ON BLOCK IDEMPOTENTS OF MODULAR GROUP RINGS

MASARU OSIMA

To the memory of Tadasi Nakayama

We consider a group G of finite order $g=p^{a} g^{\prime}$, where p is a prime number and $\left(p, g^{\prime}\right)=1$. Let Ω be the algebraic number field which contains the g-th roots of unity. Let $K_{1}, K_{2}, \ldots, K_{n}$ be the classes of conjugate elements in G and the first $m(\leqq n)$ classes be p-regular. There exist n distinct (absolutely) irreducible characters $\chi_{1}, \chi_{2}, \ldots, \chi_{n}$ of G. Let o be the ring of all algebraic integers of Ω and let p be a prime ideal of \mathfrak{o} dividing p. If we denote by 0^{*} the ring of all \mathfrak{p}-integers of Ω, then \mathfrak{p} generates an ideal p^{*} of p^{*} and we have

$$
\Omega^{*}=0^{*} / p^{*} \cong 0 / p
$$

for the residue class field. The residue class map of 0^{*} onto Ω^{*} will be denoted by an asterisk; $\alpha \rightarrow \alpha^{*}$.

Let $\Gamma=\Gamma(G)$ be the modular group ring of G over Ω^{*} and let

$$
Z=Z_{1} \oplus Z_{2} \oplus \cdots \oplus Z_{s}
$$

be the decomposition of the center $Z=Z(G)$ of Γ into indecomposable ideals Z_{σ}. Then the ordinary irreducible characters χ_{i} and the modular irreducible characters φ_{κ} of G (for p) are distributed into s blocks $B_{1}, B_{2}, \ldots, B_{s}$, each χ_{i} and φ_{k} belonging to exactly one block B_{π}. We determined in [6] explicitly the primitive orthogonal idempotents δ_{σ} of Z corresponding to B_{σ} in the following way. We set

$$
b_{\alpha}=\sum_{\chi_{i} \in B_{\sigma}} z_{i} \chi_{i}\left(\boldsymbol{a}_{\alpha}^{-1}\right) / g \quad\left(\boldsymbol{a}_{\alpha} \in K_{\alpha}\right)
$$

where $z_{i}=\chi_{i}(1)$. Let U_{κ} be the indecomposable constituent of the regular representation of G corresponding to the modular irreducible representation F_{κ} and denote by u_{κ} its degree. We see that $b_{\alpha}=\sum_{\rho_{k} \in \beta_{\sigma}} u_{\kappa} \varphi_{x}\left(a_{\alpha}^{-1}\right) / g \in 0^{*}$ for p-regular

[^0]classes K_{α} since $p^{a} \mid u_{\kappa}(\kappa=1,2, \ldots, m)$. On the other hand $b_{\alpha}=0$ for $m<\alpha$ $\leqq n$. Then we have
\[

$$
\begin{equation*}
\delta_{\sigma}=\sum_{\alpha=1}^{m} b_{\alpha}^{*} K_{\alpha} \tag{1}
\end{equation*}
$$

\]

where the sum of the elements of K_{α} is also denoted by K_{α}. In what follows we shall call δ_{σ} the block idempotents of Γ associated with B_{\imath} or simply the block idempotents of B_{σ}. Let B_{σ} be a block of defect d with defect group D. Then $b_{\alpha}^{*}=0$ if the defect group D_{α} of K_{α} is not contained in any conjugate of D ([6], Theorem 4, see also [5]). Hence we obtain

$$
\begin{equation*}
\delta_{n}=\sum_{D_{\alpha} \subseteq D} b_{\alpha}^{*} K_{\alpha} \quad(1 \leqq \alpha \leqq m) . \tag{2}
\end{equation*}
$$

Here the notation $D_{\alpha} \subseteq D$ means that D_{α} is contained in some conjugate of D. In the special case where $p+g$, there exist n modular irreducible characters of G. Further each χ_{i} forms a block B_{σ} of its own. Hence

$$
\begin{equation*}
\delta_{i}=\sum_{\alpha=1}^{n}\left(z_{i} \gamma_{i}\left(\boldsymbol{a}_{\alpha}^{-1}\right) / g\right)^{*} K_{\alpha} . \tag{3}
\end{equation*}
$$

We consider the fixed block $B=B$, of defect d with defect group D. If we define $\nu(s)$ by $p^{\nu(s)} \| s$ for a rational integer s, then there exist characters $\chi_{k} \in B$ such that $\nu\left(z_{k}\right)=a-d$. We shall first prove that $l=\sum_{\alpha=1}^{m} \chi_{k}\left(a_{\alpha}^{-1}\right) \omega_{k}\left(K_{\alpha}\right)$三 $0(\bmod \mathfrak{p})$ where $\omega_{k}\left(K_{\alpha}\right)=g_{\alpha} \gamma_{k}\left(\boldsymbol{a}_{x}\right) / z_{k}$ and g_{α} denotes the number of elements of K_{α}. The main purpose of this short note is to prove the following

Theorem 1. Let δ be the block idempotent of B and let $\varepsilon=\sum_{\alpha=1}^{m} c_{\alpha}^{*} K_{\alpha}$ be an element of Z where $c_{\alpha}=\%_{k}\left(a_{\alpha}^{-1}\right) / l$. Then $\delta-\varepsilon$ belongs to the radical of Z.

In the case where $p \nmid g$ we see easily that this fact coincides with the formula (3) since $l=g / z_{k}$ for every χ_{k} and $\operatorname{rad} Z=0$.

Let χ_{i} be any character of B and λ_{i} be the height of χ_{i}, that is, $\nu\left(z_{i}\right)=a$ $-d+\lambda_{i}\left(\lambda_{i} \geqq 0\right)$. Let K_{β} be p-regular classes with defect group $D_{\beta}=D$. Then $\omega_{k}\left(K_{\beta}\right) \equiv \omega_{i}\left(K_{\beta}\right)(\bmod \mathfrak{p})$ and hence $g_{\beta} \chi_{k}\left(a_{\beta}\right) / z_{k} \equiv g_{\beta} \chi_{i}\left(a_{\beta}\right) / z_{i}(\bmod p)$. Then it follows from $g_{\mathfrak{s}} / z_{k} \neq 0(\bmod \mathfrak{p})$ that

$$
\begin{equation*}
\chi_{i}\left(a_{\beta}\right) \equiv\left(z_{i} / z_{k}\right) \chi_{k}\left(a_{\beta}\right) \quad\left(\bmod p^{\lambda_{i}} \mathfrak{p}\right) \tag{4}
\end{equation*}
$$

Since the modular irreducible characters of B can be expressed by the ordinary irreducible characters of B (restricted to p-regular elements) with integral
coefficients, we have for $\varphi_{\kappa} \in B$

$$
\varphi_{\kappa}=\sum_{x_{i} \in B} r_{k} \chi_{i} .
$$

Hence, by (4)

$$
\varphi_{\kappa}\left(a_{\beta}\right) \equiv \sum_{x_{i} \in B}\left(\gamma_{\kappa} z_{i} / z_{k}\right) \chi_{k}\left(a_{\beta}\right) \quad(\bmod \mathfrak{p})
$$

and consequently

$$
\begin{equation*}
\varphi_{\kappa}\left(a_{\beta}\right) \equiv\left(f_{\kappa} / z_{k}\right) \chi_{k}\left(a_{\beta}\right) \quad(\bmod \mathfrak{p}) \tag{5}
\end{equation*}
$$

where $f_{\kappa}=\varphi_{\kappa}(1)$.
Lemma 1. Let $\chi_{k} \in B$ be the character of height $0 . \quad$ Then $\sum_{\alpha=1}^{m} \chi_{k}\left(a_{\alpha}^{-1}\right) \omega_{k}\left(K_{\alpha}\right)$ $\equiv 0(\bmod \mathfrak{p})$ 。

Proof. It follows from (5) that

$$
\begin{aligned}
b_{\beta} & =\sum_{p_{\kappa} \in B} u_{\kappa} \varphi_{\kappa}\left(a_{\beta}^{-1}\right) / g \\
& \equiv \sum_{\rho \kappa \in S}\left(u_{\kappa} f_{\kappa} / g z_{k}\right) \chi_{k}\left(a_{\beta}^{-1}\right) \quad(\bmod \mathfrak{p})
\end{aligned}
$$

and hence

$$
\begin{equation*}
b_{\beta} \equiv\left(\sum_{x_{i} \in B} z_{i}^{2} / g z_{k}\right) \gamma_{k}\left(a_{\beta}^{-1}\right) \quad(\bmod \mathfrak{p}) \tag{6}
\end{equation*}
$$

for p-regular classes K_{β} with defect group $D_{\beta}=D$. Since there exist p-regular classes K_{r} with defect group $D_{\mathrm{r}}=D$ such that $b_{r} \neq 0(\bmod \mathfrak{p})$ and $\chi_{k}\left(\boldsymbol{a}_{\Upsilon}^{-1}\right) \neq 0$ $(\bmod \mathfrak{p})$, we obtain from (6)

$$
\begin{equation*}
h=\sum_{x_{i} \in B} z_{i}^{2} / g z_{k} \neq 0 \quad(\bmod \mathfrak{p}) . \tag{7}
\end{equation*}
$$

It follows from (2) that

$$
\sum_{D \beta=D} b_{\beta} \omega_{k}\left(K_{\beta}\right) \equiv 1 \quad(\bmod \mathfrak{p})
$$

since $\omega_{k}\left(K_{\alpha}\right) \equiv 0(\bmod \mathfrak{p})$ for p-regular classes K_{α} with defect group D_{α} properly contained in some conjugate of D. Then we have by (6) and (7)

$$
\begin{equation*}
h_{D_{\beta}=D} \chi_{k}\left(a_{\beta}^{-1}\right) \omega_{k}\left(K_{\beta}\right) \equiv 1 \quad(\bmod \mathfrak{p}) . \tag{8}
\end{equation*}
$$

Hence we see

$$
\sum_{D_{\beta}=D} \chi_{k}\left(a_{\beta}^{-1}\right) \omega_{k}\left(K_{\beta}\right) \neq 0 \quad(\bmod \mathfrak{p}) .
$$

If $\omega_{k}\left(K_{\alpha}\right) \neq 0(\bmod \mathfrak{p})$, then $D \subseteq D_{\alpha}$ and if D is properly contained in some con-
jugate of D_{α}, then $\chi_{k}\left(a_{\alpha}\right) \equiv 0(\bmod \mathfrak{p})$. Hence

$$
\sum_{\alpha=1}^{m} \chi\left(a_{\alpha}^{-1}\right) \omega_{k}\left(K_{\alpha}\right) \equiv \sum_{p \beta=D} \chi_{k}\left(a_{\beta}^{-1}\right) \omega_{k}\left(K_{\beta}\right) \quad(\bmod \mathfrak{p})
$$

which proves the lemma.
We set $l=\sum_{\alpha=1}^{m} \chi_{k}\left(a_{\alpha}^{-1}\right) \omega_{k}\left(K_{\alpha}\right)$ and $c_{\alpha}=\chi_{k}\left(a_{\alpha}^{-1}\right) / l$ and consider the element $\xi=\sum_{\alpha=1}^{m} c_{\alpha} K_{\alpha}$ of the center of the ordinary group ring of G. Then

$$
\omega_{k}(\xi)=\sum_{\alpha=1}^{m} \chi\left(a_{\alpha}^{-1}\right) \omega_{k}\left(K_{\alpha}\right) / l=1
$$

and hence for any $\chi_{i} \in B$ we have $\omega_{i}(\xi) \equiv 1(\bmod \mathfrak{p})$. On the other hand, for any $\chi_{j} \notin B$

$$
\omega_{j}(\xi)=\sum_{\alpha=1}^{m} \chi_{k}\left(a_{\alpha}^{-1}\right) \omega_{j}\left(K_{\alpha}\right) / l=0
$$

because $\sum_{\alpha=1}^{m} g_{\alpha} \chi_{k}\left(a_{\alpha}^{-1}\right) \chi_{j}\left(a_{\alpha}\right)=0$. This implies that if we set $\varepsilon=\sum_{\alpha=1}^{m} c^{*} K_{\alpha}$, then δ $-\varepsilon \in \operatorname{rad} Z$. This completes the proof of Theorem 1.

If $d_{\alpha}>d$ where d_{α} denotes the defect of K_{α}, then $\chi_{k}\left(\boldsymbol{a}_{\alpha}\right) \equiv 0(\bmod \mathfrak{p})$ and hence $c_{\alpha}^{*}=0$. Further if $d_{\alpha}=d$ and D_{α} is not conjugate to D, then $\omega\left(K_{\alpha}\right) \equiv 0$ $(\bmod \mathfrak{p})$ and $\chi_{k}\left(\boldsymbol{a}_{\alpha}\right) \equiv 0(\bmod \mathfrak{p})$. Thus we have also $c_{\alpha}^{*}=0$. It follows from (6), (7) and (8) that $b_{\beta}^{*}=c_{\beta}^{*}$ for all p-regular classes K_{β} with defect group $D_{\beta}=D$.

Lemma 2. Let Q be the normal p-subgroup of G. Then the block idempotent δ of B with defect group D is given by

$$
\delta=\sum_{Q \subseteq D_{\alpha} \subseteq D} b_{\alpha}^{*} K_{\alpha} \quad(1 \leqq \alpha \leqq m) .
$$

Proof. We see that $b_{\alpha}^{*}=0$ for p-regular classes K_{α} such that Q is not contained in $D_{a}([6])$. This, combined with (2) proves the lemma.

Theorem 2. Let B be the block of G with normal defect group D. Then

$$
\varepsilon=\sum_{D_{\beta}=D} c_{\beta}^{*} K_{\beta} \quad(1 \leqq \beta \leqq m)
$$

is the block idempotent of B where $c_{\beta}=\chi_{k}\left(a_{\beta}^{-1}\right) / l$ and $l=\sum_{n_{\beta}=D} \chi_{k}\left(a_{\beta}^{-1}\right) \omega_{k}\left(K_{\beta}\right)$.
Proof. It follows from Lemma 2 that $\delta=\sum_{D_{\beta}=D} b_{\beta}^{*} K_{\beta}$. Then $\delta=\varepsilon$ since b_{β}^{*}
$=c_{\beta}^{*}$ for all p-regular classes K_{β} with defect group $D_{\beta}=D$.
Now let B_{1} be the principal block of G which contains the principal character $\%_{1}=1$ and let δ_{1} be its block idempotent. Obviously we may choose χ_{1} as the character χ_{k} in Theorem 1. We then have $l=v$ where v denotes the number of p-regular elements in G. If Q is a p-Sylow subgroup of G, then $v \equiv u(\bmod p)$ where u denotes the number of p-regular elements in the centralizer $C_{G}(Q)$. Hence

$$
\varepsilon_{1}=(1 / v)^{*} \sum_{\alpha=1}^{m} K_{\alpha}=(1 / u)^{*} \sum_{\alpha=1}^{m} K_{\alpha}
$$

If Q is normal in G, then we see by Theorem 2 that

$$
\begin{equation*}
\varepsilon_{1}=(1 / u)^{*} \sum_{D_{\beta}=Q} K_{\beta} \quad(1 \leqq \beta \leqq m) \tag{9}
\end{equation*}
$$

is the block idempotent δ_{1} of B_{1} ([7]).
Some applications of our results will be presented elsewhere.

References

[1] R. Brauer, Zur Darstellungstheorie der Gruppen endlicher Ordnung, I, Math. Zeits. 63 (1956), 406-444.
[2] R. Brauer, Zur Darstellungstheorie der Gruppen endlicher Ordnung, II, Math. Zeits. 72 (1959), 25-46.
[3] R. Brauer, Some applications of the theory of blocks of characters of finite groups, I, J. Alg. 1 (1964), 152-167.
[4] R. Brauer and W. Feit, On the number of irreducible characters of finite groups in a given block. Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 361-365.
[5] C. W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Interscience, New York, London, 1962.
[6] M. Osima, Notes on blocks of group characters, Math. J. Okayama Univ. 4 (1955), 175-188.
[7] M. Osima, On a theorem of Brauer, Proc. Japan Acad. 40 (1964), 795-798.

Osaka University

[^0]: Received July 13, 1965.

