ON PRIMITIVE EXTENSIONS OF RANK 3 OF SYMMETRIC GROUPS

TOSIRO TSUZUKU*

Dedicated to the memory of Professor TADASI NAKAYAMA

1. Let Ω be a finite set of arbitrary elements and let (G, Ω) be a permutation group on Ω . (This is also simply denoted by G). Two permutation groups (G, Ω) and (G, Γ) are called isomorphic if there exist an isomorphism σ of G onto H and a one to one mapping τ of Ω onto Γ such that $(g(i))^{\tau} = g^{\sigma}(i^{\tau})$ for $g \in G$ and $i \in \Omega$. For a subset Δ of Ω , those elements of G which leave each point of Δ individually fixed form a subgroup G_{Δ} of G which is called a stabilizer of Δ . A subset Γ of Ω is called an orbit of G_{Δ} if Γ is a minimal set on which each element of G induces a permutation. A permutation group (G, Ω) is called a group of rank n if G is transitive on Ω and the number of orbits of a stabilizer G_a of $a \in \Omega$, is n. A group of rank 2 is nothing but a doubly transitive group and there exist a few results on structure of groups of rank 3 (cf. H. Wielandt [6], D. G. Higman [4]).

Now we introduce the following definition:

Definition. A permutation group (G, \mathcal{Q}) is an extension of rank n of a permutation group (H, Γ) if (G, \mathcal{Q}) is a group of rank n and there exists an orbit Δ of a stabilizer G_a , $a \in \mathcal{Q}$, such that G_a is faithful on Δ , i.e., only the identity element of G_a induces the identity permutation on Δ , and (G_a, Δ) is isomorphic to (H, Γ) . Moreover, if (G, \mathcal{Q}) is primitive (or imprimitive), it is called a primitive (or imprimitive, resp.) extension of rank n.

In this note we will prove the following theorem.

THEOREM. Let S_n be the symmetric group of degree n. If S_n has a primitive extension of rank 3, then n = 1, 2, 3, 5, or 7.

2. We use the following notations:

Received May 17, 1965.

^{*} This research was supported by the National Science Foundation, G 25213,

TOSIRO TSUZUKU

 S_n : The symmetric group of degree *n* (on a set Γ).

 A_n : The alternating group of degree n.

G: A primitive extension of rank 3 of S_n on a set $\Omega = \{0, 1, 2, ..., n, \tilde{1}, \tilde{2}, ..., \tilde{m}\}$ which consists of 1 + n + m letters.

H: The stabilizer G_0 of a letter, say 0, of Ω .

The orbits of H are denoted by $\Delta_0 = \{0\}, \Delta_1 = \{1, 2, \ldots, n\}$ and $\Delta_2 = \{\tilde{1}, \tilde{2}, \ldots, \tilde{m}\}$ and the group (H, Δ_1) is isomorphic to (S_n, Γ) .

L: The stabilizer of the subset (0, 1) of Ω .

 Ψ : The character of G induced by the principal character of H which is called the character of the permutation representation of (G, \mathcal{Q}) . By a well known theorem (cf. Proposition 29.2 in [6]) Ψ is decomposed into three irreducible characters φ_0 , φ_1 and φ_2 and one of these, say φ_0 , is the principal character. We denote the degree of φ_i by f_i . If $n \ge 3$, then $n \ne m$ by Theorem 17.7 in [6] and so $f_1 \ne f_2$ by Theorem 30.3 in [6] and we assume $f_1 < f_2$.

 ${}_{H}\mathcal{V}$: The restriction to H of \mathcal{V} . By the structure of G, ${}_{H}\mathcal{V}$ is equal to $1_{H} + 1_{S_{n-1}}^{s_{n}} + 1_{L}^{s_{n}}$ where 1_{X} is the principal character of a group X and 1_{X}^{Y} is the character of Y induced by 1_{X} , that is, the permutation representation of a permutation group (Y, Y/X).

$$q = (m+n+1) \cdot \frac{m \cdot n}{f_1 \cdot f_2}$$

|X|: The order of a group X.

We use the following propositions:

PROPOSITION 1. (W. A. Manning, Theorem 17.7 in [6]). If n > 2, then $n < m \le n(n-1)$ and m divides n(n-1).

PROPOSITION 2. (J. S. Frame [2]). (i) q is an integer, and (ii) if $n \neq m$ then q is a square.

PROPOSITION 3. (D. G. Higman [4]). If $1 + n + m = n^2 + 1$, then n = 2, 3, 7 or 57.

Let V be a matrix $(v_{\alpha\beta})$, α , $\beta \in \Omega$, of degree 1 + n + m where

 $v_{\alpha\beta} = \begin{cases} 1 & \text{if there exists an element } g \text{ of } G \text{ such that } 0^g = \beta \text{ and } \alpha \in \mathcal{A}_1^g \\ 0 & \text{otherwise.} \end{cases}$

Obviously, all diagonal elements of V are zero and all diagonal elements of $V^t V$ are n. By calculating the traces of V and $V^t V$ we have the following relations among f_1 , f_2 , m, n and the eigenvalues of V which are introduced by H. Wielandt (Chapter V in [6]):

PROPOSITION 4.

$$n + f_1 s + f_2 t = 0$$

$$n^2 + f_1 s^2 + f_2 t^2 = (m + n + 1)n$$

where s and t are eigenvalues of V which have the multiplicities f_1 and f_2 respectively.

PROPOSITION 5. (G. Frobenius [3]). Let X be a subgroup of S_n . Then (i) If X is $S_2 \times S_{n-2}$, then

$$1_{X}^{s_{n}} = 1_{s_{n}} + \chi^{0 \cdots 0} + \chi^{0 \cdots 0}$$

where χ_{0}^{0} and χ_{0}^{0} are irreducible characters of S_n (corresponding to Young diagrams $\frac{1}{0}$ and $\frac{1}{0}$ respectively) whose degrees are n-1 and $\frac{n(n-3)}{2}$ respectively).

(ii) If X is $S_1 \times S_1 \times A_{n-2}$, then

$$1_{\mathcal{X}}^{s_{n}} = 1_{s_{n}} + 2 \chi^{0} + \chi^{0} \chi^{000} \chi^{000} + \chi^{0} \chi^{000} + \chi^{0} \chi^{000} + \chi^{0} + \chi^{$$

where χ^{0}_{0} , χ^{0}_{0} , χ^{0}_{0} , χ^{0}_{0} , χ^{0}_{0} , χ^{0}_{0} and χ^{0}_{0} are irreducible characters of S_{n} of degrees $\frac{(n-1)(n-2)}{2}$, 1, n-1, $\frac{(n-1)(n-2)}{2}$ and $\frac{n(n-3)}{2}$ respectively.

3. Proof of Theorem. In the following we assume that $n \neq 1, 2, 3, 5$ and 7. According to Proposition 1, $(n-1)! > |L| \ge (n-2)!$.

I. The case |L| > (n-2)! and L is transitive on Δ_1 .

If L is a primitive subgroup of (H, Δ_1) , then, by a theorem of A. Bochert (Theorem 14.2, [6]), the index of L in H is not less than $\left[\frac{n+1}{2}\right]!$, that is, $n(n-1) > \left[\frac{n+1}{2}\right]!$ and so we have n = 8, 6 or 4. For those values of n we know some properties of primitive subgroups of S_n (cf. [1], § 166). The orders

TOSIRO TSUZUKU

of primitive groups of degree 8, not containing A_8 , are not divisible by 5, but the order of L is divisible by 5. This is impossible. The orders of primitive subgroups of S_6 (or S_4) are divisible by 5 (or 3 resp.) and so, by Proposition 1, the order of L is divisible by 5! (or 3! resp.). This is a contradiction because (n-1)! > |L|. Hence L is imprimitive on A_1 and so there exists a non-trivial block Γ of (L, A_1) . Let r be the length of Γ . Then the order of L must divide $(r!)^{\frac{n}{r}} (\frac{n}{r})!$. Therefore, by Proposition 1, we have

$$(n-2)! \mid (r!)^{\frac{n}{r}} \left(\frac{n}{r}\right)!.$$

From this formula we have that n = 4 or 6. If n = 4 then, by the assumption (n-2)! < |L| < (n-1)!, |L| = 4 and so the degree of (G, Δ) is equal to 11 and $q = \frac{11 \cdot 4 \cdot 6}{f_1 \cdot f_2}$. This is a contradiction because q can not be a square for positive integers f_1 , f_2 satisfying $f_1 + f_2 = 10$. In the similar way, for the case n = 6, we have $q = \frac{22 \cdot 6 \cdot 15}{f_1 \cdot f_2}$ or $\frac{17 \cdot 6 \cdot 10}{f_1 \cdot f_2}$ which also show us contradictions.

II. The case |L| > (n-2)! and L is intransitive on Δ_1 .

Since L is a subgroup of $S_r \times S_{n-r}$ with a positive integer r, we have the relation $(n-2)! \leq r! (n-r)!$ Hence we have the following cases (we assume $r \leq n-r$): r=1 or 2.

(i) r = 1: Since $L \subseteq S_1 \times S_{n-1}$ and (n-1)! > |L| > (n-2)!, L must be $S_1 \times A_{n-1}$. Now we take up an element σ_0 of H which is a cycle of length 3 as an element of (H, Δ_1) . Then we see that, as an element of (H, Δ_2) , σ_0 is the product of disjoint two cycles of length 3. Therefore σ_0 is the product of disjoint three cycles of length 3 and $\Psi(\sigma) = 3 n - 8$. Let σ be an element of H which is the product of disjoint r cycles of length 3 as an element of (H, Δ_1) . Then, in the similar manner, σ is the product of exactly disjoint 3r cycles of length 3. This concludes that if an element σ of H is conjugate to σ_0 in G then they are conjugate in H already. Hence the number of elements which are conjugate to σ_0 is

[G:H] the number of elements of H which are conjugate to $\sigma_0/\Psi(\sigma)$

$$= \frac{(3 n+1) \cdot n!}{(3 n-8) \cdot 3 \cdot (n-3)!}$$

= $\frac{(3 n+1) n(n-1)(n-2)}{3(3 n-8)}$

Since this number is an integer, 3n-8 must divide $8\cdot5\cdot2$ and this concludes n = 16, 8, 6 or 4. If n = 16, then, in the similar manner, the number of elements of G which are conjugate to an elements σ_1 of H which is a cycle of length 5 as an element of (H, Δ_1) is equal to $\frac{49\cdot16!}{34\cdot5\cdot11!}$ and, since this number is not an integer, we have a contradiction. If n = 8, then the number of elements of G which are conjugate to an element σ_2 of H which is the product of disjoint two cycles of length 2 as an elements of (H, Δ_1) is equal to $\frac{25\cdot8!}{13\cdot2^2\cdot2\cdot4!}$ and, since this number is not an integer, we have a contradiction. If n is either 6 or 4, the degree of (G, Ω) is a prime number and so, by theorems of Galois (Theorem 11.6 in [6]) and Burnside (Theorem 11.7 in [6]), (G, Ω) is a Frobenius group. This is a contradiction.

(ii) r = 2: Since L is a subgroup of $S_2 \times S_{n-2}$ and (n-1)! > |L| > (n-2)!, L must be $S_2 \times S_{n-2}$. Then $H^{\Psi} = 3 \operatorname{1}_{S_n} + 2 \chi^{0} + \chi^{00}$ and so we have the following possibilities

$$f_1 = n$$
 $2 n - 1$
or
 $f_2 = \frac{n(n-1)}{2}$ $\frac{(n-1)(n-2)}{2}$

In the first case, according to Proposition 3, we have

$$n + sn + \frac{tn(n-1)}{2} = 0$$
$$n^2 + s^2n + \frac{t^2n(n-1)}{2} = \frac{n(n^2 + n + 2)}{2}$$

and so $n = \frac{t^2 + 4t}{2 - t^2}$, that is, *n* is 2 or 5 which has been excluded. In the second case we have

$$q = \frac{n^2 + n + 2}{2} \times \frac{n^2(n-1)}{2(n-1) \cdot \frac{(n-1)(n-2)}{2}} = \frac{n^2(n^2 + n + 2)}{2(2n-1)(n-2)},$$

but this is not a square for any integer n. This is a contradiction, by Proposition 2.

III. The case |L| = (n-2)!. Then m = n(n-1) and so the degree of (G, Ω) is $n^2 + 1$. By Proposition 3, n = 57. $m = 57 \cdot 56 = 3192$ and so $q = \frac{3250 \cdot 57 \cdot 3192}{f_1 \cdot f_2}$ must be a square. Then we have the following possibilities:

TOSIRO TSUZUKU

$$f_1 = 624$$
 1520
or
 $f_2 = 2625$ 1729.

On the other hand, since L is intransitive and since |L| = 55!, $L = S_1 \times S_1 \times S_{55}$ or $L = S_2 \times A_{55}$ or L = the group which consists of even permutations in $S_2 \times S_{55}$. In any of those cases, since $1_{S_1 \times S_1 \times A_{55}}^{s_{67}} = 1_L^{s_{67}} +$ a sum of characters of S_{67} and since $1 + 1_{S_{66}}^{s_{67}} + 1_{S_1 \times S_1 \times A_{55}}^{s_{67}}$ is decomposed into 13 irreducible characters which have degrees 1, 1, 1, 1, 56, 56, 56, 56, 56, 57.27, 57.27, 28.55 and 28.55 respectively, f_1 and f_2 must be partial sums of these integers, but it is impossible.

Thus we complete the proof of Theorem.

4. There exist primitive extensions of rank 3 of S_n for n = 1, 2, 3, 5 and 7.

(i) The cyclic group of order 3 is the unique primitive extension of S_1 .

(ii) The dihedral group of order 10 is the unique primitive extension of S_2

(iii) The alternating group A_5 of degree 5 is the unique primitive extension of S_3 .

(iv) Let N be the elementary abelian group of order 16 and let a_1 , a_2 , a_3 , a_4 , be a minimal set of generators of N. For any element σ of S_5 a permutation on the set $\{a_1, a_2, a_3, a_4, a_5 = a_1a_2a_3a_4\}$ defined by $\begin{pmatrix} a_1, a_2, a_3, a_4, a_{5} = a_{1}a_{2}a_{3}a_{4} \end{pmatrix}$ induces an automorphism $\overline{\sigma}$ of N. Thus S_5 is identified with an automorphism group H of N. Then we can see easily that the semidirect product S_5N is the unique primitive extension of rank 3 of S_5 .

(v) Let F be the finite filed consisting of 5^2 elements and let σ be the involutive automorphism of F and let $U_3(F)$ be the projective special unitary group over F of dimension 3. Then σ induces an automorphism $\overline{\sigma}$ of $U_3(F)$. $U_3(F)$ contains a $\overline{\sigma}$ invariant subgroup H which is isomorphic to A_7 and the semidirect product $\langle \overline{\sigma} \rangle H$ of groups $\langle \sigma \rangle$, which is generated by $\overline{\sigma}$, and H is isomorphic to S_7 (H. H. Mitchell; Theorem 25, [5]). $U_3(F)$ is a primitive extension of rank 3 of A_7 (D. G. Higman [4]). Then the semidirect product $\langle \overline{\sigma} \rangle U_3(F)$ is a primitive extension of rank 3 of $\langle \overline{\sigma} \rangle H \cong S_7$.

References

 W. Burnside, Theory of groups of finite order, 2nd ed. Cambridge University Press, London, 1911.

- [2] J. S. Frame, The double cosets of a finite group, Bull. Amer. Math. Soc., 47 (1941), 458-467.
- [3] G. Frobenius, (i) Über die Charakter der symmetrishen Gruppe, Sitzber. Preuss. Akad., Berlin (1900), and, (ii) Über die Charaktere der alternierenden Gruppe, ibid. (1901), 303-315.
- [4] D. G. Higman, Finite permutation group of rank 3, Math. Zeitshr. 86 (1964), 145-156.
- [5] H. H. Mitchell, Determination of the ordinary and modular ternary linear groups, Trans. Amer. Math. Soc. 12 (1911), 207-242.
- [6] H. Wielandt, Finite permutation groups, Academic Press, New York and London, 1964.

Nagoya University and University of Illinois