ON THE ABSOLUTE IDEAL CLASS GROUPS OF RELATIVELY META-CYCLIC NUMBER FIELDS OF A CERTAIN TYPE

TAIRA HONDA

Notations. The following notations will be used throughout this paper.

- ι : the identity of a finite group.
- Q: the rational number field.
- P: an algebraic number field of finite degree, fixed as the ground field.
- l : a prime number.
- ζ_l : a primitive *l*-th root of unity.

For any algebraic number field k and for any cyclic extension k' of k,

 k^{\times} : the multiplicative group of all the non-zero elements of k'.

 h_k : the class number of k.

 \Re_k : the absolute ideal class group (briefly the class group) of k.

 $a_{k'/k}$: the number of ambigous classes of k'/k.

 $\Re_{k'/k}$: the subgroup of $\Re_{k'}$ composed of all the ambigous classes of k'/k.

 k° : the absolute class field of k.

For any finite multiplicative abelian group \Re ,

 $\Re^{(n)}$: the *n*-fold direct product of \Re .

 $\prod_{i=1}^{n} \Re_i: \text{ the direct product of } \Re_1, \ldots, \Re_n.$

 $\Re \cong \Re'$ means that the subgroup of \Re composed of all the elements whose orders are prime to an integer μ is isomorphic to the corresponding subgroup of \Re' (briefly, \Re is μ -isomorphic to \Re').

Introduction

Let \mathfrak{G} be a finite group which contains a subgroup \mathfrak{H} with the following property: $\mathfrak{H} \cap \rho \mathfrak{H} \rho^{-1}$ is reduced to $\{\iota\}$ for any element ρ of \mathfrak{G} which does not belong to \mathfrak{H} . Then, by a theorem of Frobenius, the elements of \mathfrak{G} which do

Received June 22, 1960.

TAIRA HONDA

not belong to any conjugate of \mathfrak{H} constitute together with the identity a normal subgroup \mathfrak{N} of \mathfrak{H} . In the case where \mathfrak{N} , \mathfrak{H} are both cyclic, let us call such a group \mathfrak{G} meta-cyclic of type F, and write \mathfrak{S} , \mathfrak{T} instead of \mathfrak{N} , \mathfrak{H} respectively.

In the present paper we shall first investigate the structure of the (absolute ideal) class group \Re_L of a normal extension L of P with a meta-cyclic Galois group \mathfrak{G} of type F. (Such an extension L/P will be called also *meta-cyclic of type* F.) Let K, \mathcal{Q} be the intermediate fields of L/P corresponding to \mathfrak{S} , \mathfrak{T} respectively, and put $s = (L : K) = \text{order of } \mathfrak{S}$ and $t = (L : \mathcal{Q}) = \text{order of } \mathfrak{T}$. Then our result is as follows: if $a_{L/K} = 1$, we have $\Re_L \cong \mathfrak{R}_{L/\Omega}^{(t)}$. Here $\mathfrak{R}_{L/\Omega}$ is isomorphic to a subgroup \mathfrak{R}'_{Ω} of \mathfrak{R}_{Ω} and the factor group $\mathfrak{R}_{\Omega}/\mathfrak{R}'_{\Omega}$ is a cyclic group of order $(K \cap P^\circ : P)$. In the case where $a_{L/K} \neq 1$, the analogous assertion holds by replacing "isomorphic" by " sh_k -isomorphic". This result is a generalization of the main theorem of author's previous paper [4], and its proof is given by a slight modification of the previous one.

In §1 we shall study some properties of a meta-cyclic group of type F and of abelian groups which have such a group as operator domain. In §2 we shall give a proof of the fact mentioned above by the method in [4].

Now, let L_1, \ldots, L_m be meta-cyclic fields of type F over P with a common maximally abelian intermediate field K, and M be their composite. If $(L_i : K)$ = l for $1 \leq i \leq m$, we can combine our result with Nehrkorn's result on the class groups of abelian fields of prime exponent to study the structure of \Re_M . In particular this can be applied to a Kummer's field $M = P(\zeta_l, \sqrt[l]{\alpha_1}, \ldots, \sqrt[l]{\alpha_m})$ where $\alpha_1, \ldots, \alpha_m$ are arbitrary elements of P^{\times} , and, as will be shown in §3, we can reduce the study of \Re_M to the study of the class groups of fields of type $P(\sqrt[l]{\alpha})$ ($\alpha \in P^{\times}$) in the sense of lh_K -isomorphism, where $K = P(\zeta_l)$. In particular, we shall show that, if the class number of the cyclotomic field $Q(\zeta_l)$ is equal to 1, there exist an infinite number of Kummer's fields (in Kummer's original sense) whose class groups are (l-1)-fold direct products of some abelian groups.

§ 1. Meta-cyclic groups of type F

Let \mathfrak{G} be a meta-cyclic group of type F and \mathfrak{S} , \mathfrak{T} be the subgroups with the same meaning as in the introduction. Denote by s, t their orders and by σ , τ their generators respectively. Put

$$\tau^{-1}\sigma\tau=\sigma^a,\qquad 1\leq a\leq s-1.$$

Then the structure of \mathfrak{G} is perfectly determined by *s*, *t*, and *a*. Let us call (s, t, a) an *invariant* of \mathfrak{G} . (Note that, for given \mathfrak{G} , *a* is not always determined uniquely. It may change by taking another generator of \mathfrak{T}).

As for the structure of (8, we have

LEMMA 1. Let $(S, be a meta-cyclic group of type F with an invariant (s, t, a) and with subgroups <math>(S, \mathfrak{T} as above$. Then \mathfrak{T} is a complete system of representatives of (S/\mathfrak{S}) , the commutator group D(S) of (S) coincides with (S, and we have)

$$(a^{i} - 1, s) = 1$$
 for $1 \le i \le t - 1$.

Proof. By the definition of type *F*, we obtain $\mathfrak{G} = \mathfrak{ST}$ and $\mathfrak{S} \cap \mathfrak{T} = \{\iota\}$. Therefore $\mathfrak{G}/\mathfrak{S}$ is isomorphic to \mathfrak{T} and the first assertion is clear. Next, as

$$\sigma^{j}\tau^{i}\sigma^{-j} = \tau^{i}\sigma^{(a^{i}-1)j} \quad \text{for } 1 \leq i \leq t-1, \ 1 \leq j \leq s-1,$$

we obtain by the definition of type F

$$\sigma^{(a^i-1)j} \neq : \quad \text{for } 1 \leq i \leq t-1, \ 1 \leq j \leq s-1,$$

and so $(a^i - 1, s) = 1$ for $1 \le i \le t - 1$. Finally it is clear that $D(\mathfrak{G}) \subset \mathfrak{S}$. On the other hand, because $\tau^{-1} \sigma \tau \sigma^{-1} = \sigma^{a-1}$ is a generator of \mathfrak{S} , \mathfrak{S} is contained in $D(\mathfrak{G})$, hence coincides with $D(\mathfrak{G})$. This completes our proof.

LEMMA 2. Let (s, t, a) be an invariant of a meta-cyclic group \mathfrak{G} of type F. For any prime divisor p of s, we have

$$p \equiv 1 \qquad (mod \ t).$$

In particular we have

$$(s, t) = 1.$$

Proof. Let \mathfrak{S}_p be the (only) subgroup of \mathfrak{S} of order p. Because \mathfrak{S} is a normal subgroup of \mathfrak{G} , any conjugate of \mathfrak{S}_p is contained in \mathfrak{S} and so coincides with \mathfrak{S}_p . Thus \mathfrak{S}_p is a normal subgroup of \mathfrak{G} . Now we divide \mathfrak{S}_p into conjugate classes. It can easily be seen from Lemma 1 that the centralizer of any element of \mathfrak{S}_p other than \mathfrak{c} coincides with \mathfrak{S} . Therefore every class of \mathfrak{S}_p other than the class of the identity contains just t elements, from which follows the assertion of the lemma.

We shall now study the structure of a finite multiplicative abelian group \Re which has a meta-cyclic group of type F as operator domain.

The identity of \Re will be denoted by 1. Assume that the identity of \Im

operates on \Re as the identity mapping and that for any ρ_1 , $\rho_2 \in \mathfrak{G}$ and for $C \in \mathfrak{K}$

 $C^{\rho_1 \rho_2} = (C^{\rho_1})^{\rho_2}.$

For any element C of \Re and for any element ρ of \Im of order m, we denote $C^{1+\rho+\cdots+\rho^{m-1}}$ by $N_{\rho}C$.

As in [4], we put ${}_{\rho}\Re = \{C \in \Re \mid N_{\rho}C = 1\}$ and $\Re_{\rho} = \{C \in \Re \mid C^{\rho-1} = 1\}$ for any element ρ of \mathfrak{G} . Let μ be the product of s and of the order of $\hat{\mathfrak{K}}_{\sigma}$, and denote by \Re_{μ} the subgroup of \Re of all the elements whose orders contain only prime divisors of μ .

LEMMA 3. If $C \in \Re$ and $C^{1-\sigma} \in \Re_{\mu}$, we must have

$$C \in \Re_{\mu}$$
.

Proof. As

$$N_{\sigma}C = C^{1+\sigma+\dots+\sigma^{s-1}} \in \Re_{\sigma} \subset \Re_{\mu}$$

we obtain by the assumption

$$C^s \in \Re_\mu$$

and therefore

 $C \in \Re_{\mu}$,

which was to be proved.

The following two theorems are generalizations of Theorem 3 and Theorem 4 in [4] respectively.

THEOREM 1. For any finite abelian group \Re with a meta-cyclic group \Im of type F as operator domain we have

$$\bigcap_{i=0}^{l-1} \sigma^{-i} \tau \sigma^{i} \Re \cong_{\mu} \{1\}.$$

Here μ is defined as above. In particular, if $\Re_o = \{1\}$, we have

$$\bigcap_{i=0}^{t-1} \sigma^{-i\tau\sigma i} \Re = \{1\}.$$

In this case \Re need not be finite.

THEOREM 2. Dually to theorem 1, the product of subgroups \Re_{τ} , $\Re_{\sigma^{-1}\tau\sigma}$, ..., $\Re_{\sigma^{-(t-1)}\tau\sigma^{t-1}}$ is μ -isomorphic to their direct product. If $\Re_{\sigma} = \{1\}$, " μ -isomorphic" can be replaced by "isomorphic" and in this case \Re need not be finite.

Proof of Theorem 1 and Theorem 2. If $\Re_{\sigma} = \{1\}$, the proof of Theorem 3

and Theorem 4 in [4] can be word for word applied here by using Lemma 1 in the present paper instead of Lemma 2 in [4]. In the case where $\Re_{\sigma} \neq \{1\}$, replace \Re by its subgroup $\bar{\Re}$ of all the elements whose orders are prime to μ , then we can apply the above results to this $\bar{\Re}$, because $(\bar{\Re})_{\sigma} = \{1\}$ by Lemma 3. Thus we obtain the assertions to be proved.

 $\S\ 2.$ Structure of the absolute ideal class groups of meta-cyclic fields of type F

First we shall give a generalization of Theorem 2 in [4].

LEMMA 4. For any cyclic field k'/k, $a_{k'/k}$ is a multiple of $h_k/(k' \cap k^\circ : k)$.

Proof. Let $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$ be the prime divisors in k ramifying in k', and e_1, \ldots, e_n be their ramification exponents. The number of ambigous classes of k'/k is given by

$$a_{k'/k} - \frac{h_k \prod_{i=1}^{u} e_i}{(k':k)(\varepsilon:N(\theta))}$$

where ε stands for units in k, and θ for elements in k' whose norms $N(\theta) = N_{k'/k}(\theta)$ are units in k. Our lemma asserts that

$$\frac{\prod_{i=1}^{u} e_i}{(k':k' \cap k^\circ)(\varepsilon:N(\theta))}$$

is an integer. Now a unit ε in k is the norm of an element in k' if and only if

$$\begin{pmatrix} \varepsilon, \frac{k'/k}{\mathfrak{p}_j} \end{pmatrix} = 1$$
 for $1 \leq j \leq u$.

Because of the product formula of norm residue symbol we can replace these u equations by arbitrary u-1 of them. As the number of distinct values taken by $\left(\frac{\varepsilon, \frac{k'/k}{p_j}}{p_j}\right)$ when ε runs over all the units in k is a divisor of e_j , $\prod e_i/(\varepsilon: N(\theta))$ is a multiple of each e_j , hence is a common multiple of e_1, \ldots, e_u . On the other hand, the Galois group of $k'/(k' \cap k^\circ)$ is generated by the inertia groups of p_1, \ldots, p_n . As k'/k is cyclic, its order is the least common multiple of e_1, \ldots, e_n . Thus $\prod_{i=1}^{u} e_i$ is divisible by $(k': k' \cap k^\circ)$ $(\varepsilon: N(\theta))$. This completes our proof.

Now let L/P be a meta-cyclic field of type F with the Galois group \mathfrak{G} , and K, \mathfrak{Q} be the intermediate fields corresponding to $\mathfrak{S}, \mathfrak{T}$ respectively. Because of

Lemma 1 K is characterized as the maximally abelian intermediate field of L/P.

LEMMA 5. The Galois group of $L \cap \Omega^{\circ}/\Omega$ is canonically isomorphic to that of $K \cap P^{\circ}/P$. In particular we have

$$(L \cap \mathcal{Q}^{\circ} : \mathcal{Q}) = (K \cap \mathbf{P}^{\circ} : \mathbf{P})$$

Proof. Because $(K \cap P^{\circ})\mathcal{Q}$ is an unramified extension of \mathcal{Q} contained in L, it is a subfield of $L \cap \mathcal{Q}^{\circ}$. Moreover, as $K \cap \mathcal{Q} = P$, the Galois group of $(K \cap P^{\circ})\mathcal{Q}/\mathcal{Q}$ is canonically isomorphic to that of $K \cap P^{\circ}/P$. Hence we have only to prove

$$(K \cap \mathbf{P}^\circ : \mathbf{P}) \ge (L \cap \mathcal{Q}^\circ : \mathcal{Q}),$$

for it implies $(K \cap P^{\circ}) \mathcal{Q} = L \cap \mathcal{Q}^{\circ}$. Let \mathfrak{T}_0 be the subgroup of \mathfrak{T} corresponding to $L \cap \mathcal{Q}^{\circ}$. If $\tau_1 \in \mathfrak{T} - \mathfrak{T}_0$, all the conjugates of τ_1 do not belong to the inertia group of any prime divisor in L with respect to P. Therefore the inertia group of an arbitrary prime divisor in L with respect to P is contained in \mathfrak{ST}_0 , and the intermediate field of K/P corresponding to \mathfrak{ST}_0 is unramified over P. As this field is contained in $K \cap P^{\circ}$ and the order of \mathfrak{ST}_0 is equal to $s(L : L \cap \mathcal{Q}^{\circ})$, we obtain in fact

$$(K \cap \mathbf{P}^\circ : \mathbf{P}) \ge \frac{st}{s(L : L \cap \mathcal{Q}^\circ)} = (L \cap \mathcal{Q}^\circ : \mathcal{Q}).$$

Now put $\Omega_i = \Omega^{\sigma^i}$ and denote by $\overline{\Omega_i^{\circ}}$ and L° respectively the maximum intermediate fields of $\Omega_i^{\circ}/\Omega_i$ and of L°/L such that the degrees $(\overline{\Omega_i^{\circ}}:\Omega_i)$ and $(\overline{L}^{\circ}:L)$ are prime to sh_{κ} . With these notations we can state our main result as follows:

THEOREM 3. 1. The fields $L\Omega^{\circ}$, $L\Omega_1^{\circ}$, ..., $L\Omega_{t-1}^{\circ}$ are independent over L, and their composite coincides with \overline{L}° .

2.
$$\Re_{L} \underset{sh_{K}}{\cong} \prod_{i=0}^{t-1} \Re_{L/\Omega_{i}} \cong \Re_{L/\Omega_{i}}^{(t)}$$

Here \Re_{L/Ω_i} is sh_{κ} -isomorphic to a subgroup \Re'_{Ω} of \Re_{Ω} such that $\Re_{\Omega}/\Re'_{\Omega}$ is cyclic and of order $(K \cap P^\circ : P)$.

3. The rational number $h_L\left\{\frac{h_{\Omega}}{(K \cap P^\circ : P)}\right\}^{-t}$ contains only prime divisors of sh_K .

In the case where $a_{L/K} = 1$, we can replace Ω_i° by Ω_i° and \overline{L}° by L° in 1, and sh_K by 1 in 2 and 3.

We can perform the proof of this theorem quite in the same manner as in

the proof of the main theorem in [4] by using Theorem 1 and Theorem 2 in this paper instead of Theorem 3 and Theorem 4 in [4], and Lemma 4 in this paper instead of Theorem 2 in [4]. Thereby we have only to notice that a prime divisor of $a_{L/K}$ divides sh_{K} , and that $(L \cap \mathcal{Q}^{\circ} : \mathcal{Q}) = (K \cap P^{\circ} : P)$ by Lemma 5.

It is easy to see that absolute class fields such as were treated in [4] are meta-cyclic fields of type F. Conversely, if L/P is a meta-cyclic field of type F with the maximally abelian intermediate field K and L is the absolute class field of K, we must have $a_{K/P} = 1$. For, as is seen from the proof of Lemma 1, the centralizer of τ coincides with \mathfrak{T} . If we regard \mathfrak{T} as the Galois group of K/P, this implies because of Artin's reciprocity law that no absolute class other than the principal class in \mathfrak{K} is invariant by τ .

There are another kind of meta-cyclic fields of type F obtained in a natural way, that is, fields generated by meta-cyclic equations of prime degree. The case of binomial equations of prime degree will be treated in the next section.

\S 3. Application to Kummer's fields with a prime exponent

Theorem 3 in §2 can be applied to the splitting field L of a binomial equation

$$\mathbf{x}^l - \mathbf{\alpha} = 0, \qquad \mathbf{\alpha} \in \mathbf{P}^{\diamond}$$

with respect to *P*. The extension L/P is in fact meta-cyclic of type *F*, since *L* is generated by arbitrary two of the roots of this binomial equation. The maximally abelian intermediate field of L/P is $K = P(\zeta_l)$. Hence we can reduce the study of the class group of the field *L* to the study of that of the field $P(\sqrt{l} \alpha)$ in the sense of lh_{K} -isomorphism. (Note that lh_{R} depends only on *l* and the ground field P, and not on α .) In particular we have

THEOREM 4. Assume that the class number of the cyclotomic field $Q(\zeta_l)$ is equal to 1. Then, if a prime number q has the order l-1 in the reduced residue class group mod l^2 , the class group of the field $Q(\zeta_l, \sqrt[l]{q})$ is isomorphic to the (l-1)-fold direct product of that of the field $Q(\sqrt[l]{q})$.

Proof. Put $K = Q(\zeta_l)$ and $L = Q(\zeta_l, \sqrt[l]{q})$. As $K \cap Q^\circ = Q$, it suffices to prove that one and only one prime divisor in K ramifies in L. Then we shall obtain $a_{L/K} = 1$ (cf. § 3, [4]). Since q is a primitive root mod l, the prime ideal (q) in Q remains prime in K. Moreover the prime divisor l of (l) in K does

TAIRA HONDA

not ramify in L. For q is *l*-primary for l by the criterion XI in Hasse [1], §9, considering that q is an *l*-th power residue mod l^2 , hence a fortiori mod $l^{(l-1)+1}$. Thus the prime divisor ramifying in L/K is only (q). This completes our proof.

Now let K be anew an algebraic number field of finite degree, and L_1, \ldots, L_m be independent cyclic extensions of degree l over K. Put $M = L_1 \cdots L_m$ and denote by $L_1, \ldots, L_m, L_{m+1}, \ldots, L_n n$ intermediate fields of degree l of M/K, where $n = (l^m - 1)/(l - 1)$.

Then, by a theorem in Nehrkorn [2], we have

$$\widehat{\mathfrak{R}}_{M} \cong \prod_{l \neq K}^{n} \widehat{\mathfrak{R}}_{L_{i}}.$$

(In truth we have a somewhat stronger assertion. We can regard \Re_K as a subgroup of \Re_M and of \Re_{L_i} in the sense of *l*-isomorphism. In this sense we have

$$\Re_M/\Re_K \cong \prod_{i=1}^n \Re_{L_i}/\Re_K.$$

For the proof of this result, see Kuroda [3].) In the case where K is a cyclic extension of P, and each L_i is a meta-cyclic extension of P of type F with the maximally abelian intermediate field K, we can further reduce the class groups \Re_{L_i} by Theorem 3 in the sense of lh_{κ} -isomorphism. In particular we can apply this reduction to the class group of a Kummer's field $P(\zeta_l, \sqrt[l]{\alpha_1}, \ldots, \sqrt[l]{\alpha_m})$ with the exponent l, where $\alpha_1, \ldots, \alpha_m \in P^{\times}$. In this way we have

THEOREM 5. Let $\alpha_1, \ldots, \alpha_m$ be elements of P^{\times} multiplicatively independent modulo $P^{\times l}$, and denote by $\Omega_1, \ldots, \Omega_n$ all the distinct fields $(\neq P)$ of form $P(l\sqrt{\alpha_1^{x_1} \cdots \alpha_m^{x_m}})$ where $n = (l^m - 1)/(l - 1)$ and x_1, \ldots, x_m be integers. Moreover, put $K = P(\zeta_l)$ and d = (K : P). Then, for the class group of the Kummer's field $M = P(\zeta_l, \sqrt[l]{\alpha_1}, \ldots, \sqrt[l]{\alpha_m})$, we have

$$\widehat{\mathfrak{K}}_{M} \cong \prod_{lh_{K}}^{n} \widehat{\mathfrak{R}}_{\Omega_{i}}^{(d)}.$$

Here lh_K depends only on l and the ground field P, and not on $\alpha_1, \ldots, \alpha_m$.

References

- H. Hasse, Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper, II (1930), Jahresberichte der D.M.V.
- [2] H. Nehrkorn, Über absolute Idealklassengruppe und Einheiten in algebraischen Zahlkörpern, Abh. Math. Sem. Univ. Hamburg 9 (1933), pp. 318-334.

- [3] S. Kuroda, Über die Klassenzahl algebraischer Zahlkörper, Nagoya Math. J. 1 (1950), pp. 1-10.
- [4] T. Honda, On absolute class fields of certain algebraic number fields, Jour. f. Math. 203 (1960), pp. 80-89.

Department of Mathematics University of Tokyo