ON PRIMITIVE EXTENSIONS OF RANK 3 OF SYMMETRIC GROUPS

TOSIRO TSUZUKU*

Dedicated to the memory of Professor Tadasi Nakayama

1. Let Ω be a finite set of arbitrary elements and let (G, Ω) be a permutation group on Ω. (This is also simply denoted by G). Two permutation groups (G, Ω) and $(G, \Gamma$) are called isomorphic if there exist an isomorphism σ of G onto H and a one to one mapping τ of Ω onto Γ such that $(g(i))^{\tau}=g^{\rho}\left(i^{\tau}\right)$ for $g \in G$ and $i \in \Omega$. For a subset Δ of Ω, those elements of G which leave each point of Δ individually fixed form a subgroup G_{Δ} of G which is called a stabilizer of Δ. A subset Γ of Ω is called an orbit of G_{Δ} if Γ is a minimal set on which each element of G induces a permutation. A permutation group (G, Ω) is called a group of rank n if G is transitive on Ω and the number of orbits of a stabilizer G_{a} of $a \in \Omega$, is n. A group of rank 2 is nothing but a doubly transitive group and there exist a few results on structure of groups of rank 3 (cf. H. Wielandt [6], D. G. Higman [4]).

Now we introduce the following definition:
Definition. A permutation group (G, Ω) is an extension of rank n of a permutation group (H, Γ) if (G, Ω) is a group of rank n and there exists an orbit Δ of a stabilizer $G_{a}, a \in \Omega$, such that G_{a} is faithful on Δ, i.e., only the identity element of G_{a} induces the identity permutation on Δ, and $\left(G_{a}, \Delta\right)$ is isomorphic to (H, Γ). Moreover, if (G, Ω) is primitive (or imprimitive), it is called a primitive (or imprimitive, resp.) extension of rank n.

In this note we will prove the following theorem.
Theorem. Let S_{n} be the symmetric group of degree n.
If S_{n} has a primitive extension of rank 3 , then $n=1,2,3,5$, or 7 .
2. We use the following notations:

[^0]S_{n} : The symmetric group of degree \boldsymbol{n} (on a set Γ).
A_{n} : The alternating group of degree n.
G : A primitive extension of rank 3 of S_{n} on a set $\Omega=\{0,1,2, \ldots, n, \tilde{1}, \tilde{2}$, $\ldots, \widetilde{m}\}$ which consists of $1+n+m$ letters.
H : The stabilizer G_{0} of a letter, say 0 , of Ω.
The orbits of H are denoted by $\Delta_{0}=\{0\}, \Delta_{1}=\{1,2, \ldots, n\}$ and $\Delta_{2}=\{\tilde{1}, \tilde{2}, \ldots$, $\tilde{m}\}$ and the group (H, Δ_{1}) is isomorphic to (S_{n}, Γ).
L : The stabilizer of the subset $\{0, \tilde{1}\}$ of Ω.
Ψ : The character of G induced by the principal character of H which is called the character of the permutation representation of (G, Ω). By a well known theorem (cf. Proposition 29.2 in [6]) Ψ is decomposed into three irreducible characters φ_{0}, φ_{1} and φ_{2} and one of these, say φ_{0}, is the principal character. We denote the degree of φ_{i} by f_{i}. If $n \geqq 3$, then $n \neq m$ by Theorem 17.7 in [6] and so $f_{1} \neq f_{2}$ by Theorem 30.3 in [6] and we assume $f_{1}<f_{2}$.
${ }_{H} \Psi$: The restriction to H of Ψ. By the structure of $G,{ }_{H} \Psi$ is equal to $1_{H}+1_{S_{n-1}}^{S_{n}}+1_{L}^{S_{n}}$ where 1_{x} is the principal character of a group X and 1_{X}^{Y} is the character of Y induced by 1_{X}, that is, the permutation representation of a permutation group ($Y, Y / X$).
$$
q=(m+n+1) \cdot \frac{m \cdot n}{f_{1} \cdot f_{2}}
$$
$|X|$: The order of a group X.
We use the following propositions:
Proposition 1. (W. A. Manning, Theorem 17.7 in [6]). If $n>2$, then $n<m \leqq n(n-1)$ and m divides $n(n-1)$.

Proposition 2. (J. S. Frame [2]). (i) q is an integer, and (ii) if $n \neq m$ then q is a square.

Proposition 3. (D. G. Higman [4]). If $1+n+m=n^{2}+1$, then $n=2,3,7$ or 57 .

Let V be a matrix $\left(v_{\alpha \beta}\right), \alpha, \beta \in \Omega$, of degree $1+n+m$ where

$$
v_{\alpha \beta}= \begin{cases}1 & \text { if there exists an element } g \text { of } G \text { such that } 0^{g}=\beta \text { and } \alpha \in \Delta_{1}^{g} \\ 0 & \text { otherwise. }\end{cases}
$$

Obviously, all diagonal elements of V are zero and all diagonal elements of $V^{t} V$ are n. By calculating the traces of V and $V^{t} V$ we have the following relations among f_{1}, f_{2}, m, n and the eigenvalues of V which are introduced by H. Wielandt (Chapter V in [6]) :

Proposition 4.

$$
\begin{aligned}
& n+f_{1} s+f_{2} t=0 \\
& n^{2}+f_{1} s^{2}+f_{2} t^{2}=(m+n+1) n
\end{aligned}
$$

where s and t are eigenvalues of V which have the multiplicities f_{1} and f_{2} respectively.

Proposition 5. (G. Frobenius [3]). Let X be a subgroup of S_{n}. Then (i) If X is $S_{2} \times S_{n-2}$, then

$$
1_{X}^{s_{n}}=1_{s_{u}}+\chi^{0 \cdots 0}+\chi^{0000}
$$

where $\chi^{0 \ldots 0} \quad{ }_{0}^{0 \ldots \ldots 0} \chi^{0 \ldots \ldots 0}$ are irreducible characters of S_{n} (corresponding to Young diagrams ${ }^{0 \cdots 0}$ and ${ }^{00 \cdots 0}$ respectively) whose degrees are $n-1$ and $\frac{n(n-3)}{2}$ respectively).
(ii) If X is $S_{1} \times S_{1} \times A_{n-2}$, then

$$
\begin{aligned}
& 1_{x}^{s_{n}}=1_{S_{n}}+2 \chi^{0 \ldots 0}+\chi^{0 \ldots 0} \chi^{0 \ldots 0} \\
& +\chi^{\frac{0}{0}}+2 \chi^{\frac{00}{0}}+\chi^{\stackrel{00}{0}}+\chi^{\frac{00}{00}}
\end{aligned}
$$

where $\chi^{\stackrel{0 \ldots 0}{0}}, \chi^{\frac{0}{0}}, \chi^{00}, \chi^{000}$ and $\chi^{\frac{00}{i 0}}$ are irreducible characters of S_{n} of degrees $\frac{(n-1)(n-2)}{2}, 1, n-1, \frac{(n-1)(n-2)}{2}$ and $\frac{n(n-3)}{2}$ respectively.
3. Proof of Theorem. In the following we assume that $n \neq 1,2,3,5$ and 7 . According to Proposition 1, $(n-1)!>|L| \geqq(n-2)$!.
I. The case $|L|>(n-2)$! and L is transitive on Δ_{1}.

If L is a primitive subgroup of (H, Δ_{1}), then, by a theorem of A. Bochert (Theorem 14.2, [6]), the index of L in H is not less than $\left[\frac{n+1}{2}\right]$!, that is, $n(n-1)>\left[\frac{n+1}{2}\right]$! and so we have $n=8,6$ or 4 . For those values of n we know some properties of primitive subgroups of S_{n} (cf. [1], $\S 166$). The orders
of primitive groups of degree 8 , not containing A_{8}, are not divisible by 5 , but the order of L is divisible by 5 . This is impossible. The orders of primitive subgroups of S_{6} (or S_{4}) are divisible by 5 (or 3 resp.) and so, by Proposition 1 , the order of L is divisible by 5 ! (or 3 ! resp.). This is a contradiction because $(n-1)!>|L|$. Hence L is imprimitive on Δ_{1} and so there exists a non-trivial block Γ of (L, Δ_{1}). Let r be the length of Γ. Then the order of L must divide $(r!)^{\frac{n}{r}}\left(\frac{n}{r}\right)!$. Therefore, by Proposition 1, we have

$$
(n-2)!\left\lvert\,(r!)^{\frac{n}{r}}\left(\frac{n}{r}\right)!.\right.
$$

From this formula we have that $n=4$ or 6 . If $n=4$ then, by the assumption $(n-2)!<|L|<(n-1)!,|L|=4$ and so the degree of (G, Δ) is equal to 11 and $q=\frac{11 \cdot 4 \cdot 6}{f_{1} \cdot f_{2}}$. This is a contradiction because q can not be a square for positive integers f_{1}, f_{2} satisfying $f_{1}+f_{2}=10$. In the similar way, for the case $n=6$, we have $q=\frac{22 \cdot 6 \cdot 15}{f_{1} \cdot f_{2}}$ or $\frac{17 \cdot 6 \cdot 10}{f_{1} \cdot f_{2}}$ which also show us contradictions.
II. The case $|L|>(n-2)$! and L is intransitive on Δ_{1}.

Since L is a subgroup of $S_{r} \times S_{n-r}$ with a positive integer r, we have the relation $(n-2)!\mp r!(n-r)$! Hence we have the following cases (we assume $r \leqq n-r): r=1$ or 2 .
(i) $r=1$: Since $L \subseteq S_{1} \times S_{n-1}$ and $(n-1)!>|L|>(n-2)!, L$ must be $S_{1} \times A_{n-1}$. Now we take up an element σ_{0} of H which is a cycle of length 3 as an element of $\left(H, \Delta_{1}\right)$. Then we see that, as an element of $\left(H, \Delta_{2}\right), \sigma_{0}$ is the product of disjoint two cycles of length 3 . Therefore σ_{0} is the product of disjoint three cycles of length 3 and $\Psi(\sigma)=3 n-8$. Let σ be an element of H which is the product of disjoint r cycles of length 3 as an element of $\left(H, \Delta_{1}\right)$. Then, in the similar manner, σ is the product of exactly disjoint $3 r$ cycles of length 3. This concludes that if an element σ of H is conjugate to σ_{0} in G then they are conjugate in H already. Hence the number of elements which are conjugate to σ_{0} is
$[G: H] \cdot$ the number of elements of H which are conjugate to $\sigma_{0} / \Psi(\sigma)$

$$
\begin{aligned}
& =\frac{(3 n+1) \cdot n!}{(3 n-8) \cdot 3 \cdot(n-3)!} \\
& =\frac{(3 n+1) n(n-1)(n-2)}{3(3 n-8)}
\end{aligned}
$$

Since this number is an integer, $3 n-8$ must divide $8 \cdot 5 \cdot 2$ and this concludes $n=16,8,6$ or 4 . If $n=16$, then, in the similar manner, the number of elements of G which are conjugate to an elements σ_{1} of H which is a cycle of length 5 as an element of $\left(H, \Delta_{1}\right)$ is equal to $\frac{49 \cdot 16!}{34 \cdot 5 \cdot 11!}$ and, since this number is not an integer, we have a contradiction. If $n=8$, then the number of elements of G which are conjugate to an element σ_{2} of H which is the product of disjoint two cycles of length 2 as an elements of $\left(H, \Delta_{1}\right.$) is equal to $\frac{25 \cdot 8 \text { ! }}{13 \cdot 2^{2} \cdot 2 \cdot 4!}$ and, since this number is not an integer, we have a contradiction. If n is either 6 or 4 , the degree of (G, Ω) is a prime number and so, by theorems of Galois (Theorem 11.6 in [6]) and Burnside (Theorem 11.7 in [6]), (G, Ω) is a Frobenius group. This is a contradiction.
(ii) $r=2$: Since L is a subgroup of $S_{2} \times S_{n-2}$ and $(n-1)!>|L|>(n-2)!$, L must be $S_{2} \times S_{n-2}$. Then $H^{\psi}=31_{s_{n}}+2 \chi^{0 \cdots 0}+\chi^{0 \ldots 0}$ and so we have the following possibilities

$$
\begin{array}{lc}
f_{1}=n & 2 n-1 \\
f_{2}=\frac{n(n-1)}{2} & \text { or }
\end{array} \frac{(n-1)(n-2)}{2} .
$$

In the first case, according to Proposition 3, we have

$$
\begin{gathered}
n+s n+\frac{t n(n-1)}{2}=0 \\
n^{2}+s^{2} n+\frac{t^{2} n(n-1)}{2}=\frac{n\left(n^{2}+n+2\right)}{2}
\end{gathered}
$$

and so $n=\frac{t^{2}+4 t}{2-t^{2}}$, that is, n is 2 or 5 which has been excluded. In the second case we have

$$
q=\frac{n^{2}+n+2}{2} \times \frac{n^{2}(n-1)}{2(n-1) \cdot \frac{(n-1)(n-2)}{2}}=\frac{n^{2}\left(n^{2}+n+2\right)}{2(2 n-1)(n-2)},
$$

but this is not a square for any integer n. This is a contradiction, by Proposition 2.
III. The case $|L|=(n-2)$!. Then $m=n(n-1)$ and so the degree of (G, Ω) is $n^{2}+1$. By Proposition 3, $n=57 . m=57 \cdot 56=3192$ and so $q=\frac{3250 \cdot 57 \cdot 3192}{f_{1} \cdot f_{2}}$ must be a square. Then we have the following possibilities:

$$
\begin{array}{lll}
f_{1}=624 & & 1520 \\
& \text { or } & \\
f_{2}=2625 & & 1729 .
\end{array}
$$

On the other hand, since L is intransitive and since $|L|=55!, L=S_{1} \times S_{1} \times S_{55}$ or $L=S_{2} \times A_{55}$ or $L=$ the group which consists of even permutations in $S_{2} \times S_{55}$. In any of those cases, since $1_{S_{1} S_{1} \times A_{66}}^{S_{57}}=1_{L}^{S_{67}}+$ a sum of characters of S_{67} and since $1+1_{S_{66}}^{S_{67}}+1_{S_{1} \times S_{1} \times A_{65}}^{g_{67}}$ is decomposed into 13 irreducible characters which have degrees $1,1,1,1,56,56,56,56,56,57 \cdot 27,57 \cdot 27,28 \cdot 55$ and $28 \cdot 55$ respectively, f_{1} and f_{2} must be partial sums of these integers, but it is impossible.

Thus we complete the proof of Theorem.
4. There exist primitive extensions of rank 3 of S_{n} for $n=1,2,3,5$ and 7 .
(i) The cyclic group of order 3 is the unique primitive extension of S_{1}.
(ii) The dihedral group of order 10 is the unique primitive extension of S_{2}
(iii) The alternating group A_{5} of degree 5 is the unique primitive extension of S_{3}.
(iv) Let N be the elementary abelian group of order 16 and let $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}$, a_{4}, be a minimal set of generators of N. For any element σ of $S_{\overline{0}}$ a permutation on the set $\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}=a_{1} a_{2} a_{3} a_{4}\right\}$ deflned by $\left(\begin{array}{lll}a_{1}, & a_{2}, & a_{3}, \\ a_{\sigma(1)}, & a_{\sigma(2)}, & a_{\sigma(3)}, \\ a_{\sigma(4)},\end{array}\right.$ $\left.\begin{array}{l}a_{\overline{5}} \\ a_{\sigma(5)}\end{array}\right)$ induces an automorphism $\bar{\sigma}$ of N. Thus $S_{\overline{5}}$ is identified with an automorphism group H of N. Then we can see easily that the semidirect product $S_{5} N$ is the unique primitive extension of rank 3 of S_{5}.
(v) Let F be the finite filed consisting of 5^{2} elements and let σ be the involutive automorphism of F and let $U_{3}(F)$ be the projective special unitary group over F of dimension 3. Then σ induces an automorphism $\bar{\sigma}$ of $U_{3}(F)$. $U_{3}(F)$ contains a $\bar{\sigma}$ invariant subgroup H which is isomorphic to A_{7} and the semidirect product $\langle\bar{\sigma}\rangle H$ of groups $\langle\sigma\rangle$, which is generated by $\bar{\sigma}$, and H is isomorphic to S_{7} (H. H. Mitchell; Theorem 25, [5]). $U_{3}(F)$ is a primitive extension of rank 3 of A_{7} (D. G. Higman [4]). Then the semidirect product $\langle\bar{\sigma}\rangle U_{3}(F)$ is a primitive extension of rank 3 of $\langle\bar{\sigma}\rangle H \cong S_{7}$.

References

[1] W. Burnside, Theory of groups of finite order, 2nd ed. Cambridge University Press, London, 1911.
[2] J. S. Frame, The double cosets of a finite group, Bull. Amer. Math. Soc., 47 (1941), 458-467.
[3] G. Frobenius, (i) Über die Charakter der symmetrishen Gruppe, Sitzber. Preuss. Akad., Berlin (1900), and, (ii) Über die Charaktere der alternierenden Gruppe, ibid. (1901), 303-315.
[4] D. G. Higman, Finite permutation group of rank 3, Math. Zeitshr. 86 (1964), 145-156.
[5] H. H. Mitchell, Determination of the ordinary and modular ternary linear groups, Trans. Amer. Math. Soc. 12 (1911), 207-242.
[6] H. Wielandt, Finite permutation groups, Academic Press, New York and London, 1964.

Nagoya University and
University of Illinois

[^0]: Received May 17, 1965.

 * This research was supported by the National Science Foundation, G 25213.

