ON DOUBLY TRANSITIVE GROUPS OF DEGREE n AND ORDER 2(n-1)n

NOBORU ITO

Dedicated to the memory of Professor Tadasi Nakayama

Introduction

Let \mathfrak{A}_5 denote the icosahedral group and let \mathfrak{F} be the normalizer of a Sylow 5-subgroup of \mathfrak{A}_5 . Then the index of \mathfrak{F} in \mathfrak{A}_5 equals six. Let us represent \mathfrak{A}_5 as a permutation group \mathbf{A} on the set of residue classes of \mathfrak{F} with respect to \mathfrak{A}_5 . Then it is clear that \mathbf{A} is doubly transitive of degree 6 and order 60 = $2 \cdot 5 \cdot 6$. Since \mathfrak{A}_5 is simple, \mathbf{A} does not contain a regular normal subgroup.

Next let SL(2,8) denote the two-dimensional special linear group over the field GF(8) of eight elements, and let s be the automorphism of GF(8) of order three such that $s(x) = x^2$ for every element x of GF(8). Then s can be considered in a usual way as an automorphism of SL(2,8). Let $SL^*(2,8)$ be the splitting extension of SL(2,8) by the group generated by s. Moreover let \mathfrak{P} be the normalizer of a Sylow 3-group of $SL^*(2,8)$. Then it is easy to see that the index of \mathfrak{P} in $SL^*(2,8)$ equals twenty eight. Let us represent $SL^*(2,8)$ as a permutation group S on the set of residue classes of \mathfrak{P} with respect to $SL^*(2,8)$. Then it is easy to check that S is doubly transitive of degree 28 and order 1,512=2.27.28. Since SL(2,8) is simple, S does not contain a regular normal subgroup.

The purpose of this paper is to prove the converse of these facts, namely to prove the following

THEOREM. Let Ω be the set of symbols $1, 2, \ldots, n$. Let $\mathfrak S$ be a doubly transitive group on Ω of order 2(n-1)n not containing a regular normal subgroup. Then $\mathfrak S$ is isomorphic to either $\mathbf A$ or $\mathbf S$.

1. Let \mathfrak{H} be the stabilizer of the symbol 1 and let \mathfrak{R} be the stabilizer of the set of symbols 1 and 2. Then \mathfrak{R} is of order 2 and it is generated by an involution K whose cycle structure has the form (1)(2)... Since \mathfrak{G} is doubly

Received June 30, 1965.

transitive on \mathcal{Q} , it contains an involution I with the cycle structure (12).... Then we have the following decomposition of \mathfrak{G} :

$$\mathfrak{G} = \mathfrak{H} + \mathfrak{H}\mathfrak{H}.$$

Since I is contained in the normalizer $Ns\Re$ of \Re in \Im and since \Re has order two, I and K are commutative with each other. Hence for each permutation H of \Im the residue class $\Im IH$ contains just two involutions, namely $H^{-1}IH$ and $H^{-1}KIH$. Let g(2) and h(2) denote the numbers of involutions in \Im and \Im , respectively. Then the following equality is obtained:

(1)
$$g(2) = h(2) + 2(n-1).$$

2. Let \Re keep i $(i \ge 2)$ symbols of Ω , say $1, 2, \ldots, i$, unchanged. Put $\Im = \{1, 2, \ldots, i\}$. Then by a theorem of Witt (4), Theorem 9.4) $Ns\Re/\Re$ can be considered as a doubly transitive permutation group on \Im . Since every permutation of $Ns\Re/\Re$ distinct from \Re leaves by the definition of \Re at most one symbol of \Im fixed, $Ns\Re/\Re$ is a complete Frobenius group on \Im . Therefore i equals a power of a prime number, say p^m , and the order of $\Im \cap Ns\Re/\Re$ is equal to i-1. Since the order of \Re is two, $Ns\Re$ coincides with the centralizer of \Re in \Im . Therefore there exist (n-1)n/(i-1)i involutions in \Im each of which is conjugate to K.

At first, let us assume that n is odd. Let $h^*(2)$ be the number of involutions in $\mathfrak D$ leaving only the symbol 1 fixed. Then from (1) and the above argument the following equality is obtained:

(2)
$$h^*(2)n + (n-1)n/(i-1)i = (n-1)/(i-1) + h^*(2) + 2(n-1).$$

Since *i* is less than *n*, it follows from (2) that $h^*(2) \le 1$. Thus two cases are to be distinguished: (A) $h^*(2) = 1$ and (B) $h^*(2) = 0$. The following equalities are obtained from (2) for cases (A) and (B), respectively:

(2. A)
$$n = i^2 = p^{2m}$$
, $(p : odd)$.

and

(2. B)
$$n = i(2i-1) = p^m(2p^m-1), \quad (p : odd).$$

Next let us assume that n is even. Let $g^*(2)$ be the number of involutions in \mathfrak{G} leaving no symbol of \mathfrak{Q} fixed. Then corresponding to (2) the following equality is obtained from (1):

(3)
$$g^*(2) + (n-1)n/(i-1)i = (n-1)/(i-1) + 2(n-1).$$

Let J be an involution in $\mathfrak S$ leaving no symbol of $\mathfrak Q$ fixed. Let CsJ be the centralizer of J in $\mathfrak S$. Assume that the order of CsJ is divisible by a prime factor q of n-1. Then CsJ contains a permutation Q of order q. Since n-1, and therefore q, is odd, Q must leave just one symbol of $\mathfrak Q$ fixed. But this shows that Q cannot be commutative with J. This contradiction implies that $g^*(2)$ is a multiple of n-1. Now it follows from (3) that $g^*(2) \leq n-1$. Thus again two cases are to be distinguished: $(C) g^*(2) = n-1$ and $(D) g^*(2) = 0$. The following equalities are obtained from (3) for cases (C) and (D), respectively:

(3. C)
$$n = i^2 = 2^{2m}$$
,

and

(3. D)
$$n = i(2i-1) = 2^m(2^{m+1}-1).$$

3. Case (A). Let \mathfrak{P}' be a Sylow p-subgroup of $Ns\mathfrak{R}$. Let $Ns\mathfrak{P}'$ and $Cs\mathfrak{P}'$ denote the normalizer and the centralizer of \(\psi' \) in \(\mathbb{G} \), respectively. Then, since $Ns\Re/\Re$ is a Frobenius group of degree p^m , \Re' is elementary abelian of order Thus $Cs\mathfrak{P}'$ contains \mathfrak{RP}' . Now let \mathfrak{P} be a Sylow p p^m and normal in $Ns\Re$. subgroup of $Ns\mathfrak{P}'$. Then it follows from an elementary property of p-groups that \mathfrak{P} is greater than \mathfrak{P}' . This implies that $Cs\mathfrak{P}'$ is greater than \mathfrak{RP}' . fact, if $Cs\mathfrak{P}' = \mathfrak{RP}'$, then, since \mathfrak{RP}' is a direct product of \mathfrak{R} and \mathfrak{P}' , \mathfrak{R} would be normal in $Ns\mathfrak{P}'$ and it would follow that $\mathfrak{P}=\mathfrak{P}'$. Let $q\ (\neq 2,\ p)$ be a prime factor of the order of $Cs\mathfrak{P}'$ and let Q be a permutation of $Cs\mathfrak{P}'$ of order q. Then q must divide n-1 and hence Q must leave just one symbol of Ω fixed. But \mathfrak{P}' does not leave any symbol of \mathfrak{Q} fixed and therefore Q cannot belong to $Cs\mathfrak{P}'$. Assume that the order of $Cs\mathfrak{P}'$ is divisible by four. Let \mathfrak{S} be a Sylow 2-subgroup of $Cs\mathfrak{P}'$. Then \mathfrak{S} leaves just one symbol of Ω fixed. This, as above, shows that \mathfrak{S} cannot be contained in $Cs\mathfrak{P}'$. Thus the order of $Cs\mathfrak{P}'$ must be of the form $2 p^{m+m'}$ with $m \ge m' > 0$.

Now let \mathfrak{P}'' be a Sylow p-subgroup of $Cs\mathfrak{P}'$. Then clearly \mathfrak{P}'' is normal in $Ns\mathfrak{P}'$. Let \mathfrak{B} be a Sylow p-complement of $Ns\mathfrak{R}$, which is a stabilizer in $Ns\mathfrak{R}$ of a symbol of \mathfrak{F} . Then decompose all the permutations (± 1) of \mathfrak{P}'' into \mathfrak{F} -conjugate classes. If $P \pm 1$ is a permutation of \mathfrak{P}'' and if $Cs\mathfrak{P}$ denotes the centralizer of P in \mathfrak{G} , then it can be seen, as before, that the order of $\mathfrak{F} \cap Cs\mathfrak{P}$

equals at most two. Thus every \mathfrak{V} -conjugate class contains either p^m-1 or $2(p^m-1)$ permutations and the following equality is obtained:

$$p^{m+m'}-1=x(p^m-1).$$

This implies in turn that;

$$x \equiv 1 \pmod{p^m}$$
 and $x > 1$; $x = yp^m + 1$ and $y > 0$; $p^{m'} = (y - 1)(p^m - 1) + p^m$; $y = 1$ and finally $m' = m$.

Thus \mathfrak{P}'' is a Sylow p-subgroup of \mathfrak{G} .

Now since the order of $Ns\Re$ equals $2(p^m-1)p^m$, \Re is not contained in the center of any Sylow 2-subgroup of S. But obviously NsR contains a central element of some Sylow 2-subgroup of S. Let J be such a "central" involution in $Ns\Re$ (and of $Ns\Re''$). Then J leaves just one symbol of Ω fixed and therefore, as before, I is not commutative with any permutation (± 1) of \mathfrak{P}'' . must be abelian. By assumption \mathfrak{P}'' cannot be normal in \mathfrak{G} . Let \mathfrak{D} be a maximal intersection of two distinct Sylow p-subgroups of S, one of which Assume that $\mathfrak{D} \neq 1$ and let $Ns\mathfrak{D}$ and $Cs\mathfrak{D}$ denote may be assumed to be \mathfrak{P}'' . the normalizer and the centralizer of D in B, respectively. Then, as it is well known, any Sylow p-subgroup of NsD cannot be normal in it. On the other hand, since \mathfrak{P}'' is abelian, it is contained in $Cs\mathfrak{D}$. Moreover, as before, the prime to p part of the order of $Cs\mathfrak{D}$ is at most two. This implies that \mathfrak{P}'' is Thus it must hold that $\mathfrak{D} = 1$. Using Sylow's theorem the normal in NsD. following equality is now obtained:

$$2(n-1)n/xn = vn + 1.$$

This implies that y = 1, x = 1 and n = 3.

Thus there exists no group satisfying the conditions of the theorem in Case (A).

4. Case (B). Likewise in Case (A) let \mathfrak{P} be a Sylow p-subgroup of $Ns\mathfrak{R}$. Then, as before, \mathfrak{P} is elementary abelian of order p^m and normal in $Ns\mathfrak{R}$. Since, however, $n=p^m(2\ p^m-1)$ in this case, \mathfrak{P} is a Sylow p-subgroup of \mathfrak{S} . Let $Ns\mathfrak{P}$ and $Cs\mathfrak{P}$ denote the normalizer and the centralizer of \mathfrak{P} in \mathfrak{S} , respectively. Let the orders of $Ns\mathfrak{P}$ and $Cs\mathfrak{P}$ be $2\ (p^m-1)p^mx$ and $2\ p^my$, respectively. If x=1, then from Sylow's theorem it should hold that $(2\ p^m-1)(2\ p^m+1)\equiv 1\ (\text{mod. }p)$, which, since p is odd, is a contradiction. Thus x is

greater than one. If y=1, then \Re would be normal in $Ns\Re$, and this would imply that x=1. Thus y is greater than one. Now y is prime to 2p. In fact, y is obviously prime to p. If y is even, then let $\mathfrak S$ be a Sylow 2-subgroup of $Cs\Re$. Since then the order of $\mathfrak S$ must be greater than two, $\mathfrak S$ leaves just one symbol of $\mathfrak Q$ fixed. Hence $\mathfrak S$ cannot be contained in $Cs\Re$. Thus y must be odd. Therefore by a theorem of Zassenhaus ((5), p. 125) $Cs\Re$ contains a normal subgroup $\mathfrak Y$ of order y. $\mathfrak Y$ is normal even in $Ns\Re$.

Now likewise in Case (A) let \mathfrak{V} be a Sylow p-complement of $Ns\Re$ and let us consider the subgroup $\mathfrak{P}\mathfrak{V}$. Since \mathfrak{P} is a subgroup of $Cs\mathfrak{P}$, any permutation (± 1) of \mathfrak{Y} does not leave any symbol of Ω fixed. In particular, every prime factor of the order of \mathfrak{P} must divide $2 p^m - 1$. Since $p^m - 1$ and $2 p^m - 1$ are relatively prime, it follows that every permutation (± 1) of \mathfrak{B} is not commutative with any permutation (± 1) of \mathfrak{Y} . This implies that y is not less than $2p^m-1$. Thus it follows that $y = 2p^m - 1$ and that all the permutations (± 1) of \mathfrak{P} are conjugate under \mathfrak{P} . Therefore $2p^m-1$ must be equal to a power of a prime, say q^l , and \mathfrak{Y} must be an elementary abelian q-group. Let Ns ?) and Cs ?) denote the normalizer and the centralizer of ?) in S, respectively. Then it can be easily seen that $Cs\mathfrak{P} = \mathfrak{P}\mathfrak{P}$. Hence $Ns\mathfrak{P}$ is contained in $Ns\mathfrak{P}$ and therefore we obtain that $Ns\mathfrak{Y} = Ns\mathfrak{X}$. On the other hand, it is easily seen that the index of $Ns\beta$ in \mathfrak{G} is equal to $2p^m+1$. But then we must have that $2p^m + 1 \equiv 2 \pmod{q}$, which contradicts the theorem of Sylow.

Thus there exists no group satisfying the conditions of the theorem in Case (B).

5. Case (C). Since $n=2^{2^m}$, \mathfrak{H} contains a normal subgroup \mathfrak{U} of order n-1. Let \mathfrak{V} be a Sylow 2-complement of $Ns\mathfrak{H}$ leaving the symbol 1 fixed. Then \mathfrak{V} is contained in \mathfrak{U} . Since $Ns\mathfrak{H}/\mathfrak{K}$ is a complete Frobenius group of degree 2^m , all the Sylow subgroups of \mathfrak{V} are cyclic. Let l be the least prime factor of the order of \mathfrak{V} . Let \mathfrak{V} be a Sylow l-subgroup of \mathfrak{V} . Let $Ns\mathfrak{V}$ and $Cs\mathfrak{V}$ denote the normalizer and the centralizer of \mathfrak{V} in \mathfrak{V} . Then \mathfrak{V} is cyclic and clearly leaves only the symbol 1 fixed. Hence $Ns\mathfrak{V}$ is contained in \mathfrak{V} . Because $Cs\mathfrak{V}$ contains \mathfrak{K} , using Sylow's theorem, we obtain that $Ns\mathfrak{V} = Cs\mathfrak{V}(Ns\mathfrak{K} \cap Ns\mathfrak{V}) = Cs\mathfrak{V}(\mathfrak{K}\mathfrak{V} \cap Ns\mathfrak{V})$. Then it is easily seen that $Ns\mathfrak{V} = Cs\mathfrak{V}$. By the splitting theorem of Burnside \mathfrak{V} has the normal l-complement. Continuing in the similar way, it can be shown that \mathfrak{V} has the normal subgroup \mathfrak{S} , which is a complement

of \mathfrak{V} . In particular, $\mathfrak{S} \cap \mathfrak{U} = \mathfrak{D}$ is a normal subgroup of \mathfrak{U} , which is a complement of \mathfrak{V} and has order $2^m + 1$. Consider the subgroup $\mathfrak{D}\mathfrak{R}$. Then since every permutation $(\neq 1)$ of \mathfrak{D} leaves just one symbol of \mathfrak{Q} fixed, K is not commutative with any permutation $(\neq 1)$ of \mathfrak{D} , and therefore \mathfrak{D} is abelian. \mathfrak{S} is the product of \mathfrak{D} and a Sylow 2-subgroup of \mathfrak{S} . Hence \mathfrak{S} , and therefore \mathfrak{S} , is solvable ((3)). Then \mathfrak{S} must contain a regular normal subgroup.

Thus there exists no group satisfying the conditions of the theorem in Case (C).

6. Case (D). If m=1, then it can be easily checked that $\mathfrak{G}=A$. Hence it will be assumed hereafter that m is greater than one.

Let $Ns\mathfrak{S}$ denote the normalizer of \mathfrak{S} in \mathfrak{S} . All the involutions of \mathfrak{S} are conjugate in \mathfrak{S} because of $g^*(2)=0$. Hence they are conjugate already in $Ns\mathfrak{S}$ ((5), p. 133). Since $Ns\mathfrak{S}$ contains $Ns\mathfrak{R}$, it follows that the index of $Ns\mathfrak{R}$ in $Ns\mathfrak{S}$ equals $2^{m+1}-1$. Let \mathfrak{A} be a Sylow 2-complement of $Ns\mathfrak{S}$ of order $(2^{m+1}-1)$ (2^m-1) . Then it follows that $\mathfrak{S}\mathfrak{B}=\mathfrak{S}(\mathfrak{A}\cap\mathfrak{S}\mathfrak{B})$. By a theorem of Zassenhaus ((5), p. 126) \mathfrak{B} and $\mathfrak{A}\cap\mathfrak{S}\mathfrak{B}$ are conjugate in $\mathfrak{S}\mathfrak{B}$. Hence we can assume that \mathfrak{B} is contained in \mathfrak{A} . Now every permutation ($\neq 1$) of \mathfrak{B} leaves just one symbol of \mathfrak{A} fixed, and all the Sylow subgroups of \mathfrak{B} are cyclic. Therefore likewise in Case (C) it can be shown that \mathfrak{A} has the normal subgroup \mathfrak{B} of order $2^{m+1}-1$. Every permutation ($\neq 1$) of \mathfrak{B} leaves no symbol of \mathfrak{A} fixed, hence it is not commutative with any permutation ($\neq 1$) of \mathfrak{B} . Let B be a permutation of \mathfrak{B} of a prime order, say a. Then all the permutations ($\neq 1$) of \mathfrak{B} are conjugate

to either B or B^{-1} under \mathfrak{V} . This implies that \mathfrak{V} is an elementary abelian q-group of order, say q^b . Then it follows that $2^{m+1}-1=q^b$. This implies that b=1 and \mathfrak{V} is cyclic of order q. Hence \mathfrak{V} is also cyclic.

Let $Ns\mathfrak{B}$ denote the normalizer of \mathfrak{B} in \mathfrak{G} . Noticing that $2^m-1=\frac{1}{2}(q-1)$, let the order of $Ns\mathfrak{B}$ be equal to $\frac{1}{2}x(q-1)q$. Since $n=\frac{1}{2}q(q+1)$, \mathfrak{B} cannot be transitive on \mathfrak{Q} , and hence it cannot be normal in \mathfrak{G} . Therefore x is less than (q+1)(q+2). Now using the theorem of Sylow we obtain the following congruence:

$$(q+1)(q+2)/x \equiv 1$$
 (mod. q).

This implies that (q+1)(q+2) = x(yq+1), where, since x is less than (q+1)(q+2), y is positive. Then we obtain that x = zq + 2, where z, since q is greater than two, is non-negative. Finally we obtain that (q+1)(q+2) = (zq+2)(yq+1). This implies that z is not greater than one. If z=1, then the order of $Ns\mathfrak{B}$ equals $\frac{1}{2}(q-1)q(q+2)$. Hence there will be a permutation $X(\neq 1)$ of order dividing q+2, which belongs to the centralizer of \mathfrak{B} . But X leaves just one symbol of \mathfrak{A} fixed. Then X cannot be contained in the centralizer of \mathfrak{B} . This contradiction implies that z=0, x=2 and $y=\frac{1}{2}(q+3)$. In particular, \mathfrak{B} coincides with is own centralizer, and the order of $Ns\mathfrak{B}$ equals (q-1)q.

If $\mathfrak S$ is solvable, then $\mathfrak S$ must have a regular normal subgroup, which is an elementary abelian group of a prime-power order. Since $n=\frac{1}{2}q(q+1)$, it is impossible. Thus $\mathfrak S$ must be nonsolvable.

Let $\mathfrak N$ be the least normal subgroup of $\mathfrak S$ such that $\mathfrak S/\mathfrak N$ is solvable. Then since $\mathfrak N$ is transitive on $\mathfrak Q$, $\mathfrak N$ contains $\mathfrak B$ and an involution. Since all the involutions of $\mathfrak S$ are conjugate, $\mathfrak N$ contains $\mathfrak S$. Using Sylow's theorem, we obtain that $\mathfrak S=(Ns\mathfrak B)\mathfrak N$. Therefore the order of $\mathfrak N$ is divisible by q+2. Let the order of $\mathfrak N$ be equal to xq(q+1)(q+2). Then the order of $\mathfrak N\cap Ns\mathfrak B$ is equal to 2xq. Thus the number of Sylow q-subgroups of $\mathfrak N$ is equal to $\frac12q(q+3)+1$. On the other hand, since the order of $\mathfrak B$ equals q, it can be easily shown that $\mathfrak N$ is a simple group. Therefore by a theorem of Brauer ((1)) $\mathfrak N$ is isomorphic to the two-dimensional special linear group LF (2, q+1) over the field of $q+1=2^{m+1}$ elements. In particular, it follows that x=1.

Using Sylow's theorem, we obtain that $\mathfrak{G} = \mathfrak{N}(Ns\mathfrak{N})$. Therefore there exist

q+2 distinct Sylow 2-subgroups in §. Let Γ be the set of all the Sylow 2subgroups of S. Then, in a usual manner, we represent S as a permutation As it is well known, \Re , and therefore \mathfrak{G} , is triply transitive on group on Γ . Γ . Let $\mathfrak B$ be the stabilizer of some two symbols of Γ . Then the order of \mathbb{W} is equal to $\frac{1}{2}(q-1)q$, and hence a Sylow q-subgroup of $\mathfrak W$ is normal in it. Therefore we can assume that $\mathfrak{B} = \mathfrak{A}$. Thus \mathfrak{B} is the stabilizer of some three symbols of Γ . Let $\mathfrak{P}^*(\neq 1)$ be any subgroup of \mathfrak{P} , and put $\mathfrak{P}^*=\mathfrak{PP}^*$. \mathfrak{G}^* is triply transitive on Γ , and \mathfrak{B}^* is the stabilizer of the above three symbols of Γ in \mathfrak{G}^* . Let f be the number of symbols in the subset Δ of Γ , each symbol of which is left fixed by \mathfrak{B}^* . Then by a theorem of Witt ((4), Theorem 9.4) $\mathfrak{G}^* \cap Ns\mathfrak{P}^*$ is triply transitive on Δ . Therefore $\mathfrak{A} \cap \mathfrak{G}^*Ns\mathfrak{P}^*$ has an orbit in Δ of length f-2. But we already know that $\mathfrak{A} \cap Ns\mathfrak{B}^* = \mathfrak{B}$. that $\mathfrak{A} \cap \mathfrak{B}^* \supset Ns\mathfrak{B}^* = \mathfrak{B}^*$. This implies that f = 3 and that $Ns\mathfrak{B}^*/\mathfrak{B}$ is isomorphic to the symmetric group of degree three.

Now let $\mathbb I$ be the Sylow 2-complement of $\mathfrak P$ of order $\frac{1}{2}(q-1)(q+2)$. Then we can assume that $\mathfrak P$ is contained in $\mathbb I$. Since m is greater than one, it follows that $q=2^{m+1}-1$ is not less than seven. Hence the order q+2 of $\mathfrak N\cap \mathbb I$ is divisible by 3. Since $\mathfrak N\cap \mathbb I$ is cyclic, it contains only subgroup $\mathfrak T$ of order three. $\mathfrak T$ is normal in $\mathbb I$. On the other hand, since $\frac{1}{2}(q-1)$ is odd, $\mathfrak T$ is contained in the centralizer of $\mathfrak P$. Thus it follows that $\mathbb I\cap Ns\mathfrak P^*=\mathfrak P\mathfrak T$. If q+2 has a prime factor I distinct from 3, then let $\mathfrak P$ be the Sylow I-subgroup of $\mathfrak N\cap \mathbb I$ of order, say I^c . Then I^c is not greater that (q+2)/3. Now the above argument shows that I^c-1 is a multiple of $\frac{1}{2}(q-1)$. This contradiction implies that q+2 is equal to a power of 3, say, 3^a . Thus finally we obtain the following equality:

$$a+2=2^{m+1}-1=3^a$$
.

This implies that a=2, m=2 and q=7. Then it is easy to check that @ is isomorphic to S.

Remark. Holyoke ((2)) proved a special case of the theorem: if \mathfrak{S} is a dihedral group, then \mathfrak{S} is isomorphic to \mathbf{A} .

BIBLIOGRAPHY

[1] R. Brauer, On the representations of groups of finite order, Proc. Nat. Acad. Sci.

U.S.A. 25, 290-295 (1939).

- [2] T. Holyoke, Transitive extens ons of dihedral groups, Math. Zeitschr. 60, 79-80 (1954).
- [3] N. Ito, Remarks on factorizable groups. Acta Sci. Math. Szeged 15, 83-84 (1951).
- [4] H. Wielandt, Finite permutation groups, Academic Press, New York-London (1964).
- [5] H. Zassenhaus, Lehrbuch der Gruppentheorie, I, Teubner, Leipzig (1937).

Mathematical Institute,

Nagoya University