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Introduction

Let G be a connected semi-simple algebraic group defined over Q and let Γ

be a discrete subgroup of GR (the subgroup of G consisting of points rational

over R) such that Γ\GR is compact. The main purpose of the present paper

is to prove that for a certain type of group G there exists an invariant algebraic
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differential from ω on G of highest degree defined over Q such that

where <zv, 1 ̂  z> ^ /, are integers such that the Poincare polynomial of the com-

pact from of G is Π.ί=i (ί2^"1^-1), Z,v, l^z>^/, are L-functions determined by

G and ωn is the analytic differential form on GR induced by ω.

If, in particular, one takes an arithmetic group as Γ, the relation (*) is

equivalent to the rationality of the Tamagawa number τiG) for a certain type

of group G. This is Theorem 6. 6.

Let us now explain what is meant by a certain type of G. Let Go be the

topological identity component of GR, let X be the associated symmetric space:

X=Go/K, K being a maximal compact subgroup of Go, and let Xu be the com-

pact form of X.

First of all, we impose on G the condition that the gaussian curvature of

X is different from zero, or equivalently, that the Euler number of Xu is strictly

positive. We shall call this condition (P). By (P), the computation of the

integral in (*) is reduced to the Gauss-Bonnet theorem (cf. (3.3.10)). Inci-

dentally, when X admits the hermitian structure, (P) is automatically satisfied.

Second of all, we have to exclude the worst twisted group, i.e. the trialitarian

form of the second kind of type D4 for this case the relation (*) should be

modified (as for the details, see §6). These are restrictions on G.

On the other hand, as many people believe, one can probably drop the com-

pactness assumption of Γ\GR by showing that the value of the curvature integral

( = the generalized Euler number) is rational whenever A G R is of finite volume,

as Satake has done for symplectic groups [21] but we shall not go further in

this direction in this paper.

As for the L-fuctions in (*), we have to explain what Galois extension they

belong to. Without loss of generality, we may assume that G is Q-simple, i.e.

G has no proper normal subgroup defined over Q. Then, if we call k the

smallest field of definition for an absolutely simple factor G of G, we see at

once that G is isogenous over Q to the group Rk/Q(G) obtained from G by

restricting the field of definition from k to Q. For G, we can attach a finite

Galois extension Ns/k (called nuclear field (§1)) whose Galois group is im-

bedded in the group of automorphims of the Dynkin diagram of G. The L
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functions are then taken from the Galois extension Na/k over k (1.3).

Now, the condition (P) imposed on G takes two parts in this work. On

the one hand, under (P), one can use the Gauss-Bonnet theorem for Γ\X and

XUi effectively; on the other hand, (P) implies that the fields k< Nd/k above

become totally real or totally imaginary and this fact, together with Weil's

result: τ(SU(n)) = 1, makes possible the evaluation (mod. Q*) of the L-functions

at ΛV, lSivύl, (§5)*).

After these preparations, it is not hard to see that the trancendental factors

in both hand sides of (*) are powers of π with the same exponent. In order

to finish the proof of (*) one has to take care of a quadratic number J(G/Q)1/2

(§2), which seems to us interesting by itself.

As the readers notice, the quantities in the both hand sides of (*) are

irrelevant to the symmetric space X and hence to the condition (P). It is

quite desirable to prove the equality of type (*) without any assumption on

G. A typical example is the case G = SL(n), n^3, where G is not of type (P)

and GZ\GR is not compact, and it is well known that the integral (with respect

to a suitable ω) is precisely equal to the product of (Riemann) zeta functions

evaluated at 2, 3, . . ., n (Minkowski Siegel).

Finally, it is interesting that an invariant of G such as the volume of the

fundamental domain decomposes in the same manner as the corresponding

compact form decomposes into the product of spheres homologically. This

would raise a question: can one define a zeta function Cβ for G so that the

way of decomposition of ζ0 into ordinary L-functions is the same as the way

of decomposition of the compact form into spheres ?

0. Notation and conventions

0.1. As usual, Z, Q, R, C are integers, rational numbers, real numbers and

complex numbers, respectively. We shall further use the following notation:

* At this stage I owe a great deal to Shimura; he persuaded me to check every detail

of my method for the case of special unitary group SU{n) relative to the quadratic ex-

tension K/F, where K is totally imaginary and F is totally real. After having done this

experiment, I could find the second meaning of (P) mentioned above. Incidentally, it

turned out that among all groups for which τ{G) is known, SU{n) is the richest group

by which one can evaluate zeta or L-functions in the sense of § 5, It seems impossible

to find out e.g. CQ(3) by using algebraic groups.
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Zp

Ga

Gm

K

X*

Q(K/k)

Aut X

Inn G

[S3

the finite field with q elements

the i>-adic number field for a prime number p

the ring of ĵ -adic integers

the additive group of the universal domain

the multiplicative group of the universal domain

the algebraic closure of a field K

the multiplicative group of a field K

the Galois group of the Galois extension K/k

the group of automorphisms of a structure X

the group of inner automorphisms of a group G

the cardinality of a set S

0.2. In the group C*, when two numbers a, b are congruent modulo the

subgroup Q*, we shall write a^b.

0.3. Let Ω be a universal domain, M(n) be the associative algebra of

matrices of degree n over Ω. For any subring A (with 1) of Ω, M(n)A will

denote the subring of Min) consisting of matrices with coefficients in A. The

group of units of M(n)A will be denoted by GL(w)Δ. In particular, we put

GLin) =GL(n)Ω When we view M(n)A as Lie algebra over A by [_X, Y] =

XY- YXt we denote it by Qlin)A and put Qί(w) =βί(w)Q. Given a subgroup G

of GLin), we put GΛ = GΓ\GL(n)^. The same convention will be applied to

a subalgebra 9 of 8ί(w), i.e. 9Λ = 9

0.4. Let Ω be of characteristic zero. To each X^Qΐ(n) there corresponds

a derivation 5C-X") of the polynomial ring i2[£], £ = (&j)i^i,jmn given by

^r-) evaluated at ξ = #. Let G be a connected
•σςίy7

algebraic group in GLin) defined over a field k, let /(G) be the prime ideal in

Ωίξl determined by G. Since the map X-+δ(X) is a homomorphism as Lie

algebras,

(0.4.1) 9 = {Z

becomes a Lie algebra, i.e. the matric Lie algebra of G in the sense of Cheyalley

[8, Chap. II §8]. Since G is defined over k, 0 is defined over k, or, equivalently,

0 admits a l?asis in 0I(Λ)Λ. Î et $(G) be the function field for G, i.e. the field
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of quotients of Ωtξl/RG). From (0.4.1), δ(X) induces a derivation δq(X) of

Ω(G). Denote by © the Lie algebra over Ω of all left invariant derivations of

ΩiG). Then δq gives an isomorphism δq 9 ̂  Φ and hence induces an isomor-

phism

(0.4.2) {δq)k iQk^^k,

where Φj& means the set of derivations defined over k.

Assuming k = R, denote by Go the topological identity component of the real

Lie group GR, and by 90 the Lie algebra of Go in the analytic sense. There is

an isomorphism over R

(0.4.3) OC'.QOZ QR

given by a(X) = (XeXij)i^ij^n> where X is a left invariant vector field on Go

and Xij are the coordinate functions on Go. Through (0.4.2), (0.4.3), we shall

often identify isomorphic Lie algebras. E.g. let {Xu . . . , Xd) be a basis of

9Q, where 9 is the matric Lie algebra of an algebraic group defined over Q.

Viewing Xls as a basis for ΦQ, the dual basis ω, , 1 ̂  ι^ J, is a basis for left

invariant algebraic 1-forms on G defined over Q, and ω = ωi Λ Λ ω</, is a left

invariant algebraic J-form on G, defined over Q. On the other hand, viewing

X'iS as a basis for Qo, the same procedure gives a left invariant analytic d-ίorm

COR on Go. We shall again denote by COR the Haar measure on Go determined

by it. In the text, we shall call either ω or WR the d-ίorm which is the product

of 1-f orms dual to X, 1 ̂  i ̂  d.

1. Nuclear field

1.1. Definition of N~Glk

We first recall the non-infinitesimal approach given in [10]. Let G be a

connected semi-simple algebraic group, T be a maximal torus of G and B be

a Borel subgroup of G containing T. Denote by f the character module Horn

(T,Gm) A character a ^ t will be called a root of G with respect to T if

there exists an isomorphism x% of Ga with a subgroup XΌL of G such that

(1.1.1) txΛ{λ)t'ι = xΛ(a{t)λ)y ί ε Γ , l ε G α .

This condition implies that α:#0 and that xa is uniquely determined up to a

non-zero scalar multiplication in Gβ. We denote by A the set of all roots of
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G with respect to T. We define a subset Δh of A by

Since z/τ? satisfies the condition for positive roots, we can define a subset Π of

ΔB consisting of fundamental roots and further the Dynkin diagram D, with

respect to Ί\ B.

Let / be an isomorphism of another algebraic group G' with G and put

V = f~\T), £ ' = /" '(B). Let J', Δf*,, W be to G' with respect to T, B\ what

A, An, Π were to G. Denote by / the isomorphism T^f' given by

One verifies easily that the map χ}{a) = f~1χa satisfies the condition (1.1.1) for

/(a) and that /(A) = Δ\ f {An) =J'B-9 f(Π)= IT. If, in particular, / is an

automorphism of G such that f(T) = T and f(B)=B, then / induces an

automorphism of the Dynkin diagram Zλ We shall denote by /* the inverse

of this induced automorphism. For a general / e Aut G, one can find an inner

automorphism u of G such that uf(T) = T, uf(B) = 5, Then («/)* e Aut D

is independent of the choice of u [10, 17-07, Prop. 1]. Hence, we can define

/*eAut D for any / e A u t G by /* = («/)*. One then sees that the map

/•-•/* is a homomorphism of Aut G into Aut D whose kernel is Inn G.

Let H e a perfect field. We say that a connected semi-simple algebraic

group G defined over k is a group of Chevalley type over k if G admits a

maximal torus which is trivial over k (or ^-trivial, for short). It is known

that if G is of Chevalley type over k then every Borel subgroup containing a

^-trivial maximal torus is defined over k [17].

PROPOSITION 1.1.2. Let both of G, Gf be groups of Chevalley type over a

perfect field k. Let ψ be an isomorphism defined over k of Gf with G. Then

ψnφ~1 is an inner automorphism of G for every σ

In fact, let T, V be ^-trivial maximal tori of G, G\ respectively. There

is then an inner automorphism u, defined over k, of G such that uψ(T') = T.

Put φ = uψ and B = φ(Bf), where B' is any Borel subgroup of Gf containing V.

By the above remark, all groups T, T't B, B* are defined over k. Hence, the

automorphism ψaψ~1 of G conserves T, B for any σ&Q(k/k). However, by the

assumption on T, V, the action of 9(k/fι) on T, ff is trivial, and so ^ σ = (^)σ
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= φt from this follows that φnφ~ί e Inn G, and hence ψnψ'1 = u~σφnφ~1u e Inn G,

q.e.d.

COROLLARY 1.1.3. Let G be a group of Chevalley type over k. For any

/eAuUG {automorphisms defined over k), f°f~x is inner for any σ^Q{k/k).

In other words, we have (/")# = /#, σ^QCk/k), where * is defined relative to a

k-trivial maximal torus and a Borel subgroup containing it.

As is well-known, given a connected semi-simple algebraic group G defined

over a perfect field k, there is an isomorphism φ defined over k of G with a

group G of Chevalley type over k.

φ : G^G.

Put fa = φ^φ"1 e Aut G. Then one has

fσx=:flfXt a, reβ(S/ft).

From (1.1.3) we see that the map a-*(fa)* is a homomorphism of Q(k/k) into

Aut D. We claim that the kernel of this homomorphism is independent of the

choice of G and φ. In fact, let φ' G^Gf be another isomorphism over Tϊ of

G with a group G' of Chevalley type over k and put fΌ = φ^φ''1 and ψ = 00'"1.

By (1.1.2) one has (^V 1 )* = id., and so (/<,)* = (0V 1 )* = ((ΨφT(ψφ'Γ% =

(ψaψ~1)*(ψfσψ~1)*=(ψfΌφ~1)*, from this follows our assertion. Call ttG/A> the

kernel of </-* (/σ)#. As Aut D is a finite group, nG/k has a finite index in $(k/k).

We shall denote by NQ/k the corresponding finite Galois extension over k and

call it the nuclear field for G over &. Thus the Galois group of NO/k over k

is imbedded in Aut D. The next proposition shows that NG/k is not only in-

variantly attached to G over k but is unchanged under the isogeny.

PROPOSITION 1.1.4. Let k be a perfect field and let f ' Gf-*G be an isogeny

defined over k of connected semi-simple algebraic groups G, Gf defined over k.

Then one has Nβik =

In fact, let φ1 be an isomorphism defined over k of G' with a group G' of

Chevalley type over k. Since M=φ' (Ker /) is central in G', M is contained

in any one of ^-trivial maximal torus of G', and so M is imbedded in a product

of a certain number of the group of roots of unity of a finite Galois extension

of k. From this we see that M is defined over k as a zero dimensinal algebraic

group. So we get an isogeny over k g ' G' -* G = G'/M, this factor group being
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of Chevalley type over k, and an isomorphism φ' G^G such that φf-gφ1.

Now, put fa = Φ°Φ~\ fa = Φ^Φ1"1. Then, / σ lies under f'o with respect to the

covering (G', g) over G. One has to verify that

fa e Inn G «=^ /ά e Inn G'.

The implication («= ) is trivial. Suppose next that fσ(x) = α#ύf \ o ε G . Take

an a' e G' such that g(α') = a. Then, one has fΌ(x') = C(ff')α'*'β'~\ xf e G', where

C(#0 are contained in the center of G'. However, C must be trivial because it

is a homomorphism of the connected group into a finite group, which proves

( = O .

PROPOSITION 1.1.5. Let G be a connected semi-simple algebraic group defined

over a perfect field k and let E be a perfect field containing k. Then, one has

NQIE = ENaiky the compositum of E and NG/k.

In fact, let φ be an isomorphism defined over k of G with a group G of

Chevalley type over k. For a a&Q(E/E)y we have-*

a leaves NQIE elementwise fixed £=* a e XIGIE

«=Φ φnφ~x<= Inn G £=Φ a\k (σ restricted on k) e n©/*

$=$ o\Ίk leaves NG/k elementwise fixed

<?==> ύ leaves ENG/k elementwise fixed,

which proves our assertion.

PROPOSITION 1.1.6. Let k be a perfect field and K be a finite extension of

k. Let H be a connected semi-simple algebraic group defined over K and let

G = Rκιk(H), the algebraic group defined over k obtained from H by restricting

the field of definition K to k (cf. [25, p. 4]). Let NG/k (resp. NH/K) be the nuclear

field for G (resp. H) over k {resp. K). Then, NG/k contains Nnικ, and NG/k is

the smallest Galois extension of k containing NHIK-

The proof will be left to the reader.

1.2. Some properties of NG/k

Let G be a connected semi-simple algebraic group defined over a perfect

field k. By a splitting field for G over k we shall mean an algebraic extension

K of k over which G is isomorphic with a group of Chevalley type over k.

PROPOSITION 1.2.1. The nuclear field NG/k is contained in any splitting field

for G over k.
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In fact, let ί) be a subgroup of Q(k/k) corresponding to a splitting field K

for G over k and let ψ : G ~ G be an isomorphism defined over K of G with

a group G.of Chevalley type over k. Then, for <;e1j, we have / σ = f y 1 =; id.,

and so <j^xιQik> q.e.d.

The following proposition will give a partial converse of (1.2.1).

PROPOSITION 1.2.2. If k is finite, the nuclear field NO/k is a splitting Held

for G over k.

In fact, let φ be an isomorphism defined over k of G with a group G of

Chevalley type over k. Let Z be the center of G. Hence Inn^G (inner auto-

morphisms defined oner k) is identified with (G/Z)k. If we restrict the cocycle

fσ = φσψ~1 on xtoik, it becomes a cocycle of Q(k/NGιk) in (G/Z)^ which is trivial

by Lang's theorem [13] applied to the connected algebraic group G/Z. So,

there is a welnn^G such that / σ = « V \ </e G(*/Λfo. *) and hence w"V is de-

fined over NG/k, i.e. ΛW is a splitting field for G over &.

Remark 1.2.3. When k is finite, the above two propositions show that

Nojk is the smallest splitting field for G over &. If G is simple, ΛΓG/Λ is at most

quadratic or cubic extension of k. The quadratic extension can happen only

for groups of type Aι (/>2) D/(/g4) and E6. The cubic extension can happen

only for A . Let q be the number of elements in k '• ̂  = F<7. The-following

table which gives the order of Gτΰ is due to Chevalley and Steinberg [9, 24]

TABLE 1

type INQ/Έq' F y ]

E7
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and will play an important role in this paper.

When LNβ/Έg : F<J = 1, i.e. when G is already of Che valley type over Fα,

the expression of [Gτy] in the above table is unified in the following formula

which is valid for any connected semi-simple group G of Chevalley type over

where N is the number of positive roots, / is the rank ( = the dimension of

the maximal torus) and #v are integers such that the Poincare polynomial of

the compact form of the complex semi-simple Lie algebra belonging to the

same type as G is ΠLi (^ v " 1 + l) (cf. [9]).

1.3. Reduction modulo p

Let k be an algebraic number field of finite degree over Q (a number field,

for short), G be a connected semi-simple algebraic group defined over k and

let Noik be the nuclear field for G over k. We denote by G^} the algebraic

group defined over the residue field k()?) at a prime ideal p in k obtained from

G by the reduction modulo p. For almost all p, G(ί>) remains connected semi-

simple and so we can define the nuclear field NβW/kW for G{)?) over &(ί>). Let

K be a finite Galois splitting field for G over k and φ be an isomorphism, de-

fined over K, of G with a group G of Chevalley type over k. By (1.2.1), NG/k

is contained in K. Take a β-trivial maximal torus T of G and a Borel sub-

group B containing T. Denote by D the Dynkin diagram of G with respect

to T, B. For almost all p, T{^\ B{p) remain k{)?)-trivial maximal torus and a

Borel subgroup of the group G(ί?) of Chevalley type over h{)?\ Denote by D{)?)

the Dynkin diagram of G(p) with respect to Tφ ), Bφ). Since every character

in T is defined over k, one can define the reduction modulo p of any finite

number of characters, for almost all p. In particular, one sees that, for almost

all p, the map cc->a^] induces a one-to-one correspondence of the systems of

fundamental roots for G and G(ί?\ and thus gives rise to an isomorphism of D

and D{)?) as Dynkin diagrams. Let P be a prime ideal of K lying above Q.

For almost all p, the reduced map ψ{p) which is defined over the residue field

K{p) gives an isomorphism of G{^} with G(ϊ>>. For an / e Aut*G, one has

(1.3.1) (/*(a)) ( p ) = (/ ( P ))*(a i p l), a e= D,

for almost all p. In the following argument, we shall often omit the phrase
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''for almost all p" and so all sentences will make sense only for almost all

primes which do not disturb the smooth argument. Denote by Zp the decom-

position field of P relative to K/k. There is a canonical isomorphism

by which corresponds the Frobenius automorphisms. Put /σ = 0σ</>~\

and Fs=(φiP))s(φ{P)Γ\ se^(K{F)/k(p)). In view of the formula

we get

(1.3.2) FP(σ, = (/α)(P),

Call £ the map β(/JΓ/ft)-» Aut D given by £(<;) = (/σ)* and denote by ξP the

restriction of ξ on fhe decomposition group Q(K/Zp). On the other hand, call

7] the map t(KiP)/k{p)) -* Aut £>(ί" given by τ?(s) = (F s)*. Also, call TΓ the natural

isomorphism Aut D^Aut D ( p ) defined by (πγ)(a{p)) = (r(«))φ ), α: e A r e Aut

Zλ From (1.3.1), (1.3.2) one sees that the following diagram is commutative

g(K/Zp) —> Aut D

^ ^ P ) / f t ( p ) ) - ^ Aut D ( p ) .

Now, the field Na(P)/k(^ corresponds to KerT? and NQ/k corresponds to Ker^.

On the other hand, Ker -η = p(Ker ξp) = ρ(Ker ξ Π $(K/ZP)) corresponds to the

residue field (NQIH)^ where φ is the prime ideal of NQ/k lying under P and

hence we have (NσikY ' - Nθ&)/kft) Summarizing, we get the following

PROPOSITION 1.3.3. Let G be a connected semi-simple algebraic group defined

over a number field k. Let p be a prime ideal of k and $ be a prime ideal of

the nuclear field NGιk lying above p. Then, for almost all p, the residue field

(NG/kY'®) coincides with the nuclear field NG\P)/k&) for the group G ( p ) obtained

from G by the reduction modulo p.

Remark 1.3.4. By (1.2.3), (1.3.3), one can interpret the multiplicative

structure of the order of the finite group G$p) in terms of the law of decom-

position of p relative to Na/k over k and thus attach to G over k a finite number

of X-functions taken from the Galois extension Nβ/k of k. Details will be dis-

cussed in the next section.
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1 4. The number e(G/k)

Let G be a connected semi-simple algebraic group defined over a number

field k. Put

e(G/k) = nfp~^r^. q =

where Π' means the product over almost all prime ideals p in k for which the

reduced groups G^] remain connected and semi-simple. As for the convergence

of the product, see [18, Appendix III This number e(G/k) modulo Q* is in-

variantly attached to G over k. Let G1 be another connected semi-simple

algebraic group defined over k. Obviously one has

(1.4.1) e(GxGf/k)^e(G/k)e(Gf/k).

On the other hand, if Gf is isogenous to G over k, we get

(1.4.2) e(G/k)~e(G'/k)

because two isogenous groups over a finite field have the same number of

rational points.

We say that a connected semi-simple algebraic group G defined over k is

simple over k (^-simple, for short), if G has no normal connected algebraic

subgroup defined over k except G and {e}. It is clear that every semi-simple

G is isogenous to a product of ^-simple groups G, , l^i^r. From (1.4.1),

(1.4.2), we get

(1.4.3) e(G/k)^e(Gi/k) e(Gr/k).

Next, let K be a finite extension of k, H a connected semi-simple algebraic

group defined over K and let G = RK/k(H). One has then

(1.4.4) e(H/K)-e(G/k).

As for the proof, see e.g. [18, Appendix II].

Assume that G is /ί-simple and let H be any simple (i.e. ̂ -simple) factor

of G, K be the smallest field of definition for H containing k. Then, one sees

at once that G is isogenous to the group Rκik(H) over k. By (1.4.3), (1.4.4),

the computation of e(G/k) is reduced to the case where G is simple.

Let us assume that G is simple. By (1.3.3) the residue field (NG/k){^) is

the nuclear field for G(ί>) over &(ί?) for almost all p, and so e(G/k) can be ob-
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tained from Table 1. According to the structure of Aut D, we treat the

following four cases separately.

Case 1. NG.ik = k

Using the notation in (1.2.3), since Σ U i 0 v = /+ΛΓ, we get

(1.4.5)

where Ck is the zeta function of k All groups of type Au Bι (/^2), C/(/Ξ>3),

E7ί ESy F4, G2 belong to this case.

Case 2. iNoik : A] = 2

For this case, we denote by LN/k (N = NG/k) the L-function with respect to

the character belonging to the quadratic extension. This case can happen only

for types Aι (/^2), Dι <7>4) and £ 6.

type

Aι (7^2)

Di (7^4)

TABLE 2

JuN/kyl) Π v _j ζfc(2y)

(mod.

Liv/fc(/+

Q*

(12

)

/ odd
/ even

)

Case 3. ίNo/k : A] == 3

This case can happen only for the type Zλt We denote by X the character

belonging to the cubic extension which sends a generator of the Galois group

to ω, a primitive cubic root of 1. As before we put N-Nθik. From Table 1

we see that

e(G/k)

By virtue of the relation Cv(4) =CkU)LN/k(X, 4)Ls/k(L 4), we get

(1.4.6)

Case 4. ίN0/k : A] = 6

This case can happen only for the type D4. We again put N = NG/k- The

Galois group Q(N/k) is isomorphic with S3, the symmetric group on three

letters. Let M be the intermediate quadratic extension of k. Thus N/M is a

Galois cubic field. Let X be the character of this cubic extension which sends

a generator to ω as before and let X* be the character of Q(N/k) induced by
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7. Since X* takes values in Q, we have (2)* = Z*. From Table 1, we see that

e(G/k)-Lm(X*,4)ζk(2)ζk(6).

By a theorem on induced characters, we get

Ls,M(X, 4) - Lm(X*, 4) = Lm( (*)*, 4) = LNβl(X, 4).

On the other hand, we have

C*(4) = ZMWLX/MW, 4)LN,M(X, 4).

Hence, we get

(1.4.7) υ

1.5. Property (P)

We shall introduce in this section a property called (P) for a connected

semi-simple algebraic group defined over a number field k. As we shall see

later on, this property will take two parts (topological and arithmetical) in

our theory. We first recall some elementary facts.

Let G b e a connected real semi-simple Lie group with finite center, 9 be

the Lie algebra of G and let 9C be the complexification of 9: 9° = C ® R9. By

an involution of 9C we mean an involutive sesquilinear automorphism c of 9C

with respect to C/R. We denote by cQ the involution of 9C over 9 given by

co(λ®X) = J®X. For an involution ι> put

u£ = { I e 9 c , c(X)=X}>

this being a real form of 9C. An involution c will be called compact if it

satisfies the following two conditions

(1.5.1) CCO — CQC

(1.5.2) nc is a compact Lie algebra.

Denote by "€ the set of all compact involutions of 9C. As is well known, ^ is

non-empty. For an t e ^ , let Uc be the connected compact Lie group whose

Lie algebra is nc and let Kt be the analytic subgroup of G whose Lie algebra

is tt = 9 Π nc. The map c -+ Kt gives a bijection of "€ with the set of all maximal

compact subgroups of G. For two involutions c, cf e ^ , one can find "an element

such that

(1.5.3) c' = Ad(g)cc(Λd(g)cΓ\
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where Λd(g)c means the automorphism of Qc obtained from Λdig) by linearity.

We have then

(1.5.4) nc> = Ad(g)cnc, h' = Ad(g)U and Kt'

Fixing once for all a compact involution c of Qc, put u = u ί t ! =ϊ?, U—Ut,

K=KC. Also put,

X = G/K, Xu

In view of (1.5.3), (1.5.4) all spaces Z7, Kr X, Xu are invariantly attached to

G. For simplicity, we call X the symmetric space attached to G and call U

(resp. Xu) the dual of G (resp, X).

It is known that the Euler number E{XU) of the compact space Xu is non-

negative and that E(XU) is positive if and only if rank U = rank AT ([20, p. 17]).

When that is so, dim Xu ( = dim X) is even ([2, p. 552, Satz IV]).

Now, let G be a connected semi-simple algebraic group defined over a

number field k. Let «>,•, l ^ i <£f, be places at infinity of k, &», be the com-

pletion of k with respect to oo, . Denote by G, the identity component of the

topological group £&«,.. Viewing Gi as a real semi-simple Lie group, we denote

by Xi the symmetric space attached to Gi and by (Xi)u its dual. We shall

say that G is of type (P) over k if the Euler numbers E((Xi)u) are positive

for all i, l£i£t.

PROPOSITION 1.5.5. If there is a connected semi-simple algebraic group G

defined over a number field k over which G is of type (P), then k is a totally

real field.

In fact, suppose that k is not totally real. Let °° i, say, be a complex place

of k ' k*>t = C. Then Gi = Gc is a complex Lie group. Denote by 0ι the complex

Lie algebra of Gi by Qo the Lie algebra & viewed as a real Lie algebra. Take

any compact involution d of Gi and define an involution c of βp by c(λ®X) =

J®cAX), Xefio One verifies at once the condition (1.5.1). On the other

hand, one has, for X, F G 9 0 ,

dX+ V^ ®Y)^ίΛX)- V ^ Θd(Y),

and hence u« =u ί l -h V--ϊ®V--^uί1> which shows that u£ is compact, i.e. c is

compact (cf. (1.5.2)) and that f, = uf Πβo = u, Π (u<x 4-V^^,) =VLCi. Denote by

ί a maximal abelian subalgebra of ϊ f. Then, obviously, ί + V — l ^ V — It is an
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abelian subalgebra of u<, and so rank \xc >rank ϊc, i.e. E({Xι)u) = 0, q.e.d.

PROPOSITION 1.5.6. Groups G and G' are of type (P) over k if and only if

GxG' is of type (P) over k.

In fact, let Q/, 0/ be Lie algebras of Gkmi, GjL*, respectively. Then 9/x0/ is

the Lie algebra of (G x G')kMi and one can take a compact involution of (8/X0/)c

which is the product of such involutions on each factor. Our assertion follows

at once from the fact that the Euler number of the product space is the product

of the Euler numbers of each space.

PROPOSITION 1.5.7. If Gf is isogenous to G over h and if one of the groups

is of type (P) over k, then the other one is cf type (P) over k.

In fact, using the notation in (1.5.6), an isogeny induces an isomorphism

of Lie algebras flf with 9/, and so the "equal rank" property is invariant under

the isogeny.

PROPOSITION 1.5.8. Let K be a finite extension of k and let H be a con-

nected semi-simple algebraic group defined over K. Then, H is of type (P) over

K^ Rκ/k(H) is of type (P) over k.

In fact, for an infinite place oo of k, denote by °o, , l ^ ί ' ^ s , be infinite

places of K lying above °°. Then we have an isomorphism

[25, p. 9], from this our assertion follows at once.

COROLLARY 1.5.9. Let G be k-simple, let H be any simple factor of G and

let K be the smallest field of definition for H containing k. If G is of type (P)

over k, then K is totally real.

In fact, G is isogenous to Rκ/k(H) and so H is of type (P) over K by

(1.5.8). Our assertion then follows from (1.5.5).

1.6. Chevalley basis

Let G be a connected semi-simple algebraic group defined over a field k

of characteristic zero and T be a maximal torus of G defined over k. Let 9, 5

be Lie algebras of G, Ty respectively. If G is imbedded in GL{n)t the Lie

algebras 9, ί) are defined over k as linear subvarieties of the ambient Lie

algebra Gί(^). To each character ξ e T = Horn (Γ, Gm), there corresponds the



ALGEBRAIC GROUPS AND DISCONTINUOUS GROUPS 295

differential dξ'- §->Ga. If, in particular, α ε f i s a root in the sense of 1.1,

one verifies easily that da becomes a root of 8 with respect to the Cartan

subalgebra *f> in the ordinary sense"*0 and that the map a -* dec gives a one-to-

one correspondence between the root systems in two senses. From now on,

we shall identify these two root systems and denote again by Δ the set of all

roots of G (resp. 8) with respect to T (resp. ί>). For a root α e T ,it is easy

to see that <xσ, σ^Q{'k/k), is again a root. Through the identification, one can

define the action of Q(k/k) on the infinitesimal roots by (daY = daσ. Thus

Q{k/k) permutes the elements in A. Notice that if IαG9ft is a root vector for

<x> XI is a root vector for α:σ, a GΞ J, σ<=Q{k/k).

Let B be the Killing form of 8. For a root a GΞ d, we denote by H'Λ the

element in ^ determined by the condition

B(H'Λ) H) = a(H) for all

Since B is left fixed by Q(k/k), i.e. B(X\ Y°) = B{X, Y)\ X, F G f e σm(k/k)9

we get

(1.6.1) H'a^Otiy, σ<EΞ$(k/k).

From this we get

(1.6.2) <αΛ j9σ> = <α, β>, atβ^J

because <α:, β>( = B(Hf

Λ, H'?) by definition) is a rational number. For α G J, we

shall put

(1.6.3) H^da>H-

From (1.6.1), (1.6.2), we get

(1.6.4) H«o=,{H*)\

Let Π = {ατi, . . . , or/} be a system of fundamental roots. Then so is the

transform Π σ = {αf, . . . , af}. Since # α t , 1^*'^/, form a for the module of

co-weights ([9, p. 16]) one can take {HΛi}i^i^ι as a part of Chevalley basis.

Thus, let

* When α is given by (1.1.1), Xa = dx<t (1) serves as a root vector in the sense of
infinitesimal theory.
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be a Chevalley basis for Qi, where Xa, a e J, are subject to the conditions

described in [9, p. 24, Th. 1], i.e.

IX*, Xpl = Na.fiXa+t if α, 0, α + j3 e A,

where iV«,p = ± ( ^ + 1 ) , ^ being the maximum of integers i>:0 such that

β-icc<= A.

Now, let G be a group of Chevalley type over k and T be a ^-trivial

maximal torus. Since Q(Ji/k) acts on T trivially, one has <*σ = a for all α ε i ,

<;e<ϊ(E/*). Hence #*, α e J, are left fixed by G(S/*) (cf. (1.6.4)). We shall

next modify Xa, a<^ A, so that all these are again left fixed by ^(k/k). To do

this, define numbers εΛ(σ), α e i , a<^Q(k/k), by

If we fix α, eα(<y) satisfy

(1.6.6) e*(στ) = εΛ(σ)τεAτ), σ, r ^

i.e. (εa(σ)) is a cocycle of ύ(Έ/k) in (S)*. On the other hand, if we fix σ, we

see from (1.6.4), (1.6.5) that

ε-a(σ) = εΛo)~ι for α: e A,

εa+p(a) = εa(σ)ε?{σ) if αr, ̂ , a + j9 e J.

Let Π = {αι, . . . , α/} be a system of fundamental roots and let a = Σi=i'Wi, α,

be the unique expression of a e i with m; G Z. For each αr/, let aa, be a solution

of (1.6.6), i.e. eβ,((;) =βl7σ, and put α* = Πί-iΛ?/ when α = Σ ί = im;α:/. Then,

from (1.6.7) we see that a* is a solution of (1.6.6)' εa(σ) = αiΓ". Hence

r ^ ^ α α ^ α are left fixed by β(S/A). Obviously, F α , α e J, satisfy (1.6.5).

Therefore the existence of Chevalley basis which is invariant under Q{~k/k) is

settled.

From now on, whenever G is of Chevalley type over k, we shall understand

by a Chevalley basis of the Lie algebra 9 of G a Chevalley basis in the usual

sense which is already a basis for 8&.

We next want to associate a compact involution to a Chevalley basis.

Taking C as a universal domain, let G be a connected semi-simple algebraic

group defined over R, 9 be the Lie algebra of G and let {H9i, 1 S i£ /, X*, a G A}
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be a Chevalley basis of 9 with respect to a Cartan subalgebra ί) of 9 defined

over R. Obviously 9 is the complexification of 9R and we denote as before by

co the involution of 9 over 9R : co{X) = Z, Xe9. Define ua by the relation

co(XΛ) = ~Xa - uaXa, a G Δ, and put

(1.6.8) c(Hai)= -HΛi, c(XΛ)= -\u*\X-Λ.

One then easily verify that c is a compact involution of 9. We shall call this

involution the compact involution of 9 associated with a Chevalley basis {Haiy Xa}

of 9. If, in particular, G is of Chevalley type over R and {Hφi, Xa} is a

Chevalley basis (in the strict sense above) for the Lie algebra g of G, then

«« = 1, α e i , because the Chevalley basis is already a basis for gR, and the

associated involution is given by

(1.6.9) K#«, ) = - # « , t(X*)= -X- .

For a complex semi-simple Lie algebra 9, we denote by Int 9 the identity

component of the topological group Aut 9. Now, assume that G is a group of

Chevalley type over R which is simple. Let ί0, c be involutions of g defined

above. Then A = CQC = ̂ o is an automorphism of g. We shall ask the question:

whether A e l n t g or AΦIntg?. In view of the structure of Aut g/Int g it is

enough to consider the cases Aι (/^2), Dι (/j>4) and E*. For these cases,

all roots have the same length and from (1.6.3), (1.6.9), we get

(1.6.10) A(Hai) = H-*i, A(J£J*= -X-*.

First of all, we see at once that det A = ( - l)ι+N, where N denotes the number

of positive roots. If g is of type Dι (/ odd>5), then l+N=l2 is odd, and so

A $ Int g. Next, we consider the case Eζ. Since A fixes h = {Haί} as a whole,

A induces a linear transformation A* of h* = Hom(h, C) given by A*(λ)(H)

= λ(A(H))t H(Ξh, λ eh* . From (1.6.10) we see that (A~ι)*(a) = - a for all

#<Ξ Δ. Now, if A is in Int g, (A"1)* must be contained in the Weyl group.

However, it is known that in the case E6 there is no element w in the Weyl

group such that w(a) = -a for all a e Δ (See [10, 19-08, line 12 from the

bottom]). Thus we have AΦInt g for E*. Thirdly, we consider the case A/

(/>2), Since g is isomorphic to §ί(/ + l), by taking the standard Chevalley

basis of §11/4-1) (see e.g. [19]) we see that A(X) = - fX, l e g , and hence

t g. Lastly, let g be of type Dι (/; even =g4). We may put
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g = { I E tf(2 /), *XS+SX = 0}, S =

Then, by taking the standard Chevalley basis (see [19]), we see that A(X) = -*X,

i G g . Hence, A(X)= -fX=SXS'\ However, one has S^SO(S) because
{SSS = S and / is even. Hence A(X) — Adi S)X and so A e Int g. Summarizing,

we get the following

PROPOSITION 1.6.11. Let G be a simple group of Chevalley type over R, let

co be the involution of the Lie algebra g of G over gR and let c be the compact

involution of g associated with a Chevalley basis of g. Then the automorphism

A = C{)C = CCQ is not contained in Int g if and only if g is one of types Aι (Z>2),

Dι (/: odd>5) or E5.

1.7. Effect of (P) on NQlh

We first consider algebraic groups over R. Let G be a connected semi-

simple algebraic group defined over R and let φ be an isomorphism, defined

over C, of G with a group G of Chevalley type over R. We see that / = ψ<ρ~ι

is an automorphism of G such that / / = id. Let 0, g be Lie algebras of G, G,

respectively. Since dφ = dφt we see that df = dφ(dφ)~x and that dfdf = id..

For simplicity, we put df = F, this being an automorphism of g. As before,

we denote by c0 the involution of g over gR: cQ(X) =Xy l e g , by c the compact

involution of g associated with a Chevalley basis and put A = CQC = CCQ. TO the

equality

corresponds the equality as Lie algebras over R:

dό(QR) = { l G g , F(X) = X}.

From now on, we put Gi = dφ(QR), this being a real form of g. If we define an

involution a of g by a = f0F, βi is nothing but the set of fixed points by ^.

Furthermore, denote by r* a compact involution of g = 9p. By definition, **

satisfies the following conditions •*

*i<* = c*cu n* = { j £ g , ί*(Z) = X} is compact. We put Ai = ̂ ί* - ί*αe Aut g.

Since involutions ef c* of g are both compact, there is a / in Int g such that

c=Jc* ([11, P 158, Cor. 7.3]). We get then the relation:

(1.7,1) A = coc = (<o<ι)(cκ*)(Λ) = FA,/, / ^ Int g.
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Now, put G o = (GR)O, the topological identity component of GR> and assume

that

(#) The Euler number E(Xu)>0,

where Xu is the compact space dual to the symmetric space attached to Go.

Since 0R = GI as real Lie algebras, the assumption (#) is equivalent to say that

rank 9X = rank f, where f = Gi Π n*. Thus, let ί be a Cartan subalgebra of 81

which is also contained in ϊ. Since Ai leaves f elementwise fixed, it leaves ίc,

a Cartan subalgebra of g, elementwise fixed and so Ai is contained in Int g

([14, 16-03, Prop. 1]). Hence, under (#), we see from (1.7.1) that

(1.7.2) A s I n t g ^ F e Int g.

Now, let NO/R be the nuclear field for G over R, this being either R or C.

Obviously, we have

(1.7.3) A^/R = RΦ=Φ/Glnn G.

However, since we have / e l n n G < ^ F = df e Int g, we get from (1.7.2) the

following relation

(1.7.4) iNΓσ/R = R Φ=* A e Int g (under (#)).

Combining (1.7.4) with (1.6.11), we get

PROPOSITION 1.7.5. Let G be a connected simple algebraic group defined

over R satisfying the condition (#)• Then NQjR = C if and only if G is one of

types Ai (Z^2), Dι (/: odd ^ 5 ) or E*.

We now come back to our original situation- let k be a number field and

let G be a ^-simple algebraic group defined over k. Since all simple factors

of G are of the same type, we may mention the type of G. The following is

a main result of this section.

THEOREM 1.7.6. Let G be a k-simple algebraic group over a number field

k, Noik be the nuclear field for G over k. Assume that G is of type (P) over

k. Then k is totally real and Noik is totally real or totally imaginary. More

precisely, we have

Natk is totally imaginary ^ G is of type Ai (/>2), D (/: o d d > 5 )

or Eς.
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Proof. That k is totally real follows from (1.5.9). Next, let H be any

simple factor of G and K be the smallest field of definition for H containing

k. Hence G is isogenous to Rκ/k(H). In view of (1.1.4), (1.1.6), (1.5.8), we

may assume without loss of generality that G is already ^-simple. Let oo, ,

1 <: i <: t, be all infinite places of k. Then the group G viewed as an algebraic

group defined over k*t ( = R ) satisfies the condition (#) for all i, l^i^t.

Hence, by (1.7.5), the reality or the imaginarity of NG/k«>i is independent of i,

and depends only upon the type of G. From (1.1.5) we have NGik«,i='k*>iNoιk

Therefore N0/k is totally real or totally imaginary. The rest of the theorem

follows from (1.7. 5 \ q.e.d.

2. Discriminant

2.1. The number μ{G/k)

Let k be a field of characteristic zero and let G be a connected semi-simple

algebraic group defined over k. Let φ be an isomorphism defined over k of G

with a group G of Chevalley type over k. Put fσ = φoφ~i, σ^Q{k/k). Then

dfo = dφ°dφ~1 is an automorphism of the Lie algebra g of G. Suppose that φ1

is another isomorphism of G with a group G' of Chevalley type over k. Let

fa = φ^φ1'1 and let ψ be an isomorphism of G' with G such that ψφf = φ. Since

ψaψ~ι is in Inn G by (1.1.2), we see at once that det(tf/σ) =det(rf/i). Now,

(<//<,) is a cocycle of Q(k/k) in Aut g and det(<i/σ)= ± 1 , we get a homo-

morphism σ->det(dfσ) of Q(k/k) into the group {±1}, which is invariantly

attached to G over k. We shall denote by MGlk the extension of k which cor-

responds to the kernel of σ-*άet(dfo). Obviously, Maik is at most quadratic

over k. We denote by μ(G/k) a solution of the cocycle (άetidfo)):

Hence we have

Needless to say, μ{G/k) modulo β* is an invariant of G over k. If G is another

connected semi-simple algebraic group defined over k, one has clearly

(2.1.1) μ(GxG'/k)=μ(G/k)μ(G'/k) mod. ft*.

On the other hand, if G' is isogenous to G over k, we have
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(2.1.2) μ(G/k)=μ(G'/k) mod. A*

because μ(G/k) depends only upon infinitesimal data.

PROPOSITION 2.1.3, Notation being as above, let Nojk be the nuclear field

for G over k. Then Mo/k is a subfield of NQlk>

In fact, if a a&§(k/k) is in the group nGfk corresponding to NQ{k, then one

has /oGlnn G, hence tf/σelnt g and so άet(dfo) =1 . q.e.d.

COROLLARY 2.1.4. // lNo/k : hi is odd, then μ(G/k)ς=k*.

In fact, Mo/k is at most quadratic extension of k, q.e.d.

Remark 2.1.5. Suppose that G is simple. Then, one has μ(G/k) e &* for

groups of type Au Bι (/>2), Cι (/^3), Eu E$, F4, Gu because [_NGlk ' kl = 1.

If G is of type D4 and DVo/* : A] = 3, one also has μ(G/k) e A*.

We shall next give another interpretation of the map σ->det(dfa). In

general, let / be an automorphism of a connected semi-simple algebraic group

G in characteristic zero. In 1.1, we associated with / an automorphism / * e

Aut D, D being the Dynkin diagram with respect to a maximal torus T and

a Borel subgroup containing T. We have first defined /# for such an / that

f{T) = T, / ( £ ) = £, and put / * = ( / Γ \ where f:f-*f is the dual of /

restricted on 7'. Let ί) be the Lie algebra of T. The conditions f(T) = 7',

f(B) = B imply that J/ induces an automorphism of the infinitesimal Dynkin

diagram dD of the Lie algebra of G in the same way as / induces /*. Let us

denote the induced automorphism of dD by (df)*t which can, of course, be

defined for any / e Aut G. It is clear that the identification of D with dD

under oc~>da (cf. the beginning of 1.6) identifies /* with (df)*. We shall

denote by sign /* the sign of /# as a permutation on D.

PROPOSITION 2.1.6. Using the above notation, one has

det (df) = sign /* /or / e Aut G.

In fact, without loss of generality, we may assume that f{T) = T,fiB)= B.

Let Π = {#i, . . . , <*/} be the system of fundamental roots relative to Γ, B, and

let {Hai, l^i<l, Xa, oc^Δ) be a Chevalley basis of the Lie algebra 9 of G

with respect to the Lie algebra § of T. We have then

(2.1.7) df(HΛi)=IIf*{Λi)t lSi^U
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(2. 1. 8) df( Xa) = UaXf^(a) With U«U-« = 1, tf <ΞΞ J .

Let α = t) + Σ α α + Σ0~α be the decomposition of G into eigen spaces (α>0
α>0 α>0 °

means that <x = *Σmi<xi with tm^O). By the assumption, the automorphism df

leaves each of % ύ+ = Σ Q * , 9" - Σ β ~ α invariant. Accordingly, we have
ot>0 α>0

det (df) = det (df I $) det (rf/ ί fl+) det (rf/1 (Γ),

where we see at once that det(rf/|0+)det(tf/|ίΓ) = 1 from (2.1.8), and our

assertion follows from (2.1.7).

PROPOSITION 2.1.9. Using the above notation, we have

μ(G/k) e A* <=} (/β)^ Λrg ^^w permutations for all c

In fact, we have

M(G/fc) e fe* ^=^ det (d/σ) = 1 ίor all

£=^ sign (/βJ^si for all

Remark 2.1.10. Suppose that G is simple. One can then determine the

field Moik by looking at the Dynkin diagram. In view of (2.1.4), it is enough

to consider the case where tNG/k k~] is even.

Case (i) lNo/k : A] = 2

In this case, the only non-trivial (/σ)# comes from the non-trivial auto-

morphism of the quadratic extension.

Type Aι (1^2). We have

1 2 * ' / — l

and so Moίk = k or N0/k according as 1 = 0,1 or Z Ξ Ξ 2 , 3 (mod. 4).

Type Dι ( / > 4 ) . We have

. / 1 2 / - 2 / - l / N «i «. «,-, ,

ignί ) = - l , ° — °— —° —
V l 2 - . / - 2 / / - 1 ;

S ί ^ n

and so MG/k = NG/k.
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Type E5. We have

sign(
/ 1 2 3 4 5 6x

ign = 1.
\ ς Λ Q 9 1 β /5 4 3 2 1 6

o

«6

and so Mβ/k — k.

Case (ii) ίNG/k : AJ] = 6

This happens for D4. Since the Galois groupe of N0/k

over k is isomorphic to Aut D = Ss, some (/σ)# is an odd

permutation. Hence, from (2.1.9), we see that MG/k is the

unique quadratic subextension of NG/k I

We shall next give one more interpretation of the

number μ(G/k) which will be used in the analytical consideration. Let μ(G/k)

which will be used in the analytical consideration. Let G, <ρ, G, 9, g be as

before (see the beginning of 2.1), let

(2.1.11) {HΛt, 1^#^/, XΛ, α e J )

be a Chevalley basis for g with respect to a Cartan subalgebra of g defined

over k. For simplicity, we put ψ = dφ, Fσ~ψnφ~1( =df0), σ<=Q(~k/k). We shall

often denote by {Yi, . . . , Yd}, rf=dim g, the basis (2.1.11). Since (Fσ) is a

cocycle, by Hubert theorem 90, there is a matrix M e GL(d)n such that

(2.1.12) (Fo(Yi), . . . , Fo(Yd)) = (Yi, . . . , Yd)MσM~\

Since det Fa - det (dfa), we have

(2.1.13) μ(G/k)=detM mod. A*

Using this M, define a basis {JYΊ, . . . , Z^} of fl by the relation

(2.1.14) (0(-Xi), . . . , 0(X/)) = (YΊ, . . . , Yd)M.

It is easy to see that Xf = Xi, for all i and σ, i.e. {χ } is already a basis for

0A. Let B, B be Killing forms of 9. g, respectively. Clearly, one has B(X, Y)

= B(φX,φY)9 X, Ye 9. Hence, from (2.1.14) we get

(2.1.15) det(£(Z t , Xj)) = det(B(y, , yy))(det M)2.

Let J + (resp. J") be the set of positive (resp. negative) roots of g deter-

mined by Π = {αri, . . . , cci) and let iV be the number of elements in J+.
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Arranging {Yu . > Yd} in the order {H*i9 Xa, X-*, . . .} we see that the

matrix (B(Yit Yj)) has the form

B(U/oct , Ha.j)

0 B(Xa,X-a)

B(X«, X-a) 0

* /

A simple computation then show that

(2.1.16) det(B(F, , Yj)) = ( - l ) ¥ c Π ί . i < « . , α:/>"1Π«>o<αr, cc>~\

where C = det & is a positive integer. The right hand side of (2.1.16)

is a rational number which depends only upon the type of g. From now on,

we shall put

(2.1.17)

for a semi-simple Lie algebra fl in characteristic zero. Clearly, one has qittxQ')

-q(Q)qW) where 0' is another semi-simple Lie algebra. If we take arbitrary

basis {X'i) of Qk, we have

άet{B(X'if X'j))=det(B(Xi, Xj)) mod. (k*)\

Hence, from (2.1.13), (2.1.15) we get

PROPOSITION 2.1.18. Let {Xi) be any basis of ίU, then we have

άet(B(Xi, Xj))=Bq($)μ(G/k)2 mod. U*)\

In other words, one can define μ(Gjk) by

(2.1.19) /ΛG/k) Ξ (det(S(X>

I ,-X:y))^(g)"1)1/1 mod. ft*

We now want to consider the effect of Rκ/k. Let K be a finite extension

of k, H be a connected semi-simple algebraic group defined over K and let ^

be the Lie algebra of H. Let

Q(k/k) = α(β//Otfi + + Q(k/K)σb, δ = lK: A],

be the right cosets decomposition where we put σi = id. Let {-Yf}î rf be a
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basis of ϊk. Then {X?*} will be a basis of ψκ"Όv, where ψ" is the Lie algebra

of Hσ" which is defined over Kσ\ Since q(§) = q(\f")y we see from (2.1.19)

that

(2.1.20) μ(HIKY*= ±aσ*det(B(Xi9 Xj)^)υ2q(t)Γ1/2, α G f , l^v£δ,

where B being the Killing form of Ij. Put G = Rκik(H). By definition, there is

a map p : G->Ht defined over K, such that G is isomorphic over & with the

product Hσix x H°* under the map ττ= (i>σv) i=sv==5. We shall again denote

by τz=(pσv) the isomorphism of the Lie algebra Q = Rκ/k(§) of G with the

product ΐ)σi x x tf\ obtained by differentiation. In this situation, we know

(and can prove easily) that p induces a one-to-one map of Q& with ϊ)κ, which

is an isomorphism as Lie algebras over k. Let {ωj}i^j^δ be a basis of K/k.

Then {ωjXi), l<^i^d, l^j^d, is a basis for ί)κ as a vector space over k.

Call Zji the inverse image of ω'jXi under the map >̂ restricted on fl&. Hence

{Z/f } is a basis of 0&. We have

, 0, 0) + ωf (0,

Since (0, , X?\ •• , 0 ) , U ί ^ r f , l ^ ^ ί , form a basis of ljσi x x

denoting by J5f, J5 the Killing forms of α, ^, respectively, we get

(2.1.21) y

From (2.1.19), (2.1.20), (2.1.21), we see that

μ(G/k) s (det(α); v )) r f Πv = i A ( ^ / ^ ) σ v mod. ft*

If, in particular, & = Q and if we take as ωj, l<>j^δ, an integral basis of

K, then

det(ωyv) = Aκ\ Aκ is the discriminant of K,

and hence, we have

(2.1.22) μ(G/Q)-JTΠLIμ(H/K)σ\ rf = dim H.

Therefore, if MH,K = K, we have μ{G/Q)~~JaJ2, since Ώt^μ(H/K)β^Nκioμ(H/K)

e Q. On the other hand, if M H / X is quadratic over K, by taking a basis {ωi,pωj}

of Mff/i? over Q, where {1, p} is a basis of M Γ̂/K: over K, we see easily that

III=ιμ(H/K)σ" -^ AM2, AM being the discriminant of M = MΉ/z, and so we get
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PROPOSITION 2.1.23. Let K be a number field, H be a connected semi-simple

algebraic group defined over K and let G = RKIQ(H). Put MH/κ = K{μ(H/K)).

Then we have

, J(dlmH)/2 if MH/K = K
μ(G/Q)^\ tΛί w w β 9

L Jκ ΔMHIK V LMBIK . Λ J - ^.

2.2. Discriminant Δ(G/Q)

Let G be a connected semi-simple algebaic group defined over Q. We

simply put

Δ( G/Q) = I μ(G/Q) |2 ( = NC/Rμ(G/Q))

and call this the discriminant of G over Q, Thus, the positive rational number

Δ(G/Q) mod. (Q*)2 is invariantly attached to G over Q. From (2.1.1), (2.1.2),

we get

(2.2.1) J(GxG'/Q)s4(G/Q)J(G7Q) mod. (Q*)3,

(2.2.2) J(G/Q)sJ(G'/Q) mod. (Q*)2

when G' is isogenous to G over Q. Using the notation in (2.1.23), we get

\Δκ\ li
(2.2.3) JίG/QV-, , .

We shall now interpret the number J(G/Q) in connection with a compact

involution of the Lie algebra 0 of G. Let {Xu . . . , Xd) be any basis of <ΪQ.

Since g is the complexefication of 9R, one can take a compact involution c of 9.

Let B be the Killing form of 9. One sees that the hermitian form given by

(2.2.4) Bt(X,Y)= -B(X,tY), X, Ye 9

is positive definite. Since c leaves 9R invariant, e induces on 9R an automorphism

CR and hence det :R = ± 1 . One has then

det(BΛXi,Xj)) = ±det(B(X , CRXJ)) = ±άet{B{Xit Xj)).

Since det(Bt(Xi9 Xj)) is positive, we get from (2.1.18) the following

(2.2.5) det(Bt(Xi9Xj))U2~\q(Q)\ll2Δ(G/Q)υ2.

Conversely, (2.2.5) will serve as an alternative definition of Δ(G/Q). This

formula will play a role in the next section.
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Remark 2.2.6. We give here a list of the number J(G/Q)1/2 when G =

RKIQ(H) with H simple. The results follow from (2.2.3) together with the

determination of MHIK given in (2.1.10). As usual, we put dim i7 = i

Case 1. NHIK = K

From (2.1.4) we get MHIK = K, and so J(G/Q)1I2~~ \ΔK

Case 2. {.NHIK ' Kl = 2

This case can happen only for types Aι (/^2), Dι

TABLE 3

and EG

Aι

Ai

Dι

E*

type

u=o,i
(Z=2,3

(/>4)

mod.

mod.

4)

4)

MHIK

K

NHIK

NHIK

K

A(G/Q)

\Jκ\1'2

\Δκ\ι'2\

\Δκ\U*\

1

(mod. Q

ΔNHIK\112

ΔNHIK | 1 / 2

1*)

3. CiVπ/̂  : Kl = 3

This happens for type At. Again we have Mτηκ = K by (2.1.4). Hence

we have J(G/Q) 1 / 2 -l.

4. [iV j/ f: Ώ = 6

Again G is of type D4. We have shown in (2.1.10) that MHIK is the unique

quadratic subextension of NHIK* Hence we get J(G/Q)112^ \4MH/K\\1/2

3. Homogeneous spaces

3.1. Compact involution

Let G be a connected semi-simple Lie group with finite center, let 9 be the

Lie algebra of G. For a compact involution c of βc, we have put nc = { Z G 9°,

K-X") = ^ } and ϊ£ =9Πu£ (cf. 1.5). We also defined the hermitian form Bt on

αG by

Bt(x, Y) = - Bcr, ίy), z, y e QC,

where β is the Killing form of Qc (cf. (2.2.4)). If Bt takes real values on a

real subspace § of 8C, it induces a positive definite bilinear form (2λ)$ on 8.

For a subspace g' of § we shall denote by 8'* the orthogonal complement of 8'

with respect to (B()8. For example, one can take § = 9 since one has
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Bt(X, Y) = -B(X, cY) = -BUoX, ccoY)

In this case, we have ϊ? = 0(ΊV —1H< and the direct sum g = f< + i<9 is known as

the Cartan decomposition of 0 with respect to c. On the other hand, if one

takes § = Uf, one has tfc = V — lίf and the decomposition u, = ϊ> + V - ϊ ϊ ? is known

as the dual of the Cartan decomposition of 9. If two compact involutions c, cf

are connected by (1.5.3), we have

Bt>(Ad(g)c{X), Ad(g)c(Y))=Bί(X, Y), X, F E 9 C ,

from which follows, for example, that for a given basis {Xι9 . . . , Xd) of 9C,

the positive real number det (B((Xi, Xj)) is independent of the choice of c.

3.2. Volume element

We first consider the following general situation. Let G be a Lie group,

H a closed connected subgroup, 9, § the corresponding Lie algebras. Assume

that there is a positive definite bilinear form β : 9 x 9 -* R such that

(3.2.1) AdG(H) leaves 0 invariant.

Denote by ή 1 the orthogonal complement of ϊ) with respect to /•/. Then 9 =

ϊj-fί)1 (direct), and since AdQ(H) acts on ί), it acts also on •̂L. Let M = G/H

and let ,τ be the natural map G-+M. Through the identification by dn of ϊ)"1

with Mo (the tangent space at Q = π(e), e being the identity of G), the action

of Ado(H) on Jj1 coincides with the natural action of H on ikf0, and so the

restriction ftjJ- of /9 on ή 1 produces naturally a G-invariant metric gM on M

We denote by gG> gH the metrics on G, i7, respectively, induced by β, βq in a

natural manner. We denote by dM, dG, dH the corresponding volume elements.

Let {Xu . . . , Xx), {Yu . . . , Fμ} be bases of % ^ and let {Zu . . . , ^v),

ẑ  = λ 4- Ai, be the basis of 9 consisting of {Z, , Y>}, taken jointly. Let {ξu . . ., £λ},

{T?!, . . . , τ?μ}, {Ci, . . . , Cv} be invariant 1-forms dual to the above bases of

ϊ), f)1, 9. Then, viewing rjis as forms on M through the identification ίj1 =M0,

we get

rfG=(det(j9(Z, , Zy)))1/2dA ACV.

From these, if we use the same symbol for the positive invariant measure cor-
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responding to the volume element, we see that the three invariant measures

dG, dH, dM are coherent with respect to making the quotient, i.e.

(3.2.2) ί f{g)dG=-\ dM[ f(gh)dH

for a function fig) on G.

Coming back to our original situation in 3.1, let G be a connected semi-

simple Lie group with finite center. Fixing once for all a compact involution

t of gc, we put u = ud, ί = fd = gπu. Denote by Ky U the connected compact

Lie groups corresponding to f, U, respectively. Let T be a maximal torus of

U. As in 1.5, we put X= G/K, Xu = U/K. We also put F = U/T.

Let Bt be the positive definite hermitian form on Qc with respect to the

fixed involution c and let {BL)§, (Bt)u be the positive definite bilinear forms

on 8, u, respectively, induced by Bt. Since AdG(K) (resp. Adu(K)) leaves

(Bt)Q (resp. (Bι)u) invariant, the procedure described above defines invariant

metrics on G, U, K, X, Xu, Tand V. The volume elements and the correspond-

ing invariant measures will be denoted by dG, dU, dK, dX, dXu, dT and dV.

From the remark at the end of 3.1, we see that dG does not depend on the

choice of c and depends only upon B, i.e. dG is intrinsic (and so are dU, dKy

dX, dXu, dT and dV). From (3.2.2) we get

(3.2.3) ί dU= f dXu\ dK~ \ dv\ dT.

3.3. Generalized Euler number

Let M be an orientable riemannian manifold of even dimension m = 2m0

with a metric g. Denote by Ω(M) the corresponding Euler form on M. We

put

E(M) = I Ω(M).
J At

The Gauss-Bonnet theorem says that when M is compact the integral is in-

dependent of the choice of g and is equal to the Euler number E(M) in the

ordinary sense ([1], [7]). In terms of the curvature tensor R on Λf, Ω(M)

can be written as follows. Using a basis {Xi, . . . , Xm) for the vector fields

on an open set of Λf, put

if Λj)Jίlf Λk), ±=^lfj, ft, lί^Wl
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and

2m°m! άet(g(Xiy Xj))£i £ κ ^ ^ κ^ιWm-*»>

here Σ means the summation over all indices μ, , VJ and e(μ) is the sign

function of (μ) = (μu . . . , μm). Then K(M) is a function on M and will be

called the curvature of M. One has then

(3.3.1) Ω{M) = 2Amtc(M)dMy

where Am = 22m°+ίmol (ml)~1πm°9 the surface-area of the unit ra-sphere, and dM

is the volume element of M determined by g.

Consider now the homogeneous spaces X, Xu and V endowed with rieman-

nian structures described in 3.2. First of all, we have dim V=2N, where N

is the number of positive roots of 8C. We know that E( V) = ZW(U)], where

W(*) means the Weyl group of a compact Lie group * ([5, II, p. 337, Th.

24.3]). Next, as for the space Xu, we always assume that

(#) E(Xu)>0.

This condition imples that dim X = dimI« = m = 2mfl and that E(Xu) = CW(U)J/

IW{K)~] ([3, p. 191, line 5 from the bottomj). Thus, all spaces X, Xu and V

are of even dimension and one can define κ(X), κ(Xu) and κ(V). These

functions are all constants because we are dealing with invariant metrics on

homogeneous spaces. By virtue of the Gauss-Bonnet theorem applied to XUi

V and by the relation (3.3.2) below, these constants are different from zero.

Let π be the natural map of G (resp. U) onto X (resp. Xu) and put 0 = π(e).

Then, dπ= {dπ)e identifies the tangent space Xo (resp. (Xu)o) with the subspace

ί9 (resp. fu = V — 1 ϊ9) which is the orthogonal complement of f with respect to

{BC)Q (resp. (JBί)u). In this situation, the curvature tensor R on X (resp. Xu)

is determined by its value at 0 by the formula

Ro(X, Y)Z= - [[X, y ] , Z], X, Y, Z e tβ (resp. ϊu)

([11, p. 180, Th. 4.2]). From this and the definition of the curvature, we get

(3.3.2) tc(Xu) = ( -l)m°fc(X).

Applying the Gauss-Bonnet theorem to compact manifolds Xu and F, we

get
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(3.3.3)

(3.3.4)

Now, let Γ be a discrete subgroup of G. Then 7" acts on X properly dis-

continuously. We assume that

(3.3.5) [ dG is finite
* Γ\G

and that

(3.3.6) Γ acts on X without fixed points.

Because of (3.3.6), Γ\X becomes a manifold. The riemannian structure on X

induces naturally such a structure on Γ\X; we denote again by dX the volume

element of Γ\X. Since the structure of X and Γ\X coincides locally, we have

κ(Γ\X) = κ(X). In view of (3.3.5), the number E(Γ\X) is finite and is given

by

(3.3.7) E{Γ\X)= 2κ!:X)\ dX.

By a simple consideration on fundamental domains, we get from (3.2.2)

(3.3.8) ί dG=[ dx[ dK.
J v\o Jr\x J K

From (3.3.2), (3.3.3), (3.3.4), (3.3.7), (3.3.8), we get

(3.3.9)

Furthermore, using (3.4.9) below, we get

(3.3.10)

~πι+N\q(Q)\mEU\x),

where q(Q) is given by (2.1.17).

3.4. Volume of U

In view of (3.2.3), we shall compute the volume of T and V separately.

When the Lie group G is compact, then G = i£= £7 and the formula (3.4.9)

below will give the volume of any connected compact semi-simple Lie group
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with respect to the volume element determined canonically by the Killing form.

(For this case, c0 is the only compact involution and one has (£<0)g= — BgK

(i) Volume of T

Let i be the Lie algebra of T. The map exp 1 -> T is a covering homo-

morphism with the discrete kernel L. The module L is Z-free of rank / = dim

Ύ. Let {Ti, . . . , Tι) be a basis for L. By expressing T's as linear combi-

nations of an orthonormal basis with respect to the positive definite form - B

on ί, one sees easily that

(3.4.1) (

As before, denote by O, μ> the inner product on the dual space (t c )* given

by <λ, μ> = B(Hf

λfH
f

μ), where # I e t c is determined by the condition B(Hl, H)

= λ(H) for all H<= tc. Let 2R be the module of all weights of u c with respect

to t c and let Ίflσ be the submodule of W consisting of all weights of dμ for all

representations p of U. Then we know that

(3.4.2) m:^σl = ίπΛUn

where πΛU) is the fundamental group of U. We also know that the bases

{Λi, . . . , Λι), {2π>/ — lλL . . . , 2π\l — Iλi) for M, Mu, respectively, are deteimined

by the following orthogonality conditions

(3.4.3)

here {αi}is's/» is a system of fundamental roots of u c with respect to ic. The

right hand side of (3.4.1) can be computed from (3.4.2), (3.4.3), and we get

(3.4.4)

(ii) Volume of V=U/T

The following computation is due to A. Orihara and I learned it through

M. Ise. Let lu be the orthogonal complement of ί with respect to (J5«)u= — Bn.

Let XLs be root vectors of u c with respect to tc which satisfy the-condition

B(Xσ, X-a) = - 1, e{Xa) = X-β,

and put
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V 2 V
Λ — X-a)>

Then {#α, y*}Λ>o forms an orthonormal basis for iu with respect to - Bn.

Identifying ίu with the tangent space Vo at 0=π{e) as in 3.2, let {£«, <̂χ}α>o be

invariant 1-forms on V dual to {#«, jy<*}*><>. Then dV has the form

(3.4.5) rfP=Πβ>o£βΛyβ.

On the other hand, we know that the Euler form Ω(V) is given by

Ω(V) = π«>*Ω«,

where Ωa is the following 2-form on V:

([5, I. 10.3 and 14.5]). Hence, we get from (3.4.5)

(3.4.6) £ ( F ) = 7 9 ^ Π « > o

where {iu . . . , /V) are all permutations of (1, . . . , N). We also know that

(3.4.7) Σ <αi, αι > <**, α^> = CFΓ(£7)]Πβ>β<α, δ>,

with δ = 4 Σ α * '
^ α>0

From (3.3.7), (3.4.6), (3.4.7), we get

(3.4.8) f dV=(2π)NUa>,<oci δ>~\ δ^^r^cc.
Jy 6 ot>O

Multiplying (3.4.4) by (3.4.8), we get

ί
ίcyΎr\l + N l l 2 l l 2

4. Tamagawa number

4.1. Definition of τ(G)

Let G be a connected semi-simple algebraic group defined over Q.

A, Orih^ra informed rαe a proof in the framework of [6],
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shall recall briefly the definition of the Tamagawa number τ(G) (as for the

detail, see [25, Chap. II]). We shall fix an imbedding over Q of G in a GL(n)

so that the definition of the group Gz of units and the notion of the reduction

modulo p make sense. Let ω be a highest invariant differential form on G

defined over Q. On each local group Gυ = GQV, υ being a valuation of Q, ω

induces a Haar measure ωυ. Since the product

is absolutely convergent (see e.g. [18, Appendix II]), a Haar measure ωA is

well-defined on the adele group GA, independently of the choice of OJ> by the

product formula in Q. It is fundamental that the volume of a fundamental

domain for the discrete subgroup GQ in GA is finite ([4, Th. 5.8]). Thus a

positive real number r(G), the Tamagawa number, can be attached to G by

(4.1.1) r ( G ) = f ωAi
J GQ\GA

and by the construction it is easily be seen that r(G) is independent of the

choice of the imbedding of G in a GLin).

4.2. Fundamental domain

We shall consider the fundamental domain for GQ in GA more closely. We

put

this being an open subgroup of GA. it is known that the double coset space

GQ\GA/GA consists of a finite number of elements ([4, Th, 5.1]). This number

depends on the imbedding of G in GL(n), and will be called the class number

of G as a subgroup of GL(n). Let c be the class number and let

(4.2.1) GA= U

be the disjoint decomposition of GA into double cosets. Since GQ acts inde-

pendently on each coset GQXIGA, in order to find a fundamental domain for GQ

in GA, it is enough to find a fundamental domain for GQ in GQXIGA for each i,

l^i^c. Then the union of these fundamental domains will be a fundamental

domain for GQ in GA.

For any adele x^GA, put
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(4.2.2) ΓX^GQ^XGAX"1.

It is easy to see that Γx is discrete in GR and commensurable with Gz = Γe, e

being the identity of GA. Let Fx be a fundamental domain for Γx in GR and

put

(4.2.3) Fx = FxxUP

where x= (xυ)&GA. It is easy to see that Fx is a fundamental domain for

GQ in GQXGAX'1. Therefore Fxx becomes a fundamental domain for GQ in

GQXGA- In view of the in variance of the measure, we have

(OA = 1^ 0)A

and

J _IOJ/, = J ωp> for all p.

Hence, from (4.1.1), (4.2.1), (4.2.3), we get

(4.2.4)
= 2 J ( \ WRΠ

where Γ, = Γ^ , 1 ̂  i ̂  c. Since all Γt are commensurable with Gz, we see from

(4.2.3) that GZ\GR has a finite measure and that

GQ\GA is compact *=3 GZ\GR is compact.

PROPOSITION 4.2.5. 77*£ integral ωp is a rational number for every p.
J&zp

In fact, choose an imbedding G^GL(n) and put

G{H = {#e Gzp, ^ Ξ β mod. pr)

where r is a natural number. The group G{χp is normal in Gzp with finite

index. Hence, to prove our assertion it is enough to show that the integral

(4.2.6) \ {r)(ύp

is rational for a suitable r. Let h, . . . , td, ^=dim G, be a system of local
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coordinates defined over Q around e such that Uie) = 0, l^i^d. For suffici-

ently large r, the map #->(/j(#), . . . , td{x)) gives a homeomorphism in the

sense of i>-adic topology between Gχ]

p and a compact neighborhood U of the

origin in the p-aάic space Q|. NOW the given differential form ω can be ex-

pressed, around e, as ω = f(x)dtι/\ . . . ί\dtd, where f(x) is a rational function

on G defined over Q and holomorphic at e. By multiplying a rational number

if necessary, we may assume without loss of generality that f(e) = 1. Then

we take again r large enough so that the power series expansion of f(x) in

the parameters f, , l^i^d, converges in U and that \f(x)\p = l for x<=G{χp.

The local expression of ωp on G%1 is then simply ωp = \dti\p . . . \dtd\p, where

\dt\p means the canonical measure on Q/>. Hence the integral (4.2.6) is equal

to the volume of U by the canonical measure on Q$, which is a rational number

(more precisely, a rational number whose denominator is a power of p) because

the compact neighborhood U is a disjoint union of a finite number of cosets in

Q^ modulo various powers of p, q.e.d.

Remark 4.2.7, For almost all p, it is known that

jGZGZp

where G{p) is the reduction modulo p of G ([25, Th. 2.2.5]). Hence, using

the notation in 1.4, we may write

)GZp

4.3. τ(G) mod. Q*

Let G be a connected semi-simple algebraic group defined over Q of di-

mension d, Q be the Lie algebra of G. As explained in 0.4, GR is identified

with the Lie algebra 90 of the Lie group Go which is the topological identity

component of GR, and hence 0 = 9p. Let {Xlf . . . , Xd) be a basis of 9Q. Let

( be a compact involution of 9 and let Bt be the positive definite hermitian

form on g. The volume element dGo corresponding to the canonical riemannian

metric on Go is given by

(4.3.1) dG0= (det(Bt(Xi, Xj)))ll2ωR,

where COR is the invariant d-ίorm on Go which is the product of 1-forms dual

to Xi, l^i^d. Let Γ be an arithmetic subgroup of G (a subgroup of GQ
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commensurable with Gz) such that ΓaG0 and that Γ acts on the symmetric

space X=G0/K without fixed points. From (4.2.4), (4.3.1) we get

(4.3.2) r(G)-(f dGo)(det(Bt(Xi,Xj)))-ll2e(G/Q)-\

Furthermore, from (2.2.5), (3.3.10), (4.3.2), we get

(4.3.3) τ(G) ^πι+NE(Γ\X)J(G/Ql)
ll2e(G/QΓ1

provided E<Xu)>0.

5. Evaluation of zeta and L functions

Let k be an algebraic number field and let G = SL(n), n>2, be the special

linear group viewed as an algebraic group defined over k. The group G is

obviously of Chevalley type over k and simple. Denote by / the automorphism

x^x'1 of G. Let K be a quadratic extension of k and a -»a be the conjugation

of K over k. Since we have// = id. ( e Aut*G), (id., /) is a cocycle of β(/f/ft)

in Aut^G, and hence there is a unique algebraic group G defined over k, up

to isomorphisms over k, and an isomorphism φ of G with G defined over ϋf

such that/=00~ 1 . The map 0 induces an isomorphism of (G)k with the sub-

group {x<=Gκ, V"^*} where the latter group is usually called the special

unitary group with respect to K/k. We shall also call G the special unitary

group with respect to K/k. Since / is not an inner automorphism of G and ψ

is defined over K, we see at once that K is the nuclear field for G over k:

Nd/k-K. We shall put G= /?*/Q(G), this being a connected semi-simple alge-

braic group defined over Q.

Now, assume that k is totally real and K is totally imaginary. Then, for

every infinite places oof of k, {G)k*>i is isomorphic to the usual special unitary

group SU(n) and so it is compact. Therefore GR is also compact and one has

E(Γ\X) = 1, trivially. As for the numbers /, N for G, they are δ ( = ίk : Q])

times of the corresponding numbers 7, iV for G 7 = w- 1, N = n(n-l)/2.

The square root of the discriminant Δ (G/Q) can be seen from Table 3, i.e.

(5.1) i(G/Q) ~ ( u r - , ) / w / 2 i f M 3 0 > 3 m o d . 4 .

Finally, the number e(G/Q)(~~e(G/k) by (1.4.4)) is obtained from Table 2:
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(5.2) e(G/Q)-ζk(2)Lκ/k(3)ζkU)Lκ/k($) - {^^ ! *

1 Lκik(n): n odd

On the other hand, we know that

(5.3) r(G) = τjfe«5) = l

([25, Th. 4.4.1]). Substituting (5.3) in (4.3.3), we get

(5.4) e(G/Q) -π

9in-ιitn+" j{G/Q)lί2,

which holds for every *ι>2. In view of (5.1), (5.2), the system of formulas

(5.4) for all w>2 determines the values of C*(w) in: even) and £,*/*( n) (n:

odd) mod. Q*. Namely, we get the following

THEOREM 5.5. Let K/k be a quadratic extension such that k is totally real

and K is totally imaginary. Denote by Ck the zeta function of k and by Lκ/k

the L-f unction with respect to the character belonging to the quadratic extension

K/k. Let Jkiresp. Δκ) be the discriminant of k(resp. K), and let n be an integer

Then we have

(5.6) Ck{n)~-πnlkιQ*\Δk\112 if n is even

(5.7) Lκ,k(n) - πnίk: Q ] I ΔkI
1/2U*|1/2 if n is odd.

Remarks.8. (5.6), (5.7) were proved by Siegel [23, p. 289]. See also Klingen

[12]. For a special K/k, Leopoldt [15] gave explicit formulas for (5.6), (5.7).

6. Main theorem

Let G be a connected semi-simple algebraic group defined over Q. As

before, we denote by /, N the rank and the number of positive roots of G.

Assuming that G is of type (P) over Q, we want to obtain an explicit form

of the number e(G/Q,). In view of (1.4.2), (1.4.3), we may assume that G

is Q-simple. Let G be any simple factor of G and k be the smallest field of

definition for G. Then e(G/Q,)^e(G/k) by (1.4.4). Since we assumed that

G is of type (P) over Q, G is of type (P) over k by (1.5.8). Hence k is

totally real by (1.7.6). Let Nβ/k be the nuclear field for G over k. Then No,k

is totally real or totally imaginary and we have

No/k is totally imaginary <=̂  G is of type Aj ( 7 ^ 2 ) , Dj (7 : odd>5) or E6

(cf. (1.7.6)), here and from now on 7, N will mean the rank and the number



ALGEBRAIC GROUPS AND DISCONTINUOUS GROUPS 319

of positive roots of 6. We put δ = ίk' Q], and so l=δl, N=δN. As before,

we discuss four cases separately.

Case 1*. No/k = ft

Since ft is totally real, it can not be totally imaginary and hence groups

of type Aϊ (7 ̂ 2 ) , Dj (7 : o d d > 5 ) and Ee must be excluded. This implies

that the numbers <zv, 1 ̂  v ^ 7, appeared in the Poincare polynomial (cf (1.2.3))

are all even. Hence, by (1.4.5), (5.5), we get

(6.1) Γ

because 7 + N = Σ # v.

2. [iVβ/A : ft] = 2

All values of Cfe in Table 2 are computable (mod. Q*) since ft is totally

real and all arguments are even. As for Aj ( 7 ^ 2 ) , Dj (7 : odd>5) and £6,

iVβ/jfe is totally imaginary and the L-functions are computable since all arguments

are odd. For the case Dj (7 even^4) Λfe/fc is totally real and so

= C#£/fc(7)/Cfc(7) is computable. Using (5.5), we get the following

AT

DΊ

Es

type

(Γ^4)

TABLE 4

e(G/k) (mod. Q*

πl+^μfc|ί72|J^/fc|(T-l)/4

π I + ^ | J fc | ι / 2 Miv^/jb \ιlA

πι+N\Δk \l>21 J^5/fc | 1 / 2

>

odd

even

3. ίNdik - kl = 3

In this case, Λfe/* is totally real. From (1.4.6), we get

e(G/k) - C^-/fc(4)CΛ(4)-1Cfe(2)Cfe(6) - TΓ165 | Δk l
1/21 Λ5//c |

1 / 2.

Now, it is an easy exercise to show that U^/ fe |
1/2^|Jjfel1/2. Hence, we get

(6.2) e(G/k)^πuδ = πI+N.

Case 4. ίNβ/k : ft] = 6

The field Nd/k is again totally real, and so is the quadratic subfield

From (1.4.7), we get
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(6.3)

here we used again the fact that I jNQ/lc\
ίl2^\jMβ/k\

112.

Combining (6.1), Table 4, (6.2), (6.3) with the corresponding values of

J(G/Q)1/? in (2.2.6), we get, for Q-simple group G,

(6.4) T r ' + ^ V ' t y 1

except the case where ίNo/k I kl = 6. For this exceptional case, we get

(6.5) T Γ ' + ^ G / Q ^ I K G / Q Γ ' - V T , <?eQ.

Let 6 be a simple group defined over Q of type DA and k be the smallest

field of definition for G. By abuse of language, we shall 6 a trialitarian form

of the first (resp. second) kind over k if ZNόjk : *] = 3 (resp. = 6). From (4.3.3),

(6.5), we get the following

THEOREM 6.6. Let G be a connected semi-simple algebraic group defined

over Q, Go be the topological identity component of GR and X be the symmetric

space attached to Go. Let Γ be an arithmetic subgroup of G such that ΓCLGQ

and that Γ acts on X without fixed points. If G is of type (P) over Q and if

G does not contain a simple factor which is a trialitarian form of the second

kind of type DA over its smallest field of definition, then we have

τ(G)-E(Γ\X).

If, in particular, GZ\GR is compact, then τ(G) is a rational number.

Remark 6.7. Notation being as in (6.6\ if X is hermitian symmetric, then

G is of type (P) over Q: this can be seen from [11, Prop. 5.5, Th. 6.1, pp.

310-311]. Furthermore, by looking at Cartan's list of irreducible symmetric

spaces ([11, p. 354, Table 2]) we see that every Q-simple group of type EΊy Es,

FA, G2 is of type (P) over Q if the smallest field of definition for a simple

factor is totally real.

Remark 6.8. It is quite likely that E(Γ\X) is rational even for the case

where GZ\GR is not compact as Satake has shown for symplectic groups ([21]).

We hope to come back to this question some time in the future.

Remark 6.9. When G is a Q simple group whose simple factor is a

trialitarian form of second kind of type DA over its smallest field of definition,
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then (6.6) must be modified as

τ(G)^yfqEiT\X)9 tf e Q.

Let G be a simple factor of G, k be the smallest field of definition for 6. Put

N=Na/k, M=Moιk, the latter being the quadratic subextension of N. If G is

of type (P) over Q, all fields N, M, k are totally real. Define rational numbers

PM, PN b y

and put PN/M= \JN\1I2\JM\~1/2, this being a rat ional number. T h e n ,

e{G/Q) - e(G/k) - ( p W P * / * ) m n u [ k : Q J .

From (6.5), we see that

(6.10) yl~Q^l^=^ PNPMPNIM = \ Δ M \ m o d . ( Q * ) 2 .

In order to prove the right hand side of (6.9), more detailed study of the

numbers pNy pM will be required. In terms of L-function, we can restate (6.9)

as

(6.11) VT^l^Av/M(Z,4)-τr 4 [ Λ ί : Q J | ^ | 1 / a ,

where 7 is a cubic character belonging to N/M.

Remark 6.12. If we do not stick to the Tamagawa number, we can restate

(6.6) as follows. Namely, let Γ be any discrete subgroup of GR such that

Γ\GR is of volume finite. Put P = Γf]GR. The space P\X is not a manifold,

in general, but a V-manifold. However, the Euler form still makes sense and

one can define E(P\X) in the same manner as in 3.3. Accordingly, (3.3.10)

still holds for this case*1. Then the proof of (6.6) shows that

Γ\OR

If, in particular, Γ\GR is compact, so is P\X and E{P\X) is rational, the

Euler number in the sense of Satake [21]. Hence, we get

(6.12)

* The only thing we have to modify is to divide the right hand side of (3.3.10) by
[T*o] where ΓQ is the finite normal subgroup of Γr consisting of all ϊ^Γf which act trivially
on X.
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this is the formula (*) in the introduction because e(G/Q) can be expressed

as a product of L-f unctions as shown in (1.4) and one can replace ω by aω with

any a e Q*.
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