HOMOLOGICAL INVARIANTS OF LOCAL RINGS

HIROSHI UEHARA

Introduction

In this paper R is a commutative noetherian local ring with unit element
1 and M is its maximal ideal. Let K be the residue field R/M and let {#, %,
..., 1ts) be a minimal system of generators for M. By a complex R< Ty,
..., T,> we mean an R-algebra® obtained by the adjunction of the variables
Ty, ..., T, of degree 1 which kill #, ..., f,. The main purpose of this paper
is, among other things, to construct an R-algebra resolution of the field X, so
that we can investigate the relationship between the homology algebra H (R
<Ti ..., Th>) and the homological invariants of R such as the algebra
Tor® (K, K) and the Betti numbers B, =dimgx Torjy (K, K) of the local ring
R. The relationship was initially studied by Serre [5]). Then Tate [6] gave
the correct lower bound for the Betti numbers of a nonregular local ring. In
his M. I. T. lecture (See a footnote of [6]) Eilenberg proves that

B,=(})+ (7)o and B=(%) + (%)bs

where b; =dimg H; (R<Ty, ..., T»>). In this paper these results of Eilen-

berg are generalized as follows:
n n”
B‘,'—_ (3) + <1>b1+529

Bi=(5)+ (3o + (G~ (3) +elf) + (),

and so forth, where e = dimg Hy(A)/Hi(A)?, es=dimg H3s(A)/Hi(A) » Hy(4), and
A=R <Ty, ..., Ta>. As corollaries of the above computation we obtain
part of the results by Tate [6],
n ”n ”n
sz(p)—}- <p—2)+(p—4)+ <., for p<4,

Received May 14, 1962.
* For definition, see a paper of Tate [6]. Throughout the paper the numbers in
square brackets refer to the papers of the bibliography at the end of the paper.
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if R is not regular.

If R is a complete intersection, we have
n 7
Ba= (") + (M)

_(n 7 7).z _ (b
Ba= )+ (5)o+ (3)5i = (%)-

§ 1. The complex R Ty, .-+, T, >

Let us consider a filtered complex 4=R<Ty, ..., T,> with an increas-
ing sequence of subcomplexes RCRL T > CR<T, T2>C-+--CR<LTy, ...,
T,>Cc---CA.

Then the graded differential algebra 4 over R (in the sequel we shall
call it simply “R-algebra” in the sense of Tate) has the increasing filtration
{R<T, ..., T,>} such that R<T}, ..., T,> is an R-subalgebra. Defining
R-modules

Dﬁ,a=Hﬁ+q(R< Ty - .., Tp>)
Epq=Hpso(R<Ty, ..., Tp>/R<Ty, . .., Tp-1>),
we have the usual exact sequence
k i k i

j
* T2 Dp-r, g1 7 Dp, a7 Ep,q 7 Dp-1,47 7+ "

for each pair (R<Ty, ..., Tp>, R<Ty, ..., Tp-1>).
Thus the exact couple C(4) = <D, E; i, j, k> is associated with R-algebra

4, where

D= >1Dy, and E= D) Ep,.
v, q v,q

LemMma 1.1.
Ep,q=Dp-1,q

Proof. 1t is sufficient to show chain equivalences 2 and ¢

2
R<LTy, ..., Tp>/R<T1, e ey Tp—1>(_—_)R<T1, ey Tpy>
u

such that 2z=1 and #A=1. Let x be a homogeneous element of degree p +¢q
in R<Ty, ..., Tp>. Then x=x+ %+ Tp, where x; and x. are homogeneous
elements of R<Ty, ..., Tp-1> with degrees p + g and p+ q—1 respectively.
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Obviously the residue class ¥ is represented by #x:+ Tp. Define (%) =x.. It is
immediate to verify that 2 is well defined and is a chain mapping. Defining .
by

n(y)=y+Ts,
we see by straightforword computation that 2 and x are chain equivalences.
This completes the proof.

By replacing the E-terms by the corresponding isomorphic D-terms, the

exact couple C(4) can be developed into a “lattice-like” diagram

—12 xh
' . I ) I
J J k j k
Duo—> «++~—> Dsyy —> Diy —> Dio —> Doy —> Dyo=R
I A —13 . x t2 .
H(4) L i A l i 5 l
ccer—> Dy .y —> Dby — Dy-1 —> Dy,-y —> Di,-1 —0
| lz’ ><ut: i’
M M i k

—> D3 -2 —> Ds s —> D3 -2 —0

| !

: . —tn| .
Cc(a) l' . g ;
J
Dn, —n+2—>Dp-1, -n+2—>Dn-1,-n+2
1] l . Xtn .
Hy(A) v j [
Dy, -n+1—> Du-1, -nt1— Dp-1, -n+1—>0
Il |
|
Hi(A) ¥
Dn,-n-—") 0
I
Hy{(A) =M

The steps from upper left to lower right are exact sequences. It is easy to
see that kp,q; Dp.q —> Dp,, is the multiplication by ( —1)?*%,,,. This diagram
provides us with the whole story about the following known results which have
been proved by several authors [2], [6].

ProrosiTioN 1.2. The following statements are equivalent.
i) Hi(4) =0
i) H(R<Ty ..., Tp>)=0 for any p=1 and for any p(n=p=0).
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iii) {t, 25, . . ., ta) s an R-sequence.

iv) R is regular.

Proofs. i) — ii) Since Hy(4) =0, En-1, -n+» which is the multiplication by
— tn, is onto. It follows that any element x&D,-,, -»+» belongs to F_\OM" .
Dn-1,-n+2. By virtue of Krull (for example see [7]) x vanishes, Fi)—ecaluse
Duot,-nre=H, (R<Ty, ..., Tn-1>) is a noetherian module over R. By the
repeated use of the same argument, we can prove that H\(R<Ty, ..., Tp>)
= Dy, —p+; vanishes for all p(n=p=>1). Then ip,-p+a: Dp -p+2 > Dp+1,-p+1 are
all onto, because of the exactenss of the diagram C(4). Since D,,, vanishes™,
all H; (R<Ti, ..., Ts>) vanish. By repeating this process the proof of i)
-> ii) is established. 1ii) - iii) It is immediate by definition that D, -, = H,
(RLTy, ..., Ts>)=R/(t, ..., tp). Since %, -p is isomorphic, £p+: is a non
zero divisor for R/(t1, . .., t»). This completes the proof.

ili) - iv) It is immediate by definition.

iv) - i) Without loss of generality we may assume that {#, . . ., t,} is an
R-sequence. Then all k5, -, are isomorphic so that all 75, -+, are onto. Since
D;,, =0 in this case, we have Hi(A4) =0.

§2. Construction of a minimal algebra resolution

Let us denote by b, dimg H,(4) and let 1-cycles 3i, . . ., 35, represent the
homology classes Zi, . .., Zb, € Hi(A) respectively.  Then by adjoining Si,
..., Sp, of degree 2 which kill the cycles 3}, . . . , 35, we obtain an R-algebra

AP =A<S;, o ., S>> 5 9VSi= 3,
satisfying the following conditions:

a) A2 4=4", and A4 = 4, for 1<2,
b) Hi(A*) =0.
Let
V, = Hy(A) [ (Hyo1i(A) « Hi(A) + Hypes(A) « Ho(A) + -+« - + Hyoy(A) « Hy(A))

for p=>2, where A = —% if ¢ is even and 1 = ‘—’—5—1 if p is odd, and let ¢, = dimg V.
Selecting p-cycles 3f, ..., 3¢ representing the homology classes Zf, ...,
Z¢, € V, and adjoining Uf*, ..., U of degree p+1, we have an R-algebra

* For #; is a non-zero divisor for R,
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APV = AR UL, L, U RURT =8
satisfying

a) APV AP, ATV = AP for A<p+1
and A8 = AL ORULT'® - - - @ RUE!
b) H,(A?*Y) = H,(4?)/RZ} + - -+ + RZ:,
=H,(4")/]V,

Letting X, = A¥’ and defining 3,1 : Xp41 > X, by Ops1 = 031", we obtain an R-
algebra X=U X,
P

Op+1 o1 e
X > X2 X, = e > Xy Xy —> K—> 0

where X, = R and the mapping ¢ is the augmentation homomorphism.
Defining vector spaces over K, Dp, 4= Hp+o(A?) and Ep, g = Hp+o(A? [ 4?7V),

we obtain a spectral sequence

e d D1,3=H4.(A)

J/ilii
k
+ —> Dy —> Es,» BN Dy,» = Hy(A)
. |
llZZ - 4{112 kzl
« —> Dy —> E5 4 — Dy —> Es;—> Dy = Hy(A)
lisl lin iiu
* —> Dyo—> Esyo—> Dso—> Es o —> Dso —> Es,o—> D10 = Hy(A)
liw liao lizo l
c=>D5-1 >0 —Dyy.1—> 0 —> D3 1> 0 —>Dp_;—0
Il Il il
H(X) H:(X) H.(X) H(X)
By virtue of the construction of X it is seen that D,+;,-1= H,(4"*") = H,(X)
for p=1, H(X) = Hi(A®) =0, and H,(X) = D,,o/V,. If we can prove D, = V,,
X is aspherical so that we have a desired R-algebra minimal resolution of K.

In this paper we contend
ProrosiTioN 2.1.

1 Dy Hoy () H{(A)? = Vg,
il) Dso = Hy(A)/ Hy(A) « Hi(A) = V5.

For the proposition we need the following two lemmas.
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Lemma 2.2.
i1, %2y and i are onto.
Lemma 2.3.

a) k21(E~z,1) :H1(A)2,
b) kz‘z(Ez,z) + il—zlkal(Ea,l) :Hz(/l) . Hl(A).

Proof of Proposition 2.1.
It is immediate from the exactness of the spectral sequence and the above

two lemmas.

Proof of Lemma 2.2.
Let ZeD,,y, then Z is represented by a cycle

by .
B=c+ 2 1S,
£=1
. b | by,
where ce 4, and '€ R. Since 0=9,8=09.c + E A8i, we have >)1'Zi =0 where
i=1
7’eK. Therefore M for all 5. Let A’ = Er" t;, then

=c+ E 77S;
(c+ E 77 T;8Y) + 25 Z‘. 77 TiS)).

The cycle 3 = (c+2r”T;8) represents an element Z'€D;:; whose image
under iz, is Z. Therefore ;1 is onto.

Secondly we wish to show that #: and i;; are onto. Let y=X; represent an
element Y= D;,,. Then

y = d+22u’(T, SJ)+EDkUk,

J=1i=1

where de 4.
0=agy=§(§ﬂ”*)s,+(aad Lu”T,8,+L v 3h).
Thus we have
=0 forall

so that ) u7T; is 1-cycle of 4 and (3] 47T 8} represents an element 2"
i J i
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€y
Hi(A)%: From this 2 = E 5*7% and hence v*€M. Letting v* = 2 »®#; and con-
=1
sidering 94( E IO = Ekak 2 WMT188  we find 2-cycle of A(2’,
, L

d+2> 29 (Ti+ Sj) + g VT3,
3 .

whose homology class Y’ is mapped onto Y under 7;. From the analogous
argument it is easy to see that 7. is onto. Thus the proof is omitted. This

completes the proof of the Lemma.

Proof of Lemma 2.3.
Select 3-relative cycle 3 of 4®/4 representing an element Z€E:;. Then

8=x+2l”T,~-S,~, where x4 and >)A7T; is l-cycle of 4. Since kn(Z) is
1,7 i=1

represented by 2-cycle of ﬁ; (élij T:)3j, we have ku(Z)e H(4)®. Conversely
it is obvious that HI(A)ZCJ_km(’I—i‘z,I), beause 3:3; =2 —31S;) for any pair (s,
7). This completes the proof of Lemma 2.3.a).

Let YEE;; and y be 4-relative cycle of 4®/A® representing Y. Then we
have

y=c+ DU,
1
where ce 4{¥ and Zlijﬂ is 1-cycle of 4. By considering ks and #w, in kau(Y)

€2 noo.
is represented by 3-cycle of A4, > ( 2127 T})3}, whose homology class is in Hi(A)*
=1 i=1
Vo C Hi(A) « Ho(A).

Let 3 be a relative 4-cycle representing an element Z€E,,., and let

3=a4;ZkE>IA”’S, Set Z Ak’eS"’+ 2 p 1"’2 (TT;Sw),
12=k> 1 n=j>i2=
b1=k=1

(2)

where ac 4, and 1+ S is a generator of A{®, whose boundary is defined by

3kSe (refer to [6]). Considering the boundary of 3, we have

439,83 = (2.8 + 2 /z”k (Ti T5)3k) + Z {E A%+ kzlx’“s, + az(z 47T+ T5)} S,
i=k+
so that

k

: b1 . .o
le'k3}+_§lak‘3}+az(2u”’*Ti- T;) =0 for each k.
i=k+

Therefore all A" € M for any pair (3, k) satisﬁng by>=k=i=1. Letting Ak =
Z,/l”kt,, considering & = Y‘ Z/l“kTS +Z EX'”’T;&, we obtain a 2-cycle 7

i=1 j=1 i=k+1 =
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of A4 by
ﬂk"fk:Z,uijk(Ti «Tj),
1,7
ko by .
because 2:(&) = ) 4% 3! +i kzlz’“s}. The straightforward computation shows
=k+

i=1
by

S1&:81 =0, so that we have
k=1
.. "
ST THBE =) 7 3k
i, 5,k k=1

Since k»(Z) is represented by 2%8%, ko(E»5) C Ho(A) « Hi(A). It is immedi-
k=1

ate to show that H(A) * Hi(A) C kn(Es5), because 947+ Sk) =7+ 3% for any 2-

cycle 7 of A. This completes the proof of Lemma 2. 3.

§3. Computation of B, (p < 4)

ProrosiTiON 3.1.

1 2
i) Bo= (%) + (%) - bite
i) Bi= () +(5)- 0+ (3= (%) + (Mot (D)o

Proof.

In the previous section we have proved that the sequence

X255 x5 %2 x-S k—0
is exact. By definition Torf(K, K) is computed by X, ® zK for all p< 3. There-
fore we get i) and ii). From a general theory (for example, see [5] or [4])
we know that there exists X; such that X; SLN X, _64_) X, is exact and 55(X;) <
MX,. Therefore B, can be computed as stated in 3.1. iii) without knowing
explicitely a system of generators for X;.

Note that X; may be considered as X; which we constructed in §2.

§4. Corollaries and a conjecture

COROLLARY 4.1.

If R is a complete intersection, we have

5= (3)+ (1)
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Bi= () + ()on (ot~ (3)

COROLLARY 4.2,

sz(’;)+(pf’_2)+(pf4)+ e

for p< 4, if R is not regular.
Proofs

By a Theorem of Assmus [1] R is a local complete intersection if and only
if H(A) is the exterior algebra on H,(1). Therefore we have e =¢ =0 in this
case. The corollary 4.1. coincides with a result of Tate [6]. The special case
when b, =1. b, = b3 = 0, provides us with the proof of Corollary 4.2., which is
the estimation of Tate [6].

Tate said in [6] that it is doubtful whether minimal R-algebra resolutions
exist in all cases. It seems to the author that such resolution may be probable

in view of the construction we consider in this paper.

BiBLiOGRAPHY

[1] E. F. Assmus, Jr.,, On the homology of local rings, Illinois Journal of Math.,, 3
(1959), 187-199.

[2]1 M. Auslander and D. A. Buchbaum, Codimension and multiplicity, Annals of Math,,
(3) 68 (1958), 625-657.

[ 3] H. Cartan and S. Eilenberg, Homological Algebra, Princeton University Press, 1956.

[4] D. G. Northcott, An introduction to homological Algebra, Cambridge University
Press, 1960.

[51 J. P. Serre, Sur la dimension homologique des anneaux et des modules noethériens,
Tokyo Symposium, 1955.

[61 J. Tate, Homology of noetherian rings and local rings, Illinois Journal of Math.,
1 (1957), 14-27.

[71 O. Zariski and P. Samuel, Commutative Algebra, Vol. 1 and 2, 1958.

State University of Iowa
Towa-City, Iowa





