
REPRESENTATIONS OF ALGEBRAIC GROUPS

ROBERT STEINBERG*

To Professor RICHARD BRAUER on the occasion of his 60th birthday

§ 1. Introduction

Our purpose here is to study the irreducible representations of semisimple

algebraic groups of characteristic p # 0, in particular the rational representations,

and to determine all of the representations of corresponding finite simple

groups. (Each algebraic group is assumed to be defined over a universal field

which is algebraically closed and of infinite degree of transcendence over the

prime field, and all of its representations are assumed to take place on vector

spaces over this field.)

To state our first principal result, we observe that relative to a Cartan

decomposition of a semisimple algebraic group, there is described in §5 below

(in a somewhat more general context) a standard way of converting an iso-

morphism on the universal field into one on the group, and that relative to a

choice of a set S of simple roots, an irreducible rational projective representation

of the group is characterized by a function from S to the nonnegative integers,

to be called, together with the corresponding function on the Cartan subgroup

of the decomposition, the high weight of the representation [13, Exp. 14 and 15 J

1.1 THEOREM. Let G be a semisimple algebraic group of characteristic

and rank /, ay%d let 9ΐ denote the set of p1 irreducible rational projective repre-

sentations of G in each of which the high weight λ satisήes 0<λ(a)< (p — 1)

(a&S). Let ai denote the automorphism t-*tp of the universal field as well as

the corresponding automorphism (see § 5) of G, and for R e 9ΐ let Rai denote

the composition of ai and R. Then every irreducible rational projective repre-

sentation of G can be written uniquely as YίT^oRf* (weak tensor product, /?, e{R).
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Conversely, every such product yields an irreducible rational projective repre-

sentation of G.

This follows from 6.1 below. We need only remark here that there is no

corresponding phenomenon for groups of characteristic 0, since then the identity

is the only rational field automorphism and the tensor product of two rational

representations is never irreducible unless one of them is one-dimensional.

Related to 1.1 is the following conjecture for which there is much evidence

and for which a proof for the group of type At would go a long way.

1.2 CONJECTURE. If G and 9i are as in 1.1 and R is an irreducible, not

necessarily rational, projective representation of G, there exist distinct isomorphisms

βi of the universal field into itself and corresponding representations Ri in 9ΐ

such that R = ΠRΪ (see §5 for the definition of RΪ').

That the above product is always irreducible follows from 5.1 below.

Our second main result applies to naturally defined finite simple subgroups

of the groups considered above. These include all the "finite simple algebraic

groups" (those made up of the rational points of simple algebraic groups

suitably defined over finite fields), that is (see Hertzig [8]), the groups

considered by Chevalley [3] and those considered by Hertzig [8], Tits [24, 25]

and the author [19, 20], and also include the nonalgebraic groups considered

by Suzuki [22] and Ree [11], all the known finite simple groups other than

the cyclic, alternating and Mathieu groups.

1.3 THEOREM. If G is a finite simple algebraic group and the rational field

has q=pn elements, then every irreducible projective representation is the

restriction of a rational representation of the corresponding infinite algebraic

group. If the rank is I, the number of such representations is qι. Each has a

high weight λ for which 0 < λ(a) < q - 1 ( C G S ) .

Here we also have the product representation of 1.1 with the upper limit

n in place of oo (see 7.4 and 9.3). For the nonalgebraic finite groups men-

tioned above there is a corresponding result (12.2 below), but the relevant

representations of the containing infinite algebraic groups are those that satisfy

the further condition: λ(a) = 0 if a is long; hence their number is q112. A gap

in our development is that for finite odd-dimensional unitary groups and finite
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Ree groups of type G2 we have established these results, and also the following

(see 8.1, 8.2, 9.6 and 12.5) only for ordinary representations, not for projectίve

representations.

1.4 THEOREM. Each of the finite groups above, algebraic or not, has an

irreducible {ordinary) representation of dimension equal to the order of a p-

Sylow subgroup. No other irreducible (protective or ordinary) representation

has as high a dimension.

Among the subsidiary results below, we consider the character of this

highest representation (8.4, 9.6, 11.3), and present in §§10 and 11 some results

related to those rather special isogenies which give rise to the existence of the

groups of Suzuki and Ree.

In addition to [13], to which frequent references will be made, earlier

work related to our results is as follows. In [2] Brauer and Nesbitt determine

the irreducible representations of finite groups of type SL(2) and prove the

appropriate tensor product theorem, while in [13, Exp. 20] Chevalley does the

same for rational representations of the corresponding infinite groups. In [10]

Mark considers the finite groups of type SL(3), while in [27] Wong considers

groups of type SL(/-f 1) and Sp(l) and proves 1.1, 1.3 and 1.4 for ordinary

representations. His methods, however, are quite different from ours, and are

not readily extendable to the other types of groups. Our methods are closely

related to those of Curtis in [4] where the representations of 9ϊ in 1.1 are

constructed by infinitesimal methods and in [5] where they are shown to

remain irreducible on restriction to the corresponding finite Chevalley groups

(under the assumption p>7, which can easily be removed).

§ 2. Classical Lie algebras

Let 8c be a simple Lie algebra over the complex field C, ΐ)c a Cartan

subalgebra, Σ the (ordered) system of roots relative to ϊ)c, S the set of simple

positive roots, and for each pair r, s of roots, set crs = 2(r, s)/(s, s), and define

prs to be 0 if r + s is not a root, otherwise to be the least positive integer p

for which r — ps is not a root. Then Chevalley [3, p. 24] has shown that there

exists a generating set {Xr, Hr\r^^Σi) such that the equations of structure

of 9c are:
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2.1. H-r= -Hr

2.2. Hr+is-HrΛ-Hs if i is a positive integer and r-his and r have the

maximum root length.

2.3. iHr, Hsl = 0 (r, s e Σ ) .

2.4. [ffr, Xsl^CsrXs (r, s e Σ ) .

2.5. [X,, *-,]=«, (rεΣ).

2.6. [%., -Xi]= ±i>rsXr+s (r,

Let 9 and ϊj denote the algebras obtained by shifting the coefficients to an

arbitrary field K of characteristic p. Then Xr and Hr shall be considered to

belong to 9 but the subscript r shall continue to denote an element of Σ

For the algebras just constructed, Curtis [4] has developed a theory of irre-

ducible representations quite analogous to the classical theory in characteristic

0. Although he states and proves his results under the assumption that K is

algebraically closed and p>7, his proofs can be modified to apply to the

present situation. We recall that a representation p of 9 is restricted if

= 0 and p(Hr)
p = ρ(Hr) for each root r.

2.7 CURTIS. With 9 as above, every irreducible restricted ^-module M

contains a nonzero element v+, uniquely determined to within multiplication by

a scalar, such that Xrv+=0 if r is positive, and there exist integers λ(a),

0 <λ(a) <p-l, such that Hav+ = λ(a)v+(a e S). Inequivalent modules yield

distinct sequences λ(a), and all sequences are realized. Thus there are pι

modules for an algebra of rank I.

Here and elsewhere in the paper, "9-module" means vector space over

the algebraic closure K of K on which K and 9 act according to the usual

rules, "irreducible" means absolutely irreducible, and 9ft denotes the pι modules

given by 2. 7. As is easily seen, the modules of W(9^) may be viewed as

extensions of those of Wl(Qκ), or equivalently, the latter as restrictions of the

former. For each M e 5ft, v+ is called a high vector and the linear function λ

on 6 defined by λ(Ha) = λ(a) the high weight of M. Further for a positive

root r — *Σn(a)a ( β t S ) , we set htr — Σn(a), the height of rf then order the

positive roots n, r2, . . . , rm in a manner consistent with heights (if h t n <ht

Tj, then i<j), and for the monomial

(2.8) v^X%n- - Xlrt&nv* (Q
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set ht v — — ΣίJfe ht rk> and finally call w homogeneous of height n if it is a

linear combination of monomials of height n. We recall that a basis for M

can be selected from the monomials.

2.9 LEMMA. Nonzero vectors of different heights are linearly independent.

Proof. Given a relation Vo + V\ + * + t></ = 0 with Vi of height — i, we

prove by induction on J that each v, is 0. If <2=0, this is clear.

Assume d>0. If r is any positive root, XrvQ + Xrvi + * + XrVd = 0, and since

X7#; is higher than Vi, the induction assumption yields XrVd = 0. Thus by 2.7,

Vd^Kv+y and since the algebra generated by those X-r for which r>0 acts

nilpotently on M because M is restricted, vd = 0. Then each ι;, is 0 by the

induction assumption.

§ 3. Classical algebraic groups

Now set xΛt) =expad*X r (feϋf, r ε Σ ) , and let G (this is Q in [3])

denote the group generated by all of these automorphisms. With 4 exceptions

[3, p. 63], which we henceforth exclude, G is simple. In G there are com-

mutator relations [3, p. 36]:

3.1. (xr{t), xsiu)) = Ώxtr+jsίCij rsΫu?) (r, S G Σ , r +

Here the product is taken over all positive integers /, j for which ir + js is a

root, the terms being arranged in some fixed, but arbitrary, order, and the

Cij,rs are integers that depend on the order, but not on t, u or the field K.

We also have from [3, p. 36]:

3.2. For each positive root r there is a homomorphism ψr of SL(2y K) into

G such that φrQ -[) = xΛt) and ψr(^ ^) =x-.r(t).

Together with G, we consider a covering group Γ, the abstract group

generated by a set of elements xr(t)(t<^K, r e Σ ) subject to the relations 3.1

and those implied by 3.2 with Γ in place of G. That these relations define

SL1/+1, K) and Sp(l, K) for Σ of type A\ and C/ respectively was already

known to Dickson [7]. The properities of Γ that we require, 3.3 to 3.6 below,

are taken from [21].

3.3. Each ψr is an isomorphism.

3.4. Γ is equal to its commutator subgroup.



38 ROBERT STEINBERG

3.5. Ifha(t) = <pa(diag{t, Γ 1 ) ) and ha = {ha(t)\t ΪΞ K*}, the ha (ae S) generate

a subgroup H as a direct product.

For each r e Σ the symbol r is also used to denote the root on H:

Πha(ta)-*nfa

ra (see 2.4).

3.6. The center C of Γ consists of those h^Hfor which all r{h) are 1; C

is the kernel of the natural projection of Γ on G; Γ/C is isomorphic to G.

Thus Γ acts naturally on G-modules, in particular on 9. Let IXK), G{K),

etc. denote the dependence of T, G etc. on K.

3.7. Let K be algebraically closed and of infinite degree of transcendence

over the prime field. Then G and Γ may be identified, via isomorphisms, with

a simple algebraic group and its simply connected covering group, and both may

be defined over the prime Held. It is then true that (a) the pth power auto-

morphism of Γ is given by xΛt) -* Xr(tp), (b) if k is a subfield of K, A is

naturally isomorphic to Γ(k), and (c) H is a Cartan subgroup of Γ.

These results, which cover all simple algebraic groups because of the

classification in [13], are proved at the end of § 4.

We use ωa ( α e S ) to denote the function (fundamental weight) on H

defined by Ylhb(tb) ->ta, and set ω = Πίofl.

3.8. co2=Πr>of.

For a proof of the additive version of this result see [14, p. 19*01].

Finally to close this section we prove a result of fundamental importance

in our later discussion of the representations of finite groups. We are indebted

to T. A. Springer for the main ideas of the proof.

3.9 LEMMA. Assume that K is algebraically closed and of infinite trans-

cendence degree over its prime field Fpy that τ is a rational automorphism of Γ

such that Hx = H, that a is the composition of τ with the pύi power automorphism,

and that Γσ is the subgroup of fixed points of a. Then (a) the semisimple

classes of conjugate elements of To are in natural one-one correspondence with

those orbits of H under W, the Weyl group, that are invariant under a, and

(b) if for each a^S, γa is the sum of the distinct images of ωa under W, the

orbit space HIW is an affine variety with coordinates γa ( α e S ) .
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The proof proceeds in several steps.

(1) Assume that B is a {connected) algebraic subgroup of Γ and that Bσ = B.

Then for each x in B there is a y in B such that x = jy~y. This result is quite

close to one of Lang [9], and it does not depend on the simple-connectedness

or semisimplicity of Γ. The proof, a straightforward modification of Lang's,

is omitted.

(2) The centralizer of a semisimple element of a simply-connected semisimple

algebraic group is connected. Here are the main steps in a proof due to

Springer (unpublished). The semisimple element h is put in a Cartan subgroup

Hy and then by the Bruhat decomposition [13, p. 13-11], the problem is reduced

to showing that an element of the Weyl group that leaves h fixed is a product

of reflections (corresponding to roots) that also do. After the problem is shifted

from H to an ordinary torus T and then to the covering space of T, the proof

is completed by geometric means.

(3) Two semisimple elements of Γσ which are conjugate in Γ are also con-

jugate in Γσ. Assume x = zwz'1 (x, w^Γσ, z e Γ ) . Then x = zσwz~σ, whence

£~V is in B, the centralizer of w. By 3.7 and (2), B is connected if w is

semisimple, and because w e Γσ, B° = B. Thus by (1) we can write z~1zσ =3'~Vσ

(y^B). Then 2 ^ " x e Γ σ , and since x = (zy~1)w(zy"1)"1

f we have (3).

(4) An element of Γ is conjugate to an element of Γσ if and only if it is

conjugate to its image under ΰ. For if z e Γ, then z = xzσx~1 for some x e Γ if

and only if z^y~1ynzny~°y for some y & Γ, by (1) with B = Γ, that is, if and

only if yzy'1 e Γa for some y^Γ.

(5) Two elements of H are conjugate in Γ if and only if they are conjugate

under W. This easily comes from the uniqueness in the Bruhat decomposition.

Since an element of Γ is semisimple if and only if it is conjugate to an

element of H [13, p. 6-13], we may combine (3), (4) and (5) to get (a). In

[15, p. 57-8] it is proved that HjW is an affine algebraic variety whose coordi-

nate ring is got from that of H by selecting the invariants under W. This

means the polynomials in ωa, ωΰ1 (aeS) that are symmetric relative to W.

Thus to complete the proof of (b) we need only establish the following result,

which in case W is of type A\ reduces to the fundamental theorem for sym-
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metric functions.

(6) Every polynomial in ωai ωά1 ( o e S ) that is symmetric relative to W is

a polynomial in the elementary symmetric polynomials ya ( β e S ) . Partially

order the monomials Πα>2α so that each is higher than those obtained by

multiplying it by a product of negative (multiplicative) roots. Thus if β is a

nonzero symmetric polynomial and cllω2a is one of its highest terms, each

na>0 because β is symmetric. Then β — cTlγT does not contain this term,

and the proof of (6) may be completed by induction.

§ 4. Lifting representations from algebras to groups

The notations p, K> Σ , S, H, ωa> etc. introduced in §§2 and 3 in connection

with the algebra 8 and corresponding groups G and Γ will be used throughout

the paper. By a module (or representation) for these groups we mean one

over K, the algebraic closure of K. Following Curtis [4], we first convert each

M e 3ft into a projective Γ-module. For x<= Γ, let Mx be the irreducible Q-module

obtained by defining the action of 6 on M by the rule:

4.1 (AT*) I t ι = Λ ( I G 9 , v^M).

Here Xx is the image of X under x and we use the convention (Xx) y = Xyx.

The module Mx is equivalent to M [4]. Thus there is a G-module isomorphism

T(x), uniquely determined to within a scalar multiple by Schur's lemma, of M

on Mx. This satisfies :

4.2 T(x)Xv=--XxT(x)v UeΓ, 3Γeg, veM).

The map x-*T(x) is a projective representation of Γ (or G) on Λf, again by

Schur's lemma. For each positive root r we may (and do) normalize all

T(xΛt)) to keep v+ fixed (see 2.7); since 4.1 and 4.2 imply that T(xr(t))v =

vΛ-higher terms, for each monomial v> this amounts to making each T(xΛt))

unipotent. After treating negative roots in a similar way, we want to show

that the normalization can be extended to yield an ordinary (not just a pro-

jective) representation of Γ. When it is convenient, we write xv for T(x)v.

4.3 LEMMA. Let Me9tt have high weight λ(a) ( β e S ) , fix a^S and set

λ(a)=n. Then (a) v+, X-av+y . , . , X-av+ are linearly independent and

X-t1v+ = 0 ; (b) the normalized action of the xa(t) and x-a{t) on M can be
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extended to an ordinary representation of Za* the group generated by these

elements', we then have (c) ha(t)v+ = tnv+.

Proof. By induction, XaX
ι-av+ = tin - i+ l)XtSaV+ (*>1), whence the vectors

Xlav+ (0<i<n) are nonzero and then linearly independent by 2.9. Further

XaX-+aV+= 0, and clearly XrXl+aV+=0 for r>0, r*a. Thus X?£υ+ = 0 by

2.7 and 2.9. Now set vo = v+, ivi- X-aVχ-ι {l<i<n), so that also (n~i)vi

= XaVi+i. From xa{t)v+ = v+, xa(t)X-a = X-a + tHa-fXa and 4.2, we see by

induction that χa(t)ι>i = Σj=o(W _J-)t1'^ Vj. Now interchanging the roles of Xa

and X-a> and also of vQ and vrt, that is, replacing M by ikf1" with w an element

of Zα corresponding to the Weyl reflection relative to a, we get x-a{t)vi

= Σy-ί( )tj'ιvj. Introducing a space with coordinates # and y and setting

f' = xn~ιy\ we see that in the space of polynomials of degree n exactly the

same equations hold for the transformations x'a(t): x, y^x, y-htx and x'-a(t):

x, y-*x+ty, y. We thus see that the relations on the xa{t) and x~a(t) (a^S)

implied by 3.2 also hold for the T(xa(t)) and T(x-a(t)). Further the relations

3.1 with r, s > 0 are also preserved, as we see by applying both sides to v+

and noting that every term leaves v+ fixed. Since we may choose an element

w in Γ corresponding to an arbitrary' element of the Weyl group and apply

the above considerations to Mw, we see that all of the relations of 3.1 and 3.2

are preserved. We thus get 4. 3(b), 4. 3(c) and also:

4. 4. The projective representation of Γ on M can be lifted in a unique way

to an ordinary representation.

The uniqueness comes from 3.4, which implies that Γ has no nontrivial

one-dimensional representation.

From the definitions we see that if v has height n in M then

4.5 (xr(t) - l)v = tXrV-\-higher (lower) terms, when r>0 (r<0).

By 2. 7 this yields :

4.6. The vectors Kv+ are the only ones fixed by all χr(t) (r>0).

From this and 4.3, we see that the Γ-module M determines Kv+} which in

turn determines λ(a) ( O G S ) since λ(a)-\ l is the dimension of the subspace

generated by the elements x~a(t) (t e K) acting on Kv+. Thus using also

4.3(c),
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4.7. If Mi and M2 in 9ft are distinct as 9-modules, they are distinct as

Γ-modules. If M\ has high weight λ as Q-module, it has high weight Hωa{a) as

Γ- module.

In order to pass to projective G-modules, we use:

4.8. Under the natural projection from Γ to G, each irreducible Γ-module

leads to an irreducible projective G-module. Distinct Γ modules yield distinct

G-modules.

We need only observe that the center C of Γ must act via scalars in any

irreducible representation of Γ, and then use 3.4.

Now Γ acts faithfully on 9ft as a set: since Γ/C is simple, the kernel is

contained in C and consists of those h for which all ωa(h) ( o ε S ) are 1.

Further, relative to monomial bases, the group {xΛt), t&K) acts via matrices

that are polynomials in t with coefficients in Fp, thus acts as an algebraic

group defined over Fp with the pth power map given by xr(t)-*xr(tp). The

same is thus true of the group Γ. Comparing the structure just put on Γ with

the one put on G by T. Ono [J. Math. Soc. Japan 10 (1958)], and using his

results and methods and those of [13, Exp. 23], we easily get the assertions

of 3. 7 and also

4.9. Γ {hence also G) acts rationally on each M in 9ft.

§ 5. Tensor product theorem

Each isomorphism a of K into K gives rise to an isomorphism of Γ(K)

into Γ(K), defined by xr(t) -*xAtΛ), and can thus be used to convert each Γ-

module M e 9ft into another Γ-module, denoted Ma, by the ru\ex v = xav

5.1 THEOREM, (a) If Mu M2, - . - , Mk are in Ψt and cti, ct2, . . . , ecu are

distinct isomorphisms of K into K, then M^Ml^MT' M%k {tensor product)

is an irreducible Γ-module. (b) For a fixed sequence of as, two Γ-modules M

constructed in this way are equivalent if and only if the sequences of M[s are

the same. Or, equivalents, if N^NlιNl2 - N]1 with the Nj in Tl and the βj

distinct isomorphisms of K into K, then M is equivalent to N if and only if,

after the deletion of all one-dimensional factors, k — l and, for some permutation

π of 1, 2, . . . , k, Mi is equivalent to N^ί and oa = βni for i = 1, 2, . . . , k.
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(c) // the modules in (a) and (b) are taken to be projective G-modules, the

modified statements are also true.

Proof. Let Xr) be the transformation that is Xr on MV and the identity

on the other components of Λf, let v+ - Ώv^ be the product of the high vectors

in the separate components, and let the height of a product of monomials be

defined as the sum of the heights of its terms.

(1) The set of vectors of M annihilated by all X{

r

i] (r>0, ί = 1, 2, . . . , k)

is Kv+. Nonzero vectors of distinct heights are linearly independent. For k = 1,

this follows from 2. 7 and 2. 9. If k> 1, we can write any v in M as v = 'Σu-jWj

(uj^Mt1' * Mk-~\ Wj^Mff) with the uj and also the WJ linearly independent.

Then Xrk)v = 'Σuj(XrWj), which is 0 only if all XrWj are 0, because the UJ are

linearly independent. Thus Xrh)v = 0 for all r>0 only if all WJ are in Kυ\k\

whence the first part of (1) follows by induction. This implies the second

part (see the proof of 2.9) and also:

(2) If v is a homogeneous vector of M and r>0 (resp. r<0), then

(xΛt)-l)v = nΣt*iXιri)υ + higher (resp. lower) terms.

(3) Irreducibility. Let W be a Γ-submodule of M and v a nonzero vector

of M'. Write v = #0 + #i + * * * + Vd, Vd^Q, height Vj — —j. The au are distinct,

thus linearly independent. By (2) this implies that for every r > 0 and every

i = 1, 2, . . . , k there is a vector X{

r

t)Vd + higher terms in M', whence by (l)

and induction on d the vector v± is also in Mf. Then using negative roots,

we see by (downward) induction on the height that for every monomial v of

M there is a vector v + lower terms in M1. By induction on the height this

implies that M' contains all monomials, that M1 = Λf, that M is irreducible.

(4) Uniqueness. Let λi be the high weight of Mi as 9-module. We must

show that M a s Γ-module intrinsically determines the numbers λi(a) (ί = l, 2,

. . . , # ; β e S ) . First note that Λf determines iΓz;+ by (1). Fix a and set

λi(a) -at. If all x~a(t) (ίeϋΓ) fix «;+, then the a,- are certainly determined by

Λf—they must all be 0 by 4. 3 (a) and 4.5. Assume henceforth that this is not

the case. Then ha(t) acts on Kv+ with the characteristic value tΛ, a = "Σaiait

some tf/#0, by 4. 3(c). Assuming that M does not determine the aι uniquely,

we are thus led to the existence of a nontrivial identical relation f = f (|9 =

, some bi*Q, some bj^aj, t^K). Among all such relations on the
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monomials f (r = Σ^ία:ί, 0<Ci<p-l), ordered lexicographically, we choose

one of minimum degree. The substitution t -> tu shows that this relation has

the form f = f (<?>e, δ = *Σdiai, e = Σ^ίαί). Then using the minimality of

the degree and the substitution ί->ί + w, we get in turn dk-0 (whence we

may assume βk^O since otherwise the proof is completed by induction), k>l,

§ = ecu ε — ak> and ocχ — ak, a contradiction. This proves the first statement of

(b). The second follows immediately.

(5) G-modules. By 4.8 the results we have proved for /"-modules are equally

valid for G-modules, which is (c).

We remark that considering 9 as Lie ring rather than Lie algebra we can

interpret MP above as Q-module and then prove a theorem entirely analogous

to 5.1 with β in place of Γ.

§ 6. Rational representations

As a first application of 5.1 we have:

6.1 THEOREM. If K is infinite and perfect and oci denotes the automorphism

t->tpι of K, then every irreducible rational Γ-module or irreducible rational

projective G-module can be expressed uniquely as a tensor product M— Uf=0MP

(Mi<=Wl, almost all Mi trivial).

Proof. By 4. 8 we need only consider Γ-modules, and by the density

theorem of Rosenlicht [12, p. 44] we may assume that K is algebraically closed

and of infinite transcendence degree over its prime field. For given, but

arbitrary, nonnegative integers λ(a) (<zeS), we can uniquely write λ(a) =

Σ ί % (β) (0<λj(a) <p- 1), choose Mi in ΊR as the Γ-module with high weight

YlωXai{a) (see 4.7), and thus construct a Γ-module YIMV which is rational by

4. 9, irreducible by 5.1, and has high weight ΐlω}da). Using the classification

[13, Exp. 14 and 15] of irreducible representations of semisimple algebraic

groups in terms of high weights, we see that this construction yields a complete

set of irreducible rational Γ-modules, whence 6.1.

By now we have also shown that if K is infinite and perfect every irreducible

rational projective representation of 7" or G comes in a unique way from an

ordinary representation of Γ.
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§ 7. Finite groups, normal forms

If K is finite with q elements, we write Γq, Gq for Γ, G. The following

fact, not used here, is proved in [21].

7.1. If the rank is at least 2, the relations 3.1 alone are enough to define Γq.

What is required here from [21] is

7.2. Every irreducible projective Gq-module can be lifted uniquely to a Γq-

module.

Now by 3.9 with a the #th power mapping, the semisimple classes of

conjugate elements of Γq are characterized by coordinates γ(a) subject to the

condition γ(a)9 -γ(a) (see also 3.7(a)). This yields:

7.3 LEMMA. If the rank is /, the number of semisimple classes of conjugate

elements of Γq is qι.

We can now prove one of the main results of this paper. Observe that

the modules considered are not assumed to be rational, throughout this section.

7.4 THEOREM. Let q=pn and let ca denote the field automorphism t-+tp\

Then every irreducible ΓQ module, also every irreducible projective Gq module,

can be expressed uniquely as a tensor product M = ΠJCoM?* (Mi e 9ft). If the

rank of Γq is I, there are qι such modules.

Proof. Again we need only consider Γ^-modules, this time by 7.2. By 7. 3

and a theorem of Brauer and Nesbitt [1, p. 14] the number of inequivalent

irreducible /> modules is qι. Since the qι modules TIM? are inequivalent and

irreducible by 5.1, they thus form a complete set, as required.

7.5 COROLLARY. If L is an infinite field containing the finite field K, every

irreducible representation of Γ(K) can be extended to ΓiL). Every irreducible

representation of Γ{K) can be realized over K. The corresponding statements

for projective representations of G are also true.

The first statement is clear. For the second we need only observe that

relative to a monomial basis 2.8 for Mi e 9ft each generator xr(t) is represented

by a matrix which is a polynomial in t with coefficients in the prime field.

The modules of 7. 4 have high weights Π% ( f l ) with 0<λ(a) <q-l. Those

in which the center C of Γ (see 3.6) acts trivially, or what is equivalent, fixes
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v+, yield all of the irreducible GVmodules. Thus

7.6 COROLLARY. Every irreducible Gq-module is obtained from a Tq-module

for which the high weight YLω^a) is 1 on the center of Γ.

In individual cases, when the root system Σ is specfied, more detailed

results can be given. Thus if Σ is of type E8, F4 or G2 (and K is arbitrary),

Γ-G, so that 7.6 is superfluous, while, for example, if Σ is of type Aι (so

that ΓQ and GQ are respectively isomorphic to SZ,(/+1, q) and PSL(l-\-l, q))y

the irreducible G^-modules correspond to the sequences (λi, A, . . . , λι) for

which 0< λi<q-l and 'Σiλi is divisible by the greates common divisor of

/ + 1 and q-\.

Dually, one can make similar statements concerning the classes of conjugate

elements of G in terms of those of Γ.

Finally, we remark that there are results analogous to 7.4 and 7.5 with

the finite Lie ring % in place of Γq. The proof of completenteness of the

modified 7.4 can be given along the lines of [14; p. 22-11, 22-12].

§ 8. Prime power representations

A general formula in characteristic p, comparable to WeyΓs formula in

characteristic 0 (cf. [6]), for the characters or dimensions of the above modules

does not yet exist (except for groups of type AL and A2 [13, p. 588], [14]).

However, for the irreducible /^-module with the greatest of all possible high

weights, ωQ~" (recall that ω = Πωa), that is, the module MQ=TIMV of 7.4 in

which each Mi is equivalent to the module Mp of 9Jΐ with high weight λ(a) =p - 1

{a <Ξ S) as 9-module, the situation can be described rather completely and is

very much as in characteristic 0. The following result is proved in [17].

8.1 LEMMA. If m is the number of positive roots in Σ> there is an irreducible

Γq- module Mq of dimension qm, that isf the order of a p-Sylow subgroup of Γq.

8.2 THEOREM. The Γq-modules Mq of 8.1 and Mq of high weight ωQ~ι are

equivalent, All other irreducible Γq-modules have smaller dimensions than Mq.

Proof. Because each module of 9QR is spanned by the monomials 2.8, the

only one that could have a dimension as large as pm is Mp by 4.3(a), and

hence by 7. 4 the only possible irreducible Γ-module of dimension as large as
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qm is Mq. From the existence of the module Mq with dimension qm, it follows

that MQ is equivalent to ~Mq and that the other irreducible TVmodules have

smaller dimensions.

In the course of the argument, we have proved:

8.3 COROLLARY. The irreducible module Mp with high weight ωp~λ has

dimension pm and a basis consisting of all the monomials 2.8.

A direct proof of this result, within the framework of 9-modules, also

exists. Using 8.3 we can compute the (Brauer) character of Mq. To define

this we write the order g of ΓQ as g—peg\ (p, gf) = 1, choose an isomorphism

β of the group of g'th roots of 1 in K onto the corresponding group in the

complex field, and then for any semisimple element x of Γq and any module

M for ΓQf define X(x), the character of x on M, to be Σ0(£/), the sum to be

taken over the characteristic roots a of x on M. Generally X depends on the

choice of 0, but not on Mq where it turns out to be rational.

The following result has been proved previously only for groups of type

Aι [16, p. 281] and in somewhat different terms.

8.4 THEOREM. If Γq is of rank I, and x is a semisimple element whose

centralizer in the correpsonding algebraic group has dimension l + 2d{x), or

equivalently, whose action on β has fixed point set of dimension l + 2d(x)y the

character of x on Mq is given by X{x) = ±qd{x).

Proof. In Γ(K), x is conjugate to an h in H(K). Now since h acts on the

monomial 2.8 of Mp by multiplication by ωp~1{h)ΐίrk(h)~ilc

) we see by 8.3 that

the character of h on Mp is

8.5 ψ(h) = θ{ωp'1{h))Πr>o'Σi^i 0(r(ft)~O,

and then using 3.8, that the character X(h) on Mq satisfies ΪΛh)2 = ΠrΣ^o 1

θ(r(h)iq'1'2t)/2)y the product over all roots. Since h is conjugate to an element

of Γq and the roots are permuted by the Weyl group, it follows from (4) and

(5) of the proof of 3.9 that the numbers dir(h))q form a permutation of the

numbers θir(h)). Thus the roots can be arranged in cycles (of various lengths)

(nfί -n) such that θ(n(h))q = Θin+Ah)), θ{rk(h))q = θ(n(h)). If r(fc)*l,

the cycle containing r telescopically contributes 1 to the product for X(h)2, since

the term for r may be written, subject to a consistent choice of square roots,
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as {cQ/2-c'φ)/(c1/2-c'1/2) with c = θ(r{h)). The terms for which r(&) = l

contribute q each to the product, q2d(H) together. Thus 7(h)2 = q2d{h). Since h

is conjugate to x, we have 8.4.

8.6 COROLLARY. If ΓQ is replaced by GQ, 8.2 and 8.4 remain valid.

We need only remark that Mp, hence Mq, is an ordinary (not just projective)

d-module: if c is in the center of Γ, ω2(c) = Πf(c) = 1 by 3.6 and 3. 8, whence

£ / - 1 ( c ) = l , even if ^ is 2.

Finally we remark that for semisimple algebraic groups over an algebraically

closed field of characteristic 0, results analogous to 8.3 to 8.6, in which p need

not be a prime nor q a prime power are true. Here we content ourselves

with showing that the formula 8. 5 for the character on the irreducible module

with high weight ωp~1 is essentially unchanged. With Δ(j) = Σ(det w)(wωΫ,

the sum over the Weyl group, WeyΓs formula for the character [26, p. 389]

yields Δ(p)/Δ(l), that is, 8.5 with 0 = 1 because of the basic factorization

j) = ωjΠr>o{l~r~j) [26, p. 386].

§ 9. Finite groups, nonnormal forms

In this section we treat the simple groups denoted as A] (a projective

unitary group in / + 1 dimensions), D) (a second projective orthogonal group

in 2 / dimensions), E\ (a nonnormal "real" form of E6) and D\ (a "triality"

form of DA) in [19], and their covering groups. Each of the latter groups can

be defined in terms of generators and relations derived from the structure of

the corresponding simple group, just as Γ is in terms of G in § 3 ,* however, it

is more convenient to define them directly as subgroups of the groups Γ.

Starting with an automorphism a, other than the identity, of the root system

Σ such that σS = S, and an automorphism a of the same period on the field K,

we can construct an automorphism, also called a, of the corresponding group

Γ such that xa(t)σ = xaa(f) for all α e ±S and all te^K, and then define Γ1 to

be the group of fixed points of a. Comparing this definition with the one given

in [19] for the corresponding simple groups, and using 3. 6, we easily get:

9.1. Let C1 be the center of Γ1. Then C^CftΓ1, and Γ^C1 is naturally

isomorphic to the corresponding simple group of [19].

We write G1 for Γ7C\ Ko for the fixed field under a, and Γj, etc. when Ko
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has q elements. As a subgroup of Γ, Γ1 acts naturally on each Γ-module.

9.2 THEOREM. If the Mi are in 9Ή, and the oa are isomorphisms of K into

K which are distinct on iΓ0, then M—MXXMV' - -Mlk is an irreducible Γ1-

module, and there is uniqueness in this product representation in the sense of

the second sentence of 5. l(b).

Proof. We use the notations of the proof of 5.1 and assume that a above

has period 2. If the period is 3, as it is for one of the groups of type Zλu the

argument is similar. If r is a root such that or = r and there is no root s

such that r = s + σs, then we may assume ^ ( ί ) e Γ 1 for all t e K0 [19, p. 879],

and we have 5.1(2) holding. If r is such that ar^r and rΛ ar is not a root,

then (see [19]) xr{t)xnr(f) e Γ1 for all t in if, and we have instead

(Xτ(t)xoΛf)-l)v = lZtaiX\})Ό + ̂ to*iX%υ+ . If r, or and r + ar are all

roots, the situation is similar. Since the αr, act distinctly on Ko and the oa and

σai together act distinctly on K, the proofs of irreducibility and uniqueness in

9.2 are from this point on straightforward modifications of those in 5.1.

For finite groups, we have:

9.3 THEOREM. // Ko has q~pn elements and ai denotes the field auto-

morphism t->tp\ then every irreducible T\-module can be written uniquely as a

tensor product M= TlΊllMV (Λ&eSW). If the rank is /, the number of such

modules is q.

Thus every irreducible Γ^-module is the restriction of some IX K) -module,

and the largest high weight that occurs is ω^"1. Again, by 9. 2, we are reduced

to showing that the number of semisimple classes of conjugate elements is qι.

By 3.9, these are characterized by coordinates γ(a) {a^S) subject to the

condition γ(a)Q = γ(aa). Whatever permutation a effects on S, the number of

solutions is qι (the contribution for each cycle of length d is qd), as required.

Turning again to [21], we have

9.4. If the type Aι (I even) is excluded, every irreducible projective Gι

Q-

module can be lifted uniquely to a T\-module.

Quite likely this exclusion is unnecessary, but we have not yet shown this.

From 9.3 and 9.4 we get:

9.5 COROLLARY. If the type Aι (/ even) is excluded, 9.3 also holds for
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protective GQ-modules.

Here also one can get the irreducible G^-modules as those of Γι

q in which

the center acts trivially. Since 8.1 is true with Γ\ in place of ΓQ [17, 19], the

same is true of 8.2. Also if h in HiK) is conjugate to an element of Γι

Q, then

by (4) and (5) of the proof of 3.9, it is conjugate under the Weyl group to

hσ, so that the numbers r{h)Q again form a permutation of the numbers r(h)

(see the definition of a at the beginning of this section). Thus the proof 8.4

carries over as is.

9.6 THEOREM. The statements 8 1, 8.2 and 8.4 are true with Γ\ in place

of Γq.

§ 10. Special isogenies, infinitesimal and global

In this section we present a discussion of the rather special isogenies that

exist for simple groups of type Bι, Cι and F.\ and characteristic 2, and type Go

and characteristic 3 (cf. [23, p. 282], [13, Exp. 21-24]). The results will be used

in the next sections, where we return to group representations.

In what follows we identify two root systems that are related by a scalar

multiplication. Associated with each system Σ , there is a dual system Σ *

and a map of Σ onto Σ * such that r* = 2r/(r, r) ( r e Σ ) . When roots of

unequal lengths occur, this map preserves angles, sends short roots to long

roots and vice versa, maps the simple set S onto another, and puts types Bι

and Cι in duality with each other and types C2, F4 and G2 with copies of

themselves.

The pair (Σ> p) will be called special if Σ contains roots r and 5 such

that (s, s)/(r, r) =p. The possibilities are those listed in the first paragraph

of this section. In the corresponding algebra 8 of §2, those Xr and Hr for

which r is short span an ideal, denoted 8i in what follows. To see this, observe

that if r is short and s is long Csr—pCrs, and that if r, s and rΛ-s are roots

with r short and r Λ-s long then 5 is short and prs=p (check for Σ of type

Cz and Gz). Observe also that in the present case Γ=G, Γ maps 8χ onto itself

(because each x?{t) does), and, being simple, Γ acts faithfully on each of 0i

and Q/9I. TO indicate the dependence of 8, etc. on Σ we write 8(Σ)> etc.

10.1 (Existence of isogenies). If(Σi,p) is special', it is possible to normalize
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equations 2.6 for 0(Σ) and 0(Σ*) so that the following hold, (a) There exists

a homomorphism 0 of 0(Σ) into 0(Σ*) swcfo ίfttff 0Xr = X * ί/ r is long, ΘXr

= pXr* = 0 if r is short, and similar equations hold for ΘHr. (b) The kernel

of 0 in (a) is 0i(Σ). Thus ~0 induces an isomorphism, also dented!), of (0/0i)(Σ)

fli(Σ*) (c) // Γ(Σ) βcίs on (9/90 ( Σ ) tfwrf Π Σ * ) on 0i(Σ*), ffce

0: x^dxT1 U e Γ ( Σ ) ) is βw isomorphism of Γ(Σ) into Γ(Σ*) s«<*

Λrr(ί)
9 = ΛΓr*(ί) i/* r is /0?ί£, ΛVU)Θ = xMtp) if r is short, and similar equations

hold for hr(t)\

The proof that we have in mind for ( Σ , p) of type (G2, 3) involves many

details and will not be given here. When p = 2, however, the situation is quite

simple since — 1 Ξ 1 (mod 2), and no normalization is required.

Proof of 10.1 for p-2. To show that the equations of (a) define a homo-

morphism, we must verify that the relations 2.1 to 2. 6 are preserved. For this

the relations 2.2 and 2.6 will suffice since they together with the relations

LHr, Xrl = 2Xr = 0 and LX , X-rl = Hr, which are clearly preserved, imply all

of the others (cf. [21]). We give details only for 2.6. Now if either r or s is

short, then 2.6 is preserved (both sides go to 0) because £ϊ(Σ) is an ideal,

while if r and s are long and linearly independent, then either (r, s)<0, whence

prS = l=pr*s*, or (r, s)>0, whence prs~0 and pr*s* = 0 or 2. Since ^ = 2, we

have (a), and then (b). For the proof of (c), we fix a long root s e Σ If

r is long, r e Σ , then either r = - s a n d ^ U ) 0 ^ * = θx, (t)X-r = θ(X-r + tHr - fXr)

= X-r*+tHr*-t2Xr* = xAt)X-r* = xΛt)Xs*, o r r # ~ s a n d ΛΓ r(ί)θX s* =

= 5(Xs+jί>rsίX +s) = Xs*+pr*s*tXr*+s* = Xr*(t)Xs*', whereas if r is short,

, then either r + s $ Σ in which case r * 4 - s * Φ Σ * and xr(tYXs* = Xs* =

or r - f s e Σ in which case 2r + s e Σ , (2 r + s)* = r* + s* and

Xr(t)*Xs* = ̂ ΛΓr(ί) Xi = 0 (X>+ fZr+s + ttr+s) = X* + ί2X*+s* = ΛΓr^ί2)^. Since

the Xs* (s long) generate 8i(Σ*), we have (c).

10.2 COROLLARY (well known). Over a perfect field of characteristic 2 the

groups Γ of type B\ and Cι are isomorphic.

§ 11. Special algebraic groups

In case (Σ> p) is special our previous results on representations can be

refind. In %fl let W (W) be the subset each of whose elements has, as
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9-module, high weight λ vanishing on all long (short) roots of S.

11.1 THEOREM. Assume that ( Σ , p) is special and regard the elements of

Wi either as ϊ-modules or as Γ-modules. If M1 eWV and M" e W, then M'M" e 931,

and conversely every element of W can be expressed, uniquely, as such a product.

Proof. Assume M' e= W and M" e TV.

(1) W restricted to fii is irreducible. If Mo is the space spanned by those

monomials 2. 8 for which all n are short, we show first that Mo - M'. Let r

be a long positive root. Then XrMo^Mo because Qi is an ideal and Xrv+ = 0.

We use induction on the height of r to show that X-rMoQMo. This is so if

r is simple since then X-rv+ ==0 because λ{r) = 0. If r is not simple, there is

a simple root a such that (r, a) <0. If # is long, we may write X-r = ± LX-a,

X-(r-a)Ί and use induction. If a is short, and w denotes the corresponding

Weyl reflection and also a corresponding element of Γ, we may apply the induc-

tion hypothesis to the module M'w (see 4.1) with high vector X-2)v+ (see

4.3(a)) and with M? defined accordingly to get I ^ r M f c M f , that is,

X-rMfcΛίT. By 4.3(a) we have Mf = M0. Thus X- r M o cM o , Mo is a

9-submodule of M', and since Mf is irreducible, Mo = M1. Next if v = vo + z;i +

* + Vd with Vi of height — i and z j r̂ 0, we prove by induction on d that

the Qi-module generated by v contains υ+. If d>0, Xrv^0 for some r > 0 by

2. 7. By the induction hypothesis, Xri - * -XrfcX-# = ̂ ^+, c ±? 0, for a sequence

ru T2, . . . ,rk of short roots. Thus Σ?=iX-r * C-X"r<, X II * -Zr^ + ̂ r ^

Xrkv = cv+. If a term in the sum is nonzero we are done, while if the last

term on the left is nonzero we may finish by imitating the last part of the

proof that Mo = M! to show that if r>0 and Xrv
f = v+ then v+ is in the 8 r

module generated by v1. By the two parts above, an arbitrary nonzero element

of M' generates Mf as Qi-module, which is (1).

(2) M" restricted to Qi is 0. Let M* be the fl(Σ*)-module in W(Σ*)

with high weight λ* given in terms of the high weight λ of Mn by Λ*(#*) = λ(a).

We may convert ikf* into a 9(Σ)-module by the rule X.υ= (ΘX)v ( ^ e δ ( Σ ) ,

v<=M*). As such it is irreducible by (1) and the definition of 0, is restricted,

and has high weight λ. Thus by 2. 7 it is equivalent to M". From the defini-

tion oί Ίi, Xr.v = Q if r is short, which is (2).
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(3) Proof of 11.1 for ^-modules. Choose a nonzero u = *ΣiUiu/ with the u\

linearly independent in Mf and the u/ in M". By (1) and (2) we can multiply

u by a sequence of Xr {r short, r>0) to get a nonzero v = v'+v", and then v by

a sequence of Xr (r long, r>0) to get a nonzero multiple of v'+v'l Using

negative roots instead, first short ones and then long ones, we see that this

last vector generates M'M": we first get all v'v+ (v' monomial in M'), and

then using induction on the height of v\ all υ'M", hence M'M", which is thus

irreducible. Since it is also restricted, it is in 93?. Since the high wτeight of

MM" is the sum of those of Mf and M", the uniqueness and completeness in

11.1 follow immediately.

(4) Proof of 11.1 for Γ-modules. As is easily verified, the process 4. 2 of

lifting the modules of W from 9 to Γ is consistent with the two types of tensor

products—for algebras and for groups. Thus (4) follows from (3).

11.2 COROLLARY. If (Σ> p) is special, the map β (resp. θ) puts the algebra

modules {resp. group modules) of *Πt"(Σ) *# one-one correspondence with those

o/3R'(Σ*).

In case (Σ> p) is special, 11.1 and 11. 2 lead to corresponding refinements

of 5.1, 6.1 and 7. 4 with 3D? replaced by W and W. However, there does not

seem to be a refinement of the semisimple classes of elements in 7. 3. Passing

on to 8. 2, 8. 3 and 8. 4, we have:

11. 3 COROLLARY. Assume that ( Σ , p) is special. Let ω' (ω") — Uωa, the

product over the short (long) simple roots, let V {I") be the number of short

(long) simple roots, and let mf (mn) be the uumber of short (long) positive

roots. Then (a) the ΓQ-module M'q (M'Q
f) with high weight ω^'1 {ωπ<rl) has

dimension qm (qm") and character at a semisimple element h given by l(h)

= ± qdίx) with 2 d(x) + V (I") the dimension of the set o) fixed points of x on

fli (fl/βi). (b) The ΓQ-module Mp (Mp) has dimension pm' (pm") and a basis

consisting of all monomials 2.8 corresponding to short (long) roots n.

The proofs are as in § 8 and will be omitted. To supplement 11.3 we

remark that Mq = MqMq, that M'q is quite similar to the corresponding module

for the group Γ of characteristic 0 (it is of the same dimension, by WeyΓs

formula), that Mq in contrast has lower dimension, that Mq for Σ of type Bι



54 ROBERT STEINBERG

and q = 2 is just the spin module [13, p. 20-04] of dimension 2ι, and that

nt'/m" = I'll" in all cases [18, p. 501].

§ 12. Twisted groups

In this, the last, section we extend our results to the finite simple groups

associated with the names of Suzuki [22] and Ree [11]. These are defined as

follows. A system Σ of type C2, F4 or G2 may be identified with its dual Σ *

in such a way that the map r-*r* of Σ on Σ * (see §10) yields an involutary

map, o, on Σ such that positivity and simplicity of roots is preserved, angles

are preserved, but short and long roots are interchanged. If also ( Σ , p) is

special, K is algebraically closed, and A>1, the isomorphism θ of 10. l(c)

accordingly yields an automorphism of Γ which combines with the pkth power

map to produce an automorphism, also denoted o, such that

12.1 xΛtY^XoΛt*8), XoΛt)σ = xΛts) (r short, s = pk).

If now n = 2k + l and q — pn, the fixed points of a form the sought simple

group, to be denoted Γ\t a subgroup of Γq. Observe (see 11. 3) that /' = /" and

nϋ = mn here.

12.2 THEOREM. If oa denotes the />*th power map, every irreducible T\-module

can be written uniquely as 11"=}M? (Mi^W). If the rank of Σ is /, there

are a112 such modules. Each can be realized over Fq.

Proof. If r > 0 and t e Fg, ΓQ contains an element of the form x =

xΛt)xσr(tps)Ώxr>{tf), the product over roots rf which are positive integral linear

combinations of r and or (proof by downward induction on the height of r).

Thus if ί GMεϋJί' and v is homogeneous,

12.3 (x - l)v = tXrV + tpsXorV + higher terms.

If we refine the notion of height so that a positive linear combination of

simple roots is taken to be lower than another one of the same height as

previously defined if fewer short simple roots are used, then r is lower than or.

In fact, if r = ̂ tc(a)a + d(a)aalt the sum over the short simple roots a, then

or = *Σlpd(a)a + c(a)σal: since o preserves angles, the map rf^p~ll2or!, or1 ->

pll2rf (r1 short) comes from an isometry, which maps r to *ΣLp~ll2c(a)σa +

pll2d(a)a~] =-p~ιl2*ΣJLpd{a)aJrc(ά)aa~]. With a corresponding refinement in the
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notion of homogeneity, we thus get 12.3 with the second term of the right

missing, and a similar equation for negative roots. Combining these equations

with the key fact, proved as 11.1(1), that each M^W is irreducible as 0r

module, we can now prove, almost exactly as in 5.1, that YIMV ( M e 9ft') is

irreducible. The proof that this product determines its components Mi can

also be taken from 5.1. As for completeness of the set of ql12 product modules,

the semisimple classes of Γq are characterized by coordinates γ(a) and τ{βά)

(«eS, a short) for which γ(a)ps = γ(σa) and γ(σa)s = r(a) (see 3.9 and 12.1);

their number is thus q112, as required. Finally, as the restriction of a /"Vmodule,

each irreducible Γj-module can be realized over Fq by 7.5.

As a supplement to 12.2 we have:

12.4. For Σ of type C2 or F4 and p = 2, every irreducible projectiυe repre-

sentation of ΓQ can be lifted to an ordinary one.

This result, proved in [21], quite likely also holds for the remaining case,

Σ of type G2 and p = 3.

Also since the axioms of [17] are easily verified for the groups Γq there is

an analogue of 8.1, and modifying the development of § 8, we have no trouble

in proving

12.5 THEOREM, (a) Γι

q has an irreducible module M'q, constructed by the

methods of [17], of dimension qm/2, the order of a Sylow group in Γ\ {here m

is the number of positive roots in Σ ) (b) Mq is equivalent to the restriction

to Γq of the Γq-module Mq of 11. 3. (c) All other irreducible Γq-modules have

lower dimensions than Mq.

From 12.2 we know all irreducible /^-modules (in fact all Γα-modules also

by 7. 4, 11.1 and 11.2) once we know those in W. We consider the individual

cases. For Σ of type C2, p
112 = 2, so that the trivial 1-dimensional module and

the 4-dimensional module M'2 of 11.3(b), on which Γq acts as the symplectic

group, exhaust W. For Σ of type G2, p1'2 = 3, we have in W the trivial

module, the module 9i, of dimension 7, and the module Mi of 11.3 (b), of

dimension 33 = 27. Finally, for Σ of type F4, p
m = 4, there are the trivial

module, the module Gj, of dimension 26, and the module Mf

2t of dimension

212 = 4096, leaving one module yet to be described.
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