AN ACTION OF THE SYMPLECTIC MODULAR GROUP

LOUIS SOLOMON*

To the memory of Tadasi Nakayama

1. Let V be a free \mathbf{Z}-module of $\operatorname{rank} 2 n$. Let $G=\mathbf{S p}(2 \boldsymbol{n}, \mathbf{Z})$ be the symplectic modular group and let \mathscr{D} be the non-singular alternating bilinear form on V left invariant by G. Let $p \in \mathbf{Z}$ be a prime and let X be the set of all endomorphisms ξ of V such that

$$
\Phi(\xi x, \xi y)=p \Phi(x, y)
$$

for all $x, y \in V$. In the theory of transformation of theta functions [3] one encounters the natural action of G on X by left multiplication. The number of G orbits is known to be finite and the point of this note is a proof of the following

Theorem. The number of orbits of X under G is $\prod_{i=1}^{n}\left(1+p^{i}\right)$
The case $n=2$ is due to Hermite [2] and the case $n=3$ to Weber [4] who compute explicit sets of representatives for the orbits in these cases. The idea in the present argument is to reduce the problem to a question about the finite symplectic group $\operatorname{Sp}\left(2 n, \mathbf{F}_{p}\right)$. In the new situation Witt's theorem is available for counting purposes. The number $\prod_{i=1}^{n}\left(1+p^{i}\right)$ is the number of maximal totally isotropic subspaces of a $2 \boldsymbol{n}$ dimensional symplectic space over \mathbf{F}_{p}.
2. Let V be a free \mathbf{Z}-module of rank $2 \boldsymbol{n}$. Let $\mathscr{D}: V \times V \rightarrow \mathbf{Z}$ be a nonsingular alternating bilinear form on V. We assume that V has a basis v_{1}, $\ldots, v_{2 n}$ such that the matrix of $\mathscr{D}\left(v_{i}, v_{j}\right)$ is

$$
J=\left(\begin{array}{rr}
0 & I \\
-I & 0
\end{array}\right)
$$

where I is the identity matrix of degree n. We call $v_{1}, \ldots, v_{2 n}$ a symplectic basis for V. The symplectic modular group $\mathbf{S p}(2 n, \mathbf{Z})$ consists of all automor-

[^0]phisms τ of V such that $\Phi(\tau x, \tau y)=\Phi(x, y)$ for all $x, y \in V$. We let $\mathbf{F}=\mathbf{Z} / p \mathbf{Z}$ denote the field of p elements and set $E=V / p V$. We view E as vector space over F. The form \varnothing defines, by reduction $\bmod p$, a non-singular alternating bilinear form $\Psi: E \times E \rightarrow \mathbf{F}$. Similarly, an endomorphism of $\operatorname{Homz}_{z}(V, V)$ defines an endomorphism of $\operatorname{Hom}(E, E)$. In this way we get a homomorphism of $\mathbf{S p}(2 \boldsymbol{n}, \mathbf{Z})$ into the group $\mathbf{S p}(2 \boldsymbol{n}, \mathbf{F})$ of all non-singular \mathbf{F}-linear transformations of E which preserve the form Ψ. A transvection
$$
\tau: v \rightarrow v+a \mathscr{D}(v, w) w \quad w \in V, a \in \mathbf{Z}
$$
of $\mathbf{S p}(2 \boldsymbol{n}, \mathbf{Z})$ maps into a transvection of $\mathbf{S p}(2 n, \mathbf{F})$. Since every transvection in $\mathbf{S p}(2 n, \mathbf{F})$ may be obtained in this way by reduction $\bmod p$, and since the transvections generate $\operatorname{Sp}(2 \boldsymbol{n}, \mathbf{F})$ we see that the map $\mathbf{S p}(2 \boldsymbol{n}, \mathbf{Z}) \rightarrow \mathbf{S p}(2 \boldsymbol{n}, \mathbf{F})$ is an epimorphism. We use $x \rightarrow x^{*}$ as a notation for each of the reductions
$$
\mathbf{Z} \rightarrow \mathbf{F}, \quad V \rightarrow E, \quad \mathbf{S p}(2 \boldsymbol{n}, \mathbf{Z}) \rightarrow \mathbf{S p}(2 \boldsymbol{n}, \mathbf{F})
$$
modulo p. We use those facts about symplectic spaces over a field which center around Witt's theorem. These facts are proved in [1].

Lemma 1. Let $e_{1}, \ldots, e_{2 n}$ be a symplectic basis for E. Then there exists a symplectic basis $w_{1}, \ldots, w_{2 n}$ for V such that $w_{i}^{*}=e_{i}$.

Proof. Let $v_{1}, \ldots, v_{2 n}$ be a symplectic basis for V. Then $v_{1}^{*}, \ldots, v_{2 n}^{*}$ is a symplectic basis for E. Define an F-linear transformation β of E by βv_{i}^{*} $=e_{i}$. Then $\beta \in \mathbf{S p}(2 n, \mathbf{F})$ and, since $\mathbf{S p}(2 n, \mathbf{Z})$ maps onto $\mathbf{S p}(2 n, \mathbf{F})$ we may choose $\alpha \in \mathbf{S p}(2 n, Z)$ with $\alpha^{*}=\beta$. Set $w_{i}=\alpha v_{i}$. Then $w_{1}, \ldots, w_{2 n}$ is a symplectic basis for V and $w_{1}^{*}=\alpha^{*} v_{1}^{*}=e_{i}$.

Lemma 2. Let $\xi \in X$. Then $\operatorname{Ker} \xi^{*}$ and $\operatorname{Im} \xi^{*}$ are maximal totally isotropic subspaces of E.

Proof. If $a, b \in \operatorname{Ker} \xi^{*}$ choose $x, y \in V$ with $x^{*}=a, y^{*}=b$. Then $\xi x, \xi y \in p V$ so $\xi x=p x^{\prime}, \xi y=p y^{\prime}$ for some $x^{\prime}, y^{\prime} \in V$. Then

$$
p \Phi(x, y)=\Phi(\xi x, \xi y)=p^{2} \Phi\left(x^{\prime}, y^{\prime}\right) \in p^{2} Z
$$

so $\mathscr{D}(x, y) \in p \mathrm{Z}$ and $\Psi(a, b)=0$. Thus Ker^{*} is totally isotropic. Similarly, if $a, b \in \operatorname{Im} \xi^{*}$ write $a=\xi^{*} x^{*}, b=\xi^{*} y^{*}$ for some $x, y \in V$ and then

$$
\Psi(a, b)=\Phi(\xi x, \xi y)^{*}=p^{*} \Phi(x, y)^{*}=0
$$

so that $\operatorname{Im} \xi^{*}$ is totally isotropic. We must prove that $\operatorname{dim} \operatorname{Ker} \xi^{*}=n=\operatorname{dim}$ $\operatorname{Im} \xi^{*}$.

Let $\cdot T$ be the matrix for ξ in the symplectic basis $v_{1}, \ldots, v_{2 n}$. Since $\mathscr{D}(\xi x, \xi y)=p \boldsymbol{D}(x, y)$ we have $T J T^{t}=p J$ where T^{t} denotes the transpose of T. Thus $(\operatorname{det} T)^{2}=p^{2 n}$ so $|\operatorname{det} \xi|=p^{n}$. Imbed V in the vector space $V \otimes \mathbb{Q}$ over the rational field \mathbf{Q}. Then \mathscr{D} extends to a form, denoted again \mathscr{D}, on $V \otimes \mathbb{Q}$ and ξ defines a linear transformation, denoted again ξ, of $V \otimes \mathbb{Q}$. Then $\mathscr{D}(\xi x, \xi y)$ $=p \mathscr{(}(x, y)$ for all $x, y \in V \otimes \mathbf{Q}$. Since $\operatorname{det} \xi \neq 0, \xi$ is invertible, and for any $x, v \in V$ we have

$$
\mathscr{D}\left(\xi^{-1} p x, v\right)=\mathscr{D}\left(\xi^{-1} p x, \hat{\xi}^{-1} \xi v\right)=p^{-1} \mathscr{D}(p x, \xi v)=\mathscr{D}(x, \xi v) \in \mathbf{Z}
$$

Now letting v range over a symplectic basis for V we see that $\xi^{-1} p x \in V$. Thus $\xi^{-1} p V \subseteq V$, so $p V \subseteq \xi V$. Let $d_{1}, \ldots, d_{2 n} \in \mathbf{Z}$ be the elementary divisors of ξ viewed as endomorphism of V, where we choose the d_{i} non negative and such that d_{i+1} divides d_{i}. Choose \mathbf{Z}-bases $x_{1}, \ldots, x_{2 n}$ and $y_{1}, \ldots, y_{2 n}$ for V so that $\xi x_{i}=d_{i} y_{i}$. Since $p V \subseteq \xi V$ we must have $p y_{i} \in \mathbf{Z} d_{i} y_{i}$ so each d_{i} divides p. But $d_{1}, \ldots, d_{2 n}=|\operatorname{det} \xi|=p^{n}$ so we have $d_{1}=\cdots=d_{n}=p$ and $d_{n+1}=\cdot$ $\cdots=d_{2 n}=1$. Thus the elementary divisors of ξ^{*} are $d_{1}^{*}=\cdots=d_{n}^{*}=0$ and $d_{n+1}^{*}=\cdots=d_{2 n}^{*}=1$. Thus ξ^{*} has rank n and hence $\operatorname{dim} \operatorname{Ker} \xi^{*}=n=\operatorname{dim} \operatorname{Im} \xi^{*}$. This proves the lemma.

Lemma 3. Suppose $\xi, \eta \in X$. If $\operatorname{Ker}^{*}=\operatorname{Ker}^{*}$ then ξ and η are in the same orbit under G.

Proof. Lemma 2 tells us that $D=\operatorname{Ker} \xi^{*}$ is a maximal totally isotropic subspace of E. The theorem on Witt decomposition of symplectic spaces over a field asserts the existence of a maximal totally isotropic subspace D^{\prime} of E such that $E=D+D^{\prime}$, direct sum. Furthermore there exist bases e_{1}, \ldots, e_{n} for D and $e_{n+1}, \ldots, e_{2 n}$ for D^{\prime} such that $e_{1}, \ldots, e_{2 n}$ is a symplectic basis for E. Lemma 1 shows the existence of a symplectic basis $w_{1}, \ldots, w_{2 n}$ for V such that $w_{i}^{*}=e_{i}$. Define $\theta \in X$ by

$$
\begin{aligned}
\theta w_{i} & =p w_{i} & & i=1, \ldots, n \\
\theta w_{i} & =w_{i} & & i=n+1, \ldots, 2 n
\end{aligned}
$$

Then $\operatorname{Ker} \theta^{*}=D$. Since $\operatorname{Im} \xi^{*}=\xi^{*} D^{\prime}$ and $\operatorname{Im} \theta^{*}=\theta^{*} D^{\prime}$ we see from Lemma 2 that $\xi^{*} D^{\prime}$ and $\theta^{*} D^{\prime}$ are totally isotropic subspaces of E of the same dimension
n. Define a non singular F-linear transformation $\beta: \xi^{*} D^{\prime} \rightarrow \theta^{*} D^{\prime}$ by $\beta \xi^{*} e_{i}=\theta^{*} e_{i}$ for $i=n+1, \ldots, 2 n$. Since $\xi^{*} D^{\prime}$ and $\theta^{*} D^{\prime}$ are totally isotropic, β is an isometry, and, by Witts theorem, may be extended to an element, denoted again β, of $\mathbf{S p}(2 n, \mathbf{F})$. Since both ξ^{*} and θ^{*} annihilate D we have $\beta \xi^{*} e_{i}=\theta^{*} e_{i}$ for all $i=1, \ldots, 2 n$ so $\beta \xi^{*}=\theta^{*}$. Choose $\alpha \in \mathbf{S p}(2 n, \mathbf{Z})$ with $\alpha^{*}=\beta$. Then $\left.(\alpha)^{*}\right)^{*}$ $=\alpha^{*} \xi^{*}=\theta^{*}$. In particular $\alpha \xi w_{i} \in p V$ for $i=1, \ldots, n$. Define $\sigma \in \operatorname{Hom}_{\mathbf{Z}}(V, V)$ by

$$
\begin{array}{ll}
\sigma w_{i}=\frac{1}{p} \alpha \xi w_{i} & i=1, \ldots, n \\
\sigma w_{i}=\alpha \xi w_{i} & i=n+1, \ldots, 2 n
\end{array}
$$

Then $\alpha \xi=\sigma \theta$ so

$$
\mathscr{D}(\sigma \theta x, \sigma \theta y)=\Phi(\alpha \xi x, \alpha \xi y)=p \mathscr{D}(x, y)=\Phi(\theta x, \theta y)
$$

for all $x, y \in V$. Since θV has finite index in V the bilinearity of Φ implies $\Phi(\sigma x, \sigma y)=\Phi(x, y)$ for all $x, y \in V$. Now, as in the proof of Lemma 1 , we conclude det $\sigma=1$ so that $\sigma \in G$. Thus we have shown the existence of $\alpha, \sigma \in G$ with $\alpha \xi=\sigma \theta$. Similarly there exist $\beta, \tau \in G$ with $\beta \eta=\tau \theta$. Then $\eta=\beta^{-1} \tau \sigma^{-1} \alpha \xi$ so that ξ, η lie in the same orbit under G.

Proposition. The map $\xi \rightarrow$ Ker ξ^{*} induces a one to one correspondence between orbits of X under G and maximal totally isotropic subspaces of E.

Proof. If $\xi, \eta \in X$ lie in the same orbit, say $\xi=\tau \eta$ with $\tau \in \mathbf{S p}(2 n, \mathbf{Z})$. Then $\xi^{*}=\tau^{*} \eta^{*}$. Since $\tau^{*} \in \mathbf{S p}(2 n, \mathbf{F})$ is non-singular we have $\operatorname{Ker} \xi^{*}=\operatorname{Ker} \eta^{*}$. Thus $\xi \rightarrow \operatorname{Ker} \xi^{*}$ induces a map of orbits into the set of maximal totally isotropic subspaces of E. By Lemma 3 the map is one to one. To see that every maximal totally isotropic subspace D occurs as a kernel of some ξ^{*}, construct a Witt decomposition $E=D+D^{\prime}$ as in the proof of Lemma 3, and note that the element $\theta \in X$ satisfies $\operatorname{Ker} \theta^{*}=D$. This completes the proof.
3. We have thus reduced the problem to computing the number t of maximal totally isotropic subspaces of a $2 n$ dimensional symplectic space over F. The finite group $\operatorname{Sp}(2 \boldsymbol{n}, \mathbf{F})$ acts as a permutation group on the set of maximal totally isotropic subspaces of E. By Witt's theorem this permutation group is transitive, hence

$$
t=|G: H|
$$

where H is the group of all $\gamma \in \mathbf{S p}(2 n, \mathbf{F})$ which leave globally invariant a given maximal totally isotropic subspace D. The restriction map $\gamma \rightarrow \gamma \mid D$ defines a homomorphism of H into the full linear $\operatorname{group} \mathbf{G L}(D)=\mathbf{G L}(n, \mathbf{F})$. By Witt's theorem this is an epimorphism. The kernel K consists of those elements of $\mathbf{S p}(2 n, \mathbf{F})$ which fix D. It is known, and it is easy to compute directly, that K is isomorphic to the additive group of $n \times n$ symmetric matrices over F so that K has order $|K|=p^{n(n+1) / 2}$. Thus

$$
t=|\mathbf{S p}(2 n, \mathbf{F})||\mathbf{G L}(n, \mathbf{F})|^{-1} p^{-n(n+1: / 2}
$$

If we insert the known formulas

$$
\begin{aligned}
& |\mathbf{S p}(2 n, \mathbf{F})|=p^{n^{2}} \prod_{i=1}^{n}\left(p^{2 i}-1\right) \\
& |\mathbf{G L}(n, \mathbf{F})|=p^{n(n-1) / 2} \prod_{i=1}^{n}\left(p^{i}-1\right)
\end{aligned}
$$

we find

$$
t=\prod_{i=1}^{n}\left(1+p^{i}\right)
$$

This proves the theorem.

References

[1] E. Artin, Geometric Algebra, Interscience, Ncw York (1957).
[2] C. Hermite, Sur la théorie de la transformation des fonctions abéliennes, Comptes Kendus 40 (1855), 249-254.
[3] A. Krazer, Lehrbuch der Thetafunktionen, Teubner, Leipzig (1903).
[4] H. Weber, Über die Transformationstheorie der Thetafunktionen, insbesondere derer von drei Veränderlichen, Annali di mat., Ser. 2, 9 (1879), 126-166.

The Rockefeller Institute,

New York 21, N.Y.

[^0]: Received March 22, 1965.

 * This work was supported in part by the National Science Foundation under grant GP 1452.

