ON DOUBLY TRANSITIVE GROUPS OF DEGREE n AND ORDER 2(n-1)n

NOBORU ITO

Dedicated to the memory of Professor Tadasi Nakayama

Introduction

Let \mathfrak{N}_{5} denote the icosahedral group and let \mathfrak{F} be the normalizer of a Sylow 5 -subgroup of \mathfrak{U}_{5}. Then the index of \mathfrak{F} in \mathfrak{N}_{5} equals six. Let us represent \mathfrak{H}_{5} as a permutation group \mathbf{A} on the set of residue classes of $\mathfrak{5}$ with respect to \mathfrak{N}_{5}. Then it is clear that \mathbf{A} is doubly transitive of degree 6 and order 60 $=2 \cdot 5 \cdot 6$. Since \mathfrak{U}_{5} is simple, \mathbf{A} does not contain a regular normal subgroup.

Next let $S L(2,8)$ denote the two-dimensional special linear group over the field $G F(8)$ of eight elements, and let s be the automorphism of $G F(8)$ of order three such that $s(x)=x^{2}$ for every element x of $G F(8)$. Then s can be considered in a usual way as an automorphism of $S L(2,8)$. Let $S L^{*}(2,8)$ be the splitting extension of $S L(2,8)$ by the group generated by s. Moreover let $\mathfrak{\$}$ be the normalizer of a Sylow 3 -group of $S L^{*}(2,8)$. Then it is easy to see that the index of 5 in $S L^{*}(2,8)$ equals twenty eight. Let us represent $S L^{*}(2$, 8) as a permutation group S on the set of residue classes of \mathfrak{y} with respect to $S L^{*}(2,8)$. Then it is easy to check that \mathbf{S} is doubly transitive of degree 28 and order $1,512=2.27 .28$. Since $S L(2,8)$ is simple, \mathbf{S} does not contain a regular normal subgroup.

The purpose of this paper is to prove the converse of these facts, namely to prove the following

Theorem. Let Ω be the set of symbols $1,2, \ldots, n$. Let \mathbb{B} be a doubly transitive group on Ω of order $2(n-1) n$ not containing a regular normal subgroup. Then \mathbb{B} is isomorphic to either \mathbf{A} or \mathbf{S}.

1. Let \mathfrak{I} be the stabilizer of the symbol 1 and let Ω be the stabilizer of the set of symbols 1 and 2 . Then Ω is of order 2 and it is generated by an involution K whose cycle structure has the form (1)(2).... Since $\mathfrak{(3)}$ is doubly

Received June 30, 1965.
transitive on Ω, it contains an involution I with the cycle structure (12) . . . Then we have the following decomposition of \mathbb{B} :

$$
\mathfrak{F}=\mathfrak{F}+\mathscr{F} I \mathscr{F}
$$

Since I is contained in the normalizer $N s \Omega$ of Ω in \mathscr{S} and since Ω has order two, I and K are commutative with each other. Hence for each permutation H of \mathscr{J} the residue class $\mathscr{S} I H$ contains just two involutions, namely $H^{-1} I H$ and $H^{-1} K I H$. Let $g(2)$ and $h(2)$ denote the numbers of involutions in $(\mathbb{S}$ and \mathscr{F}, respectively. Then the following equality is obtained:

$$
\begin{equation*}
g(2)=h(2)+2(n-1) \tag{1}
\end{equation*}
$$

2. Let \AA keep $i(i \geqq 2)$ symbols of Ω, say $1,2, \ldots, i$, unchanged. Put $\mathfrak{G}=\{1,2, \ldots, i\}$. Then by a theorem of Witt ((4), Theorem 9.4) Ns $\mathbb{\Omega} / \mathscr{\Re}$ can be considered as a doubly transitive permutation group on \mathfrak{F}. Since every permutation of $N s \mathscr{\pi} / \Omega$ distinct from Ω leaves by the definition of Ω at most one symbol of \mathcal{F} fixed, $N s \Re / \Omega$ is a complete Frobenius group on \mathfrak{F}. Therefore i equals a power of a prime number, say p^{m}, and the order of $\mathcal{S} \cap N s \AA / \Omega$ is equal to $i-1$. Since the order of Ω is two, Ns $\left\{\begin{array}{l}\text { coincides with the centralizer }\end{array}\right.$ of Ω in \mathbb{G}. Therefore there exist $(n-1) n /(i-1) i$ involutions in \mathcal{S} each of which is conjugate to K.

At first, let us assume that n is odd. Let $h^{*}(2)$ be the number of involutions in \mathscr{S} leaving only the symbol 1 fixed. Then from (1) and the above argument the following equality is obtained:

$$
\begin{equation*}
h^{*}(2) n+(n-1) n /(i-1) i=(n-1) /(i-1)+h^{*}(2)+2(n-1) \tag{2}
\end{equation*}
$$

Since i is less than n, it follows from (2) that $h^{*}(2) \leqq 1$. Thus two cases are to be distinguished: (A) $h^{*}(2)=1$ and (B) $h^{*}(2)=0$. The following equalities are obtained from (2) for cases (A) and (B), respectively:

$$
\begin{equation*}
n=i^{2}=p^{2 m}, \quad(p: \text { odd }) \tag{2.A}
\end{equation*}
$$

and

$$
\begin{equation*}
n=i(2 i-1)=p^{m}\left(2 p^{m}-1\right), \quad(p: \text { odd }) \tag{2.B}
\end{equation*}
$$

Next let us assume that n is even. Let $g^{*}(2)$ be the number of involutions in (S) leaving no symbol of Ω fixed. Then corresponding to (2) the following equality is obtained from (1) :

$$
\begin{equation*}
g^{*}(2)+(n-1) n /(i-1) i=(n-1) /(i-1)+2(n-1) . \tag{3}
\end{equation*}
$$

Let J be an involution in $\mathbb{\$}$ leaving no symbol of Ω fixed. Let $C s J$ be the centralizer of J in \mathfrak{G}. Assume that the order of $C s J$ is divisible by a prime factor q of $n-1$. Then CsJ contains a permutation Q of order q. Since $n-1$, and therefore q, is odd, Q must leave just one symbol of Ω fixed. But this shows that Q cannot be commutative with J. This contradiction implies that $g^{*}(2)$ is a multiple of $n-1$. Now it follows from (3) that $g^{*}(2) \leqq n-1$. Thus again two cases are to be distinguished: (C) $g^{*}(2)=n-1$ and (D) $g^{*}(2)=0$. The following equalities are obtained from (3) for cases (C) and (D), respectively :

$$
\begin{equation*}
n=i^{2}=2^{2 m} \tag{3.C}
\end{equation*}
$$

and

$$
\begin{equation*}
n=i(2 i-1)=2^{m}\left(2^{m+1}-1\right) . \tag{3.D}
\end{equation*}
$$

3. Case (A). Let \mathfrak{F}^{\prime} be a Sylow p-subgroup of $N s \Re$. Let $N s \mathfrak{F}^{\prime}$ and $C s \Re^{\prime}$ denote the normalizer and the centralizer of $\mathfrak{3}$ in \mathfrak{G}, respectively. Then, since $N s \Omega / \Omega$ is a Frobenius group of degree $p^{m}, \mathfrak{P}^{\prime}$ is elementary abelian of order p^{m} and normal in Ns \mathbb{R}. Thus $C s \mathfrak{F}^{\prime}$ contains $\mathfrak{i} \mathfrak{F}^{\prime}$. Now let \mathfrak{F} be a Sylow p subgroup of $N s \mathfrak{F}^{\prime}$. Then it follows from an elementary property of p-groups that \mathfrak{P} is greater than \mathfrak{P}^{\prime}. This implies that Cs \mathfrak{Y}^{\prime} is greater than $\Omega_{\mathfrak{P}}$. In fact, if $C s \mathfrak{ß}^{\prime}=\Re \mathfrak{F}^{\prime}$, then, since $\Omega_{W^{\prime}}$ is a direct product of Ω and $\mathfrak{B}^{\prime}, \Omega$ would be normal in $N s \mathfrak{F}^{\prime}$ and it would follow that $\mathfrak{B}=\mathfrak{F}^{\prime}$. Let $q(\neq 2, p)$ be a prime factor of the order of $C s \mathfrak{F}^{\prime}$ and let Q be a permutation of $C s \Re^{\prime}$ of order q. Then q must divide $n-1$ and hence Q must leave just one symbol of Ω fixed. But \mathfrak{F}^{\prime} does not leave any symbol of Ω fixed and therefore Q cannot belong to $C s \mathfrak{F}^{\prime}$. Assume that the order of $C s \mathfrak{F}^{\prime}$ is divisible by four. Let \mathfrak{S} be a Sylow 2 -subgroup of $C s \mathfrak{F}^{\prime}$. Then \subseteq leaves just one symbol of Ω fixed. This, as above, shows that \subseteq cannot be contained in $C s \Re^{\prime}$. Thus the order of $C s \Re^{\prime}$ must be of the form $2 p^{m+m^{\prime}}$ with $m \geqq m^{\prime}>0$.

Now let $\mathfrak{F}^{\prime \prime}$ be a Sylow p-subgroup of $C s \mathfrak{F}^{\prime}$. Then clearly $\mathfrak{W}^{\prime \prime}$ is normal in $N s \mathfrak{Y}$. Let \mathfrak{B} be a Sylow p-complement of $N s \mathbb{R}$, which is a stabilizer in $N s \mathscr{R}$ of a symbol of \mathfrak{F}. Then decompose all the permutations $(\neq 1)$ of \mathfrak{F} " into \mathfrak{B} conjugate classes. If $P \neq 1$ is a permutation of $\mathfrak{S}^{\prime \prime}$ and if $C s \mathfrak{\beta}$ denotes the centralizer of P in \mathfrak{G}, then it can be seen, as before, that the order of $\mathfrak{B} \cap C s \mathfrak{ß}$
equals at most two. Thus every \mathfrak{B}-conjugate class contains either $p^{m}-1$ or $2\left(p^{m}-1\right)$ permutations and the following equality is obtained:

$$
p^{m+m^{\prime}}-1=x\left(p^{m}-1\right) .
$$

This implies in turn that;

$$
\begin{aligned}
& x \equiv 1\left(\bmod . p^{m}\right) \text { and } x>1 ; x=y p^{m}+1 \text { and } y>0 ; \\
& p^{m^{\prime}}=(y-1)\left(p^{m}-1\right)+p^{m} ; y=1 \text { and finally } m^{\prime}=m .
\end{aligned}
$$

Thus $\mathfrak{B}^{\prime \prime}$ is a Sylow p-subgroup of \mathbb{C}.
Now since the order of Ns \mathbb{R} equals $2\left(p^{m}-1\right) p^{m}, \Omega$ is not contained in the center of any Sylow 2 -subgroup of \mathbb{B}. But obviously $N s \mathbb{R}$ contains a central element of some Sylow 2 -subgroup of \mathcal{B}. Let J be such a "central" involution in $N s \mathfrak{\Omega}$ (and of $N s \mathfrak{\Re}^{\prime \prime}$). Then J leaves just one symbol of Ω fixed and therefore, as before, J is not commutative with any permutation ($\neq 1$) of $\mathfrak{S}^{\prime \prime}$. Thus $\mathfrak{P}^{\prime \prime}$ must be abelian. By assumption $\mathfrak{F}^{\prime \prime}$ cannot be normal in \mathfrak{G}. Let \mathfrak{D} be a maximal intersection of two distinct Sylow p-subgroups of \mathfrak{G}, one of which may be assumed to be $\mathfrak{F}^{\prime \prime}$. Assume that $\mathfrak{D} \neq 1$ and let $N s \mathfrak{D}$ and $C s \mathfrak{D}$ denote the normalizer and the centralizer of \mathfrak{D} in \mathfrak{C}, respectively. Then, as it is well known, any Sylow p-subgroup of $N s \mathfrak{D}$ cannot be normal in it. On the other hand, since $\mathfrak{P}^{\prime \prime}$ is abelian, it is contained in $C s \mathfrak{D}$. Moreover, as before, the prime to p part of the order of $C s \mathfrak{D}$ is at most two. This implies that $\mathfrak{P}^{\prime \prime \prime}$ is normal in $N s \mathfrak{D}$. Thus it must hold that $\mathfrak{D}=1$. Using Sylow's theorem the following equality is now obtained:

$$
2(n-1) n / x n=y n+1 .
$$

This implies that $y=1, x=1$ and $n=3$.
Thus there exists no group satisfying the conditions of the theorem in Case (A).
4. Case (B). Likewise in Case (A) let \mathfrak{F} be a Sylow p-subgroup of $N s \mathbb{R}$. Then, as before, \mathfrak{P} is elementary abelian of order p^{m} and normal in $N s \Omega$. Since, however, $n=p^{m}\left(2 p^{m}-1\right)$ in this case, \mathfrak{P} is a Sylow p-subgroup of $\mathfrak{C B}$. Let $N s \mathfrak{\beta}$ and $C s \mathfrak{\beta}$ denote the normalizer and the centralizer of $\mathfrak{\beta}$ in \mathfrak{B}, respectively. Let the orders of $N s \Re$ and $C s \Re$ be $2\left(p^{m}-1\right) p^{m} x$ and $2 p^{m} y$, respectively. If $x=1$, then from Sylow's theorem it should hold that ($2 p^{m}-1$) $\left(2 p^{m}+1\right) \equiv 1(\bmod . p)$, which, since p is odd, is a contradiction. Thus x is
greater than one. If $y=1$, then \AA would be normal in $N s \mathfrak{F}$, and this would imply that $x=1$. Thus y is greater than one. Now y is prime to $2 p$. In fact, y is obviously prime to p. If y is even, then let \mathbb{S} be a Sylow 2 -subgroup of $C s \not \approx$. Since then the order of \mathbb{S} must be greater than two, © leaves just one symbol of Ω fixed. Hence \mathfrak{S} cannot be contained in Cs $\mathfrak{\beta}$. Thus y must be odd. Therefore by a theorem of Zassenhaus ((5), p. 125) Csæ contains a normal subgroup \mathfrak{Y} of order y. \mathfrak{Y} is normal even in $N s \Re$.

Now likewise in Case (A) let \mathfrak{B} be a Sylow p-complement of $N s \mathbb{R}$ and let us consider the subgroup $\mathfrak{Y} \mathfrak{B}$. Since \mathfrak{Y} is a subgroup of $C s \mathfrak{P}$, any permutation $(\neq 1)$ of \mathfrak{Y} does not leave any symbol of Ω fixed. In particular, every prime factor of the order of \mathfrak{Y} must divide $2 p^{m}-1$. Since $p^{m}-1$ and $2 p^{m}-1$ are relatively prime, it follows that every permutation $(\neq 1)$ of \mathfrak{F} is not commutative with any permutation $(\neq 1)$ of \mathfrak{y}. This implies that y is not less than $2 p^{m}-1$. Thus it follows that $y=2 p^{m}-1$ and that all the permutations $(\neq 1)$ of \mathfrak{Y} are conjugate under \mathfrak{V}. Therefore $2 p^{m}-1$ must be equal to a power of a prime, say q^{l}, and \mathfrak{Y} must be an elementary abelian q-group. Let $N s \mathfrak{Y}$ and $C s \mathfrak{Y}$ denote the normalizer and the centralizer of \mathfrak{Y} in \mathfrak{G}, respectively. Then it can be easily seen that $C s \mathfrak{Y}=\mathfrak{F} \mathfrak{y}$. Hence $N s \mathfrak{Y}$ is contained in $N s \mathfrak{F}$ and therefore we obtain that $N s \mathfrak{y}=N s \mathfrak{F}$. On the other hand, it is easily seen that the index of $N s \Re$ in \mathscr{B} is equal to $2 p^{m}+1$. But then we must have that $2 p^{m}+1 \equiv 2(\bmod q)$, which contradicts the theorem of Sylow.

Thus there exists no group satisfying the conditions of the theorem in Case (B).
5. Case (C). Since $n=2^{2 m}, 5 \sqrt{2}$ contains a normal subgroup $\mathfrak{l t}$ of order $n-1$. Let \mathfrak{B} be a Sylow 2 -complement of $N s \mathscr{J}$ leaving the symbol 1 fixed. Then \mathfrak{F} is contained in \mathfrak{H}. Since $N s \Omega / \Omega$ is a complete Frobenius group of degree 2^{m}, all the Sylow subgroups of \mathfrak{B} are cyclic. Let l be the least prime factor of the order of \mathfrak{B}. Let \mathfrak{Z} be a Sylow l-subgroup of \mathfrak{B}. Let $N s \mathfrak{Z}$ and $C s \mathfrak{Z}$ denote the normalizer and the centralizer of \mathbb{Z} in \mathfrak{G}. Then \mathfrak{Z} is cyclic and clearly leaves only the symbol 1 fixed. Hence $N s \Omega$ is contained in 5 . Because Cs® contains Ω, using Sylow's theorem, we obtain that $N s \mathbb{Z}=C s \mathbb{}(N s \Omega \cap N s \mathbb{R})=$ $C s \mathbb{Z}(\Omega \mathfrak{R} \cap N s \mathbb{Q})$. Then it is easily seen that $N s \varangle=C s \Omega$. By the splitting theorem of Burnside \mathbb{E} has the normal l-complement. Continuing in the similar way, it can be shown that \mathbb{C} has the normal subgroup \mathbb{E}, which is a complement
of \mathfrak{B}. In particular, $\subseteq \subseteq \mathfrak{U}=\mathfrak{D}$ is a normal subgroup of \mathfrak{U}, which is a complement of \mathfrak{B} and has order $2^{m}+1$. Consider the subgroup $\mathfrak{D} \mathscr{R}$. Then since every permutation ($\neq 1$) of \mathfrak{D} leaves just one symbol of Ω fixed, K is not commutative with any permutation $(\neq 1)$ of \mathfrak{D}, and therefore \mathfrak{D} is abelian. \mathbb{S} is the product of \mathfrak{D} and a Sylow 2 -subgroup of \mathfrak{B}. Hence \mathfrak{S}, and therefore \mathfrak{G}, is solvable ((3)). Then \mathfrak{B} must contain a regular normal subgroup.

Thus there exists no group satisfying the conditions of the theorem in Case (C).
6. Case (D). If $m=1$, then it can be easily checked that $\mathbb{B}=A$. Hence it will be assumed hereafter that m is greater than one.

Let \subseteq be a Sylow 2 -subgroup of $N s \mathbb{A}$ of order 2^{m+1}. Then, since $n=$ $2^{m}\left(2^{m+1}-1\right)$ in this case, \mathfrak{S} is a Sylow 2 -subgroup of \mathfrak{B}. Let \mathfrak{B} be a Sylow 2 complement of $N s \Omega$ of order $2^{m}-1$. Then, since $N s \Omega / \Omega$ is a complete Frobenius group of degree 2^{m}, \subseteq / Ω is elementary abelian and normal in $N s \Omega / \Omega$. Furthermore, all the elements ($\neq 1$) of \subseteq / Ω are conjugate under $\mathfrak{B} \Omega / \Omega$. Since I and K are commutative involutions, \mathfrak{S} contains an involution S distinct from K. Thus every permutation $(\neq 1)$ of \Subset can be represented uniquely in the form either $V^{-1} S V$ or $V^{-1} S V K$, where V is any permutation of \mathfrak{B}. In fact, assume that $V^{-1} S V=V^{*-1} S V^{*} K$, where V and V^{*} are permutations of \mathfrak{F}. Then it follows that $V^{*} V^{-1} S V V^{*-1}=S K$ and $\left(V^{*} V^{-1}\right)^{2} S\left(V V^{*-1}\right)^{2}=S$. But $V V^{*-1}$ has an odd order, and this implies that $V=V^{*}$ and $K=1$. This is a contradiction. Therefore \Subset is elementary abelian.

Let $N s \subseteq$ denote the normalizer of \subseteq in \mathbb{B}. All the involutions of \mathbb{S} are conjugate in \mathfrak{G} because of $g^{*}(2)=0$. Hence they are conjugate already in $N s \mathbb{S}$ ((5), p. 133). Since $N s \Im$ contains $N s \Re$, it follows that the index of $N s \Omega$ in $N s \subseteq$ equals $2^{m+1}-1$. Let \mathfrak{U} be a Sylow 2 -complement of $N s \subseteq$ of order $\left(2^{m+1}-1\right)$ $\left(2^{m}-1\right)$. Then it follows that $\subseteq \mathfrak{B}=\subseteq(\mathfrak{A} \cap \subseteq \mathfrak{B})$. By a theorem of Zassenhaus ((5), p. 126) \mathfrak{B} and $\mathfrak{H} \cap \mathfrak{C}$ are conjugate in $\subseteq \mathfrak{V}$. Hence we can assume that \mathfrak{B} is contained in \mathfrak{H}. Now every permutation $(\neq 1)$ of \mathfrak{V} leaves just one symbol of Ω fixed, and all the Sylow subgroups of \mathfrak{B} are cyclic. Therefore likewise in Case (C) it can be shown that \mathfrak{U} has the normal subgroup \mathfrak{B} of order $2^{m+1}-1$. Every permutation $(\neq 1)$ of \mathfrak{B} leaves no symbol of Ω fixed, hence it is not commutative with any permutation ($\neq 1$) of \mathfrak{B}. Let B be a permutation of \mathfrak{B} of a prime order, say q. Then all the permutations $(\neq 1)$ of \mathfrak{B} are conjugate
to either B or B^{-1} under \mathfrak{V}. This implies that \mathfrak{B} is an elementary abelian q group of order, say q^{b}. Then it follows that $2^{m+1}-1=q^{b}$. This implies that $b=1$ and \mathfrak{B} is cyclic of order q. Hence \mathfrak{F} is also cyclic.

Let $N s \mathfrak{B}$ denote the normalizer of \mathfrak{B} in \mathfrak{B}. Noticing that $2^{m}-1=\frac{1}{2}(q-1)$, let the order of $N s \mathfrak{B}$ be equal to $\frac{1}{2} x(q-1) q$. Since $n=\frac{1}{2} q(q+1), \mathfrak{B}$ cannot be transitive on Ω, and hence it cannot be normal in \mathcal{B}. Therefore x is less than $(q+1)(q+2)$. Now using the theorem of Sylow we obtain the following congruence:

$$
(q+1)(q+2) / x \equiv 1 \quad(\bmod . q)
$$

This implies that $(q+1)(q+2)=x(y q+1)$, where, since x is less than $(q+1)$ $(q+2), y$ is positive. Then we obtain that $x=z q+2$, where z, since q is greater than two, is non-negative. Finally we obtain that $(q+1)(q+2)=(z q+2)(y q$ +1). This implies that z is not greater than one. If $z=1$, then the order of $N s \mathfrak{B}$ equals $\frac{1}{2}(q-1) q(q+2)$. Hence there will be a permutation $X(\neq 1)$ of order dividing $q+2$, which belongs to the centralizer of \mathfrak{B}. But X leaves just one symbol of Ω fixed. Then X cannot be contained in the centralizer of \mathfrak{B}. This contradiction implies that $z=0, x=2$ and $y=\frac{1}{2}(q+3)$. In particular, \mathfrak{B} coincides with is own centralizer, and the order of $N s \mathfrak{B}$ equals $(q-1) q$.

If \mathscr{B} is solvable, then \mathscr{G} must have a regular normal subgroup, which is an elementary abelian group of a prime-power order. Since $n=\frac{1}{2} q(q+1)$, it is impossible. Thus \mathbb{B} must be nonsolvable.

Let \mathfrak{R} be the least normal subgroup of \mathbb{B} such that $\mathbb{B} / \mathfrak{R}$ is solvable. Then since \mathfrak{R} is transitive on Ω, \mathfrak{R} contains \mathfrak{B} and an involution. Since all the involutions of \mathbb{C} are conjugate, \mathfrak{N} contains \mathfrak{S}. Using Sylow's theorem, we obtain that $\mathfrak{G}=(N s \mathfrak{B}) \mathfrak{R}$. Therefore the order of \mathfrak{N} is divisible by $q+2$. Let the order of \mathfrak{R} be equal to $x q(q+1)(q+2)$. Then the order of $\mathfrak{R} \cap N s \mathfrak{B}$ is equal to $2 x q$. Thus the number of Sylow q-subgroups of \mathfrak{N} is equal to $\frac{1}{2} q(q$ $+3)+1$. On the other hand, since the order of \mathfrak{B} equals q, it can be easily shown that \mathfrak{R} is a simple group. Therefore by a theorem of Brauer ((1)) \mathfrak{R} is isomorphic to the two-dimensional special linear group $L F(2, q+1)$ over the field of $q+1=2^{m+1}$ elements. In particular, it follows that $x=1$.

Using Sylow's theorem, we obtain that $\mathfrak{G}=\mathfrak{R}(N s \mathfrak{R})$. Therefore there exist
$q+2$ distinct Sylow 2 -subgroups in (B). Let Γ be the set of all the Sylow 2 subgroups of \mathfrak{G}. Then, in a usual manner, we represent \mathfrak{F} as a permutation group on Γ. As it is well known, \mathfrak{R}, and therefore \mathfrak{G}, is triply transitive on Γ. Let \mathfrak{M} be the stabilizer of some two symbols of Γ. Then the order of \mathfrak{M} is equal to $\frac{1}{2}(q-1) q$, and hence a Sylow q-subgroup of \mathfrak{B} is normal in it. Therefore we can assume that $\mathfrak{B}=\mathfrak{A}$. Thus \mathfrak{B} is the stabilizer of some three symbols of Γ. Let $\mathfrak{B}^{*}(\neq 1)$ be any subgroup of \mathfrak{F}, and put $\mathbb{B}^{*}=\mathfrak{N} \mathfrak{V}^{*}$. Then \mathfrak{S}^{*} is triply transitive on Γ, and \mathfrak{V}^{*} is the stabilizer of the above three symbols of Γ in $\mathscr{S G}^{*}$. Let f be the number of symbols in the subset Δ of Γ, each symbol of which is left fixed by \mathfrak{B}^{*}. Then by a theorem of Witt ((4), Theorem 9.4) $\mathscr{B}^{*} \cap N s \mathfrak{B}^{*}$ is triply transitive on Δ. Therefore $\mathfrak{H} \cap \mathscr{S}^{*} N s \mathfrak{B}^{*}$ has an orbit in Δ of length $f-2$. But we already know that $\mathfrak{A} \cap N s \mathfrak{B}^{*}=\mathfrak{B}$. Thus it follows that $\mathfrak{A} \cap \mathfrak{B}^{*} \supset N s \mathfrak{B}^{*}=\mathfrak{B}^{*}$. This implies that $f=3$ and that $N s \mathfrak{B}^{*} / \mathfrak{W}$ is isomorphic to the symmetric group of degree three.

Now let \mathfrak{U} be the Sylow 2 -complement of $\mathfrak{\$}$ of order $\frac{1}{2}(q-1)(q+2)$. Then we can assume that \mathfrak{B} is contained in \mathfrak{H}. Since m is greater than one, it follows that $q=2^{m+1}-1$ is not less than seven. Hence the order $q+2$ of $\mathfrak{R} \cap \mathfrak{U}$ is divisible by 3. Since $\mathfrak{M} \cap \mathfrak{U}$ is cyclic, it contains only subgroup $\mathfrak{\mathscr { I }}$ of order three. TI is normal in \mathfrak{U}. On the other hand, since $\frac{1}{2}(q-1)$ is odd, \mathfrak{T} is contained in the centralizer of \mathfrak{V}. Thus it follows that $\mathfrak{H} \cap N s \mathfrak{B}^{*}=\mathfrak{V} \mathfrak{I}$. If $q+2$ has a prime factor l distinct from 3 , then let \mathfrak{Z} be the Sylow l-subgroup of $\mathfrak{R} \cap \mathfrak{u}$ of order, say l^{c}. Then l^{c} is not greater that $(q+2) / 3$. Now the above argument shows that $l^{c}-1$ is a multiple of $\frac{1}{2}(q-1)$. This contradiction implies that $q+2$ is equal to a power of 3 , say, 3^{a}. Thus finally we obtain the following equality:

$$
q+2=2^{m+1}-1=3^{a} .
$$

This implies that $a=2, m=2$ and $q=7$. Then it is easy to check that \mathbb{B} is isomorphic to S .

Remark. Holyoke ((2)) proved a special case of the theorem: if \mathfrak{F} is a dihedral group, then $(\mathbb{S}$ is isomorphic to \mathbf{A}.

Bibliography

[1] R. Brauer, On the representations of groups of finite order, Proc. Nat. Acad. Sci.
U.S.A. 25, 290-295 (1939).
[2] T. Holyoke, Transitive extens ons of dihedral groups, Math. Zeitschr. 60, 79-80 (1954).
[3] N. Ito, Remarks on factorizable groups. Acta Sci. Math. Szeged 15, 83-84 (1951).
[4] H. Wielandt, Finite permutation groups, Academic Press, New York-London (1964).
[5] H. Zassenhaus, Lehrbuch der Gruppentheorie, I, Teubner, Leipzig (1937).

Mathematical Institute,
Nagoya University

