GEOMETRY OF GROUP REPRESENTATIONS

G. DE B. ROBINSON

To the memory of Tadasi Nakayama

The many unanswerable questions (1) which arise in the study of finite groups have lead to a review of fundamental ideas, e.g. the Theorem of Burnside (3, p. 299; 2, 6) that if λ be any faithful irreducible representation of G over a field K, then every irreducible representation of G over K is contained in some tensor power of λ.

If we take K to be the complex field and write the inner tensor product in question $\lambda \times \lambda \times \cdots$ (n factors) as $\lambda \times{ }^{n}$, we recall Schur's result that this representation of G splits according to the formula (7, p. 129)

$$
1.1 \quad \lambda \times{ }^{n}=\sum f_{\nu} \lambda \otimes[\nu]
$$

where $\lambda \otimes[\nu]$ is the symmetrized inner product associated with the irreducible representation $[\nu]$ of degree f_{ν} of the symmetric group S_{n}. For a finite group $G, \lambda \otimes[\nu]$ is in general reducible, while for the full linear group and certain of its subgroups this representation is irreducible.

These symmetrized tensor products are hard to handle, though their degrees δ^{ν} are given by the formula (5, p. 60)

$$
\delta^{\nu}\left(f_{\lambda}\right)=G^{\nu}\left(f_{\lambda}\right) / H^{\nu}
$$

where f_{λ} is the degree of λ. If we denote the Young diagram associated with the irreducible representation ν of S_{n} by [ν], then H^{ν} is the product of hook length of $[\nu]$ and $G^{\prime \prime}\left(f_{\lambda}\right)=\prod_{i, \nu}\left(f_{\lambda}+j-i\right)$, taken over $[\nu]$. It follows immediately that for $n \leq f_{\lambda}$, all these symmearized products are defined.

It would be interesting if Burnside's theorem could be refined so as to relate the apperances of the different irreducible representations of G to these symmetrized components of $\lambda \times^{n}$, but the difficulties seem insurmountable at present.
2. Another application of these tensor products is of interest. In Chapter XII of (3) Burnside studies at some length the permutation representation g_{i} of G induced by the identity representation of a subgroup $H_{i}(i=1,2, \ldots, r)$ of orders h_{i}. It is natural to arrange the H_{i} so that $H_{1}=I$ and g_{1} is the regular representation of $G, h_{i} \leq h_{i+1} \leq h_{r}$ with $H_{r}=G$ so that g_{r} is the identity representation of G. If we suppose g_{i} to be represented on the variables x_{u} and g_{j} on the variables y_{v}, the tensor product $g_{i} \times g_{j}$ is represented on the variables $x_{u} y_{v}$ and
2.1

$$
g_{i} \times g_{j}=\sum a_{i j k} g_{k} .
$$

If $j=i$, we obtain the symmetrized components for $n=2$ on the variables (5, p. 57).

$$
x_{1} y_{1}, x_{2} y_{2}, \ldots, \frac{1}{2}\left(x_{u} y_{v}+x_{v} y_{u}\right) ; \ldots \frac{1}{2}\left(x_{u} y_{v}-x_{v} y_{u}\right)
$$

by setting $y_{u}=x_{u}$. It follows, as in the case of $g_{i} \times g_{j}$, that $g_{i} \otimes[2]$ is also a permutation representation of G, while $g_{i} \otimes\left[1^{2}\right]$ is not. The argument is quite general so that 2.1 becomes

$$
g_{i} \times{ }^{n}=\sum_{j} a_{i j}^{n} g_{j}
$$

and we have

$$
g_{i} \otimes[n]=\sum_{j} b_{i j}^{n} g_{j},
$$

where the $a_{i j}^{n}, b_{i j}^{n}$ are rational integers.
3. What is of interest here is that $2.1-2.3$ can be interpreted in a natural way relative to the geometry of the irreducible representations λ of G. A start was made on this many years ago (4). For purposes of illustration, we reproduce two tables which set the stage for this interpretation in the case of S_{4}. Here we write

$$
g_{i}=\sum_{v} m_{i}^{\imath}[\nu]
$$

and Table 2 gives the values of the m_{i}^{ν}. For completeness, it would have been desirable to list all the solutions of 2.1 , but this has been omitted in favour of Table 3 which gives the solutions of 2.2 and 2.3 for $n=2,3$. Since there are five irreducible representations of S_{4}, we have the following linear relations between the g_{i} :

TABLE 1

H		sub-group
H_{1}	1	h
H_{2}	$1,(12)$	
H_{3}	$1,(12)(34)$	2
H_{4}	$1,(123),(132)$	2
H_{5}	$1,(1234),(13)(24),(1432)$	3
H_{6}	$1,(12)(34),(14)(23),(13)(24)$	4
H_{7}	$1,(12),(34),(12)(34)$	4
H_{8}	$1,(12),(13),(23),(123),(132)$	4
H_{9}	$1,(12),(34),(12)(34),(14)(23),(13)(24),(1324),(1423)$	6
H_{10}	A_{4}	8
H_{11}	S_{4}	12
		24

TAble 2

	$\left[1^{4}\right]$	$\left[2,1^{2}\right]$	$\left[2^{2}\right]$	$[3.1]$	$[4]$
g_{1}	1	3	2	3	1
g_{2}	\bullet	1	1	2	1
g_{3}	1	1	2	1	1
g_{4}	1	1	\bullet	1	1
g_{5}	\bullet	1	1	\bullet	1
g_{6}	1	\bullet	2	\bullet	1
g_{7}	\bullet	\bullet	1	1	1
g_{8}	\bullet	\bullet	\bullet	1	1
g_{9}	\bullet	\bullet	1	\bullet	1
g_{10}	1	\bullet	\bullet	\bullet	1
g_{11}	\bullet	\bullet	\bullet	\bullet	1
			m_{i}^{ν}		

TABLE 3

	\times^{2}	\times^{3}	$\otimes[2]$	$\otimes[3]$
g_{1}	$24 g_{1}$	$576 g_{1}$	$8 g_{1}+6 g_{2}+3 g_{3}$	$17 g_{1}+4 g_{4}$
g_{2}	$5 g_{1}+2 g_{2}$	$70 g_{1}+4 g_{2}$	$g_{1}+4 g_{2}+g_{6}$	$11 g_{1}+7 g_{2}+2 g_{4}$
g_{3}	$4 g_{1}+4 g_{3}$	$64 g_{1}+16 g_{3}$	$3 g_{2}+3 g_{3}+g_{5}$	$10 g_{1}+9 g_{3}+2 g_{4}$
g_{4}	$2 g_{1}+2 g_{4}$	$20 g_{1}+4 g_{4}$	$g_{2}+g_{3}+g_{4}+g_{8}$	$4 g_{1}+3 g_{4}$
g_{5}	$g_{1}+2 g_{5}$	$8 g_{1}+4 g_{5}$	$g_{2}+g_{5}+g_{9}$	$g_{1}+g_{3}+g_{4}+g_{5}$
g_{6}	$6 g_{6}$	$36 g_{6}$	$3 g_{6}+g_{9}$	$9 g_{6}+g_{10}$
g_{7}	$g_{1}+2 g_{7}$	$8 g_{1}+4 g_{7}$	$g_{2}+g_{7}+g_{9}$	$g_{1}+g_{3}+2 g_{7}+2 g_{8}$
g_{8}	$g_{2}+g_{8}$	$g_{1}+3 g_{2}+g_{8}$	$g_{7}+g_{8}$	$g_{2}+2 g_{8}$
g_{9}	$g_{6}+g_{9}$	$4 g_{6}+g_{9}$	$2 g_{9}$	$g_{6}+g_{9}+g_{11}$
g_{10}	$2 g_{10}$	$4 g_{10}$	$g_{10}+g_{11}$	
g_{11}	g_{11}	g_{11}		

$$
\begin{array}{ll}
2 g_{6}+g_{1}=3 g_{3} & 2 g_{9}+g_{1}=g_{2}+g_{3}+g_{5} \\
2 g_{7}+g_{1}=2 g_{2}+g_{3} & 2 g_{10}+g_{1}=g_{3}+2 g_{4} \\
2 g_{8}+g_{1}=2 g_{2}+g_{4} & 2 g_{11}+g_{1}=g_{2}+g_{4}+g_{5}
\end{array}
$$

Consider, in particular the irreducible representation [3, 1] whose invariant configuration is a regular tetrahedron. Since $H_{4} \subset H_{3}$, the groups of stability of the vertices are H_{s} and its conjugates. Taking the bi-vector defined by two such vertices, we have from Table 3,

$$
g_{3} \times^{2}=g_{8}+g_{2}
$$

which indicates that the group of stability of the corresponding edge is H_{2} with $m_{2}^{[3,1]}=2$. However, this does not take into account the extra symmetry arising by interchanging the two vertices. For this we go to

$$
g_{8} \otimes[2]=g_{8}+g_{\bar{T}},
$$

and the group of stability of the mid-edge point is H_{7}. As already mentioned, the component

$$
g_{8} \otimes\left[1^{2}\right]=[3,1]+\left[2,1^{2}\right]
$$

has no geometrical significance.
We may study the geometry of the representation $\left[2,1^{2}\right]$ in a similar fashion, noting from Table 2 that only the vertices of the fundamental region are well defined; since $H_{3} \subset H_{5}^{5}$, the groups of stability are H_{2}, H_{4} and H_{5} and their conjugates. It may be verified that

$$
g_{2} \times g_{4}=4 g_{1}, g_{2} \times g_{5}=3 g_{1}, g_{4} \times g_{5}=2 g_{1}
$$

and from Table 3

$$
g_{2} \times{ }^{2}=5 g_{1}+2 g_{2}, g_{4} \times{ }^{2}=2 g_{1}+g_{4}, g_{5} \times{ }^{2}=g_{1}+2 g_{5}
$$

Moreover, these inner products and the $g_{i} \otimes[2]$ and $g_{i} \otimes[3](i=2,4,5)$ interpreted relative to $\left[2,1^{2}\right]$, describe the familiar arrangement of the vertices, mid-edge and mid-face points, of the octahedron, since the rotation group of the octahedron is isomorphic to the representation $\left[2,1^{2}\right]$ of S_{4}.
4. Thus it appears that the geometry of the fundamental region of a real irreducible λ can be completely described in terms of $g_{i} \times g_{j}$ and $g_{i} \otimes[n]$. In order to clarify further these ideas, consider the relation

$$
g_{7} \otimes[2]=g_{7}+g_{9}+g_{2}
$$

which is more interesting than $g_{3} \otimes[2]=g_{3}+g_{7}$, since the octahedron is centrally symmetrical. Denoting the mid-point of the edge $i j$ of the tetrahedron by $P_{i j}$, we have three possibilities: i) pairing P_{12} with P_{12} yields g_{7}; ii) pairing P_{12} with P_{34} allows an extra symmetry, since H_{7} is invariant under (1324), which yields g_{9}; iii) pairing P_{12} with P_{13} yields a point on the edge of the fundamental region and so g_{2}. Since no point is invariant under H_{i} and also (1324), g_{9} does not register in either [3, 1] or $\left[2,1^{2}\right]$.

In particular, if H_{i} is a group of stability with $m_{i}^{\lambda}=1$, considerations of linear dependence imply that
4.1 $g_{i} \otimes[n]$ yields every g_{j} with $m_{j}^{\lambda}=1$, for n sufficiently large.

The geometry of the octahedron suggests immediately that $g_{5} \otimes[3]$ yields g_{4} but we must go to $g_{2} \otimes[4]$ and $g_{4} \otimes[4]$ to obtain g_{5}, as may readily be verified.

These ideas may be extended to apply to complex λ but we shall not consider such a genralization here.

References

[1] R. Brauer, On finite groups and their characters. Bull. Amer. Math. Soc. 69 (1936), 125-130.
[2] R. Brauer, A note on theorems of Burnside and Blichfeldt. Proc. Amer. Math. Soc. 15 (1964), 31-34.
[3] W. Burnside, Theory of groups of finite order, 2nd. ed. (Cambridge, 1911).
[4] G. de B. Robinson, On the fundamental region of an orthogonal representation of a finite group. Proc. London Math. Soc. 43 (1937), 289-301.
[5] G. de B. Robinson, Representation theory of S_{n}, (Toronto, 1961).
[6] R. Steinberg, Complete sets of representations of algebras. Proc. Amer. Math. Soc. 13 (1962), 746-747.
[7] H. Weyl, Classical Groups, (Princeton, 1946).

University of Toronto

