{\varphi} = \psi\varphi$.

Next we deal with congruence relations regarded as quasi-congruences. Given a quasi-congruence θ , it follows from the Meromorphism Theorem mentioned in §1 that $\theta^* = V_n(\theta\overline{\theta})^n$ is a congruence, which is called *generated* by θ , and if θ is originally a congruence, $\theta^* = \theta$.

THEOREM 2.7. A quasi-congruence is a class-meromorphism if and only if it is a congruence.

Proof. If θ is a congruence on A, then $\theta = V_n(\theta\overline{\theta})^n \ge \theta\overline{\theta}\theta\overline{\theta} \ge \theta\overline{\theta}\theta$, whence θ is a class-meromorphism. Conversely if $\theta\overline{\theta}\theta \le \theta$, then $\overline{\theta} \le \theta\overline{\theta}\theta \le \theta$ and $\theta^2 \le \theta\overline{\theta}\theta \le \theta$; hence θ is a congruence.

The set $\Theta(A)$ of congruences on A is not always a sublattice or a subsemigroup of Q(A). We shall give below some conditions for $\Theta(A)$ to be so.

The product $\varphi \psi$ of two congruences φ and ψ becomes a congruence if and only if they are permutable; hence

THEOREM 2.8. Congruences on an algebra A form a subsemigroup of Q(A) if and only if they are permutable.

Let φ and ψ be congruences on A and $\varphi \lor \psi$ the congruence generated by $\varphi \psi$. Then $\varphi \cup \psi \leq \varphi \psi \leq \varphi \lor \psi$. Hence we can infer from Theorem 2.5,

THEOREM 2.9. If quasi-congruences on an algebra A are transitive, then congruences on A form a sublattice of Q(A). If congruences on A form a sublattice of Q(A), then they are permutable.

As shown above the transitivity or symmetricity of quasi-congruences implies the permutability of congruences. Hence if quasi-congruences are class-meromorphisms, then congruences are permutable. But the converse is not true. On the other hand Malcev [2] has proved the following theorem.

THEOREM 2.10 (Malcev). If congruences on every (F, R)-algebra are permutable, then there exists a polynomial p(x, y, z) such that p(x, y, y) = x and p(x, x, y) = y.

If such a polynomial p(x, y, z) exists, then $a\varphi b$, $a'\varphi b$ and $a'\varphi b'$ imply $a = p(a, a', a')\varphi p(b, b, b') = b'$. Hence

THEOREM 2.11. If congruences on every (F, R)-algebra are permutable, then meromorphisms of every (F, R)-algebra onto itself are class-meromorphisms.

3. Quasi-congruences on a semigroup

We intend to obtain the condition for a semigroup G that every quasicongruence on G be a congruence. We have succeeded to solve this problem for a commutative semigroup.

THEOREM 3.1. For a commutative semigroup G the following conditions are equivalent:

(1) every quasi-congruence on G is symmetric,

(2) G is a group in which every element has a finite order.

Proof. $(1) \rightarrow (2)$. Let *a* be any element of *G*. If we define $x \theta y$ to mean either x = y or $x = ya^n$ with n = 1, 2, ..., then it is easy to see that θ is a quasi-congruence on *G*. Since $a^2\theta a$ and θ is symmetric, we get $a\theta a^2$ and $a = a^{n+1}$ (n = 1, 2, ...). Put $e = a^n$. If n = 1, then $e^2 = a^2 = a = e$, and if $n \ge 2$, then $e^2 = a^{n+1}a^{n-1} = aa^{n-1} = a^n = e$. Since $ex\theta x$, we have $x\theta ex$, that is either x = ex or $x = exa^n$, and then we can show ex = x by $e^2 = e$; namely *e* is an identity. Similarly, given $b \in G$, we can find $e' = b^m$ such that e'x = x for all $x \in G$, and then we have e' = ee' = e'e = e and either b = e or $b^{m-1}b = e$; so *b* has an inverse and a finite order.

Now the implication $(2) \rightarrow (1)$ can be shown without the commutativity of G. Namely

THEOREM 3.2. If G is a group in which every element has a finite order, then every quasi-congruence θ on G, regarded as a semigroup, is a congruence.

Proof. $a\theta b$ and $b\theta c$ imply $ab^{-1}b\theta bb^{-1}c$, that is $a\theta c$. Hence every quasicongruence on a group is transitive. Suppose that $a\theta b$ and the order of $c = ab^{-1}$ is *n*. If n = 1, then a = b and $b\theta a$. If $n \ge 2$, then $c = ab^{-1}\theta 1$ implies $c^{-1} = c^{n-1}\theta 1$ and $ba^{-1}\theta 1$; whence we get $b\theta a$. Thus θ is a congruence.

As is already known, a congruence θ on a group G regarded as a semigroup becomes that on G regarded as a group; namely preserves the operation $f(x) = x^{-1}$. On the other hand every meromorphism between groups, preserving

564

 $f(x) = x^{-1}$, is a class-meromorphism. Hence Theorem 3.1. shows that a quasicongruence on a group G regarded as a semigroup is not necessarily that on G regarded as a group and further the permutability of quasi-congruences on a semigroup does not imply the symmetricity of those.

4. Quasi-congruences on a lattice

In the present section we intend to discuss the properties of quasi-congruences on a lattice with the operations \cup and \cap . A semilattice on which quasi-congruences are symmetric is trivial. For every element of a semilattice L, regarded as a commutative semigroup under the multiplication \cup , is idempotent, and so L can contain no element other than one element 1 if it forms a group. This follows also from the fact that the relation \leq becomes a quasicongruence in a semilattice or a lattice; hence

THEOREM 4.1. Some quasi-congruence on a lattice (semilattice) L is not symmetric, provided L contains two or more elements.

Then we consider the transitivity of quasi-congruences on a lattice L.

LEMMA 4.1. Let θ be a quasi-congruence on a lattice L. If the implication $a\theta b\theta c \rightarrow a\theta c$ holds for the cases $a \leq b \leq c$ and $a \geq b \geq c$, then $\theta^2 = \theta$.

Proof. $a\theta b\theta c$ implies $a \cup a\theta a \cup b$, $a \cup b \cup b\theta a \cup b \cup c$ and $a\theta a \cup b \cup c$, since $a \le a \cup b \le a \cup b \cup c$. Similarly $a \cup b \cup c\theta b \cup c\theta c$ implies $a \cup b \cup c\theta c$. Then we have $a \cap (a \cup b \cup c)\theta(a \cup b \cup c) \cap c$, that is $a\theta c$.

Now we call an element m of a lattice modular if $x \le y$ implies $x \cup (m \cap y)$ = $(x \cup m) \cap y$.

THEOREM 4.2. Let *m* be a modular element in a lattice *L*. If all intervals containing *m* are complemented, then quasi-congruences on *L* are transitive.

Proof. We shall show for $a \le b \le c$ that $a\theta b\theta c$ implies $a\theta c$. Let x be a relative complement of $b \cup m$ in the interval $[a \cap m, c \cup m]$ and y that of $(b \cup x) \cap m$ in $[a \cap m, m]$. Then we get

$$a = a \cup (a \cap m) = a \cup (x \cap (b \cup m))\theta b \cup (x \cap (c \cup m)) = b \cup x,$$

$$y = (a \cap m) \cup y\theta((b \cup x) \cap m) \cup y = m$$

and

$$a = a \cup (a \cap m) = a \cup (y \cap ((b \cup x) \cap m)) = a \cup (y \cap (b \cup x))\theta$$
$$(b \cup x) \cup (m \cap (c \cup x)) = (b \cup x \cup m) \cap (c \cup x) = (c \cup m) \cap (c \cup x);$$

accordingly $c \cap a\theta c \cap (c \cup m) \cap (c \cup x)$, that is $a\theta c$.

Dually we can show that $a \ge b \ge c$ and $a\theta b\theta c$ imply $a\theta c$. Hence it follows from Lemma 4.1 that θ is transitive.

A lattice with 0 in which all intervals [0, x] are complemented is called *section-complemented*. For a lattice L without 0 we shall define L to be section-complemented when every element of L is contained in a section-complemented principal dual ideal. If a lattice L is section-complemented, then any triple $\{x, y, z\}$ is contained in a section-complemented dual ideal S = [a), in which the condition in Theorem 4.2 holds; hence by Theorem 2.3 we infer

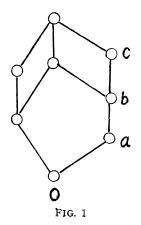
COROLLARY 1. In a section-complemented lattice every quasi-congruence is transitive.

Further, by Theorem 2.5 we can assert the following propositions in our previous paper [1].

COROLLARY 2. If all intervals of a lattice L containing a modular element m are complemented, then congruence relations on L are permutable.

COROLLARY 3. On a section-complemented lattice congruence relations are permutable.

Next we shall inquire into the structure of the lattice Q(L) of quasicongruences on a lattice L. It is well-known that congruence relations on a



566

lattice form a distributive lattice. However the lattice Q(L) is not necessarily modular. Indeed if we set in the lattice of Fig. 1

$$\theta = \theta(0, b), \ \varphi = \theta(b, c) \text{ and } \psi = \theta(a, c),$$

then $\varphi \leq \psi$ and $a \rightarrow c((\varphi \cup \theta) \cap \psi)$ holds nevertheless $a \rightarrow c(\varphi \cup (\theta \cap \psi))$ does not hold.

LEMMA 4.2. If we define in a lattice $L \ a\omega b$ to mean $a \leq b$, then ω is a quasicongruence on L and a lower distributive element in Q(L): $\omega \cap (\varphi \cup \psi) = (\omega \cap \varphi)$ $\cup (\omega \cap \psi)$ for all $\varphi, \ \psi \in Q(L)$.

Proof. Put $\rho = \omega \cap (\varphi \cup \psi)$, $\varphi_0 = \omega \cap \varphi$, $\psi_0 = \omega \cap \psi$ and $\sigma = \varphi_0 \cup \psi_0$. It suffices to show $\rho \leq \sigma$. As is mentioned in §1, $x\rho y$ implies that a lattice polynomial p exists such that

$$x = p(a_1, \ldots, a_l, s_1, \ldots, s_m, u_1, \ldots, u_n),$$

$$y = p(a_1, \ldots, a_l, t_1, \ldots, t_m, v_1, \ldots, v_n)$$

and $x \leq y$, $s_i \varphi t_i$, $u_j \psi v_j$. Then since $s_i \varphi s_i \cup t_i$ and $u_j \psi u_j \cup v_j$, we get $s_i \varphi_0 s_i \cup t_i$ and $u_j \psi_0 u_j \cup v_j$. Hence if we put

 $z = p(a_1, \ldots, a_l, s_1 \cup t_1, \ldots, s_m \cup t_m, u_1 \cup v_1, \ldots, u_n \cup v_n),$

then we get $x \leq y \leq z$, $x \sigma z$ and $x = x \cap y \sigma z \cap y = y$, proving $\rho \leq \sigma$.

Dually we define $a\omega'b$ to mean $a \ge b$. Then we can show

LEMMA 4.3. If $\theta \cap (\varphi \cap \psi) = (\theta \cap \varphi) \cup (\theta \cap \psi)$ holds for the cases θ , φ , $\psi \leq \omega$ and θ , φ , $\psi \leq \omega'$ in Q(L), then Q(L) is distributive.

Proof. Let θ , φ and ψ be any quasi-congruences on L and put $\rho = \theta \cap (\varphi \cup \psi)$, $\sigma = (\theta \cap \varphi) \cup (\theta \cap \psi)$. Then by Lemma 4.2 we get $\omega \cap \rho = (\omega \cap \theta) \cap ((\omega \cap \varphi) \cup (\omega \cap \psi))$, and by the assumption $\omega \cap \rho = (\omega \cap \theta \cap \varphi) \cup (\omega \cap \theta \cap \psi) \leq \sigma$. Hence $x\rho y$ implies $x \cap y\rho y$, $x \cap y(\omega \cap \rho)y$ and $x \cap y\sigma y$. Dually we can show that $x\rho y$ implies $x\sigma x \cap y$. Then we have $(x \cap y) \cup x\sigma y \cup (x \cap y)$, $x\sigma y$ and thus $\rho \leq \sigma$.

THEOREM 4.3. If all quasi-congruences on a lattice are transitive, then they form a distributive lattice.

Proof. By Lemma 4.3, it is sufficient to prove $\theta \cap (\varphi \cup \psi) = (\theta \cap \varphi) \cup (\theta \cap \psi)$ for θ , φ , $\psi \leq \omega$. Put $\rho = \theta \cap (\varphi \cup \psi)$ and $\sigma = (\theta \cap \varphi) \cup (\theta \cap \psi)$. Since σ is transitive, we can write $\sigma = (\theta \cap \varphi)(\theta \cap \psi)$ by Theorem 2.5. If $x \rho y$, then we have

$$x = p(a_1, \ldots, a_l, s_1, \ldots, s_m, u_1, \ldots, u_n),$$

$$y = p(a_1, \ldots, a_l, t_1, \ldots, t_m, v_1, \ldots, v_n)$$

with $s_i \varphi t_i$, $u_j \psi v_j$. If we put

$$z = p(a_1, \ldots, a_l, t_1, \ldots, t_m, u_1, \ldots, u_n),$$

then $x\varphi z$, $z\psi y$ and $x \le z \le y$, since φ , $\psi \le \omega$. Since $x\theta y$, $x = x \cap z\theta y \cap z = z$ and $z = x \cup z\theta y \cup z = y$. Hence we have $x(\theta \cap \varphi)z$, $z(\theta \cap \psi)y$ and $x(\theta \cap \varphi)(\theta \cap \psi)y$; namely $x\sigma y$. Thus $\theta \cap (\varphi \cup \psi) = (\theta \cap \varphi) \cup (\theta \cap \psi)$.

COROLLARY. The lattice of quasi-congruences on a section-complemented lattice is distributive.

THEOREM 4.4. The lattice of quasi-congruences on a distributive lattice is distributive.

Proof. Put $\rho = \theta \cap (\varphi \cup \psi)$ and $\sigma = (\theta \cap \varphi) \cup (\theta \cap \psi)$ for quasi-congruences θ , φ , $\psi \leq \omega$, and assume that $x_{\rho y}$. Then we can write

$$x = p(a, s, u) = p(a_1, \ldots, a_l, s_1, \ldots, s_m, u_1, \ldots, u_n),$$

$$y = p(a, t, v) = p(a_1, \ldots, a_l, t_1, \ldots, t_m, v_1, \ldots, v_n)$$

with $s_i \varphi t_i$, $u_j \varphi v_j$. We define two weights $w_1(p)$ and $w_2(p)$ of the polynomial p by $w_1(p) = m + n$ and $w_2(p) = l + m + n$. We shall prove $x_{\sigma y}$ by induction on $w_1(p)$ and $w_2(p)$. If $w_1(p) \ge 2$, we can write either $p = p_1 \cap p_2$ or $p = p_1 \cup p_2$ with $w_1(p) = w_1(p_1) + w_1(p_2)$, $w_2(p) = w_2(p_1) + w_2(p_2)$, $w_1(p_i) \ge 0$ and $w_2(p_i) \ge 1$. We may deal only with the case $p = p_1 \cap p_2$.

Case 1. $w_1(p_1) < w_1(p)$, $w_1(p_2) < w_1(p)$. Since xpy and

 $x \le y \cap p_1(a, s, u) \le y \cap p_1(a, t, v) = y,$

we get $y \cap p_1(a, s, u) \rho p \cap p_1(a, t, v)$. Since $w_1(y \cap p_1) = w_1(p_1) < w(p)$, we get $y \cap p_1(a, s, u) \sigma y \cap p_1(a, t, v) = y$, by the hypothesis of induction, and similarly $y \cap p_2(a, s, u) \sigma y$. Then

 $x = (y \cap p_1(a, s, u)) \cap (y \cap p_2(a, s, u))_{\sigma y}.$

Case 2. $w_1(p_1) = w_1(p)$, $w_1(p_2) = 0$. If we put $b = p_2(a)$, then $x = p_1(a, s, u) \cap b$, $y = p_1(a, t, v) \cap b$ and hence $x = p_1(a, s, u) \cap y$, $y = p_1(a, t, v) \cap y$. We can write either $p_1 = p_3 \cap p_4$ or $p_1 = p_3 \cup p_4$ in the same manner as above. If $p_1 = p_3 \cap p_4$, then by regarding p_3 and $p_4 \cap b$ as p_1 and p_2 we can reduce to either Case 1 or the case $p_1 = p_3 \cup p_4$. Hence we may assume that $p_1 = p_3 \cup p_4$.

Case 2.1. $w_1(p_3) < w_1(p_1), w_1(p_4) < w_1(p_1)$. Since xpy and

568

$$x = (p_3(a, s, u) \cap y) \cup x \le (p_3(a, t, v) \cap y) \cup x \le y,$$

we get $(p_3(a, s, u) \cap y) \cup x\rho(p_3(a, t, v) \cap y) \cup x$ and $w_1(p_3 \cap y) \cup x = w_1(p_3) < w_1(p)$. Hence we have $x\sigma(p_3(a, t, v) \cap y) \cup x, x\sigma(p_4(a, t, v) \cap y) \cup x$ and $x\sigma(p_3(a, t, v) \cap y) \cup x = (p_1(a, t, v) \cap y) \cup x = y$ by the distributivity.

Case 2.2. $w_1(p_3) = w_1(p_1), w_1(p_4) = 0$. Then we can write, putting $p_4(a) = c$,

$$x = (p_3(a, s, u) \cup c) \cap y = (p_3(a, s, u) \cap y) \cup (c \cap y),$$

$$y = (p_3(a, t, v) \cup c) \cap y = (p_3(a, t, v) \cap y) \cup (c \cap y)$$

and $x = (p_3(a, s, u) \cap y) \cup x$, $y = (p_3(a, t, v) \cap y) \cup x$, since $c \cap y \le x$. We may assume $p_3 = p_5 \cap p_6$ without loss of generality. Then since $x \rho y$ and

$$x \leq (p_{\flat}(a, s, u) \cap y) \cup x \leq (p_{\flat}(a, t, v) \cap y) \cup x = y,$$

we have $(p_5(a, s, u) \cap y) \cup x_p(p_5(a, t, v) \cap y) \cup x$. Since $w_2((p_5 \cap y) \cup x) = w_2(p_5) + 2$ and $w_2(p_5) < w_2(p_3) < w_2(p_1) < w_2(p)$, $w_2((p_5 \cap y) \cup x) < w_2(p)$. Hence we can infer $(p_5(a, s, u) \cap y) \cup x_\sigma(p_5(a, t, v) \cap y) \cup x = y$, by the hypothesis of induction, and $(p_5(a, s, u) \cap y) \cup x_\sigma y$. Then

$$\begin{aligned} x &= (p_5(a, s, u) \cap p_6(a, s, u) \cap y) \cup x \\ &= ((p_5(a, s, u) \cap y) \cup x) \cap ((p_6(a, s, u) \cap y) \cup x) \sigma y, \end{aligned}$$

completing the proof.

It seems the distributivity of Q(L) may be deduced from more weaker conditions on L. For instance we guess that Q(L) may be distributive for a modular lattice L. Further we intend to inquire into the structure of a lattice L by the investigation of Q(L) but we have obtained no useful result on it.

References

- J. Hashimoto: Congruence relations and congruence classes in lattices, Osaka Math. J. 15 (1963).
- [2] A. I. Malcev: On the general theory of algebraic systems, Mat. Sb. N. S. 35 (77) (1954), Amer. Math. Soc. Transl. (2) 27 (1963).
- [3] T. Nakayama: Sets, topologies and algebraic systems (Shugo, Iso, Daisukei in Japanese), Tokyo, 1949.
- [4] K. Shoda: Universal theory for algebra (Daisugaku Tsuron in Japanese), Tokyo, 1947.
- [5] K. Shoda: Uber die allgemeinen algebraischen Systeme I-VII, Proc. Imp. Acad. Tokyo 17-20 (1941-4).

Department of Mathematics Kobe University