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Quasi-frobenius ( = QF) rings have many interesting characterizations. One

such, due to Ikeda [17] is that these rings are right (left) artinian and right

(left) self-injective. Thus, if R is QF, then R is right (left) noetherian, so each

direct sum of injective right /^-modules is injective in particular, each free,

hence, each projective, i?-module is injective. One object of this paper is to

report that this property characterizes QF-rings-

(A) THEOREM. A ring R is QF if and only if each projective right R-

module is injective.

The symmetrical properties of QF-rings (§2) show that "right" can be re-

placed by "left" in this statement. The "dual" theorem obtained by the sub-

stitutions "projective" <-> "injective" is the subject of another paper [7].

The condition that every free module is injective leads naturally to the

concept of iMnjectivity: an injective module is Σ-injective in case an infinite

direct sum of copies is injective. A iMnjective module MR with endomorphism

ring A is characterized by the descending chain condition (d.c.c.) on the lattice

of Λ-submodules which are annihilators of subsets of R (Prop. 3.3). If R

denotes the injective hull of RR, and if M = R, this condition implies the ascend-

ing chain condition (a.c.c.) on annihilator right ideals ( = right annulets) of R,

and, in case M = R = R, this condition is equivalent to the a.c.c. on right annulets

(Corollary 3.4 and Theorem 3.5). Thus, the proof of (A) leads to the more

general study of the rings of the title, and to the following intrinsic characteri-

zation - R satisfies the a.c.c. on right annulets if and only if to each right ideal

/ there corresponds a finitely generated subideal 7i having the same left annihi-

lator as / (Prop. 3.1).
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The above results, then, reduce the proof of (A) to the proof of the state-

ment (Theorem 5.2) that a right selfinjective ring which satisfies the a.c.c. on

right annulets is QF. This is proved by: (1) showing that such a ring R is

semiprimary (Theorem 4.1) (2) applying a result of S. U. Chase (Appendix),

stating that R then satisfies the d.c.c. on finitely generated right ideals: in

conjunction with (3^ the characterization of rings satisfying the a.c.c. on right

annulets given above. This yields the a.c.c. on left annulets. Since each finitely

generated left ideal in a right self-injective ring is a left annulet, we obtain

that R is left noetherian, whence QF.

In §6 2*-injective modules are examined again, the main results being: (1)

if R is a semiprime ring having a semisimple classical right quotient ring, then

R is iMnjective (2) if R is an integral domain, then R is iMnjective if and

only if R has a right quotient field. More generally, (3) if R is a ring with

zero right singular ideal, then R is I'-injective if and only if R satisfies the

a.c.c. on complement right ideals. (2) shows that the a.c.c. on right annulets

does not suffice for iMnjectivity of R.

I wish to take this opportunity to thank Elbert A. Walker for rekindling

my old interest in the problem (A), for many stimulating conversations and

much encouragement during its solution. To a large extent this work was in-

spired by the following theorem of Walker (Cf., [15, Theorem 3.5]):

If R is right self-injective, then the ring R(ω) of row finite matrices over R

is right self-injective if and only if R is (right) 2"-injective. Our work shows

that this is true if and only if R is QF.

0. Notation. We will assume that each ring R will have an identity ele-

ment, and that all modules are unital. ^£n (respectively R^£) denotes the

category of all right (respectively left) i?-modules.

Let M b e a module in ,J£R having endomorphism ring A. For any subset

X of M,

XL = {r<=R\Xr = 0)

is a right ideal of R. The totality of such right ideals will be denoted by

jj/r(M, R). For any subset X of R

is a Λ-submodule of AM. The totality of such Λ-submodules of M is denoted
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by ^fι(M,R). It is clear that cjJr(M, R) (respectively <j*fι(M,R)) is closed

under arbitrary intersections, making it a complete lattice. In particular, the

ascending chain condition (a.c.c) in <jtfr(M,R) (respectively cV/(M, R)) is equi-

valent to the maximum condition.

Since I-+IL is 1-1 and order-inverting between ^fr(M, R) and o*//(M, R),

then one satisfies the a.c.c. if and only if the other satisfies the d.c.c.

In this special case M— R, in order to distinguish left from right, we re-

place XL by

or

for any subset X of R. In this case the elements of ^fr{R, R) (respectively

cj?//(#, R)) are called right (respectively left) annulets of R.

If S is a ring satisfying the a.c.c. on right annulets (that is, on cj?/r(S, S)),

then any subring of S satisfies the a.c.c. on its right annulets. In particular,

the a.c.c. on right annulets are inherited by the subrings of S, if S is either left

or right artinian, or right noetherian.

1. Properties of Injective Modules. M e ^j£R is injective if and only if,

for each module A ε ^£R each map /:β-^Λίof a submodule B of A can be

extended to a map of A into M. A theorem of Baer [1] states that M is

injective if and only if each map into M of any right ideal of R can be extended

to a map R into M Thus, M is injective if and only if the following condition,

called Baers condition, is satisfied: If / * I^> M is a map of a right ideal I of

R into M, then there exists rn^M such that fix) = mx, V#e /.

Each Me^ίffl can be embedded in an injective module (Baer [1]), and

there exists a unique minimal injective module M, which is a maximal essential

extension of M (Eckmann-Schopf [4]), called the injective hull of M,

Consider the following conditions*

(A) (Baer's Condition). If / is a map of a right ideal / into i?, then there

exists αGi? such that fix) - ax, V # e /.

(B) (0 : Λ) + (0 : h) =- (0 : h Π 72), where Iu h are right ideals of R.

(C) L is a left annuletf where L is a left ideal of R,
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For X=A, B, or C, (X*) denotes the condition (X), when the ideal is

finitely generated. Thus (C*) denotes that each finitely generated left ideal is

a left annulet.

Ikeda-Nakayama [11] established the following implications:

(A) =*[(£), (C*)]=*(A*).

Since (A) is Baer's criterion for injectivity of the module RR, it follows

that if RR is injective, then each finitely generated left ideal is a left annulet.

2. Properties of QF-rings. A ring R is quasi-frobenius ( = QF) in case

each right ideal is a right annulet, each left ideal is a left annulet, and R is

right (or left) artinian. Eilenberg-Nakayama [5] proved the equivalence of the

following statements:

(1) R is QF;

(2) R is right noetherian, each left ideal is an annulet, and (0 : 7iΠ/2) =

(0 : Iί) + (0 : h) for each pair h, Λ of right ideals;

(3) R is right and left noetherian and left self-injective

(4) R is right artinian and left self-injective;

(5) R is left noetherian and left self-injective;

(6) The left-right symmetry of any of the preceding conditions.

The only situation not covered by the theorem of Eilenberg and Nakayama

is when R is noetherian on one side and self-injective on the other. This gap

is removed below.

THEOREM 1. If R is right or left artinian or noetherian, and if R is right

or left self-injective, then R is QF.

Proof. Let RR be injective, and RR noetherian.

A theorem oϊ Utumi [13] asserts that /?/rad R is a regular ring. Since

R/r&ά R is also noetherian, and since any finitely generated right ideal in a

regular ring is a direct summand (von Neumann [14]) it follows that each

right ideal of R/raά R is a direct summand, that is, iv'/rad R is semisimple.

By the method of C. Hopkins [10], in order to prove that R is right artinian,

whence QF, it suffices to show that / = rad R is nilpotent.

By the results on self-injective rings stated in § 1, each right ideal of R is

a right annulet. Now (0 y)Q £(0 : Jn)Q is an ascending sequence
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of ideals of R, so RR noetherian implies (0 : f1) = (0 : Jn+1), for some n. Since

Jn, Jn+1 are right annulets, this implies that /w = /w+1, which in a noetherian ring

implies that Jn = 0. This completes the proof.

3. Sigma Injective Modules. If {Ma) is a family of right R-modules,

indexed by a set A, and if Ma is isomorphic to a fixed right module M, V# e A,

then set

MA = HMa (direct product),

and

M U ) = Σ Θ M (direct sum).

If A is countably infinite, then set Mw = AT4, M ( ω ) = M{A).

If ilf is injective in ^JίRi then MΛ is injective, for any index set A. M will

be said to be Σ-injective in case M{A) is injective for any index set A M is

countably Σ-injective in case M ( ω ) is injective.

PROPOSITION 1. If Me <^£R, then ^j*fr(M,R) satisfies the ascending chain

condition if and only if to each right ideal I of R there corresponds a finitely

generated subideal h such that I1 = /i1.

Proof. Assume a.c.c. for cjχfr(M, /?), or equivalently, the d.c.c. for <^fι(Mt R),

let /be a right ideal of /?, and let U be a finitely generated subideal such that It is

minimal in {K1}, where K ranges over all finitely generated subideals of /, and

K1 is taken in M. If x e /, then Q = Λ + xR is a finitely generated subideal of

/ satisfying Q±^If". By the choice of Ilt necessarily Qx = /i1, so IχX - 0. Since

this is true V # e J, then 7rL/=0, that is, / ^ c / 1 . But 7iQ/ implies /^S/ 1 , so

/ί1 = I1 as asserted.

Conversely, let 7iC/2c c / Λ c be a chain of right ideals of i? lying in

oa/r(Λί, #), let Z/ = //•, ί = 1, 2, . . . , be the corresponding elements of <jχfι(M, /?),

let / = Π Ini and let /i be the finitely generated subideal of / such that Ix =/iL.
1 = 1

Since Jt is finitely generated, there is an integer q such that JiQlk, k>q, that

is, JiΏXk = Ik, k>q. But

jt = i1 = n x,,
n = l

that is, Xk=J:t> k>q. Then, h^ Xk == Iq> k> Q> proving the proposition.
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In the case M= R, ^xfι(M, R) (respectively \J4ΛM, R)) is simply the lattice

of left (respectively right) annulets of R, producing the following:

COROLLARY 2. A ring R satisfies the a.c.c. on right annulets if and only if

each right ideal I contains a finitely generated ideal 7, such that (0 : 7) = (0 ' Λ).

We now study JMnjectivity.

PROPOSITION 3. The following conditions on an injective module M e ^J£'R
are equivalent

(1) M is count ably Σ- injective.

(2) R satisfies the a.c.c. on the ideals in cj4r(.M, R).

(3) M is Σ-injective.

Proof. (1) =»(2) (indirect proof). Let 7iC/ 2c c / m c be a strictly
00

ascending sequence of right ideals in *jχfΛM, R), let I- U 7M, and let xn be an

element of In (taken in M) not in 7«+i, n = 1, 2, . . . . If r e 7, then there exists

a such that r e Ik V&>#, and since Iq"=>lk> V&>tf, then #*r = 0 V£>#. There-

fore the element r' = (xir, . . . , #wr, . . .) lies in M ίω), even though x = (Λ:I, . . . ,

AΓ», . . . ) lies in Mw. Let / denote the map defined by fir) = r ; Vr e 7. As-

suming momentarily that M{w) is injective, there is given, by Baer's criterion,

an element y = (yu . - . , ym, 0, . . .) e Λf(<ϋ) such that

/(r) =^r = (^ir, . . . , ̂ mr, 0, . . . )

r, . . . ) , Vr G 7.

But this implies that χtr-0, Vί>w, V r e / , that is, ΛΓie71c7Λi, contrary to

the choice of #*. Thus, (1) =^(2).

(2) =^(3). Let 7 be a right ideal of R, and let h = n/? + -f rΛ?? be the

finitely generated subideal given by Proposition 3.1 such that I1 = /i1. Let

/ : 7 -> ΛfU; be any map. Since MA is injective, there exists an element p e ikf4

such that /(r) =^r Vre7. Since /(r, ) ̂ pn^Mu\ i = l, . . . , w, there exists

an element p'^MiA) such that paΠ-pΌri Vαe^4, z = l, . . . , w, where #α is

the « co-ordinate of any g^MA. Since ru . , rn generate 7i, this implies

that pr=p'r Vre7i, whence (pa-p'a)^lt VatΞA. Since 7I1 - 7"1, it follows

that pax =p'aX,Vat=A,\rx<=I, that is px =*p'x, V* e= 7. Thus, f(x) =p'x Vx e 7,

with pf
 <BM{A), SO AfM) is injective by Baer's criterion. (A direct proof of (1)

=*(3) can be given; see [7].)
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Our present main interest in this result is for the case M - R, the injective

hull of R in ̂ £R. In this case, ^fr(M} R) contains the totality of right annulets

of R.

COROLLARY 4. If R is countably Σ-injective, then R satisfies the a.c.c. on

right annulets.

THEOREM 5. The following conditions on a ring R are equivalent:

(1) Any countably generated projectiυe module in ^£B is injective I

(2) R is right self-injective, and satisfies the a.c.c. on right annulets;

(3) Any projectiυe module in c^fs is injectiυe.

Proof. (1) =3(2). RR is injective, and so is R{w). Thus, R is countably

2"-injective, so R satisfies the a.c.c. on right annulets by Corollary 4.

(2) =*(3). Since c_j*fr(R,R) coincides with the set of right annulets of R>

Proposition 3 implies that any free, hence, any project!ve, module in c^£R is

injective.

4. Perfect rings with a.c.c. on annulets. A ring R is semiprimary in case

rad R is nilpotent, and i?/rad R is semisimple. R is said to be (right) perfect

in case each M e ̂ R has a projective cover. Bass [2] proved the equivalence

of the following statements:

(1) R is perfect.

(2) R satisfies the d.c.c. on principal left ideals.

(3) rad R is right T-nilpotent and i?/rad R is semisimple.

(4) Each nonzero left i?-module has nonzero socle, and R does not contain

infinitely many orthogonal idempotents.

rad R is right T-nilpotent in case each infinite sequence {an) of elements

of rad R satisfies anan-\ a-ιa\ — 0 for some n. Since any nilpotent ideal is

left and right T-nilpotent, (3) (and its right-left symmetry) implies that a

semiprimary ring is right and left perfect.

PROPOSITION 1. If R is perfect, and if R satisfies the a.c.c. on right annulets,

then R is semiprimary.

Proof. Since R is perfect, then #/rad R is a semisimple ring. Let / = rad Rt

and consider the chain

C / : 0 ) c ( / : 0 ) c • ςz(Jn:Q)ς: ,
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By hypothesis, (J* : 0) = (Jn+1 : 0), for some n. If R*Jn, then the left module

R/(Jn : 0) has nonzero socle which has the form T/(Jn : 0) for some left ideal

T^>(Jn ' 0). Since T/(Jn:0) is semisimple, / annihilates this module, so

/ T c ( f : 0), that is, TQ(Jn+1 : 0) = (Jn : 0). Thus, T= (Jn : 0), a contradicition

proving that R= (Jn : 0). Therefore /w = 0 and i? is semiprimary.

S. U. Chase has proved the following important fact about a semiprimary

ring R: each M^^R satisfies the d.c.c. on finitely generated submodules.

(See Appendix.)

5. Self-injective rings with a.c.c on annulets. The proof of Theorem A

is contained in this section. The lemma below is a restatement of part of

Corollary 3.3.

LEMMA 1. If R is a ring, then each projective module in <^#B is infective

if and only if R is a right self-injective ring satisfying the a.c.c. on right annulets.

Together with this lemma, the following theorem completes the proof of

Theorem A.

THEOREM 2. A ring R is QF if and only if R is a right self-injective ring

satisfying the a.c.c. on right annulets.

Proof. If R is QF, then RR is injective, and noetherian, by the results

stated in §2. Then R satisfies the a.c.c. on right annulets.

Conversely, suppose RE is injective, and R satisfies the a.c.c. on right, that

is, the d.c.c. on left annulets. Injectivity of RB implies that each finitely

generated left ideal is a left annulet. Thus, R satisfies the d.c.c. on finitely

generated, hence principal, left ideals. Then R is perfect, and Proposition 4.1

implies that R is semiprimary.

By Chase's theorem (see Appendix), R satisfies the d.c.c. on finitely gener-

ated right ideals. Let A1ΏA2Ώ ΏAnΏ. be any descending sequence of

right annulets of R. By the lemma below, there is a corresponding sequence

Aί2 2 Ai2 of finitely generated right ideals such that (0 : Aί) = (0 : Ad,

i = 1, 2, . . . . Consequently, there is an integer n such that A'n = Am, Vm > n.

Then (0 : An) = (0 : Am) ^m>n, proving that R satisfies the d.c.c. (respectively

a.c.c.) on right (respectively left) annulets. Since each finitely generated left

ideal is a left annulet, R satisfies the a.c.c. on finitely generated left ideals.
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Consequently each left ideal is finitely generated. Then R is QF by Theorem

2.1.

LEMMA 3. If R is right self-injective, and if R satisfies the a.c.c. on right

annulets, and if A, B are right ideals such that AΏ.B, then there exist finitely

generated subideals A1 Ώ B' such that (0 : A) = (0 : A') and (0 : B) = (0 : B').

Proof. Since RR is injective, by a result stated in §2, (0 : A Π B) = (0 : A)

-M0 : B) for any two right ideals A, B. Let A3B, and let A' be the finitely

generated subideal of A, given by Proposition 3.1, such that (0 : A) = (0 : A').

Then

(0 : A' Π B) = (0 : A) + (0 : B) = (0 : B).

The last equality holds since (0 : A)c(o : 5). Hence, by Proposition 3.1 again,

there exists a finitely generated subideal B' oί A'Π B such that (0 : B1) = (0 : B).

COROLLARY 4. If R is right or left self-injective, and satisfies the a.c.c. on

right annulets, then R is QF.

Proof. By Theorem 2, we may assume that RR is injective. Then, each

finitely generated right ideal of R is a right annulet, so R satisfies the a.c.c. on

finitely generated right ideals, that is, R is right noetherian. Then R is QF by

Theorem 2.1.

8. Characterizations of i'-injectivity. In § 3, ^-injectivity of R was charac-

terized by the a.c.c. on <jrfr(R,R) However, there is no intrinsic test for the

ideals of R which lie in cj*/r(R, R). By restricting R to be a ring with zero

right singular ideal, we are able to characterize iMnjectivity of R by the a.c.c.

on complement right ideals of R. Since a complement right ideal / of R is a

right ideal which is maximal in a set of right ideals having zero intersection

with a given fixed right ideal K, this amounts to an intrinsic characterization

of iMnjectivity in this case.

PROPOSITION 1. Let R be a ring with zero right singular ideal. Then R is

Σ-injectiυe if and only if R satisfies the a.c.c. on complement right ideals.

Proof. The right singular ideal Zr{R) consists of all those x e R for which

(χ:Q) is an essential right ideal of R, that is, for which (x : 0) meets each

nonzero right ideal of R. When ZΛR)=Q} then i? is a regular ring which
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contains R as a subring (Johnson [12], Wong-Johnson [16]). (This theorem is

discussed from this point of view in [6].) In this case, if "€ΛT) denotes the

set of complement right ideals of a ring Ί\ then "toΛR.) consists of the direct

summands of R, and the contraction mapping ψ : Q->Qf)R is 1-1 and in-

clusion-preserving between &ΛR) and ΉΛR)\ if ItΞ^ΛR), then φ~ιI is the

unique injective hull of / contained in R. Henceforth, denote ψ~ιI by /.

A result of Goldie [8] states that R satisfies the a.c.c. on complement right

ideals if and only if each collection of independent right ideals is finite. If

7i, 72, . . . , 7*, . . . is a collection of independent right ideals, then 7i, . . . , 7«,

. . . is a corresponding collection of independent right ideals of R. Since In
CO

is a direct summand of R, if R is Σ-injective, then ϋ Γ = Σ ® 7 n , being a direct

summand of R{w\ is injective. Let Pn-Iλ-\ -f In ( = the sum of h, . . . ,

In in R), let Qn = 7i + 7*, ( = the sum of 7i, . . . , In in R), n = 1, 2, . . . ,
set P = Σ - P « . and set Q= Σ $ » . Since the ideals { 7 ί U = l , 2, . . .} are inde-

nt 1 « = 1
pendent, then Q = K, as a right R-module, so Q is injective in c^f*. This

means that Q^c^r(R)y a direct summand of R. If e - e2 e R is such that

Q = eR, then e^Qn for some n. Since Q« is a right ideal of R, Q = eR c Q n .

It follows that 7& = 0, hence 7A? - 0, Vk>n, proving that R satisfies the a.c.c. on

complement right ideals.

Conversely, if R satisfies the a.c.c. on complement right ideals, then R

satisfies the a.c.c. on direct summands. Since R is a regular ring, each finitely

generated right ideal is a direct summand consequently R is right noetherian.

A regular noetherian ring is artinian and semisimple. The fact we need is that

R is left artinian ring. Since Λ -H.omR{R, R) is naturally ring-isomorphic to

R (see [6, §8]) , then ^fι{Ry R) satisfies the d.c.c, or equivalently c V r ( Λ R)

satisfies the a.c.c. Then Proposition 3.3 implies that R is iMnjective.

LEMMA 2. The following conditions are equivalent:

(1) R is a semiprime ring satisfying the a.c.c. on complement right ideals,

andZr(R)=0.

(2) R is a semiprime fing satisfying the a.c.c. on complement right ideals,

and the a.c.c. on right annulets.

(3) R has a classical right quotient ring S which is a semisimple ring.

Proof. The equivalence of (2) and (3) is Goldie's theorem [9], whereas
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that of (1) and (2) is [6, §9, Theorem 7].

Using this lemma, Proposition 1 implies,

COROLLARY 3. If R is a semiprime ring satisfying the a.cx. on complement

right ideals, and the a.c.c. on right annulets, then R is Σ-injectiυe.

An integral domain R is a right Ore domain in case R has a right quotient

field K (and then K= R). (Any commutative integral domain is an Ore domain.)

COROLLARY 4. If R is an integral domain, then R is Σ-injectiυe if and only

if R is a right Ore domain.

Proof. If R is iMnjective, then the proposition implies that R satisfies (1),

hence (3), of the lemma. Thus, R is right Ore in this case. The converse is

similarly proved.

Thus, the a.c.c. on right annulets of R does not imply iMnjectivity of R.

Remark. It is known that each injective right ivNmodule is 2*injective if

and only if R is right noetherian (see [7]).

Appendix

The following theorem is proved by S. U. Chase [3]. For the convenience

of readers, we include a proof here.

THEOREM (S. U. Chase). If R is semiprimary, then each module in ^£n,

and each module in BO/, satisfies the d.c.c. on finitely generated submodules.

Proof. (S. U. Chase). The proof is by induction on the index n of nilpotency

of the radical / of R. If w = l, then / = 0 and R is semisimple. Then every

module in ^J£R is semisimple, and the theorem is true in this case.

Hence, assume the theorem for all semiprimary rings whose radical has

index of nilpotency <n. If M G C / B , let S(M) denote the socle of M ( = the

sum of all the simple submodules of M), and let A denote the image of any

submodute A of M under the natural homomorphism φ : M~*M, where M = MIS,

S^S(M). Since S = (0 : /), and since MJn~ι c s, M = M/S is an /?//*"'-module.

Since radC/?//""1) =J/Jn'1 has index of nilpotency equal to n -1, we may assume

that M satisfies the d.c.c. on finitely generated submodules.
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Now let Λ Ώ. h 2 " 3 / / 3 ••• be any descending chain of finitely gener-

ated submodules of M. Since J, is also finitely generated, i = 1, 2, . . . . , it

follows that there exists an integer k such that Ik = Ίq, V# > k. Thus, 7* + S =

lq + S, V<? > β, where S = S(M). Since S/ = 0, this implies that hj = /?/, V# > &.

Denote this submodule of M by Ky and let // = / ;/#, « = 1, 2, . . . . Then

/ί 2 /ί 2 2 // 3

is a descending chain of finitely generated modules. Since I'J - 0, i = 1, 2,. . . ,

these are i?//-modules. Hence, by the n = 1 case of the theorem, there exists

p>h such that /{ = /£, Vt>p, whence It = //>, Vί>./>.
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