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In memory of TADASI NAKAYAMA

Bourbaki has established the following theorem which we state without

proof as

THEOREM A ([3, Theorem 6, §4]). Let R be a noetherian integrally closed

domain and M a finitely generated torsion free R-module. Then there exists a

free submodule F of M such that M/F is isomorphic to an ideal in R.

It is our purpose in this note to present a few consequences of this theo-

rem. Before giving these results we briefly review some terminology and

known results.

We shall assume throughout this paper that all rings are noetherian.

Suppose R is a local ring and M is a finitely generated, non-zero i?-module.

Then a sequence of elements xu . . . , xs in the maximal ideal m of R is called

an M-sequence if Xi is not a zero-divisor in M/(Xi, . . . , Xi-ι)M for i = 1, . . . , 5.

It is easily seen that if xu . . . , xs is an M-sequence, then s < Krull dim R.

Thus all M-sequences can be extended to maximal M-sequences. It is well

known that all maximal M-sequences have the same length and that this length

is the same as the smallest integer ί > 0 such that ExtMft/m, M) ^0 (see [2,

Proposition 2.9] for instance). We shall denote by codhβM the length of a

maximal M-sequence.

We now list without proof some of the well-known basic properties of

codhβM. These can easily be derived from the characterization of codhβM

in terms of the functor Extί(i?/m,).

LEMMA 1. Let R be a local ring with maximal ideal m of dimension d. Let

0->M'-»M->M"->0 be an exact sequence of non-zero finitely generated R-modules.

Then we have
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a) CoάhRM= 0 if and only if me. Ass(M), i.e. if and only if there exists

an exact sequence Q-*R/m-*M.

b) If codhβM>codhRM", then codWkf' = 1 + codh*M".

c) If codhRM> codhiϊM', then codhβM' = 1 + codh*M".

d) If coάhRM= coάhRMf = t, then coάhRM" > t - 1 .

e) If codhiϊM<codhBM/, then codhBΛf =codhBM".

We now recall that if R is an arbitrary ring and M is an ivNmodule, then M

is said to be reflexive if the natural homomorphism M->Ή.omR (HomB(M, R), R)

is an isomorphism. In the following lemma we give various criteria for a

module to be reflexive.

LEMMA 2. Let M be a finitely generated R-module. Then M is a reflexive

R-module if and only if M satisfies the following conditions:

a) For each prime ideal p in R such that coάhRψR$ > 1 we have that Mp is

Rp-reflexive.

b) For each prime ideal p in R such that coάhRψRp > 2 we have that codhi?p

Afp>2.

If in addition we assume that R is an integrally closed domain^ then we

have the following equivalent conditions,

c) M is reflexive.

d) There exists an exact sequence 0 -> M-» Fo-+ Fi with the Fi free R-modules.

e) M is torsion free and for each prime ideal p in R such that ht(p) >2

{where ht(j)) = Krull dim Rp) we have that codhj?pMp > 2.

Proof. Although this lemma is essentially known, we briefly sketch a

proof for the convenience of the reader.

Suppose M i s reflexive. Then clearly M satisfies condition a). Let p be

a prime ideal in R such that codhi?p Rp>2. Then Mp is ify-reflexive and thus

Mp^Homjϊp (iV, Rp) where AT is a finitely generated i?p-module. Then it follows

from [1, Prop. 4.7] that any ify-sequence of length two is also an Mp sequence.

Thus if M i s reflexive, then M satisfies conditions a) and b).

Suppose M satisfies a) and b) and let 0-»M/->M->M**-M"^0 be an

exact sequence where M* = Honiij (M, R). If M'^0, then Ass(ΛP)*0, i.e.

there exists an exact sequence 0->R/p->M' for some prime ideal p. By con-

dition a) we know that codhu? Rp>2. But then by Lemma 1, we know that
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codhj?p Mp = 0, which contradicts condition b). Thus we know that M' = 0.

Suppose M"=¥θ and p is a prime ideal in Ass(M"). Then by condition a) we

know that codhRpi?p > 2. Therefore by our previous proof the reflexive 7?p-

module(Aί**)p = (Λfj>)** has codh^Mp * > 2. Since codhRp(M")p = 0, we deduce

from the exact sequence O^Mp^(Mp)** -* (M")p -» 0 that codhi?pΛfp = l (see

Lemma 1). But this contradicts condition b). Therefore it follows that M"

is also zero or that M is reflexive.

Assume now that R is integrally closed.

c) =*d). Let Fi-*Fo~*M*->0 be exact with the F, finitely generated free

R-modules. Then 0->Λf**->Fo*-»F* is exact with Ft being finitely generated

free i?-modules. Since ikf=M** we have our desired exact sequence.

d) =>e). Let 0-»ikf-»F0-»Fi be an exact sequence with the F, free R-

modules. Then M is certainly torsion free. Suppose ht(p) >2. Since R is inte-

grally closed, it follows that coάhRψRp>2 and therefore that codh#pFo®Rp>2.

Thus if codhi?pMp <; 1, then by Lemma 1 c) it follows that codhi?pZ,p = 0 where

Zr = Im(Fo->Fi). Therefore we have that p e Ass(L). But this is impossible

since L is torsion free. Thus we have shown that if ht(p)>2, then codhj?p

Mp>2.

e) =^c). Since R is integrally closed we know that codhΛpi?p<l if and

only if ht{p)<,l. For the same reason we know that Rp is either a field or

a discrete rank one valuation ring depending on whether ht(p) is zero or one.

Since M is a torsion free, it follows that Mp is Rp free and therefore reflexive

for ht(p)<;l or, what is the same thing, for codhβpi?p < 1. Thus M satisfies

part a) of the first part of the lemma. The fact that M satisfies b) is part

of condition e). Thus by the first part of the lemma we know that e) =*c).

With these preliminaries out of the way we need only recall the definition

of a Cohen-Macauley ring before stating our first result which is connected

with Theorem A. A ring R is called a Cohen-Macauley ring if for each prime

ideal p in R we have that codhi?p Rq = Krull dim Rp.

PROPOSITION 3. Let R be a Cohen-Macauley ring and M a finitely generated

reflexive R-module. If 0 -> F-> M-> a->Qis an exact sequence of non-zero R-modules

with F a free R-module and a a proper, non-zero ideal in Rt then ht(p) <2 for

each prime ideal p in Ass(Rfa).

If in addition we assume that R is a unique factorization domain, then a is



364 M. AUSLANDER

isomorphic to an unmixed ideal b with ht(b) < 2 (i.e. all the prime ideals p in

Ass(Rfb) have the same height which is at most 2).

Proof. Suppose there exists a prime ideal p in Ass(R/a) with h t ( p ) > 3 .

Then we know that coάh.Rψ{R/a)p = 0. Since codhi?pi?p>3, it follows from the

exact sequence 0->ap->Rp->(R/a)p-*0 and Lemma 1 that codhi?pctp = 1. On the

other hand since M% is ify-reflexive and codhj?pi?p > 3, it follows from Lemma

2, that codhB pMp>2. Therefore we deduce from the exact sequence 0-*Fp-»

Mp-^ctp-*O that codhi?pFp = 2 (see Lemma l b ) ) . But since F is a free R-module

we know that the codhi?pF;>3. This contradiction shows that if p e Ass(i?/α),

then the h t ( ( p ) < 2 .

The rest of the proposition follows trivially from what has been established

and the following general fact concerning unique factorization domains.

PROPOSITION 4. Let R be a unique factorization domain and a a non-principal

ideal in R. Then α is isomorphic to an ideal b in R such that the ht(b) > 2 and

Ass(i?/b)c Ass (R/a).

Proof. If h t ( α ) > 2 we are done. Sίuppose ht(α) = 1 and qi Π Πς s Πq s + 1

Π Πς/ = α a primary decomposition of α with ht(α/)>2 for z = l , . . . , s

and ht(qy) = 1 for j = s + l, . . . , t. Since R is a unique factorization domain,

it follows that qs+i Π Π ^ = (x) for some x in R. Therefore we have that

o = (x) Π qx Π Π qs. From this it easily follows that α = x (α x\ Thus we

have a^a : x. But α ' x= (qx : x) Π Π (qs : x) which shows that the htα •* x>2

and Ass(R/a : x)c Assi R/a). Therefore α : x is our desired ideal b.

Combining the above remarks with Theorem A we obtain

THEOREM B. Let R be an integrally closed Cohen-Macauley ring. Then we

have'-

a) If M is a finitely generated reflexive R-module, then there exists a free

submodule F of M such that M/F is isomorphic to an ideal in a such that each

p in Ass (R/a) has height at most 2.

b) If N is a finitely generated R-module, then there exists an ideal b in R

such that''

i) 7/tiG Ass(2?/b), then the ht(p)<2.

it) There exist exact sequences of functors

Exti (b, ) -> ExtU N, ) -> 0 and
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0->Tor3

R(iV, )->Tor?(b, ).

in) For each i>2 we have isomorphisms of functors

Exti(ί), )-Exd+2(AΓ, ) and Tor?{\ )^Torf+2(AΓ, ).

If in addition, we assume that R is a unique factorization domain then the

ideals a and b can be chosen to be unmixed.

Proof, a) This part follows immediately from Theorem A and Proposition

3.

b) Let N be a finitely generated ivNmodule and (*) O-*M-*Fi-*Fo-*N-*O

be an exact sequence with the F, free ivNmodule. Then it follows from Pro-

position 2, that M i s a reflexive i?-module. Then by a) we know that there

exists an exact sequence (**) 0-*F->M->b-*0 with F free and b satisfying i).

From the exact sequence (*) it follows that Ext*(Λf, )^Exti+2(iV, ) and

Tor?(M, )~Torf+z(iV, ) for all ί > l . While the exact sequence (**) yields

the exact sequences 0->Tori(Af, )->Tori(b, ) and Exti(b, )->ExtUM, )-»0

and the isomorphisms

Torf(b, )-Tor?(M, ) and Ext'Λ(b, )^Extί(Af, ) for ί > 2 .

Statements ii) and iii) follow immediately from the above exact sequences and

isomorphisms.

The rest of the theorem now follows trivially from what has just been

established and the second part of Proposition 3.

As immediate consequences of Theorem B, we have the following corolla-

ries:

COROLLARY 5. Let R be an integrally closed Cohen-Macauley ring. Suppose

the pdβ(α) (the projective dimension of a) is finite for every ideal a such that

the ht(p)<2 for each p e Ass(R/a). Then R is a regular ringy i.e. ify is a

regular local ring for each prime ideal in R.

If, in addition, one assumes that R is a unique factorization domain, then

R is regular if every unmixed ideal of height 2 has finite projective dimension.

COROLLARY 6. Let R be a regular local ring of dimension d>3. If o is an

unmixed ideal of height 2, then 1 < pd^α < d - 2. Further, given any integer i

such that l<i<d-'2> then there exists an unmixed ideal of height 2 such that
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the pcUα = i.

Proof. The first corollary does not need any explanation. As for the

second corollary we first observe that if α has height 2, then α is not pro-

jective, thus the ρdα>l . On the other hand since Krull dim R=d>3 and α

is unmixed of height 2 < d, then the pdnR/a < d. Thus we see that 1 <, pdα < d - 2.

Suppose 1 < i<, d - 2. Then let N be a finitely generated R-module such

that pdiV=i+2. For instance, we can take N=R/(xi, - . . , Xi+z) where

Xι, . . . , Xi+2 is an i?-sequence of length i+2. Since every regular local ring

is a unique factorization domain, we know by Theorem B, that there exists

an unmixed ideal α of height 2 in R such that Exti(α, )-*Έxt%{N, )->0 is

exact and Extί(a, )^Extί+2(iV, ) for all i > 2 . From this it follows that the

pd o = i.

We now give an application of Theorem A in a different direction. Before

stating our concluding main result, we remind the reader of the definition of

a Gorenstein ring. Namely, a ring R is a Gorenstein ring if the inj άimβψRp

< °o for all prime ideals p in R. For instance, a regular ring is a Gorenstein

ring.

THEOREM C. Let R be a Gorenstein ring which is also an integrally closed

domain with the property that the Krull dim Rm > 2 for each maximal ideal m

in R. If M is an R-module of finite lengthy then M can be imbedded in a cyclic

module of finite length which is an essential extension of M.

Before proceeding with the proof of Theorem C we first show that it

suffices to prove the following special case of Theorem C.

THEOREM C. Let R be a local Gorenstein ring of dimension n^2 which is

also an integrally closed domain. If M is an R- module of finite length, then M

can be imbedded in a cyclic R-module of finite length.

Suppose we have established Theorem C and M and R satisfy the hypo-

thesis of Theorem C. Then there are only a finite number mi, . . . , m* of

distinct maximal ideals in R containing the annihilator of M. Further, the
t

natural map Λf-^ΣMtt* (direct sum) is an isomorphism and each-Mmt has
« = 1

finite length over i?m*. Therefore by Theorem C, we have that each Mm/C

Rn\i/(\(i)\x\i where each q(ί) is an nvprimary ideal in R. Since each m, is
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maximal in R, we know that J?tn<Aϊm< *•#<!/ as R-modules. Thus we see that
t

Ma*ΣR/qi. But since R is the ideal generated by each q, and <u Π Π q, Π

• Π Qί, it follows by the Chinese remainder theorem that the natural map
t

R/b->*ΣR/c\i where b = qiΠ Πqt is an isomorphism. Thus we have that
f = l

Ma Rβ.

Now suppose E(M) is an iiίjective envelope of M a n d / : R/h->E{M) is an

extension of the identity map on M. Then the Im / is our desired essential

cyclic extension of finite length containing M Thus we see that in order to

prove Theorem C it suffices to prove Theorem C. The rest of this paper is

devoted to this task.

From now on we will assume all our rings are local rings. Since the proof

of Theorem C depends heavily on the properties of Gorenstein rings, we will

give a brief review of those portions of the theory of Gorenstein rings which

we will need before going on to the proof of Theorem C. Our general refer-

ence for these results is [2].

Suppose R is a Gorenstein ring of Krull dimesion n and O-»i?-*£o-»

->Eh-* is a minimal resolution of R. Then by the fundamental theorem

of [2, §1] we have that a) Eh = 0 for h>n b) En^E(R/m) where m is the

maximal ideal in R; c) Eh~ *ΣE(R/p) where p runs through all prime ideals

of height h.

Suppose M is an i?-module of finite length, then we have that Hom*(M, Eh)

= 0 for h<n. From this it follows that a) ExtUM, R)=0 for i<n and b)

Ext2(M, R)^EomR(M, E(R/m), a module of finite length. Since it is well

known that the natural map M->Homκ(HomB(M', E(R/m), E{R/m)) is an iso-

morphism if Mhas finite length, it follows that Extι

β(Ext2(Af, R), R)=0 for

and ExtS(Ext3(Λf, R),R)^M.

PROPOSITION 7. Let R be a Gorenstein ring of dimension n. If M is a non-

zero finitely generated R-modύle such that codhBM = t, then n-t is the maximum

integer i such that Extϋ?(Af, R) #0.

Proof. We proceed by induction on t. Suppose t = 0. Then there exists

an exact sequence 0->R/m^>M (see Lemma (a)). Since the inj άimRR=n, it

follows that the induced map Ext£(Af, R) ->Ext2(Λ/iπ, R) is an epimorphism.

Since Ext2(i?/m, R) ^EomB(R/m, E(R/m)) «j?/m, it follows that ExtS(Λf,Λ) #0
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which gives us our desired result when t = 0.

Suppose the proposition is true for 0<t<s and suppose codh«M=s. Let

Λ GIΠ be a non-zero divisor for M. Then we know that the codhRM/sM= s - 1.

Therefore we know by the inductive hypothesis that Ext2~s+1 (M/xM, R)*0

and Exti(Λf/#Λf, R) = 0 for j>n — s + 1. From the long exact sequence

>Έxώ(Λf, Λ) -^Ext'CM, R) -> Exti+1(Mv/M, i?) ->

derived from the exact sequence 0 -> M -> M -> MjxM -» 0, it follows that

ExtUM, i?) ->Extβ(M, i?) is an epimorphism for all i > w - s + l. Since #em

and the Extf

R(M, i?) are finitely generated R-modules, it follows from Naka-

yama's lemma that Exti(W, R) =0 for all ί > w - s + l.

On the other hand, it follows now that the map Extβ~s(Λf, R) -> Ext«"s+1

(M/xM, R) is an epimorphism. Since ΈxtTΛ(M/xMf R) #0, we know that

ExtS"s(M, R) = 0̂, which establishes the proposition for t = s and thus completes

the proof of the proposition.

COROLLARY 8. Let R be a Gorenstein ring of dimension n and let M be a

finitely generated R-module. If Mf is the maximal submodule of M of finite

length, then the natural map Extn(M, R) -»Extn(M', R) is an isomorphism.

Proof. Consider the exact sequence 0-»M' ->M-*M" -*0. If M" = 0, we

are done. If M" ^ 0, then we know that codhβM" > 0 and thus by Proposition

7 that Ext2(M", R) = 0. Our desired result now follows from the exact sequence

Ext*(M", R) ^Extn(M, i?) ->Ext*(M', R) -»0.

We now return to the proof of Theorem C. Suppose R and M satisfy the

hypothesis of Theorem C Let 0->K->G->M->0 be an exact sequence of R-

modules with G a finitely generated free i?-module. Then by Theorem A we

know that there exists an exact sequence 0-»F-»ϋΓ-*α->0 with F a free R-

module and α an ideal in R. Since Krull dim R = n>2, it follows that the

induced map ExtJΓHβ, R) -^ExtSΉiΓ, R) is an epimorphism. Since it follows

from the exact sequences 0-*K->G->M->0 and 0-*α-»i?->i?/α-»0 that

ExtZ(M,R)~ExtT\K,R) and Ext2(#/α, R) ^ExtΓXα, R) (remember that

tf >2), we obtain an epimorphism Ext2(i?/α, R) -*Extl(M, R).

Now let α = qi Π n q* be a primary decomposition of α. Since Ext2

(R/a, R) -»Ext2(M, R) -*0 is exact and since we may assume that M and thus
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Ext2(M, R) are not zero, it follows from Corollary 8 that one of the ς, is in-

primary. Let us assume that qx is m-primary. From the fact that R/c\i is the
i

maximal submodule of Σ^Λh of finite length, it follows from Corollary 8 that
# - 1

Extβ(Σ#Alί,#) =Extϊ(i?/qi, J?). Therefore the exact sequence 0-+i?/α->Σ

R/c\i gives us an epimorphism ΈxtZ(R/(\u i?) -»Ext2(2?/α, i?). Therefore we have

an epimorphism Extϊ(2?/qi, R) ^ExtS(M, R), or what is the same thing, we

have an epimorphism UomR(R/(\lf E(R/m)) -> Homfi(M, E(R/m)). Applying the

exact functor HomB( , E(R/m)) to this epimorphism we obtain the exact

sequence

, E(R/m)), E(R/m)) ->Homβ(HomΛ(i?/qi, E(R/m))9 E(R/m)).

By the duality theorem for modules of finite length, we obtain an exact sequence

0-»M-*l?/qi. Thus we have shown that M is a submodule of a cyclic module

of finite length. This completes the proof of Theorem C.

Remark. The fact that the condition the Krull dim R>2 in Theorem O

is necessary can easily be seen by considering fields and discrete rank one

valuation rings for which the theorem is obviously false.
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