IMBEDDING A REGULAR RING IN A REGULAR RING WITH IDENTITY

NENOSUKE FUNAYAMA
Dedicated to the memory of Professor Tadasi Nakayama

In [1] L. Fuchs and I. Halperin have proved that a regular ring R is isomorphic to a two-sided ideal of a regular ring with identity. ([1] Theorem 1). Their methed is to imbed the regular ring R in the ring of all pairs (a, ρ) with $a \in R$ and ρ from a suitable commutative regular ring S with identity such that R is an algebra over S. Thus S may be seen as the ring of $R-R$ endomorphisms of the additive group of R. The following question is naturally raised: Is it true that the ring of all $R-R$ endomorphisms of a rugular ring is a commutative regular ring? The main purpose of this paper is to answer this question affirmatively. (Theorem 1). After established this theorem we can follow the method in [1] to solve the problem in the title.

1. Endorphisms of \boldsymbol{R}^{+}.

Let R^{+}be the additive group of a given ring R with R as left and right operator domains, and let \widetilde{R} be the ring of all endomorphisms of R^{+}, that is the ring of all $R-R$ endomorphisms of the additive group $R . \widetilde{R}$ has the identity $\overline{1}$ which is the identity mapping of R^{+}. Also let us denote by $\overline{0}, \bar{n}$ and \bar{c} respectively the zero endomorphism, $\bar{n}: a \rightarrow n a$, where a is an element in R and n is an integer, $\bar{c}: a \rightarrow a c$, where c is an element in the center C of R.

Lemma 1. If R has the identity 1 , then \widetilde{R} is isomorphic to the center C of R.

Proof. Let ρ be an element of \widetilde{R}. Then for any element a in R we have $a \rho=(a 1) \rho=a(1 \rho)$ and $a \rho=(1 a) \rho=(1 \rho) a$. Thus $c=1 \rho$ is in the center C of R and $a \rho=a c=c a$. Conversely let c be an element in C, then $\bar{c}: a \rightarrow a c$ is an endomorphism of $R^{+} . \rho \rightarrow 1 \rho$ sets up a ring isomorphism between \widetilde{R} and C.

Lemma 2. If $R^{2}=R$, then \widetilde{R} is commutative.

Proof. Let ρ, τ be a pair of elements in \widetilde{R}. We will show that $a(\rho \tau)=$ $a(\tau \rho)$ for any element a in R. As $R^{2}=R$ it is sufficient to show that $(b c)(\rho \tau)$ $=(b c)(\tau \rho)$ for any pair of elements b, c in R, and this is easily shown using the fact that ρ, τ are $R-R$ endomorphisms.

Lemma 3. If R is a regular ring, then \widetilde{R} is commutative.
Proof is clear by Lemma 2.
For an element ρ in \widetilde{R} denote the kernel and the image of ρ by

$$
\begin{aligned}
& R_{p}=\rho^{-1}(0)=\{a \in R \mid a \rho=0\} \\
& \bar{R}_{p}=\{a \rho \mid a \in R\}
\end{aligned}
$$

R_{ρ} and \bar{R}_{ρ} are ideals in R. If ρ is idempotent then $R=R_{\rho} \oplus \bar{R}_{\rho}$.
The converse is not always true, that is $R=R_{\rho} \oplus \bar{R}_{\rho}$ does not imply that ρ is idempotent, and so, for the later use, we seek for the condition for ρ which implies $R=R_{\rho} \oplus \bar{R}_{\rho}$.

Lemma 4. $R=R_{p} \oplus \bar{R}_{\rho}$ if and only if the following conditions are satisfied:

$$
\begin{equation*}
x \rho^{2}=0 \text { implies } x \rho=0 \tag{1}
\end{equation*}
$$

For any $x \in R$ there exists an element $y \in R$ such that

$$
\begin{equation*}
x \rho=y \rho^{2} \tag{2}
\end{equation*}
$$

Moreover the y in (2) is uniquely determined in \bar{R}_{ρ}.
Proof. Condition (1) is equivalent to the condition $R_{p} \cap \bar{R}_{\rho}=(0)$ as is easily shown. Condition (2) is equivalent to the condition $R=R_{\rho}+\bar{R}_{\mathrm{p}}$. Indeed if $R=R_{\rho}+\bar{R}_{\rho}$, then any $x \in R$ may be written as $x=x_{1}+x_{2} \rho$, where $x_{1} \rho=0$ and then $x \rho=x_{2} \rho^{2}$. Conversely if the condition (2) is satisfied, any $x \in R$ may be written as $x=(x-y \rho)+y \rho$, where y satisfies $x_{\rho}=y \rho^{2}$. Then $(x-y \rho) \rho=x \rho-y \rho^{2}$ $=0$, which proves that $R=R_{\mathrm{p}}+\bar{R}_{\rho}$. The proof of the last part is as follows: First the y in (2) may be chosen from \bar{R}_{ρ} as $x_{\rho}=y \rho^{2}$ and $y \rho=y \rho^{2}$ imply that $x \rho=(z \rho) \rho^{2}$. Secondly the uniqueness of y : If $x \rho=y \rho^{2}=z \rho^{2}$, where y and z are in \bar{R}_{ρ}, then $(y-z) \rho^{2}=0$, which implies $(y-z) \rho=0$ by (1). As y and z are in $\bar{R}_{\rho} y=y^{\prime} \rho, z=z^{\prime} \rho$ for some $y^{\prime}, z^{\prime} \in R$. Then $\left(y^{\prime}-z^{\prime}\right) \rho^{2}=0$, and so again by (1) $\left(y^{\prime}-z^{\prime}\right) \rho=0$, that is $y=z$.

Lemma 5. If $\rho \in \widetilde{R}$ satisfies $R=R_{\rho} \oplus \bar{R}_{\rho}$, then for some $\sigma \in \widetilde{R}$,

$$
\begin{equation*}
\rho \sigma \rho=\rho \tag{3}
\end{equation*}
$$

$$
\begin{align*}
& \rho \sigma=\sigma \rho \tag{4}\\
& \sigma \rho \sigma=\sigma \tag{5}
\end{align*}
$$

Proof. In Lemma 4 it is shown that $K=R_{\rho} \oplus \bar{R}_{\rho}$ implies that, for any $x \in R$ there exists uniquely determined $y \in \bar{R}_{\rho}$ with $x_{\rho}=y \rho^{2}$. Define σ as $x_{\sigma}=y$. As is easily seen σ is an endomorphism of the additive group of R. For any elements x, r in R we have

$$
(x r) \rho=(x \rho) r=\left(y \rho^{2}\right) r=(y r) \rho^{2} .
$$

As $\bar{R}_{\mathrm{\rho}}$ is an ideal of R we have $y r \in \bar{R}_{\rho}$, showing that $(x r)_{\sigma}=\left(x_{\sigma}\right)_{r}$. Similarly $(r x)_{\sigma}=r\left(x_{\sigma}\right)$. Thus $\sigma \in \widetilde{R}$.

As the proofs of (3), (4) and (5) are similar we show only (5). To prove (5) it is sufficient to show that $x(\sigma \rho \sigma)=x \sigma$ for any $x \in R$. Put $x_{\sigma}=y$ and $x(\sigma \rho \sigma)$ $=z$. Then, by the definition of σ, we have $x \rho=y \rho^{2}, y \in \bar{R}_{\rho}$, and $(y \rho)_{\sigma}=z$, that is $y \rho^{2}=z \rho^{2}$, where y and z are in \bar{R}_{ρ}. Then $(y-z) \rho^{2}=0$, which implies $y=z$ as y and z are in \bar{R}_{ρ}. Thus we have $x_{\sigma}=x\left(\sigma \rho_{\sigma}\right)$.

Theorem 1. The ring \widetilde{R}, ring of all endomorphisms of R^{+}, of a regular ring R is a commutative regular ring with identity.

Proof. Commutativity was already shown in Lemma 3. To prove the regularity of R it is sufficient to prove $R=R_{\mathrm{\rho}} \oplus \bar{R}_{\mathrm{\rho}}$ for any $\rho \in \widetilde{R}$, or equivalently, by Lemma 4, (1) and (2) in Lemma 4. Suppose that $x \rho \neq 0$. Then by the regularity of R there exists $y \in R$ such that $x_{\rho}=(x \rho) y(x \rho)$. This implies $x \rho=$ $\left(x \rho^{2}\right) y x$ and as $x \rho \neq 0$ we have that $x \rho^{2} \neq 0$ showing (1). Also $x \rho=(x \rho) y(x \rho)=$ $(x y x) \rho^{2}$ showing (2).

2. Imbedding a regular ring into a regular ring with identity.

Let R be an arbitrary ring.
Let S be a commutative subring of \widetilde{R}, the ring of all $R-R$ endomorphisms of R^{+}, and let R^{s} be the set of all ordered pairs (a, ρ) where $a \in R$ and $\rho \in S$. In R^{s} define the equality, addition, and multiplication by

$$
\begin{aligned}
& (a, \rho)=(b, \tau) \text { if and only if } a=b \text { and } \rho=\tau, \\
& (a, \rho)+(b, \tau)=(a+b, \rho+\tau), \\
& (a, \rho)(b, \tau)=(a b+b \rho+a \tau, \rho \tau) .
\end{aligned}
$$

Then R^{s} is a ring. Commutativity of S is used for the proof of associativity of R^{s}. If S has the identity then R^{s} has the identity $(0, \overline{1})$. The examples of
S are as follows: (a) $Z=\{\bar{n}: a \rightarrow n a, n$ is an integer $\}$, (b) $\bar{C}=\{\bar{c} \mid \bar{c}: a \rightarrow a c$ $(=c a), c$ is in the center C of $R\}$, (c) $\bar{Z}+\bar{C}$, (d) \widetilde{R} when \widetilde{R} is commutative.

Remark 1. $R^{\bar{z}}$ does not coincide with the classical imbedding $R^{\#}$. Indeed when R is of bounded order $R^{\bar{z}}$ is of bounded order but $R^{\#}$ is not of bounded order.
R is imbedded in R^{s} as an ideal by the mapping $a \rightarrow(a, 0)$. Our idea is to give some properties to R^{9} selecting a suitable S. This idea is essentially included in [1], and the proof of the following theorem follows that in [1].

Lemma 6. If R and S are regular, then R^{s} is regular.
Proof. Let (a, ρ) be any element in R^{s}. We will seek for (b, σ) such that $(a, \rho)(b, \sigma)(a, \rho)=(a, \rho)$, that is

$$
\begin{align*}
& \rho \sigma \rho=\rho, \\
& a b a+(b a) \rho+(a b) \rho+a^{2} \sigma+b \rho^{2}+a(\sigma \rho)+a(\rho \sigma)=a . \tag{6}
\end{align*}
$$

As S is regular there exists a σ such that $\rho \sigma \rho=\rho$. For the second equality: Let e be an idempotent in R such that $a=a e=e a$. (The existence such an e has been proved in [1] Lemma 2).

By the regularity of R there exists an element x such that

$$
\begin{equation*}
(a+e \rho) x(a+e \rho)=a+e \rho . \tag{7}
\end{equation*}
$$

Put $y=$ exe, then, as is easily calculated, y satisfies (7) replacing x by y. Put $b=y-e_{\sigma}$, then b satisfies (6).

Theorem 2. $R^{\bar{R}}$ is a regular ring with identity if R is regular. R is imbedded in $R^{\tilde{R}}$ as an ideal.

Proof is clear from Theorem 1 and Lemma 6.

Reference

[1] L. Fuchs and I. Halparin, On the embedding of a regular ring in a regular ring with identity, Fundamenta Mathematicae LIV (1964), pp. 287-290.

Yamagata University

