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1. Introduction

In the present paper by an algebraic system (algebra) A we shall mean

a system with a set F of operations fx : (xu . . . , xn) e A x x A ->fΛxi, . - ,

xn) e A. A polynomialp(xίt . . . , j r ) is a function of variables ΛΓI, . . . , χr which

is either one of the #, , or (recursively) a result of some operation f>Spu ,

/>„) performed on other polynomials />,-. An algebra A may satisfy a set R

of identities />(#i, . . . , xr) = q(xu . . . , xs), and then A shall be called an

(F, R)-algebra.

By a meromorphism between two algebras admitting the same operations,

we mean a many-many correspondence of elements which preserves all algebraic

combinations. If ψ is a meromorphism of A onto B, under which the cor-

respondence of elements shall be written a -+b(φ) or aψb, then aiψbi (/ = 1, . . ., n)

imply /λ(«i, . . . , an)ψf\{bu . , ̂ n). We shall write bψa to mean aψb,

and then f becomes a meromorphism of 5 onto A. Let ^ and ψ be meromor-

phisms from A onto .β and from B onto C respectively, and define aψψc to

mean <2̂& and bpc for some b ̂  B. Then ^^ becomes a meromorphism from

A onto C.

Now on a meromorphism of any algebra the following theorem similar to

the Homomorphism Theorem holds.

MEROMORPHISM THEOREM. Let ψ be a meromorphism of A onto B. If we

define the relation ψ* in A by

aφ*a* means that for some finite number of elements aQ, alt . . . , an& A and

ao = a, a' = an, m-ifbu aiψbi ( f = l , . . . , « ) ,

then φ* is a congruence relation on A> and similarly ψ* is that on B. Further

their homomorphic images are isomorphic:
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If, given b e B, {x xψb) is necessarily a congruence class under φ* in the

above theorem and, given β £ i , {y aψy) is necessarily that under φ*, then

^ is called a class-meromorphism. As is already known, a meromorphism ^ is

a class-meromorphίsm if and only if aψb, afψb and afψbf imply #<£>#'. When ψ

and 0 are two meromorphisms of A onto 5, we define ψ£φ to mean that 0<£#

implies #^#. Then the above condition that ψ be a class-meromorphism is writ-

ten φφψύψ.

In Shoda's theory for abstract algebraic systems the following condition

on an algebra A is often assumed:

(<t) Every meromorphism between two homomorphic images of A is a

class-meromorphism.

In the present paper we shall deal with meromorphisms of an algebra A

onto itself. We shall first show in § 2 that the above condition (a) is equivalent

to the condition

(β) Every meromorphism of A onto itself is a class-meromorphism.

A meromorphism ψ of A onto itself may be regarded as a relation between

elements of A. If φ is reflexive, i.e. aψa holds for all α e i , we shall call ψ

a quasi-congruence. We shall show that a quasi-congruence on A is a class-

meromorphism if and only if it is a congruence relation. We shall inquire in

§ 2 mainly into the symmetricity and transitivity of quasi-congruences in abstract

algebras, and discuss the connections among the transitivity, symmetricity and

permutability of quasi-congruences.

In § 3 and § 4 we shall deal with quasi-congruences on some real algebraic

systems. Especially we shall discuss in § 3 the conditions that quasi-congruences

on a semigroup be symmetric and in §4 that quasi-congruences on a lattice

be transitive. The lattice of quasi-congruences on a lattice is not necessarily

distributive. We shall lastly give some sufficient conditions for that lattice to

be distributive.

2. Meromorphisms of an abstract algebra onto itself

Let ψ and ψ be homomorphisms of A and θ a meromorphism between

ψ(A) and ψ{A). If we define aΘb to mean φ(a)θψ(b), then it is easy to see

that θ is a meromorphism of A onto itself. Suppose that ψ{a)θψ(b), ψ(a')θψ{b)

and ψ(at)dφibl). Then aθb, a'θb and a'Θb' hence if Θ is a class-meromorphism
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we get aθb1 and ψ(a)θψ(b')y which shows that θ is a class-meromorphism be-

tween ψ(A) and ψ(A). Thus we have

THEOREM 2.1. Every meromorphism between two homomorphic images of an

algebra A is a class-meromorphism if and only if every meromorphism of A onto

itself is a class-meromorphism.

Meromorphisms of A onto itself form a partially ordered semigroup M(A)

under the multiplication and the ordering defined in § 1:

aψψb means that aψc and cψb for some c e A

ψ ̂ ψ means that aψb implies aψb.

Further, it is rather evident that ψ£ψι and ψ^ψi imply ψψ^ψiψi.

A meromorphism θ of A onto itself is regarded as a relation in A, and it

becomes a congruence relation if it is reflexive, symmetric (symbolically Έ^β)

and transitive iθ2£θ). A quasi-congruence on A is a meromorphism of A onto

itself which is reflexive. The set Q(A) of quasi-congruences on A becomes a

subsemigroup of M(A) mentioned above and a complete lattice under the

ordering defined in M(A). In Q{A) a-^biΛadJ means that aθab for all θ*.

Now let P be a set of ordered pairs (α, b) of elements of A, and define

the relation β in the following way:

uθv means that a polynomial pixίf . . . , xm, yu . . . , yn) exists such that

u=p(aly . . . , am, cu . . . , cn) and v = p{bίy . . . , bm, cu . . . , cn)

for some (#;, #/) e P.

Then it is easily seen that θ becomes a quasi-congruence, which is the least

of elements ψ of QiA) satisfying aψb for every pair (a, W e P . This d is

called the quasi-congruence generated by P and denoted by Θ(P). It follows

that β(P) = Via,b)epθ(af b), where θ(a, b) is the quasi-congruence generated

by one pair (a, b).

We intend to discuss the symmetricity and transitivity of quasi-congruences.

We first show

THEOREM 2.2. Let {θa} be a set of quasi-congruences on an algebra A. Then

Λ*da - Aaθa and Vaθa = Va0Λ accordingly symmetric quasi-congruences form a

closed sub lattice of QiA).
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Proof. It is clear by the meaning that Λaθa = ΛaθΛ. Let P be a set of

ordered pairs (a, b) of elements of A and put P = {(&, a) (a, b)<=P}. If

u->viθ{P)), then a polynomial/? exists such that u = p{aι, - . . , #™, cίy . . . , crt),

v=p(bu . . . , bm, Ciy . . . , cn) and (β, , &;) ε P . Then (&/, ad E P and hence

we infer v-+uiθ(P))y which shows 0(P) = Θ(P). Now put 0α = 0(Pα). Then

Fα0α = d(VaPa), where F α P α is the set-sum of P α . So we can deduce

VM = ̂ (F α P α ) = θ(VaPa) = ̂ ( F α P j = Vaθ(Pa) = V*ΘΛ,

completing the proof.

If quasi-congruences θa are transitive, then Λaθa is also transitive but Vd*

is not necessarily transitive; hence the set Θ(A) of congruences on A is meet-

closed in Q(A) but not always a sublattice of Q(A).

Now let S be a subalgebra of an algebra A and every quasi-congruence

on 5 be transitive. Suppose I J , 2 G 5, xfl y and j>0£ under a quasi-congruence

0 on A. Since 0 can be regarded as a quasi-congruence 0O on 5, provided the

range of elements is restricted in S, and 0O is transitive, we infer xθ*z and #0z.

So we have

THEOREM 2.3. Quasi-congruences on an algebra A are transitive if every triple

{x, yf z) is contained in a subalgebra S — S(x, y, z) on which quasi-congruences

are transitive.

And similarly,

THEOREM 2.4. Quasi-congruences on an algebra A are symmetric if every pair

{x, y) is contained in a subalgebra S = Six, y) on which quasi-congruences are

symmetric.

Two quasi-congruences ψ and ψ are called permutable if and only if ψψ =

ψψ. We see some connections among the transitivity, symmetricity and per-

mutability of quasi-congruences.

THEOREM 2.5. // the join φ U ψ of two quasi-congruences ψ and ψ is transitive,

then ψψ = ψψ = φ U ψ.

Proof. When ψ and ψ are quasi-congruences on A, aψb implies aψbψb

hence we have ψ^ψψ, ψ£ψψ and ψ U ψύψψ So we can deduce from (ψ U ψ)2

, ψψ^iψ U ψΫ^ψ U ψ^ψψ.
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THEOREM 2.6. If quasi-congruences ψ, ψ and ψψ are symmetric, then ψ and

ψ are per mutable.

Proof. It is easily seen that ψψ - ψψ. Hence the symmetricity implies ψψ

^<pψ = ψψ= ψψ.

Next we deal with congruence relations regarded as quasi-congruences.

Given a quasi-congruence θ, it follows from the Meromorphism Theorem men-

tioned in § 1 that θ* = Vn(θd)n is a congruence, which is called generated by θ,

and if θ is originally a congruence, θ* = θ.

THEOREM 2.7. A quasi-congruence is a class-meromorphism if and only if it

is a congruence.

Proof. If θ is a congruence on A, then β = Vn(θθ)n>θθθθ^>θ'θθ, whence θ

is a class-meromorphism. Conversely if ΘOΘ^Θ, then d^θθθ^θ and Θ2^0ΘO^Θ;

hence θ is a congruence.

The set Θ(A) of congruences on A is not always a sublattice or a subsemi-

group of Q(A). We shall give below some conditions for Θ(A) to be so.

The product ψψ of two congruences ψ and ψ becomes a congruence if and

only if they are permutable; hence

THEOREM 2.8. Congruences on an algebra A form a subsemigroup of Q(A)

if and only if they are permutable.

Let ψ and ψ be congruences on A and ψ^J ψ the congruence generated by

ψψ. Then ψϋψ^ψψ^ψVψ. Hence we can infer from Theorem 2.5,

THEOREM 2.9. // quasi-congruences on an algebra A are transitive, then con-

gruences on A form a sublattice of Q(A). If congruences on A form a sublattice

of Q(A), then they are permutable.

As shown above the transitivity or symmetricity of quasi-congruences

implies the permutability of congruences. Hence if quasi-congruences are

class-meromorphisms, then congruences are permutable. But the converse is

not true. On the other hand Malcev [2] has proved the following theorem.

THEOREM 2.10 (Malcev). // congruences on every (F, R)-algebra are per-

mutable, then there exists a polynomial p{χ, y, z) such that p{x, y, y) = x and

p(x, x, y) =y.
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If such a polynomial p(x, y, z) exists, then aψb, a'ψb and a'ψb1 imply a =

p(a9 a\ a')ψp{b, b, b')=b'. Hence

THEOREM 2.11. If congruences on every (F, R)-algebra are permutable, then

meromorphisms of every (F, R)-algebra onto itself are class-meromorphisms.

3. Quasi-congruences on a semigroup

We intend to obtain the condition for a semigroup G that every quasi-

congruence on G be a congruence. We have succeeded to solve this problem

for a commutative semigroup.

THEOREM 3.1. For a commutative semigroup G the following conditions are

equivalent:

(1) every quasi-congruence on G is symmetric,

(2) G is a group in which every element has a finite order.

Proof. (l)-> (2). Let a be any element of G. If we define xθy to mean

either x = y or x = yan with n = 1, 2, . . . , then it is easy to see that θ is a

quasi-congruence on G. Since a2 da and θ is symmetric, we get add' and a =

an+1 (n = 1, 2, . . . ). Put e = an. If n = 1, then £ = α2 = Λ = e, and if n>2, then

22 = β ^ V " 1 = aan~γ = βw = £. Since £#0#, we have #0£#, that is either j c = α o r

x = £x#M, and then we can show &x: = x by e2 = e namely £ is an identity.

Similarly, given b<=G, we can find e1 = &m such that Λ = x for all J G G , and

then we have e1 = #e' = e'e = e and either 6 = e or 6m~!Z> = ^ so b has an inverse

and a finite order.

Now the implication (2)->(l) can be shown without the commutativity of

G. Namely

THEOREM 3.2. If G is a group in which every element has a finite order,

then every quasi-congruence θ on G, regarded as a semigroup, is a congruence.

Proof, aθb and bθc imply ab~^bdbb~ιc, that is aβc. Hence every quasi-

congruence on a group is transitive. Suppose that aθb and the order of c - ab~λ

is n. If n = l, then a~b and bθa. If n ^ 2 , then c-ab~ιθl implies c~ι =

cn~10 1 and ba~xθ 1 whence we get bθa. Thus θ is a congruence.

As is already known, a congruence θ on a group G regarded as a semigroup

becomes that on G regarded as a group; namely preserves the operation fix)

= ΛΓ\ On the other hand every meromorphism between groups, preserving
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fix) = x~1

J is a class-meromorphism. Hence Theorem 3.1. shows that a quasi-

congruence on a group G regarded as a semigroup is not necessarily that on

G regarded as a group and further the permutability of quasi-congruences on

a semigroup does not imply the symmetricity of those.

4. Quasi-congruences on a lattice

In the present section we intend to discuss the properties of quasi-con-

gruences on a lattice with the operations U and Π . A semilattice on which

quasi-congruences are symmetric is trivial. For every element of a semilattice

L, regarded as a commutative semigroup under the multiplication U , is idem-

potent, and so L can contain no element other than one element 1 if it forms

a group. This follows also from the fact that the relation ^ becomes a quasi-

congruence in a semilattice or a lattice; hence

THEOREM 4.1. Some quasi-congruence on a lattice {semilattice^ L is not sym-

metric, provided L contains two or more elements.

Then we consider the transitivity of quasi-congruences on a lattice L.

LEMMA 4.1. Let θ be a quasi-congruence on a lattice L. If the implication

aθbdc->aθc holds for the cases a^b^c and a^b>c, then θ2 = θ.

Proof aθbdc implies a U aθa U b, aϋ bU bθaϋ bl) c and aθa U bUc, since a ^

aUb^aUbUc. Similarly aUbϋcβbU cθc implies a U b U cθc. Then we have

aΠ (aϋbl)c)θ(aUb[Jc) Π c, that is aθc.

Now we call an element m of a lattice modular if x^y implies xU (m Πy)

= (xϋ m) Γ\y.

THEOREM 4.2. Let m be a modular element in a lattice L. If all intervals

containing m are complemented, then quasi-congruences on L are transitive.

Proof. We shall show for a^b £c that aβbθc implies adc. Let x be a

relative complement of b U m in the interval [aΠm, c\Jm~\ and y that of

(^UriΠm in [oil m, m\ Then we get

a = aU iaΠm) =«U (xf) (bUm))θb{J (jΓΊ (cUm)) =bUx,

y=(aΠm) Όyθ{{bUx) Π m) I)y = m

and
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a = aϋ(aΓ\m) = aϋ(yf) ((bϋx)Πm)) = aϋ(yΠ (bϋχ))θ

(bUx) U ( w ( Ί ( c Ό x ) ) = (bΌxϋm) Π (cϋx) = Kcϋm) Π

accordingly cίlfl^Π (cU m) Π (cUx), that is #0c.

Dually we can show that a>b7>c and aθbθc imply aθc. Hence it follows

from Lemma 4.1 that θ is transitive.

A lattice with 0 in which all intervals [0, xl are complemented is called

section-complemented. For a lattice L without 0 we shall define L to be section-

complemented when every element of L is contained in a section-complemented

principal dual ideal. If a lattice L is section-complemented, then any triple

{x, y, z) is contained in a section-complemented dual ideal S = [α), in which

the condition in Theorem 4.2 holds; hence by Theorem 2.3 we infer

COROLLARY 1. In a section-complemented lattice every quasi-congruence is

transitive.

Further, by Theorem 2. 5 we can assert the following propositions in our

previous paper [1].

COROLLARY 2. // all intervals of a lattice L containing a modular element m

are complemented, then congruence relations on L are permutable.

COROLLARY 3. On a section-complemented lattice congruence relations are

permutable.

Next we shall inquire into the structure of the lattice Q(L) of quasi-

congruences on a lattice L. It is well-known that congruence relations on a
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lattice form a distributive lattice. However the lattice Q(L) is not necessarily

modular. Indeed if we set in the lattice of Fig. 1

0 = 0 ( 0 , b ) , ψ = β(by c) a n d ψ = θ ( a , c ) ,

then ψ^φ and a ̂  c((ψϋ θ) dφ) holds nevertheless a-+c{ψ U (0 Π ψ)) does not

hold.

LEMMA 4.2. // we define in a lattice L aωb to mean a^b, then ω is a quasi-

congruence on L and a lower distributive element in Q(L): ω Π (ψ U ψ) = (ω Π ψ)

U(ωΠφ) for all <ρ, φtΞQ(L).

Proof. Put p = ω Π (<ρ U ψ), ψ0 = ω Π ψ, φQ = ω Π 0 and J = p0 U 0o. It suffices

to show p^tf. As is mentioned in § 1, xpy implies that a lattice polynomial

p exists such that

u . . . , au su - . - , Sm, uu . . . , «»),

. . , aι, ti, . . . , tm, vu . . . , z;«)

and #^3>, 5, ̂ , , wy^^ . Then since s;fs, U ί, and ^ψ^y U vj, we get 5̂ oS/ U ti and

UjφoUjΌvj. Hence if we put

z =p(au . . . , aι, Si \JtL, . . . , 5m U tm, ux Uvi, . . . , un U vn),

then we get x^y£>zf xβz and Λ: = x(Ί3;ί;2: Piy =jy, proving p^<;.

Dually we define #α>'& to mean a>b. Then we can show

LEMMA 4.3. If ΘΠ(φΠφ) = ( 0 Π ^ ) U (0ΓΊ^) Ao/6/5 /or ίAβ cases θ, <p, φ^ω

and θ, ψ, φ^ωf in Q{L), then Q(L) is distributive.

Proof Let 0, ψ and ψ be any quasi-congruences on L and put p= θ Π (y>

U0), tf = (<9Π^) U (0Π0). Then by Lemma 4.2 we get ω Π p = (ωΠ 0) Π ((ω(Ί

^) U (a? Π ^ ) ) , and by the assumption ω Π p = {ω Π θ Π ψ) Ό {ω Π θ Π φ)^σ. Hence

xpy implies xftypy, xC\y(ω Π p)y and xn^cry. Dually we can show that xpy

implies xσxΠy. Then we have (xf)y) U xay U (ΛrίΊjy), ^jy and thus p^<;.

THEOREM 4.3. If all quasi-congruences on a lattice are transitive, then they

form a distributive lattice.

Proof. By Lemma 4.3, it is sufficient to prove θ Π (<p U ψ) = (0 Π <ρ) U (0 Π ψ)

for 0, ̂ , 0^ω. Put p = 0 Π (^ U 0) and σ = (0 Γί 9?) U (0 Π ̂ ) . Since <; is transitive,

we can write σ= iθ Γ\<p)(θ ftφ) by Theorem 2.5. If xpy, then we have

t . . . , au su . . . , s w ? «i» - » »n)?



568 JUNJI HASHIMOTO

y ~p(au . . , aι, tι, . . . , tmy Vi, . . . , vn)

with Siψti, Ujψvj. If we put

z = piau . . . , at, tu > tm, uu . . , un),

then #^2, zψy and j^z^jy, since ^, ψ^ω. Since #0y, J = X Π 2 ^ Π 2 = 2 and z~

xUzdyDz = y. H e n c e w e h a v e xiθ Π φ)z, z(θ Γ\ψ)y and x(θ Γ\φ)(θ Πφ)y; n a m e l y

xαy. T h u s ΘΓ\(φ\Jψ) = ( 0 Γ) < P ) U ( 0 Π 0 ) .

COROLLARY. 77Z£ lattice of quasi-congruences on a section-complemented lattice

is distributive.

THEOREM 4.4. The lattice of quasi-congruences on a distributive lattice is

distributive.

Proof. Put p = θ Π (ψ U ψ) and σ = (θ Π ψ) \J {θ Γi φ) ίor quasi-congruences θ,

ψy ψ^-ω, and assume that xμy. Then we can write

x = p(at 5, u) =p(au . . . , α2, Si, . . . , S.TZ, ^ I , . . . , ̂ n),

y=pia, t, v) =p{au . . , au U, . . . , tm, vu - . . , fl*)

with s, ̂ //, My^y. We define two weights w^p) and w2(p) of the polynomial

/> by W\{ p) - m + n and w2(p) = / •+• w + ?ί. We shall prove #jy by induction on

MM /?) and w2(p). If Wil p)>2, we can write either p =• piΠp2 or p~pxϋp2 with

Wi(p) = Wι(pι) + WΛP2), tv2ip) = w2ipi) + w2(p2), wiipi)^0 and w2(pi)^l. We

may deal only with the case p=pι^\p2.

Case 1. Wι( pi) <Wχi p\ w^p2) <wSp). Since X/oy and

, 5, « ) ^

we get^Π/>i(β, 5, u)μyΐ\pι{a, t, v). Since wi(yΓ\p1) = w1(p1)<wip), we get

j/Π/>i(«, 5, ^σydpxia, t, v) =y> by the hypothesis of induction, and similarely

3;Π^2(^, s, u)σy. Then

x = (jy Γ\pi(a, 5, w)) Π (jyΠ/>2(β, s, w))^.

Case 2. Wi(£i) =wi(/>), wjft) =0. If we put b=p2(a), then x = pί(a, s,

u)C\by y = pΛa, t, v)0b and hence x = pλ{a, s, w) Πj;, y-px(a, t, v)Γϊy, We

can write either px = />3 Π /)4 or pi = £ 3 U/>4 in the same manner as above. If

pi =ί>3 Π/>4, then by regarding £3 and ^ 4 Π ^ as px and ^ 2 we can reduce to either

Case 1 or the case pι=p3Όp4. Hence we may assume that pi = £ 3 U£4.

Case 2.1. wι(pz)<Wι(pL}, wL(p4)<Wι{pι). Since xpy and
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x=(pt(a, s9 u)Πy)Όx£(p^(ay t9 v

we get (pz(a, s, u) Πy) Uxp(p*(a, t, υ) Πy) Ux and wS (p* Πy' U x) = wj pz) <

Wi(p). Hence we have xaipiia, t, v) Γ\y) U x, xσipAa, t, v) Γ\y) U x and xa(pz(a,

t, v) Γ)y) U J U (pt(a9 t, v) Π y) U i = ipάa, t, v) Πy) Ux^y by the distributivity.

Case 2.2. wL(pΆ) = ^L( A ^ wL{pA^ = 0. Then we can write, putting pAa) •= c,

x= Kpzia, 5, u) Uc) ny= (pΛ(a, 5, «) Πy) U (cΠ^),

y=*(p9(a9 t9 v)Uc) Γ)y = (pΛa, t, v) f)y) Ό (cf\y)

and x^Kp^a, s, u)Πy)Ux, y= ipsia, t, v)Γ[y)\Jx, since cfty^x. We may

assume pz-p^^pβ without loss of generality. Then since xpy and

x^(pb(a, s, u) Πy) U x£(ps(a9 t9 v) Γiy) Ό x = y,

we have (p6(a9 s, u) f)y) Uxp(p$(a9 t, v) Πy) \J x. Since w2((piΓly)Ux) =

wΛpό) + 2 and w2<ps)<w*<pz)<uh(pχ)<uh{P\ wΛ(psny) UxXw-Ap). Hence

we can infer (p&(a9 s, u) Πy) Ό xσ(p-Λa, t9 v) Πy) U x = y, by the hypothesis of

induction, and (p%(a9 s, u) Πy)Όxσy. Then

x= (p~0(a, 5, u) Γ\pt(a, 5, u) Πy) U x

= ((ίδ(β, 5, u)Πy) \Jχ) Π((pό(a, s9 u)Πy)\Jχ)σy,

completing the proof.

It seems the distributivity of Q(L) may be deduced from more weaker

conditions on L. For instance we guess that Q(L) may be distributive for a

modular lattice L. Further we intend to inquire into the structure of a lattice

L by the investigation of Q(L) but we have obtained no useful result on it.
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