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If U=U(0), U(i) is a maximal subgroup of £7(ι + l) and U(n) = V, then

we term the U(i) a densest chain connecting U and V\ and n is the length

of this chain. The subgroup U of V will furthermore be termed an w-uniserial

subgroup of V if there exists one and only one densest chain connecting U

and V and if its length is n. The principal aim of this note is to give charac-

terizations of dedekind groups [ = groups all of whose subgroups are normal]

in terms of the normality of uniserial subgroups. We quote one of our results :

The finite group G is a dedekind group if, and only if, all uniserial sub-

groups of G are normal and normal subgroups of G normalize their 2-uniserial

subgroups [Corollary 2.14].

Our principal results [Theorems 2.10 and 3.3] are a little more differentiated.

The method employed consists in an exact determination of all finite groups

that are not dedekind groups, though all their proper epimorphic images are

dedekind groups and which in addition meet certain definite requirements

[Proposition 2.1].

Notations

ΊG - center of G.

cU = cQU= centralizer of U in G.

χoy - χ~xy~λχy

xy = x(x°y) -y~ιxy

U° V- subgroup generated by all the u°v with u in U and υ in V.

G' = G°G = commutator subgroup of G.

Factor of G = epimorphic image of subgroup of G.

{•••} = subgroup generated by the enclosed set.

All groups considered are finite!
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1. Uniseriality

If U is a subgroup of G, and if the U(i) are subgroups of G such that

£7=£/lO), J7(i) is a maximal subgroup of CΛίH-1), U(n) = G,

then we term the U(i) a densest series connecting U and G; and n is the

length of this series. The subgroup U of G is termed uniserial, if there exists

(one and) only one densest series connecting U and G; and the uniserial

subgroup U of G is termed n-uniserial, if # is the length of the uniquely deter-

mined densest series connecting U and G.

Clearly the subgroup U of G is uniserial if, and only if, the set of sub-

groups of G, containing U, is [linearly] ordered by inclusion and U is n-

uniserial, if n +1 is the number of subgroups of G which contain U.

It is clear that G is its one and only one O-uniserial subgroup and that a

subgroup M of G is maximal if, and only if, it is 1-uniserial. One verifies

furthermore without any difficulty that 1 is an w-uniserial subgroup of G if,

and only if, G is cyclic of order pn (for some prime p).

(1.1) The following properties of the subgroup U of the group G and the

positive integer n are equivalent:

( i) U is an n-uniserial subgroup of the group G.

(ii) There exists one and only one maximal subgroup M of G which con-

tains U; and U is an {n — 1)-uniserial subgroup of M.

(Hi) There exists one and only one subgroup B of G of which U is a maximal

subgroup; and B is an in — 1)-uniserial subgroup of G.

The simple proof of this criterion may be left to the reader. The interest

of this criterion stems from the fact that it contains two inductive definitions

of uniseriality.

If U is an w-uniserial subgroup of G, and if B is a subgroup of G which

contains U, then B is an /-uniserial subgroup of G and U is an (n - i)-uniserial

subgroup of B. The converse of this statement is false, as may be seen from

the example of the elementary abelian groups of order p2.

LEMMA 1.2. Suppose that a is an epimorphism of G upon H.

(a) If U is an n-uniserial subgroup of G, then Uσ is an i-uniserial subgroup

of H with i< n.
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(b) If V is an n-uniserial subgroup of H, then the inverse image V° ι is

an n-uniserial subgroup of G.

Proof. Suppose that U is an fi-uniserial subgroup of G and denote by U(i)

with 0<i<n the uniquely determined densest series connecting U and G. If

B is a subgroup of H containing Uβ, then UQB^1 SO that 2Γ"1 = U(i) for some

suitably selected i. If C is another subgroup of H containing £7α, then

0σ ι = U{j) for some j and it is clear that β ς C if, and only if, i<j. Consequent -

ylthe subgroups of H containing Ua form a densest series connecting U° and H',

this densest series is the only densest series connecting Uβ and H\ and its

length does not exceed n. This proves (a).

If K is the kernel of a, then σ induces an isomorphism of G/K upon Hand

consequently an isomorphism of the lattice of subgroups of G containing K

upon the lattice of subgroups of H. All the inverse images of subgroups of H

contain K\ and (b) is an immediate consequence of these remarks.

The group G is said to be of exponent e if Ge = 1. Note that every multiple

of e is likewise an exponent of G. If e is not divisible by the nth power of

any prime, then we shall say that G is of n-th power free exponent. One

verifies easily the equivalence of the following properties of a group G:

( i ) G is of n-ίh power free exponent.

(ii) If P is a [cyclic] ^-subgroup of G, then Ppn~x = 1.

(Hi) If 1 is an z-uπiserial subgroup of the subgroup U of G, then t<n.

2. The characterization of dedekind groups within
the class of nilpotent groups

A group is termed a dedekind group, if all its subgroups are normal sub-

groups. These groups are completely classified by the following well known

STRUCTURE THEOREM. A nonabelian group is a dedekind group if, and only

if, it is the direct product of a quaternion group, an elementary abelian 2-group

and an abelian group of odd order.

For a proof see, for instance, Hall Γp. 190, Theorem 12. 5.4j. We begin

our discussion by proving a useful reduction theorem.

PROPOSITION 2.1. Jf the nilpotent group G is not a dedekind group, though

all its proper epimorphic images are dedekind groups, then
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( / ) G is a p-group

( II) zG is cyclic?

(III) G' is of order p;

(IV) G'-GpczzG;

( V ) The following properties of the subgroup S # 1 of G are equivalent:

( a ) S is normal;

( b ) S f l z G ^ l ;

( c ) G'cS.

(VI ) If the order of the cyclic subgroup C of G is divisible by p2, then G'

and C is normal.

(VII) Non-normal subgroups of G are elementary abelian.

Proof. Assume by way of contradiction the existence of two different

normal subgroups X and Y of G each of order a prime—these primes may be

equal or different. ' Since G is nilpotent, XY^zG; see Hall [p. 49, Theorem

4.3.4]. Consider a cyclic subgroup S of G. If S Π z G # l , then G/(SΠzG) is

by hypothesis a dedekind group so that S/(SΠzG) is normal in G/(SΓ\zG)

implying the normality of S in G. Assume next S Π zG = 1. Since, by hypothesis,

GIX and G/Y are dedekind groups, SX and SY are normal subgroups of G.

Hence SXΠSY is a normal subgroup of G. If x is an element in XΠSY,

then x = sy for s in S and y in Y\ and it follows that s = xy'1 belongs to

S Π XYQ S Π zG = 1. Hence x = y belongs to XΠY=1, proving that XΠSY=1.

Consequently it follows from Dedekind's modular law that

is a normal subgroup of G. Thus all cyclic subgroups of G are normal so that

G is a dedekind group, a contradiction, proving:

(a) There exists at most one normal cyclic subgroup of order a prime.

Every subgroup of zG is a normal subgroup of G. Application of (a) shows

that zG possesses at most one subgroup of order a prime. Applying a well

known theorem from the theory of finite abelian groups—see, for instance, Fuchs

[p. 80, Corollary 24. 4]—it follows that

(b) zG is a cyclic _£-group.

As a nilpotent group G is the direct product of its primary components.

If C is one of the primary components of G, then zC = CftzG; and C # l ini-
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plies ZC=*F1—see, for instance, Hall Cp. 47, Theorem 4.3.1]. Application of (b)

shows that only the ^-component of G is different from 1 and thus we see

that

(c) G is a ^>-group.

Since G is not a dedekind group, G is a ^>-group, not 1 and this implies

zG=^l. Consequently zG contains one [and by (b) only one] cyclic subgroup

P of order p. Assume by way of contradiction that G/P is not abelian. Since

G/P is by hypothesis a dedekind group and by (c) a ^-group, it follows from

the Structure Theorem that

G/P-QxE is the direct product of a quaternion group Q and an elementary

abelian 2-group E so that in particular p = 2.

It follows in particular that two elements in G/P do not commute if, and

only if, they are of order 4 and transform each other into their inverses. Con-

sider an element Pa of order 4 in G/P. Then Pa2 is of order 2 so that a2*l.

If x is any element in G, then

ax ^a±x mod P;

and this implies (a2)* = a2X = a±2 since P i s a subgroup of order 2 of zG. Con-

sequently {a2} is a normal subgroup, not 1, of G and as a cyclic 2-group, {<?2}

contains one and only one element of order 2 which is clearly a center element

of the 2-group G. By (b) there exists at most one element of order 2 in zG;

and this is clearly contained in P. Since P is cyclic of order 2, it follows that

P c {α2}c{α}. Since G/P is, by hypothesis, a dedekind group, {<?}/Pis a normal

subgroup of G/P so that {a} is a normal subgroup of G. Since {Pα} = {a}/P

has order 4 and P has order 2, the cyclic group {#} has order 8.

Denote now by R the uniquely determined subgroup of G which satisfies

P^R and R/P=Q. Consider an element x in R. If Px is of order 4, then we

have shown just now that {x) is a normal subgroup of G and the same is

trivially true if Px = 1. If finally Px has order 2, then PΛ; = Pjy2 for some y in

P, since Q is a quaternion group. Since P^ is an element of order 4 in Q, the

result of the preceding paragraph of our proof implies PQ {y}', and from

{x}^P{y} = {y} we deduce that the characteristic subgroup {x} of the normal

subgroup {y} of G is itself a normal subgroup of G. Hence R is a dedekind

2-group, containing elements of order 8; and such a group is by the Structure
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Theorem abelian. But R/P=Q is a quaternion group which is not abelian.

This is a contradiction, proving that G/P is abelian. Hence l c G ' c P , as G is

not a dedekind group and therefore not abelian. But P is cyclic of order a

prime, so that Gf = P. Hence, by (b),

(d) G1 is the uniquely determined subgroup of order p of zG.

If x and y are elements in G, then their commutator x°y belongs by (d)

to zG and satisfies (x°y)p = l. Hence

χy = χ{χoy)y Xyl = χ{χoy)\ χyP = X

so that x and yp commute for every x and y in Gt proving that yp belongs to

zG and that therefore

(e) G^QzG.

Consider now a subgroup S*l of G. If S is normal, then SΠzG#l, since

G is a ί-group see, for instance, Kurosh [II, p. 165]. But S Π zG # 1 implies

G ' c S by (d) and G' c S naturally implies the normality of S. Thus we have

shown

(f) The following three properties of the subgroup S # l of G are equivalent:

G'^S; S i s normal; SΠzG^l .

If the order of the cyclic subgroup C of G is divisible by p2, then K C ^ c z G

by (e) so that G^CP by (f). Hence

(g) If the order of the cyclic subgroup C of G is divisible by />2, then Gf ̂  C

and C is normal.

Suppose now that the subgroup S of G is not normal. Then Gf is by (f)

not part of S so that S Π Q = 1 by (d). Hence S' = 1. We deduce furthermore

from (g) that S cannot contain cyclic subgroups of order p2, proving that

(h) non-normal subgroups are elementary abelian.

COROLLARY 2.2. The group G is α dedekind group if, and only if, G is

nilpotent and G/\G°Gf) is a dedekind group.

Proof. That dedekind groups are nilpotent, is a consequence of the Structure

Theorem and it is obvious that epimorphic imgages of dedekind groups are

dedekind groups.—Assume conversely that G is nilpotent and G/(G°G') is a

dedekind group. If G were not a dedekind group, then there would exist an

epimorphic image H of G with the following three properties -
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(1) H is not a dedekind group

(2) every proper epimorphic image of H is a dedekind group

(3) Hl(HoH') is a dedekind group.

Because of (1) and (2) we may apply Lemma 2.1, (IV) to prove the com-

mutativity of H/zH. Note next that Y/X, for X a. normal subgroup of F, is

a group with abelian central quotient group if, and only if, Y° F ' c X Thus

the commutativity of H/xH implies H°H' = 1; and it follows from (3) that H

is a dedekind group, contradicting (1), and proving the sufficiency of our con-

ditions.

PROPOSITION 2.3. If the nilpotent group G is not α dedekind group, though

all its proper epimorphic images are, and if normal subgroups of G normalize

their 2-uniserial subgroups, then G is a p-group and there exists a cyclic normal

subgroup C of G and a cyclic subgroup E of order p of G with the following

properties:

(a) G = EC and 1 = £ΠC.

(b^ Cp = zG and G1 is the uniquely determined subgroup of order p of C.

(c) If pn is the order of C, then 2<n and E is an n-uniserial subgroup of G.

Proof. Application of Proposition 2.1 shows that G is a ^-group with the

following properties:

(1) zG is cyclic; G' is of order p; G' G^QzG.

(2) The following three properties of the subgroup S^l of G are equivalent*.

G'cS; Sis normal; S Π z G * l ;

(3) If the order of the cyclic subgroup C of G is divisible by p2, then G'^C

and C is normal.

(4) Non-normal subgroups of G are elementary abelian.

Since G is not a dedekind group, there exist non-normal subgroups of G

and amongst these there is one E of maximal order. Though this subgroup E

is not uniquely determined, we shall retain it throughout the remainder of the

proof.

An immediate application of (l)-(4) shows that

(5) E is elementary abelian and E Π G1 = E Π zG = 1.

Let N={E°) be the normal subgroup of G, spanned by E. Then E<^N,

since E is not normal. If S is a subgroup of G with £ c S , then S is a normal



28 REINHOLD BAER

subgroup of G because of the maximality of E. Hence iV^S. Thus we see

that

(6) N = {E°} is the one and only one subgroup of G of which E is a maximal

subgroup.

Since E is a maximal subgroup of EG1 by (5) and (1), we have by (5) and

(6):

(7) N = EG is elementary abelian and EΠG' = 1.

Suppose that X is a subgroup of order p and assume by way of contradi-

ction that X^N. Then Nf\X-l and Λr is a maximal subgroup of NX; and

we deduce from (6) that E is a 2-uniserial subgroup of NX. It is a consequence

of (7) that Gf<^NX and that therefore NX is a normal subgroup of G; and

consequently we deduce from our second hypothesis that E is a normal subgroup

of NX. Hence E is normalized by X so that E is a maximal subgroup of EX.

Application of (6) shows that EX-N, a contradiction. Hence it follows from

(7) that

(8) N is the set consisting of 1 and the elements of order p in G.

Consider now a cyclic subgroup S of G whose order is at most p2. If the

order is less than p2

t then it follows from (8) and (7) that E is centralized by

S. If the order of S is p1, then we deduce G'ciS from (3); and this implies

iVΠS=G' by (7) and (8) so that NS/N^S/G' is cyclic of order p. Then E

is by (6) a 2-uniserial subgroup of NS; and NS is a normal subgroup of G by

(2). Application of the second hypothesis shows that E is a normal subgroup

of NS. Since S is a normal subgroup of G by (3), the subgroups E and S

normalize each other; and since

by (5), E is centralized by S. Thus we have shown that E is centralized by

every element x in G whose order does not exceed p2. Denote by F the totality

of elements x in G with xpi = 1. An element x belongs, by (8), to F if, and

only if, xp belongs to N; and this is equivalent to (Nx)p = l. Consequently

NQFQcE and FIN is the totality of elements in GIN whose order is a divisor

of p. But GIN is by (7) an abelian ^-group so that F/N is a characteristic

subgroup of GIN. This implies that F is a normal subgroup of G and thus

we have shown
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(9) The totality F of elements of order dividing p2 is a normal subgroup of

G with N^FQcE.

Since E is not a normal subgroup of G, it follows from (9) that

(10) F zG^G.

Let A = G/N, an abelian p group by (7). Since F/N is by (9) the totality

of elements in A of an order not exceeding p, it follows from (9), (10) that

the maximum order pm of elements in A exceeds p in other words Km.

Denote by Ng an element of order pm in A. It is well known that {Ng} is a

direct factor of A; see, for instance, Fuchs [p. 80, Corollary 24.6]. Hence

A = {Ng} B where B is some suitably selected complementary direct factor of

A. It is a consequence of (1) and (7) that Ap is part of the cyclic group

Z= N %GIN. Thus Z contains in particular the cyclic group {Ngp) of order pm~ι.

Since m - 1 is positive, it follows that ZΓ\{Ng} *l; and this implies that

ZΠB = I, as {Ng} n £ = l, and as {A }̂ and Z contain the same elements of

order p. But this implies BP^ZΓ\B = 1. Hence B is an elementary abelian

subgroup of A; and it follows from (9) that BQF/N. Application of (10)

shows that ZB c Z{F/N) c A. Now A/B is isomorphic to the cyclic group {Ng}

of order pm and thus it follows from ZΠ B = 1 that the order of Z is smaller

than pm. But Z contains the cyclic group {Ng*} of order pm'\ Hence the

order of Z is exactly pm"1\ and this implies Z- {Ngp}. This is equivalent to

N{gp} = N'zG. Since #* belongs to zG by (1), we deduce zG = {#*} (ΛΓΠzG)

from Dedekind's modular law. But ΛfίΊzG = G' by (7) and the cyclicity of zG

see (1). As the order of the cyclic group {Ng} is pm and Km, it follows

from (3) that G'c{g } and hence G'^{gp} so that finally

zG={gp) (TVΠzG) = {g*)G' = {**}.

Next we note, using (8), that NO. {g} = iVΠzG = G'. Since the order of

{Ng} = N{g}/N^{g}/(NΠ {g}) = {#}/G' is /*, it follows that the order of # is

ί>m f l and that of zG= {gp} is pm.

We consider next a cyclic subgroup S of order p1. It follows from (3) and

(1) that

and noting that G' = {gpm}, it follows that there exists an element s with S= {s}

and sp-gpm. From (1) and K w we deduce that gpm^ belongs to zG.
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Hence

(S-y-y = 5-V" = i;

and it follows from (8) that s~1gpm~ι belongs to N so that s belongs to N{g}.

If / is an element of F, then either fp = 1 and / belongs to N by (8) or else

/ h a s order p2 and / belongs to N{g). Thus we have shown that F^N{g).

Noting that B c F/N9 it follows that B c {Ng} but B Π {JV&} = 1 so that £ = 1

and G/N = A = {iV£}, showing G = iV{#}. We recall that G' = N Π {#} and that

N=EGf. Hence

G = iV{̂ } = £G'{#} = £<^} and £ n {#} = 1.

Letting C = {#}, we have shown that

(11) C is a cyclic normal subgroup of G whose order is pm+1 with Km; and

it is G = C£ and 1 = C Π £ ; and zG = C .̂

Since i? is abelian by (5), and since E Π zG = 1 by (5), 1 is the only element

in E centralizing C. Hence E is by (5) an elementary abelian i>-group isomorphic

to a group of automorphisms of the cyclic group C of order pm+1. Recalling

the structure of the group of automorphisms of a cyclic p-group—see, for in-

stance, Fuchs Γp. 221, Theorem 58.1]—it follows that either E is cyclic of order

p or else p = 2 and E is of order 4. But in the latter case E induces in C all

the automorphisms of order 2 in particular the automorphism mapping every

element in C upon its inverse is induced by an element e in E. Then

and this is impossible, since the order of C2 is 2m which is by (11) at least 4

whereas the order of G' is by (1) exactly 2. Thus we have shown:

(12) E is cyclic of order p.

It is a consequence of (11) and (?) that G/N is cyclic of order pm. Hence

N is an m-uniserial subgroup of G. Combining this with (6) and (1.1) we see

that

(13) £ is an (m + l)-uniserial subgroup of G.

The statements (1), (11), (12) and (13) contain all the claims made in our

proposition.

COROLLARY 2.4. The group G is a splitting extension of a cyclic group of

order pn with 2<n by a cyclic group of order p with o(G') =p if, and only if,
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(a) G is nilpotenty

(b) G is not a dedekind group,

(c) every, proper epimorphic image of G is a dedekind group and

(d) normal subgroups of G normalize their 2-uniserial subgroups.

Proof. Assume first that G is a splitting extension of a cyclic group C of

order pn with 2<n by a cyclic group of order p with o(Gf) -p. Then the

order of G is pn+1 and there exists a subgroup E of order p with G = EC and

1 = EΓ\ C. Furthermore C is a normal subgroup of G. If G' were not contained

in C, then G'C would have order pn+1 so that G would be the direct product

of its cyclic subgroups C and G', implying the commutativity of G and G' = 1,

a contradiction. Hence G'^C; and it follows from well known theorems [on

p-gvoups2 that the normal subgroup G' of order p is contained in xG see, for

instance, Hall [p. 49, Theorem 4.3.4].

G would be abelian, if xG were not a proper part of C. But G is not

abelian, since G'^FI. Hence xG^Cp, as C is cyclic. If s is an element in C

and x is an element in G, then

( 5 *)* = (s*)p - ίs(s°x)lp = sp(soχ)p = sp,

since G1 is of order p and part of the center xG. Hence sp belongs to zG,

proving Cp^xG. Consequently xG = Cp.

G is nilpotent, since G is a ί-group; and it follows from the Structure

Theorem that G is not a dedekind group. If iV#l is a normal subgroup of the

ί-group G, then iVΠzG^l— see, for instance, Kurosh [II, p. 1651 But G' is the

one and only one cyclic subgroup of order p of the cyclic group xG so that G'

is the one and only one minimal normal subgroup of G. Hence every proper

epimorphic image of G is abelian and a fortiori a dedekind group.

From G' £ xG = C^ and G^CE and Λ = C Π £ we deduce that G/xG is the

direct product of two cyclic groups of order p and now it follows that xG = Gp.

Hence every maximal subgroup of G is a cyclic extension of xG and as such

abelian. Consequently every proper subgroup of G is abelian and normalizes in

particular its 2-uniserial subgroups. If S is a subgroup of index p2 in G, then

Cp2ΩS. Since the order of C is pn with 2<n> it follows that Cp2*l. As G' is

the uniquely determined subgroup of order p of C, it follows that Gf^Cpz £ S,

implying that every subgroup of index p2 is a normal subgroup. In par-
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ticular therefore all 2-uniserial subgroups of G are normal. This shows the

necessity of the conditions (a)-(d).

The sufficiency of the conditions (a)-(d) is an almost immediate consequence

of Proposition 2.3.

Remark 2.5. It is worth noting that we have verified condition (d) in the

following stronger form

(d°) Every proper subgroup of G is abelian and every subgroup S of G

whose index [G : S] is a square of a prime contains G1 and is consequently

normal.

Thus (d°) is a consequence of (a)-(d).

Remark 2.6. The groups characterized by Corollary 2.4 are determined by

the following two properties '•

(A) G is a splitting extension of a cyclic group C of order pn with 2<n by

a cyclic group of order p and

(B) G' is cyclic of order p.

In the course of the first part of the proof of Corollary 2.4 we have shown

that (A) and (B) imply the following conditions:

( B ' ) Gp = zG.

(B") The group of automorphisms induced by G in C is of order p.

If a group meets requirement (A), then C and G/C are cyclic so that

Gf = G°C. If furthermore (BO is satisfied, then Cp = zG and the group of auto-

morphisms, inαuced by G in C, is cyclic of order p. This implies that G°C is

of order py if p is odd; and if p = 2, it follows that either G°C is of order 2

or else zG is of order 2. But the latter case contradicts (BO and 2<n\ and

thus we have shown that we may substitute (BO for (B). The preceding

argument shows too that we may substitute (B") for (B) if, and only if,

PROPOSITION 2.7. If p is a prime and 2<n, then there exists one and es-

sentially only one group G with the jollowing properties:

(A) G is a splitting extension of a cyclic group of order pn by a cyclic group

of order p.

(B) G1 is cyclic of order p.

Proof. Denote by C a cyclic group of order pn with p a prime and 2 < n.

Let G be the group obtained by adjoining to C an element e, subject to the
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following relations:

ep = l and xe = χ^pn~ι for every x in C.

It is fairly obvious that this group G meets the requirements (A) and (B) and

that G is up to isomorphisms the only group with these properties see also

the discussion of Remark 2.6.

Remark 2.8. Note that the above result would remain true for n = 2,

though not for n = 1.

Remark 2.9. It is a consequence of Corollary 2.4, Remark 2.5 and Pro-

position 2. 7 that there exist groups of class 2 which are not dedekind groups,

though every subgroup normalizes its 2-uniserial subgroups. This invalidates

a former claim of the author see Baer [p. 429, Lemma 5.2]. We are indebted

to Proff. Nyman and Sonneborn for bringing this mistake to our attention.

THEOREM 2 10. If the exponent of the group G is n-th power free, and if

every normal subgroup of G normalizes its 2-uniserial subgroups, then the follo-

wing properties of G are equivalent:

(1) G is a dedekind group.

(2) i-uniserial subgroups of G {.with i<n} are normal.

(3) G is nilpotent; and if the epimorphic image H of G is a splitting extension

of a cyclic group of order pk with 2 < k [ < n] by a group of order p, then H'

is not of order p.

Proof. If n = l, then G = 1 and thus we may assume without loss in

generality that Kn.

If (1) is true, then every subgroup of G is normal so that (2) is a con-

sequence of (1).

Assume next the validity of (2). From Kn we infer then that every

maximal subgroup of G is normal and we infer the nilpotency of G from

Wielandt's Theorem see, for instance, Hall [p. 155, Corollary 10. 3. 4]. Assume

next by way of contradiction that the epimorphic image H of G is a splitting

extension of a cyclic group of order pk with 2<k by a group of order p and

that H1 is of order p. Application of Corollary 2.4 shows:

H is nilpotent, not a dedekind group, though all its proper epimorphic

images are dedekind groups, and normal subgroups of H normalize their 2-
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uniserial subgroups.

Hence Proposition 2.3 is applicable. Consequently there exists a cyclic

normal subgroup C of H and a subgroup E of order p of H such that

H=CE, l = C n £ ;

£ is a &-uniserial subgroup of H.

Note that pk is the order of C, since i>^+1 is the order of H. If £ were a

normal subgroup of H, then 77 would be abelian as the direct product of its

cyclic normal subgroups C and E; and this is impossible, since ϋΓ#l. It is a

consequence of (2) and Lemma 1.2, (b) that f-uniserial subgroups of H with

i<n are normal. Hence n<k. Since the exponent of G is n-th power free, so

is the exponent of the epimorphic image H of G. Hence k<n, a contradiction

proving that (3) is a consequence of (2).

Assume finally by way of contradiction that (1) is not a consequence of

(3). Then there exists an epimorphic image / of G with the following pro-

perties :

(a) / i s not a dedekind group.

(b) Every proper epimorphic image of / is a dedekind group.

Since epimorphic images of nilpotent groups are nilpotent, we have fur-

thermore :

(c) / is nilpotent.

If S is a 2-uniserial subgroup of the normal subgroup JV of /, and if a is

an epimorphism of G upon /, then the inverse image N0'1 of N is a normal

subgroup of G; and it follows from Lemma 1.2, (b) that S0'1 is a 2-uniserial

subgroup of Nσ~\ By our general hypothesis S*"1 is a normal subgroup of

Nn and consequently S is a normal subgroup of N. Thus we have shown:

(d) Normal subgroups of / normalize their 2-uniserial subgroups.

An immediate application of Corollary 2.4 shows that the epimorphic image

J of G is a splitting extension of a cyclic group of order p3 with 2 <j by a

group of order p with / ' of order p; and this contradicts (3). Hence (1) is a

consequence of (3).

Remark 2.11. Suppose that G is of squarefree exponent and that 1-uniserial

subgroups of G are normal. This latter requirement is equivalent to the con-

dition : every maximal subgroup of G is normal and this implies by Wielandt's
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Theorem that G is nilpotent. G satisfies conditions (2) and (3) of Theorem

2.10 and its exponent is 2-nd power free. But such groups need certainly not

be dedekίnd groups. This shows the indispensability of the hypothesis:

(-h ) Normal subgroups of G normalize their 2-uniserial subgroups.

It is a trivial remark that every dedekind group meets this requirement

( + ).

Remark 2.12. If p is an odd prime, then there exists a group G of exponent

p, generated by elements a, b, c, d, ef /, subject to the following conditions:

{a, b} and {c, d) and {e, /} centralize each other;

a°b = c°d- e°f = g is an element of order ^ in zG.

Then G is a nilpotent group of square free exponent and it is a consequsnce

of the Structure Theorem that G is not a dedekind group. From Gp = 1 we

infer the validity of (3); and the validity of (2) is a consequence of the fact

that 1-uniserial subgroups of G are normal as maximal subgroups of a ^-group.

Every 2-uniserial subgroup of G has index p2 in G and such a subgroup certainly

contains g and hence G' so that it is a normal subgroup. Thus condition ( + ) of

Remark 2.11 is satisfied in the following weak form -

( + °) 2-uniserial subgroups of G are normal.

This example shows the impossibility of substituting in Theorem 2.10 for

condition ( + ) the weaker requirement ( + °).

Remark 2.13. That conditions (2) and (3) cannot be essentially weakened

or omitted altogether is shown in the discussion of Remark 2.9.

COROLLARY 2.14. The group G is a dedekind group if, and only if,

(a) every uniserial subgroup of G is a normal subgroup of G and

(b) normal subgroups of G normalize their 2-uniserial subgroups.

This is an almost immediate consequence of Theorem 2.10.

COROLLARY 2.15. The group G is a dedekind group of n-th power free ex-

ponent if, and only if,

(a) i'Uniserial subgroups of G with i<n are normal subgroups of G

(b) normal subgroups of G/(G°Gf) normalize their 2-uniserial subgroups and

(c) G/{G°G') is of n-th power free exponent.

This one derives without too much difficulty from Theorem 2.10, Corollary



36 REINHOLD BAEβ

2.2 and Lemma 1.2.

Observation 2.16. The property of being a dedekind group is inherited by

subgroups and epimorphic images. Our criteria involve conditions asserting

that certain normal subgroups normalize some of their uniserial subgroups;

and such a condition is prima facie not inherited by subgroups, though as a

consequence of Lemma 1.2 it is inherited by epimorphic images.

3. Groups whose proper subgroups are dedekind groups

The basis of our discussion is the following fairly direct application of the

Theorems of Iwasawa-Redei-Schmidt.

PROPOSITION 3.1. The following properties of the non-nilpotent group G are

equivalent:

( i ) Every proper subgroup of G is a dedekind group.

(it) If a proper subgroup of G is non-abelian, then it is the direct product of

a quaternion group and a cyclic S-group.

(Hi) G is an extension of a p-group P by a cyclic q-group with p^q, meeting

the following requirements:

(a) [G : P cP] = <7.

(b) Either P is a quaternion group and q = 3 ,* or else P is an elementary

abelian p-group and a minimal normal subgroup of G.

Proof. Assume first that every proper subgroup of G is a dedekind group.

Since dedekind groups are, by the Structure Theorem of §2, nilpotent, G is a

non-nilpotent group all of whose proper subgroups are nilpotent. Application

of the Theorem of Iwasawa-Schmidt shows the existence of two different primes

p and q such that

(1) Gf is a >group and G/G1 is a cyclic #-group.

See Redei [p. 304, Satz 1].

Since G is not nilpotent, there exist ^-elements which do not centralize G' and

this implies G' cG'cG. Since G/G1 is a cyclic #-group, there exists one and

only one subgroup V of G with G1 cG' c V and [G : V} = q. As a proper

subgroup of G is a dedekind group and hence nilpotent, V is the direct of the

ί-Sylow subgroup G' of G and V and of a g-group; and this implies clearly

V - G' cG'. Hence [G : G' cG'] = q.
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If firstly G' is abelian, then every proper subgroup of G is abelian, since

proper subgroups of G are direct products of subgroups of Gf and of cyclic q-

groups, and we deduce from a result of Redei [p. 305, Satz 2] that G' is an

elementary abelian ^-group and a minimal normal subgroup of G.

If secondly G' is not abelian, then we recall that G', as a proper subgroup

of G, is a dedekind group. It is a consequence of the Structure Theorem of

§2 that G' is the direct product of a quaternion group and an elementary

abelian 2-group, since G' is primary. It follows in particular that

zG' is the totality of elements x in G' with x2 = 1 and as such an elementary

abelian 2-group, and that

G'/zG' is the direct product of two cyclic groups of order 2.

If we adjoin to zG' any ^-element of G, then we obtain a proper subgroup

of G which is nilpotent. Hence zG' is centralized by all the ^-elements in G;

and we deduce

from (1).

From [G : G'cGQ = q we deduce that an automorphism a of order q is

induced in G' by some element in G. From zG'^zG we deduce that every

element in zG' is a fixed element of a. If c would induce in G'/zG' the identity

automorphism, then <J2 = 1 would follow from (zG')2 = l ; and this would imply

q = 2=p, an impossibility. Consequently a induces in Gf/zGf an automorphism

of order q # 2 and since G'/zG' is an elementary abelian group of order 4, it

follows that tf = 3.

Since G' contains a quaternion group, it contains an element a of order 4.

If we let a° = b, then

b° = ab modulo zG',

since the automorphism, induced by a in the elementary abelian group G'/zG'

of order 4, has order 3. Hence there exists an element c in zG' with bn = abc.

Let tf* = ac. Then b* = tf*σ = &c, since every element in zG' is a fixed element

of a\ and

* ) = abc2 = Uc) (fc?) = a*b*.

It follows that Q = {α*, &*} is a quaternion subgroup of G, which is left invariant

by a and in which 0 induces an automorphism of order 3. There exists a 3-
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element s in G which induces the automorphism a of order 3 in G1. The sub-

group {(?, s} = Q{s} of G is not nilpotent, hence not a dedekind group and

hence not a proper subgroup of G [by ( i ) l Thus G = Q{s} with Q a normal

2-subgroup of G and G/Q a cyclic 3-group and this implies Q = Gf.

If we let P = G;, then our considerations show that we have deduced (iii)

from (i).

It is fairly immediate that (ii) is a consequence of (iii); and it is a con-

sequence of §2, Structure Theorem that (ii) implies (i).

COROLLARY 3.2. If the group G is not nilpotent, though every proper sub-

group of G is a dedekind group, then the following properties of G are equivalent.'

( i) Maximal subgroups of maximal subgroups of G are normal subgroups of

G.

(ii) 2'uniserial subgroups of G are normal.

(iii) Gf is cyclic,

(iv) Proper subgroups of G are cyclic.

Proof. Application of Proposition 3.1 shows that

(1) G1 is a ^?-group and G/G' is a cyclic tf-group with p^q>

(2) [G : G' cG'J = tf,

(3) either Gf is a quaternion group and q = 3 or else G1 is an elementary

abelian ^-group and a minimal normal subgroup of G.

Naturally (ii) is a special case of (i) and hence a consequence of (i). As-

sume next the validity of (ii). If G' were a quaternion group and # = 3, then

we deduce from (1) the existence of a cyclic 3-subgroup S of G with G = G'S.

Then S centralizes xG' and induces in G'lxG1 a group of automorphisms of order

3, as follows from (2). Since G' is a quaternion group and xGf is the one and

only one minimal subgroup of G1, the only subgroup of G which is properly

situated between S and G is S zG'. Hence S is a 2-uniserial subgroup of G

which is by (ii) a normal subgroup of G. Since S and Gf are of relatively

prime order, these two normal subgroups of G centralize each other so that

G = G'cG', contradicting (2). Thus it follows from (3) that G1 is an elementary

abelian jί>-group and a minimal normal subgroup of G. Naturally Gf possesses

a subgroup / with [G' : Jl=p. Again we deduce from (1) the existence of a

cyclic g-subgroup S of G with G = GfS; and it follows from (2) and the com-
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mutativity of G' that

cG' = G'S*.

Assume by way of contradiction that / # 1 . Then it follows from the minimality

and commutativity of G1 that Gf = {/} so that G = {/, S}. Hence the only sub-

group of G which is properly contained between JSq and G is G'SQ = cG'. Con-

sequently JSq is a 2-uniserial subgroup of G; and it follows from (ii) that JSQ

is a normal subgroup of G. But / is the ^-component of JS* and as such /

is a characteristic subgroup of the normal subgroup JSQ of G. Hence / is a

normal subgroup of G with l c / c G ; , contradicting the minimality of G1. This

contradiction shows that / = 1 so that G' is of order p and we have deduced

(iii) from (ii).

If G' is cyclic, then the order of G1 is a prime p by (3) and we deduce

from (1), (2) the existence of a cyclic ^-subgroup S of G with

G = G'S and cG' = G'SQ.

Now one sees without difficulty that a maximal subgroup of G is either a com-

plement of Gf or else contains G'. In the first case this maximal subgroup is

a cyclic #-group and in the second case it is the uniquely determined subgroup

cG' of index q in G and in both cases it is cyclic. Thus (iv) is a consequence

of (iii).

In the presence of (iv) we may apply Proposition 3.1 to see that G is an

extension of a minimal normal subgroup P of order p by a cyclic #-group [with

P # ζβ. Furthermore [G : cP] = q so that the characteristic subgroup cP of G

is cyclic. Now one verifies that the maximal subgroups of maximal subgroups

are (eP)p and (cP)Q if # c P ; and these are characteristic so that (i) is a con-

sequence of (iv).

THEOREM 3.3. The following properties of the group G are equivalent:

( i ) G is a dedekind group.

(a) Subgroups of G normalize their 2-uniserial subgroups.

(ii)

(Hi)

(b) If the factor F of G is a splitting extension of a cyclic group by a

cyclic group, then Ff is not of order a prime.

(a) 2-uniserial subgroups of G are normal.

(b) A factor of G is a dedekind group, if it is nilpotent or of squarefree

exponent.
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Here as always we term factor of the group X every epimorphic image of a

subgroup of X.

Proof. If G is a dedekind group, then all the subgroups of G are normal,

implying the validity of (ii. a). It follows furthermore from §2, Structure

Theorem that non-abelian dedekind groups contain quaternion groups and are

consequently not splitting extensions of cyclic groups by cyclic groups. Since

factors of dedekind groups are likewise dedekind groups, G meets requirement

(ii. b). Thus (ii) is a consequence of (i).

Assume next the validity of (ii). It is a consequence of Lemma 1.2, (b)

that every factor of G normalizes its 2-uniserial subgroups. Consider now some

factor F of G which is nilpotent or of sqarefree exponent. If F were not a

dedekind group, then F would possess a factor E of minimal order which is

not a dedekind group. We note that E as a factor of F is nilpotent or of

squarefree exponent, that subgroups of E normalize their 2-uniserial subgroups

and that o(S') is not a prime in case the factor S of E is a splitting extension

of a cyclic group by a cyclic group.

Assume that E is nilpotent. Since E is not a dedekind group, though every

proper epimorphic image is a dedekind group, we may apply Corollary 2.4.

Hence E is a ^-group, a splitting extension of a cyclic group by a cyclic group

with Ef of order p ,* and this is impossible. Thus E is not nilpotent.

Since E is not nilpotent, it is of squarefree exponent. Since proper sub-

groups of E are dedekind groups, we may apply Corollary 3.2. Hence every

proper subgroup of E is cyclic and application of Proposition 3.1 shows now

that E1 is cyclic of order a prime p and El E is cyclic of order a prime q^pf

since E is of squarefree exponent. Thus E is a splitting extension of a cyclic

group by a cyclic group with E of order a prime; and this contradicts (ii.b),

since E is a factor of G. Hence (iii) is a consequence of (ii).

If (i) were not a consequence of (iii), then there would exist groups,

meeting requirement (iii), without being dedekind groups; and among these

groups there is one G of minimal order. Clearly every proper factor of G is a

dedekind group and G itself is neither nilpotent nor of squarefree exponent.

Thus we may apply Proposition 3.1 and Corollary 3.2. It follows that Gr is

cyclic of order p, that GIG1 is a cyclic group of order qn with q^p and that

%G is of order q71'1. Since G is not of squarefree exponent, we have Kn.
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Hence G/zG is a proper factor of G and as such it is a dedekind group. Since

G/zG is of order pq with p^q, it follows from § 2, Structure Theorem that

G/zG is abelian. Since 1 = G' Π zG, this implies Gf = 1 in contradiction to our

choice of G as a non-dedekindian group. Hence (i) is a consequence of (iii).

Remark 3.4. The existence of nilpotent groups, meeting requirement (ii. a)

without being dedekind groups, has been shown in §2; see Remark 2.9. The

non-abelian groups of order pq with p a prime and q a prime divisor of p -1

provide examples of non-nilpotent groups, satisfying condition (2. a). Thus we

see that codition (2. b) is indispensable. The indispensability of (2. a) is an

immediate consequence of § 2, Structure Theorem and likewise one sees that

it is impossible to omit in (iii) the nilpotent factors or the factors of squarefree

exponent or the second half of condition (iii).
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