GENERATORS AND RELATIONS FOR CYCLOTOMIC UNITS

HYMAN BASS

To the memory of TADASI NAKAYAMA

1. Introduction

We prove here an unpublished conjecture of Milnor which gives a complete set of multiplicative relations between the numbers

$$e'(\zeta)=1-\zeta,$$

where $\zeta \neq 1$ ranges over complex roots of unity. Information of this type is useful in certain areas of topology as well as in number theory.

2. Statement of the theorem

Clearly

(A) $e'(\zeta^{-1}) = -\zeta^{-1}e'(\zeta).$

Suppose $\zeta^n \neq 1$. In

$$t^n-1=\prod_{\eta^n=1}(t-\eta)$$

substitute ζ^{-1} for t to obtain

$$\zeta^{-n}-1=\prod_{\eta^{n}=1}\zeta^{-1}(1-\zeta\eta),$$

and then multiply by ζ^n , yielding

(B)
$$e'(\zeta^n) = \prod_{\eta^n=1} e'(\eta\zeta)$$
 if $\zeta^n \neq 1$.

MILNOR'S CONJECTURE. All multiplicative relations, modulo torsion, between the $e'(\zeta)$, are consequences of (A) and (B) above.

The following theorem is slightly more precise.

THEOREM 1. Let U'_m denote the multiplicative group generated by all $e'(\zeta)$

Received June 30, 1965.

 $= 1 - \zeta$ with $\zeta^m = 1$, $\zeta \neq 1$. Let U_m equal U'_m modulo its torsion subgroup, and denote by $e(\zeta)$ the image in U_m of $e'(\zeta)$. Let us, moreover, write U_m additively. Then a set of defining relations between the generators $e(\zeta)$ of U_m is: For all $\zeta \neq 1$ such that $\zeta^m = 1$

$$(A)_m \qquad \qquad e(\zeta^{-1}) = e(\zeta)$$

and,

 $(B)_m$ if n divides m and $\zeta^n \neq 1$ then $e(\zeta^n) = \sum_{\eta^n = 1} e(\eta \zeta)$.

3. U_m as a Galois Module

We shall apply the following useful lemma extracted from Artin-Tate ([1], Ch. I).

LEMMA (Dirichlet, Artin-Tate). Let K/k be a finite galois extension of number fields with group G, and let S be a finite set of primes of k containing all archimedean primes. Let K_s denote the group of S-units, i.e., elements of absolute value one at all primes of K not above one in S. Then K_s is a finitely generated G-module, and there is a G-isomorphism

$$\mathbf{Q} \otimes_{\mathbf{Z}} (K_{s} \oplus \mathbf{Z}) \cong \mathbf{Q} \otimes_{\mathbf{Z}} (\underset{\mathfrak{p} \in s}{\oplus} M_{\mathfrak{p}}).$$

Here G acts trivially on Z and Q, and M_p is the Z[G]-module defined by the permutation representation of G on the set of \mathfrak{P} above \mathfrak{p} .

Proof. Let E be a real vector space with the primes \mathfrak{P} which lie above one of S as a basis, and let $L: K_s \to E$ be the Dirichlet map. Thus $L(a) = \sum_{\mathfrak{P}} (\log |a|_{\mathfrak{P}})\mathfrak{P}$, where $|\mathfrak{P}|$ is the normalized absolute value at \mathfrak{P} . From the Dirichlet Unit Theorem, ker L is the torsion subgroup of K_s , and im L is a lattice of maximal rank in the product formula hyperplane: $\sum \mathfrak{x}_{\mathfrak{P}} = 0$. Gpermutes the \mathfrak{P} 's and hence operates on E, and we now observe that L is a G-homomorphism:

$$L^{(\sigma a)} = \sum_{\mathfrak{P}} (\log |\sigma a|_{\mathfrak{P}})\mathfrak{P}$$

= $\sum_{\mathfrak{P}} (\log |\sigma a|_{\sigma \mathfrak{P}})\sigma\mathfrak{P}$
= $\sum_{\mathfrak{P}} (\log |a|_{\mathfrak{P}})\sigma\mathfrak{P}$
= $\sigma L(A).$

If $x = \sum_{\Re} \Re$ then Zx is a G-submodule of E, with trivial action, and

 $L(K_s) \oplus \mathbb{Z}x$ is a lattice of maximal rank in E. Hence the natural map

$$\mathbf{R} \otimes_{\mathbf{Z}} (L(K_s) \oplus \mathbf{Z} \mathbf{x}) \to E$$

is an isomorphism of G-modules.

If $M = \sum_{\mathfrak{P}} \mathbb{Z}\mathfrak{P}$ then $\mathbb{R} \otimes_{\mathbb{Z}} M \to E$ is similarly a *G*-isomorphism. Hence $\mathbb{Q} \otimes_{\mathbb{Z}} M$ and $\mathbb{Q} \otimes_{\mathbb{Z}} (L(K_s) \oplus \mathbb{Z}_{\mathbb{X}}) \cong \mathbb{Q} \otimes_{\mathbb{Z}} (K_s \oplus \mathbb{Z})$ are $\mathbb{Q}[G]$ -modules which become isomorphic after scalar extension from \mathbb{Q} to \mathbb{R} . They are therefore already isomorphic, and the lemma is proved.

We now apply the lemma to Q_m , the field generated by all primitive m^{th} roots of unity. Let $\vartheta(m) = \text{Gal}(Q_m/Q)$. If ζ is a primitive m^{th} root of unity, $Q'_m = Q(\zeta + \zeta^{-1})$ is the real subfield, and $\vartheta'(m) = \vartheta(m)/(\text{complex conjugation})$ is its galois group over Q. The cardinality of $\vartheta(m)$ is $\varphi(m)$ (Euler φ), and that of $\vartheta'(m)$ is $\varphi(m)/2$ if m > 2.

COROLLARY. Let V'_m denote the group of units in the ring of integers of Q_m . Then $Q \otimes_{\mathbf{Z}} (V'_m \oplus \mathbf{Z})$ is a free $Q[\Phi'(m)]$ -module on one generator.

Proof. Let S be the archimedean prime of Q. $\mathcal{O}(m)$ permutes the archimedean primes of \mathbf{Q}_m transitively, with complex conjugation generating the isotropy group of each. The corollary is now immediate from the lemma.

We require next some classical facts about cyclotomic units.

LEMMA. Let ζ be a primitive m^{th} root of unity, m > 1. (1) (see [2], Lemma 7.3). If $N = N_{Q_m/Q}$ then $Ne(\zeta) = 1$ if m is not a prime power and $Ne(\zeta) = p$ if m is a power of the prime p.

(2) (see [2], §7 and Corollary to Theorem 4) $N: U'_m \to \mathbf{Q}^*$ is a homomorphism whose image is generated by positive powers of the primes dividing m, and whose kernel is $U'_m \cap V'_m$ and has finite index in V'_m .

The preceding lemma and corollary yield:

THEOREM 2. As a $\Phi(m)$ -module

$$\mathbf{Q} \otimes_{\mathbf{Z}} U_m \cong \mathbf{Q}[\boldsymbol{\Phi}'(m)] \oplus \mathbf{Q}^{\Pi(m)-1}.$$

Here $\Phi(m)$ acts trivially on \mathbf{Q} , and $\Pi(m)$ is the number of prime divisors of m. In particular U_m is a free abelian group of rank $\varphi(m)/2 + \Pi(m) - 1$.

4. The prime power case

THEOREM 3. Suppose $q = p^n$ with p prime, n > 0. Then Theorem 1 is valid

for m = q. Moreover

$$U_q \cong \mathbf{Z}[\mathbf{\Phi}'(q)]$$

as a $\Phi(q)$ -module, and $e(\zeta)$ is a generator for any primitive q^{tn} root of unity, ζ .

Proof. If $\zeta_1 = \zeta^p$ is a primitive $p^{i_{th}}$ root of unity with i < n then relations $(B)_q$ yield $e(\zeta_1) = \sum_{\eta \neq = 1} e(\eta \zeta)$, and each $\eta \zeta$ here is a primitive $p^{i+1}th$ root of unity. By induction, then, $(B)_q$ implies U_q is generated by the $e(\zeta)$ with ζ a primitive q^{th} root of unity. Since $\vartheta(q)$ permutes the latter transitively it follows that any of them generates U_q as $\vartheta(q)$ -module. Choosing such a generator yields an epimorphism $\mathbb{Z}[\vartheta(q)] \rightarrow U_q$. Relations $(A)_q$ imply this factors through the quotient, $\mathbb{Z}[\vartheta'(q)]$, of $\mathbb{Z}[\vartheta(q)]$. Theorem 2 above shows that $\mathbb{Z}[\vartheta'(q)]$ and U_q are free abelian of the same rank, so an epimorphism is an isomorphism.

5. The general case

Let \overline{U}_m be an abelian group with generators $\overline{e}(\zeta)$ subject only to relations $(A)_m$ and $(B)_m$. Let $\overline{U}_m \to U_m$ be the epimorphism sending $\overline{e}(\zeta)$ to $e(\zeta)$. Theorem 1 asserts this is an isomorphism, and Theorem 3 proves it for m a prime power.

If $\sigma \in \Phi(m)$ we let σ operate on \overline{U}_m by $\sigma \overline{e}(\zeta) = \overline{e}(\sigma \zeta)$. This is clearly compatible with $(A)_m$ and $(B)_m$, and it makes $\overline{U}_m \to U_m$ a homomorphism of $\Phi(m)$ -modules.

Suppose *m* has prime factorization $m = p_1^{n_1} \cdots p_r^{n_r} = q_1 \cdots q_r$ where $q_i = p_i^{n_i}$ and r > 1. Let $m_i = m/q_i$, $1 \le i \le r$. We assume by induction on *r* that $\overline{U}_{m_i} \to U_{m_i}$ is an isomorphism. It follows, in particular, that \overline{U}_m can be identified with a submodule of \overline{U}_m . As such we have $\overline{U}_m^{(1)} = \sum_{1 \le i \le r} \overline{U}_{m_i} \subset \overline{U}_m$, which maps onto $U_m^{(1)} = \sum_{1 \le i \le r} U_{m_i} \subset U_m$.

The following technical lemma generalizes Theorem 3.

LEMMA. Let N_i denote the "norm element" (i.e., the sum of the group elements) in $\mathbb{Z}[\Phi(q_i)]$, and let $M_i = \mathbb{Z}[\Phi(q_i)]/\mathbb{Z}N_i$. We have $\Phi(m) = \prod_{1 \leq i \leq r} \Phi(q_i)$ so $M' = \bigotimes_{i \leq i \leq r} M_i$ is a $\Phi(m)$ -module. Let $M = \mathbb{Z}[\Phi'(m)] \otimes_{\mathbb{Z}}[\Phi(m)] M'$, i.e., M' reduced by complex conjugation. Then $\overline{U}_m \to U_m$ induces an isomorphism $\overline{U}_m/\overline{U}_m^{(1)} \to U_m/U_m^{(1)}$ and the latter are isomorphic to M as $\Phi(m)$ -modules.

Proof. Let Ψ_m denote the group of m^{th} roots of unity and Φ_m the primitive

 m^{th} roots. Suppose $m = p^n m'$ with p a prime not dividing m'. Then $\Psi_m = \Psi_{p^n} \times \Psi_{m'}$ as groups, and $\Phi_m = \Phi_{p^n} \times \Phi_{m'}$ as sets.

If $\eta \in \Psi_{p^n}$ and $\zeta \in \Psi_{m'}$, not both 1, then $\overline{e}(\eta\zeta)$ is a typical generator of \overline{U}_m . Suppose $\eta \in \Phi_{p^i}$ with 0 < i < n, so $\eta = \eta_1^p$ for some $\eta_1 \in \Phi_{p^{i+1}}$. Likewise, we can write $\zeta = \zeta_1^p$ with $\zeta_1 \in \Psi_{m'}$ since p doesn't divide m'. Then from $(B)_m \overline{e}(\eta\zeta) = \overline{e}((\eta_1\zeta_1)^p) = \sum_{\nu \in \Psi_p} \overline{e}((\nu\eta_1)\zeta_1)$, and each $\nu\eta_1 \in \Phi_{p^{i+1}}$ since $\eta_1 \in \Phi_{p^{i+1}}$ and $i \ge 1$.

Now let $\zeta' \neq 1$ be any element of Ψ_m . Letting p above range over the prime divisors of the order of ζ , and applying the remark of the last paragraph to each, we deduce easily that \overline{U}_m is generated by the elements $e(\zeta)$ where ζ has order $\prod_{i \in I} q_i$ for some $I \subset \{1, \ldots, r\}$. In other words, each prime divides the order of ζ to the same power that it divides m, if at all. In particular, $\widetilde{U}_m = \overline{U}_m / \overline{U}_m^{(1)}$ is generated by the images, $\widetilde{e}(\zeta)$, of $\overline{e}(\zeta)$, where ζ ranges over Φ_m .

$$\mathbf{Z}[\boldsymbol{\Phi}(\boldsymbol{m})] = \bigotimes_{1 \leq i \leq r} \mathbf{Z}[\boldsymbol{\Phi}(\boldsymbol{q}_i)] \to \widetilde{U}_{\boldsymbol{m}}.$$

To show that this factors through the quotient, $\bigotimes_{1 \le i \le r} M_i$, we must show that if $m = p^n m'$, p a prime not dividing m', and if $\zeta \in \Phi_{m'}$, then $\sum_{\eta \in \Phi_{pn}} \tilde{e}(\eta \zeta) = 0$.

For n = 1 this follows from

$$\sum_{\eta \in \Phi_p} \overline{e}(\eta \zeta) = \sum_{\eta \in \Psi_p} \overline{e}(\eta \zeta) - \overline{e}(\zeta)$$
$$= \overline{e}(\zeta^p) - \overline{e}(\zeta) \in \overline{U}_m^{(1)}.$$

Moreover, if n > 1, then

$$\begin{split} \sum_{\eta \in \Phi_{\mathcal{V}}^{n}} \overline{e}(\eta \zeta) &= \sum_{\eta_{1} \in \Phi_{\mathcal{V}}^{n-1}} \sum_{\eta^{\mathcal{P}} = \eta_{1}} \overline{e}(\eta \zeta) \\ &= \sum_{\eta_{1} \in \Phi_{\mathcal{V}}^{n-1}} \sum_{\nu \in \Psi_{\mathcal{V}}} \overline{e}(\nu \eta'_{1} \zeta) \\ &= \sum_{\eta_{1} \in \Phi_{\mathcal{V}}^{n-1}} \overline{e}(\eta_{1} \zeta^{p}). \end{split}$$

Here η'_1 is a fixed solution of $(\eta'_1)^p = \eta_1$, for each η_1 , and, of course, we have invoked relations $(B)_m$ in the last equation. It follows now, by induction on *n*, that $\sum_{\eta \in \Phi_n^n} \tilde{e}(\eta\zeta) = 0$, as claimed, so we have an epimorphism

$$M' = \bigotimes_{1 \leq i \leq r} M_i \to \widetilde{U}_m.$$

HYMAN BASS

Relations $(A)_m$ imply this factors through M = (M'-reduced-by-complex-comjugation).

We conclude the proof by showing that both epimorphisms

$$M \rightarrow \tilde{U}_m \rightarrow U_m / U_m^{(1)}$$

are isomorphisms. For this it suffices to show that the rank of $U_m/U_m^{(1)}$ is not less than that of the torsion free module M, and for this we can tensor with **Q**. Since $\mathcal{O}(q_i)$ operates trivially on U_{m_i} , it follows that $\mathcal{O}(q_i)$, for some *i*, operates trivially on each irreducible submodule of $\mathbf{Q} \otimes_{\mathbf{Z}} U_m^{(1)}$. It follows from Theorem 2 that $\mathbf{Q} \otimes_{\mathbf{Z}} (U_m/U_m^{(1)})$ must contain each irreducible $\mathcal{O}'(m)$ module for which this is not the case. The latter add up to exactly $\mathbf{Q} \otimes_{\mathbf{Z}} M$, and hence rank $(U_m/U_m^{(1)}) \geq$ rank M, as required.

Proof of Theorem 1: If
$$I \subset \{1, \ldots, r\}$$
 let $m_l = \prod_{i \notin l} q_i$. Filter \overline{U}_m by
 $\overline{U}_m^{(j)} = \sum_{\text{card } l = j} \overline{U}_{ml}$.

Thus

$$\overline{U}_{m} = \overline{U}_{m}^{(0)} \supset \overline{U}_{m}^{(1)} \supset \cdots \supset \overline{U}_{m}^{(r-1)} \supset \overline{U}_{m}^{(r)} = 0.$$

We similarly filter U_m . To show that the (filtration preserving) map $\overline{U}_m \to U_m$ is an isomorphism it suffices to show that it induces isomorphisms

$$\overline{U}_{m}^{(j)}/\overline{U}_{m}^{(j+1)} \to U_{m}^{(j)}/U_{m}^{(j+1)}, \ 0 \le j \le r.$$

The lemma above shows this for j = 0, and that both terms are isomorphic to a certain module, M. Denoting the latter, more precisely, by M(m), we see, from the same lemma, that there is an epimorphism

$$\bigoplus_{\text{card } I=j} M(m_I) \to \overline{U}_m^{(j)} / \overline{U}_m^{(j+1)}.$$

 $M(m_l)$ here has the structure of a $\mathcal{O}(m)$ -module since $\mathcal{O}(m_l)$ is, from galois theory, a quotient (and even a direct factor) of $\mathcal{O}(m)$. Since $Q \otimes_Z (\bigoplus_{\text{card } I=j} M(m_l))$ is the sum of those irreducible $Q[\mathcal{O}'(m)]$ -modules on which j, but no more, of the $\mathcal{O}(q_i)$ operate trivially, and since, by Theorem 2 plus induction, $Q \otimes_Z (U_m^{(j)}/U_m^{(j+1)})$ must contain each of these irreducible modules, we obtain, as above, the rank inequality necessary to conclude that the epimorphisms

$$\bigoplus_{\text{card } I=j} M(m_I) \to \overline{U}_m^{(j)} / \overline{U}_m^{(j+1)} \to U_m^{(j)} / U_m^{(j+1)}$$

are both isomorphisms. Theorem 1 is thus proved,

406

Remarks. (1) By introducing a generator for each root of unity, accompanied by relations defining Q/Z, we can use Theorem 1 in an obvious way to obtain a presentation for U'_m itself, not merely modulo torsion. It would be more interesting, however, to study the extension, $0 \rightarrow \text{torsion} \rightarrow U'_m \rightarrow U_m \rightarrow 0$ of $\mathcal{P}(m)$ -modules.

(2) One could probably push the above arguments further and describe U_m explicitly as a $\mathcal{O}(m)$ -module, not just modulo extensions. It is undoubtedly much more subtle to analyze the remaining part of the group of units, V'_m/U'_m .

References

[1] E. Artin and J. Tate, Class Field Theory, Harvard, 1963.

Columbia University, New York, N. Y. U.S.A.

^[2] H. Bass, The Dirichlet Unit Theorem, Induced Characters, and Whitehead Groups of Finite Groups. Topology (to appear).