# GENERATORS AND RELATIONS FOR CYCLOTOMIC UNITS 

HYMAN BASS

To the memory of Tadasi Nakayama

## 1. Introduction

We prove here an unpublished conjecture of Milnor which gives a complete set of multiplicative relations between the numbers

$$
e^{\prime}(\zeta)=1-\zeta,
$$

where $\zeta \neq 1$ ranges over complex roots of unity. Information of this type is useful in certain areas of topology as well as in number theory.

## 2. Statement of the theorem

Clearly

## (A)

$$
e^{\prime}\left(\zeta^{-1}\right)=-\zeta^{-1} e^{\prime}(\zeta) .
$$

Suppose $\zeta^{n} \neq 1$. In

$$
t^{n}-1=\prod_{n=1}(t-\eta)
$$

substitute $\zeta^{-1}$ for $t$ to obtain

$$
\zeta^{-n}-1=\prod_{\eta^{n}=1} \zeta^{-1}\left(1-\zeta_{\eta}\right),
$$

and then multiply by $\zeta^{n}$, yielding

$$
\begin{equation*}
e^{\prime}\left(\zeta^{n}\right)=\prod_{\eta^{n}=1} e^{\prime}(\eta \zeta) \quad \text { if } \zeta^{n} \neq 1 . \tag{B}
\end{equation*}
$$

Milnor's Conjecture. All multiplicative relations, modulo torsion, between the $e^{\prime}(\zeta)$, are consequences of $(A)$ and ( $B$ ) above.

The following theorem is slightly more precise.
Theorem 1. Let $U_{m}^{\prime}$ denote the multiplicative group generated by all $e^{\prime}(\zeta)$

Received June 30, 1965.
$=1-\zeta$ with $\zeta^{m}=1, \zeta \neq 1$. Let $U_{m}$ equal $U_{m}^{\prime}$ modulo its torsion subgroup, and denote by $e(\zeta)$ the image in $U_{m}$ of $e^{\prime}(\zeta)$. Let us, moreover, write $U_{m}$ additively. Then a set of defining relations between the generators $e(\zeta)$ of $U_{m}$ is: For all $\zeta \neq 1$ such that $\zeta^{m}=1$
$(A)_{m}$

$$
e\left(\zeta^{-1}\right)=e(\zeta)
$$

and,
$(B)_{m}$ if $n$ divides $m$ and $\zeta^{n} \neq 1$ then $e\left(\zeta^{n}\right)=\sum_{\eta^{n}=1}^{\sum} e(\eta \zeta)$.

## 3. $U_{m}$ as a Galois Module

We shall apply the following useful lemma extracted from Artin-Tate ([1], Ch. I).

Lemma (Dirichlet, Artin-Tate). Let $K / k$ be a finite galois extension of number fields with group $G$, and let $S$ be a finite set of primes of $k$ containing all archimedean primes. Let $K_{S}$ denote the group of $S$-units, i.e., elements of absolute value one at all primes of $K$ not above one in $S$. Then $K_{S}$ is a finitely generated G-module, and there is a G-isomorphism

$$
\mathbf{Q} \otimes \mathbf{z}\left(K_{s} \oplus \mathbf{Z}\right) \cong \mathbf{Q} \otimes \mathbf{z}\left(\underset{p \in s}{\oplus} M_{\mathfrak{p}}\right)
$$

Here $G$ acts trivially on Z and Q , and $M_{\mathfrak{p}}$ is the $\mathrm{Z}[G]$-module defined by the permutation representation of $G$ on the set of $\mathfrak{F}$ above $\mathfrak{p}$.

Proof. Let $E$ be a real vector space with the primes $\mathfrak{P}$ which lie above one of $S$ as a basis, and let $L: K_{S} \rightarrow E$ be the Dirichlet map. Thus $L(a)=\sum_{\mathfrak{B}}\left(\log |a|_{\mathfrak{B}}\right) \mathfrak{P}$, where $\left|\left.\right|_{\mathfrak{B}}\right.$ is the normalized absolute value at $\mathfrak{P}$. From the Dirichlet Unit Theorem, ker $L$ is the torsion subgroup of $K_{s}$, and $\operatorname{im} L$ is a lattice of maximal rank in the product formula hyperplane: $\sum x_{\Re}=0 . G$ permutes the $\mathfrak{j}$ 's and hence operates on $E$, and we now observe that $L$ is a $G$-homomorphism :

$$
\begin{aligned}
\left.L^{\prime}{ }_{\sigma a}\right) & =\sum_{\mathfrak{B}}\left(\log |\sigma a|_{\mathfrak{B}}\right)_{\mathcal{B}} \\
& =\sum_{\mathfrak{B}}\left(\log |\sigma a|_{\mathfrak{F} \mathfrak{B}} \sigma_{\mathfrak{P}}\right. \\
& =\sum_{\mathfrak{B}}\left(\log |a|_{\mathfrak{B}}\right)_{\mathfrak{F}} \\
& =\sigma L(A) .
\end{aligned}
$$

If $x=\sum_{\mathfrak{B}} \mathfrak{P}$ then $Z x$ is a $G$-submodule of $E$, with trivial action, and
$L\left(K_{s}\right) \oplus \mathbf{Z} x$ is a lattice of maximal rank in $E$. Hence the natural map

$$
\mathbf{R} \otimes \mathbf{z}\left(L\left(K_{s}\right) \oplus \mathbf{Z} x\right) \rightarrow E
$$

is an isomorphism of $G$-modules.
If $M=\sum_{\mathbb{B}} \mathbf{Z P}$ then $\mathbf{R} \otimes \mathbf{z} M \rightarrow E$ is similarly a $G$-isomorphism. Hence $\mathbf{Q} \otimes \mathbf{z} M$ and $\mathbf{Q} \otimes \mathbf{z}\left(L\left(K_{s}\right) \oplus \mathbf{Z} x\right) \cong \mathbf{Q} \otimes_{\mathbf{z}}\left(K_{s} \oplus \mathbf{Z}\right)$ are $\mathbf{Q}[G]$-modules which become isomorphic after scalar extension from $\mathbf{Q}$ to $\mathbf{R}$. They are therefore already isomorphic, and the lemma is proved.

We now apply the lemma to $\mathbf{Q}_{\boldsymbol{m}}$, the field generated by all primitive $\boldsymbol{m}^{t h}$ roots of unity. Let $\mathscr{D}(m)=\operatorname{Gal}\left(\mathbf{Q}_{\boldsymbol{m}} / \mathbf{Q}\right)$. If $\zeta$ is a primitive $m^{t h}$ root of unity, $\mathbf{Q}_{m}^{\prime}=\mathbf{Q}\left(\zeta+\zeta^{-1}\right)$ is the real subfield, and $\mathscr{D}^{\prime}(m)=\mathscr{D}(m) /($ complex conjugation) is its galois group over $\mathbf{Q}$. The cardinality of $\mathscr{D}(m)$ is $\varphi(m)$ (Euler $\varphi$ ), and that of $\Phi^{\prime}(m)$ is $\varphi(m) / 2$ if $m>2$.

Corollary. Let $V_{m}^{\prime}$ denote the group of units in the ring of integers of $\mathbf{Q}_{\boldsymbol{m}}$. Then $\mathbf{Q} \otimes_{\mathbf{Z}}\left(V_{m}^{\prime} \oplus \mathbf{Z}\right)$ is a free $\mathbf{Q}\left[\boldsymbol{D}^{\prime}(m)\right]$-module on one generator.

Proof. Let $S$ be the archimedean prime of $\mathbf{Q} . \quad D(\boldsymbol{m})$ permutes the archimedean primes of $\mathbf{Q}_{m}$ transitively, with complex conjugation generating the isotropy group of each. The corollary is now immediate from the lemma.

We require next some classical facts about cyclotomic units.
Lemma. Let $\zeta$ be a primitive $m^{\text {th }}$ root of unity, $m>1$. (1) (see [2], Lemma 7.3). If $N=N_{\mathrm{Q}_{m / Q}}$ then $N e(\zeta)=1$ if $m$ is not a prime power and $N e(\zeta)=p$ if $m$ is a power of the prime $p$.
(2) (see [2], § 7 and Corollary to Theorem 4) $N: U_{m}^{\prime} \rightarrow \mathbf{Q}^{*}$ is a homomorphism whose image is generated by positive powers of the primes dividing $m$, and whose kernel is $U_{m}^{\prime} \cap V_{m}^{\prime}$ and has finite index in $V_{m}^{\prime}$.

The preceding lemma and corollary yield:
Theorem 2. As a $\Phi(m)$-module

$$
\mathbf{Q} \otimes_{\mathbf{Z}} U_{m} \cong \mathbf{Q}\left[\boldsymbol{D}^{\prime}(\boldsymbol{m})\right] \oplus \mathbf{Q}^{\mathrm{n}(m)-1}
$$

Here $\emptyset(m)$ acts trivially on $\mathbf{Q}$, and $\Pi(m)$ is the number of prime divisors of $m$. In particular $U_{m}$ is a free abelian group of rank $\varphi(m) / 2+\Pi(m)-1$.

## 4. The prime power case

Theorem 3. Suppose $q=p^{n}$ with $p$ prime, $n>0$. Then Theorem 1 is valid
for $m=q$. Moreover

$$
U_{q} \cong \mathbf{Z}\left[\Phi^{\prime}(q)\right]
$$

as a $\mathscr{D}(q)$-module, and $e(\zeta)$ is a generator for any primitive $q^{t n}$ root of unity, $\zeta$.
Proof. If $\zeta_{1}=\zeta^{p}$ is a primitive $p^{i^{i t h}}$ root of unity with $i<n$ then relations $(B)_{q}$ yield $e\left(\zeta_{1}\right)=\sum_{\eta \eta=1} e(\eta \zeta)$, and each $\eta \zeta$ here is a primitive $p^{i+1} t h$ root of unity. By induction, then, $(B)_{q}$ implies $U_{q}$ is generated by the $e(\zeta)$ with $\zeta$ a primitive $q^{\text {th }}$ root of unity. Since $\mathscr{D}(q)$ permutes the latter transitively it follows that any of them generates $U_{q}$ as $\Phi(q)$-module. Choosing such a generator yields an epimorphism $\mathbf{Z}[\mathscr{\Phi}(q)] \rightarrow U_{q}$. Relations $(\mathrm{A})_{q}$ imply this factors through the quotient, $\mathbf{Z}\left[\Phi^{\prime}(q)\right]$, of $\mathbf{Z}[\Phi(q)]$. Theorem 2 above shows that $\mathbf{Z}\left[\mathscr{\Phi}^{\prime}(q)\right]$ and $U_{q}$ are free abelian of the same rank, so an epimorphism is an isomorphism.

## 5. The general case

Let $\bar{U}_{m}$ be an abelian group with generators $\bar{e}(\zeta)$ subject only to relations (A) $m_{m}$ and (B) $)_{m}$. Let $\bar{U}_{m} \rightarrow U_{m}$ be the epimorphism sending $\bar{e}(\zeta)$ to $e(\zeta)$. Theorem 1 asserts this is an isomorphism, and Theorem 3 proves it for $m$ a prime power.

If $\sigma \in \mathscr{Q}(m)$ we let $\sigma$ operate on $\bar{U}_{m}$ by $\sigma \bar{e}(\zeta)=\bar{e}(\sigma \zeta)$. This is clearly compatible with $(\mathrm{A})_{m}$ and $(\mathrm{B})_{m}$, and it makes $\bar{I}_{m} \rightarrow U_{m}$ a homomorphism of $\mathscr{\Phi}(m)$. modules.

Suppose $m$ has prime factorization $m=p_{1}^{n_{1}} \cdots p_{r}^{n_{r}}=q_{1} \cdots q_{r}$ where $q_{i}=p_{i}^{n_{i}}$ and $r>1$. Let $m_{i}=m / q_{i}, 1 \leq i \leq r$. We assume by induction on $r$ that $\bar{U}_{m_{i}} \rightarrow U_{m_{i}}$ is an isomorphism. It follows, in particular, that $\bar{U}_{m_{2}}$ can be identified with a submodule of $\bar{U}_{m}$. As such we have $\bar{U}_{m}^{(1)}=\sum_{1 \leq i \leq r} \bar{U}_{m_{i}} \subset \bar{U}_{m}$, which maps onto $U_{m}^{(1)}=\sum_{1 \equiv i=r} U_{m_{i}} \subset U_{m}$.

The following technical lemma generalizes Theorem 3.
Lemma. Let $N_{i}$ denote the "norm element" (i.e., the sum of the group elements) in $\mathbf{Z}\left[\mathscr{D}\left(q_{i}\right)\right]$, and let $M_{i}=\mathbf{Z}\left[\mathscr{D}\left(q_{i}\right)\right] / \mathbf{Z} N_{i}$. We have $\Phi(m)=\prod_{1=\imath=r} \Phi\left(q_{i}\right)$ so $M^{\prime}=\otimes_{i=1 \leq r} M_{i}$ is $a \Phi(m)$-module. Let $M=\mathbf{Z}\left[\Phi^{\prime}(m)\right] \otimes_{\mathbf{Z}}[\Phi(m)]$, i.e., $M^{\prime}$ reduced by complex conjugation. Then $\bar{U}_{m} \rightarrow U_{m}$ induces an isomorphism $\bar{U}_{m} / \bar{U}_{m}^{(1)} \rightarrow U_{m} / U_{m}^{(1)}$ and the latter are isomorphic to $M$ as $\mathscr{D}(m)$-modules.

Proof. Let $\Psi_{m}$ denote the group of $m^{t h}$ roots of unity and $\mathscr{D}_{m}$ the primitive
$m^{t h}$ roots. Suppose $m=p^{n} m^{\prime}$ with $p$ a prime not dividing $m^{\prime}$. Then $\Psi_{m}=\Psi_{p^{n}}$ $\times \Psi_{m^{\prime}}$ as groups, and $\Phi_{m}=\varpi_{p^{n}} \times \Phi_{m^{\prime}}$ as sets.

If $\eta \in \Psi_{p^{n}}$ and $\zeta \in \Psi_{m^{\prime}}$, not both 1 , then $\bar{e}(\eta \zeta)$ is a typical generator of $\bar{U}_{m}$. Suppose $\eta \in \emptyset_{p^{i}}$ with $0<i<n$, so $\eta=\eta_{1}^{p}$ for some $\eta_{1} \in \emptyset_{p^{i+1}}$. Likewise, we can write $\zeta=\zeta_{1}^{p}$ with $\zeta_{1} \in \Psi_{m}$, since $p$ doesn't divide $m^{\prime}$. Then from (B) ${ }_{m} \bar{e}(\eta \zeta)=$ $\bar{e}\left(\left(\eta_{1} \zeta_{1}\right)^{p}\right)=\sum_{\nu \in \Psi_{p}} \bar{e}\left(\left(\nu \eta_{1}\right) \zeta_{1}\right)$, and each $\nu \eta_{1} \in \mathscr{D}_{p^{i+1}}$ since $\eta_{1} \in \mathscr{D}_{p^{i+1}}$ and $i \geq 1$.

Now let $\zeta^{\prime} \neq 1$ be any element of $\Psi_{m}$. Letting $p$ above range over the prime divisors of the order of $\zeta$, and applying the remark of the last paragraph to each, we deduce easily that $\bar{U}_{m}$ is generated by the elements $e(\zeta)$ where $\zeta$ has order $\prod_{i \in I} q_{i}$ for some $I \subset\{1, \ldots, r\}$. In other words, each prime divides the order of $\zeta$ to the same power that it divides $m$, if at all. In particular, $\widetilde{U}_{m}=\bar{U}_{m} / \bar{U}_{m}^{(1)}$ is generated by the images, $\widetilde{e}(\zeta)$, of $\bar{e}(\zeta)$, where $\zeta$ ranges over $\emptyset_{m}$.

Set theoretically, $\Phi_{m}=\prod_{1=i=r} \Phi_{q_{i}}$, and this decomposition is compatible with the operation of $\mathscr{D}(m)=\prod_{1=i=r} \mathscr{D}\left(q_{i}\right)$ on the generators $\widetilde{e}(\zeta)$ of $\widetilde{U}_{m}$. Thus we obtain, after fixing some $\zeta \in \mathscr{\Phi}_{m}$, an epimorphism

$$
\mathbf{Z}[\Phi(m)]=\otimes_{1=1=r}^{\otimes} \mathbf{Z}\left[\Phi\left(q_{i}\right)\right] \rightarrow \widetilde{U}_{m} .
$$

To show that this factors through the quotient, $\underset{1<i<r}{\otimes} M_{i}$, we must show that if $m=p^{n} m^{\prime}, p$ a prime not dividing $m^{\prime}$, and if $\zeta \in \mathscr{D}_{m^{\prime}}$, then $\sum_{\eta \in \Phi_{p n}} \widetilde{e}(\eta \zeta)=0$.

For $n=1$ this follows from

$$
\begin{aligned}
\sum_{\eta \in \Phi p} \bar{e}(\eta \zeta) & =\sum_{\eta \in \Psi p} \bar{e}(\eta \zeta)-\bar{e}(\zeta) \\
& =\bar{e}\left(\zeta^{p}\right)-\bar{e}(\zeta) \in \bar{U}_{m}^{(1)} .
\end{aligned}
$$

Moreover, if $n>1$, then

$$
\begin{aligned}
& \sum_{\eta \in \Phi_{\nu}} \bar{e}(\eta \zeta)=\sum_{\eta_{1} \in \Phi_{\nu}{ }^{n-1}} \sum_{r^{p}=\eta_{1}} \bar{e}(\eta \zeta) \\
& =\sum_{\eta_{1} \in \sum_{p^{n-1}}} \sum_{\nu \in \Psi_{\nu}} \bar{e}\left(\nu \eta_{1}^{\prime} \zeta\right) \\
& =\sum_{\eta_{1} \in \phi_{\nu^{n-1}}} \bar{e}\left(\eta_{1} 5^{p}\right) .
\end{aligned}
$$

Here $\eta_{1}^{\prime}$ is a fixed solution of $\left(\eta_{1}^{\prime}\right)^{p}=\eta_{1}$, for each $\eta_{1}$, and, of course, we have invoked relations (B) $m_{m}$ in the last equation. It follows now, by induction on $n$, that $\sum_{\eta \in \Phi_{p}} \widetilde{e}(\eta \zeta)=0$, as claimed, so we have an epimorphism

$$
M^{\prime}=\otimes_{1 \leq i \leq r} M_{i} \rightarrow \widetilde{U}_{m}
$$

Relations (A) $)_{m}$ imply this factors through $M=\left(M^{\prime}\right.$-reduced-by-complex-comjugation).

We conclude the proof by showing that both epimorphisms

$$
M \rightarrow \widetilde{U}_{m} \rightarrow U_{m} / U_{m}^{(1)}
$$

are isomorphisms. For this it suffices to show that the rank of $U_{m} / U_{m}^{(1)}$ is not less than that of the torsion free module $M$, and for this we can tensor with $\mathbf{Q}$. Since $\mathscr{D}\left(q_{i}\right)$ operates trivially on $U_{m_{i}}$, it follows that $\mathscr{D}\left(q_{i}\right)$, for some $i$, operates trivially on each irreducible submodule of $\mathbf{Q} \otimes_{\mathbf{z}} U_{m}^{(1)}$. It follows from Theorem 2 that $\mathbf{Q} \otimes_{\mathbf{Z}}\left(U_{m} / U_{m}^{(1)}\right)$ must contain each irreducible $\Phi^{\prime}(m)$ module for which this is not the case. The latter add up to exactly $\mathbf{Q} \otimes_{\mathbf{z}} M$, and hence rank $\left(U_{m} / U_{m}^{(1)}\right) \geq \operatorname{rank} M$, as required.

Proof of Theorem 1: If $I \subset\{1, \ldots, r\}$ let $m_{l}=\prod_{i \notin l} q_{i}$. Filter $\bar{U}_{m}$ by

$$
\bar{U}_{m}^{(j)}=\sum_{\text {eard } l=s} \bar{U}_{m l}
$$

Thus

$$
\bar{U}_{m}=\bar{U}_{m}^{(0 ;} \supset \bar{U}_{m}^{(1)} \supset \cdots \supset \bar{U}_{m}^{(r-1)} \supset \bar{U}_{m}^{(r)}=0 .
$$

We similarly filter $U_{m}$. To show that the (filtration preserving) map $\bar{U}_{m} \rightarrow U_{m}$ is an isomorphism it suffices to show that it induces isomorphisms

$$
\bar{U}_{m}^{(j)} / \bar{U}_{m}^{(j+1)} \rightarrow U_{m}^{(j)} / U_{m}^{(j+1)}, 0 \leq j<r .
$$

The lemma above shows this for $j=0$, and that both terms are isomorphic to a certain module, $M$. Denoting the latter, more precisely, by $M(m)$, we see, from the same lemma, that there is an epimorphism

$$
\underset{\operatorname{card} I=j}{\oplus} M\left(m_{I}\right) \rightarrow \bar{U}_{m}^{(j)} / \bar{U}_{m}^{(j+1)}
$$

$M\left(m_{l}\right)$ here has the structure of a $\Phi(m)$-module since $\Phi\left(m_{l}\right)$ is, from galois theory, a quotient (and even a direct factor) of $\mathscr{D}(m)$. Since $\mathbf{Q} \otimes_{\mathbf{Z}}\left(\underset{\text { card } I=0}{\oplus} M\left(m_{l}\right)\right)$ is the sum of those irreducible $\mathbf{Q}\left[\Phi^{\prime}(m)\right]$-modules on which $j$, but no more, of the $\Phi\left(q_{i}\right)$ operate trivially, and since, by Theorem 2 plus induction, $\mathbf{Q} \otimes_{\mathbf{Z}}$ $\left(U_{m}^{(j)} / U_{m}^{(j+1)}\right)$ must contain each of these irreducible modules, we obtain, as above, the rank inequality necessary to conclude that the epimorphisms

$$
\underset{\text { card } I=j}{\oplus} M\left(m_{l}\right) \rightarrow \bar{U}_{m}^{(j)} / \bar{U}_{m}^{(j+1)} \rightarrow U_{m}^{(j)} / U_{m}^{(j+1)}
$$

are both isomorphisms. Theorem 1 is thus proved,

Remarks. (1) By introducing a generator for each root of unity, accompanied by relations defining $\mathbf{Q} / \mathbf{Z}$, we can use Theorem 1 in an obvious way to obtain a presentation for $U_{m}^{\prime}$ itself, not merely modulo torsion. It would be more interesting, however, to study the extension, $0 \rightarrow$ torsion $\rightarrow U_{m}^{\prime} \rightarrow U_{m} \rightarrow 0$ of $\mathscr{D}(m)$-modules.
(2) One could probably push the above arguments further and describe $U_{m}$ explicitly as a $\mathscr{\square}(m)$-module, not just modulo extensions. It is undoubtedly much more subtle to analyze the remaining part of the group of units, $V_{m}^{\prime} / U_{m}^{\prime}$.

## References

[1] E. Artin and J. Tate, Class Field Theory, Harvard, 1963.
[2] H. Bass, The Dirichlet Unit Theorem, Induced Characters, and Whitehead Groups of Finite Groups. Topology (to appear).

Columbia University,
New York, N. Y. U.S.A.

