
ON HOLONOMY AND HOMOGENEOUS SPACES

BERTRAM KOSTANT

1.1. Introduction. In general a homogeneous space admits many invariant

affine connections. Among these are certain connections which appear in many

ways to be more natural than the others. We refer to the connections which

K. Nomizu in [4] calls canonical affine connections of the first kind. When

G is a compact connected Lie group and K a closed subgroup we called an

invariant Riemannian metric on G/K, natural (in [2]) when it induced such a

connection.

The papers [2] and [3] were devoted mainly to the determination of the

holonomy group and its reducibility properties for G/K when the latter is

provided with a natural invariant metric. The theorems obtained generalize

completely (to such homogeneous spaces G/K) the results of E. Cartan on

holonomy in Riemannian symmetric homogeneous spaces.

The purpose of this paper is mainly to consider questions of holonomy

when G/K is provided with an arbitrary invariant metric and not just a natural

one. In this connection we are concerned with how reducibility properties

change when we change from one metric to another. In § 2 and § 3 here we

determine the linear holonomy group as well as the linear holonomy algebra

for an arbitrary invariant metric. This is done in terms of the adjoint repre-

sentation and a comparison operator between the arbitrary metric and a natural

one. We then show the restricted holonomy group and the full homogeneous

holonomy both admit the same invariant subspaces with regard to their respec-

tive actions on a tangent space of G/K.

In § 4 we order the various metrics with regard to their reducibility

properties. We then obtain conditions on an arbitrary metric which permits

comparison between its reducibility properties and the reducibility properties

of a natural metric. (The point being that the situation in the latter case is
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known completely as a result of Theorem δ, [3]J These comparison theorems

are applied in various ways throughout the remainder of the paper.

1.2. One of the applications of the main comparison theorem is to the

case, considered by Lichnerowicz [63, where the isotropy group K has inequi-

valent tangential representations. In [5] Lichnerowicz asserts a result on

reducibility for G/K which, roughly speaking, is similar though actually weaker

than our Theorem δ, [3]. However, Lichnerowicz makes no. assumption as to

the type of invariant metric whereas we had taken it to be natural. In a later

paper, however, [6], he writes that his theorem is based on a result of Nomizu

a result, he says, which now appears doubtful. He then obtains a similar

theorem to his original one only after making the assumption on the isotropy

group referred to above. In this paper we will, first of all, show that the

original theorem of Lichnerowicz is indeed false. (We do this, in §3, by

exhibiting a homogeneous space G/K which is reducible even though G is

simple. This then is a counter-example to the conjecture of Nomizu. As we

have shown in [3D, Corollary 9, such a situation cannot occur if the metric is

natural.) Next as an application of the comparison theorem we show that the

assumption on the isotropy group implies that all metrics on G/K have the

exact same reducibility property. Thus Theorem δ, [3D, may be applied and

this yields a stronger result than his corrected result.

1.3. In [7D Matsushima and Hano prove that G/K is always irreducible

whenever G is simple and the Euler characteristic of G/K, X(G/K), is not zero.

After being informed of this fact by Matsushima we recognized that if 7ΛG/K)

=̂F 0 then K satisfies the condition of §1.2. In fact, as we show in §δ, K

actually satisfies a stronger condition. We are then able to apply the comparison

theorem and obtain the result of [7D (referred to above) and more, namely

that when 7ΛG/K) A 0, G/K is irreducible if and only if G is simple. (Of

course the new "only if" part is valid only when the natural assumption is

made that the Lie algebra of G acts effectively on G/K.)

As an application we obtain the corollary that a simple and a non-simple

Lie group cannot both act transitively and effectively as a group of motions on

a compact Riemannian manifold M if 7ΛM) # 0. This result is not true without

the assumption, 7ΛM) *= 0.

1.4. In § 6 a comparison theorem is applied to show that under mildly
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restrictive circumstances the ''least" reducibility for G/K is achieved with a

natural metric. An example is given to show, however, that a natural metric

does not have this property in the general case.

2.1. The holonomy algebra. Let G be a compact connected Lie group.

Let β be its Lie algebra, identified with the tangent space at the identity e £ G .

We assume the bracket relation is defined using the right invariant vector fields

on G.

Let K ϋ G be a closed subgroup and let f be its Lie algebra. Let p ϋ β be

a subspace such that β = ϊ + P is a direct sum and such that p is invariant under

adu for all uE:K. For any i G ί ] let Xf and Xp be such that X=Xt + X?

where Xf e f and Xp e p. Also for any l e d let D* be the operator on p

defined by DX(Y) = ZX, Ylp for all YtΞp.

Let G/ϋf be the space of left cosets of K. Let o e G/K be the point corre-

sponding to the coset K. As usual we identify p with the tangent space at o.

For any I G O let I be the vector field on G/K whose value at ^G G/K is

defined by

where / is any smooth function defined in a neighborhood of q and the dot

designates the usual action of G on G/K.

It is immediate that tX/Y~] = [X, Y l

2.2. Let a homogeneous Riemannian metric be given on G/K. The vector

fields X, 1 G 9 , then become infinitesimal motions on G/K.

For any XEL β let <2Λ- : p ̂  p be the operator on p defined by axY= -VAX)

for all Y e p . Here FY designates covariant differentiation at o by the vector

Y e p .

Now let §o be the linear holonomy algebra of G/K at o. By Corollary 4.5,

[1], §o is exactly the Lie algebra generated by all aλ for I G 8 . Hence we

wish to compute ax for all X e β. Let JY", Yea, then

Hence if l e f , Y e p, evaluating at o, it follows that ΛΛ - Zλv. It suffices

then to determine ax when X" e p.
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If u, v are tangent vectors at a point q e GlK let {u, v} designate their

inner product as given by the metric tensor.

LEMMA 2.2. Let X, Y,Z&p. Then

2{azX, Y) = {DZX, Y} - {DZY, X} - {IX, Yip, Z).

Proof. Using the metric we may identify vector fields with Pfaffian forms.

We recall the well known evaluation of the differential of a Pfaffian form

Z on a pair of vectors

d2(γ, x) = γ{x, z} - x{Ϋ, z} - {[ y, x% z). (i)

Evaluating the first two terms using covariant differentiation we see that

dZ(Y, X) = {X, ΓyZ} - {Y, FXZ} = 2{azX, Y). (a)

On the other hand evaluating the first two terms of (1) using Lie differ-

entiation we have

dZ{Y, X) = {X, LY, Z1P)-{Y, [X,Z]P} + {[Y, X2p, Z). (b)

Comparing (a) and (b) proves the lemma. Q.E.D.

2.3. Let C designate the bilinear form {X, Y) at o. It is clear that Dx

is skew-symmetric with respect to C if 1 6 f. This need not be the case if

XGp. If this were the case it follows immediately from Lemma 2.2 that

az = \ Dz for Z e p .

On the other hand if 5* is a bilinear form on 9, invariant under adG, and

B is its restriction to p then assuming B is positive definite on p and that p is

orthogonal to f with respect to B* it is obvious that Dx is skew-symmetric for

all I G 9 .

Forgetting about £* we will say that a positive definite bilinear form B

on p is strictly invariant if Dx is skew-symmetric for all I G 9 . It is not

necessarily true that all complements p admit such a B but we may always

choose p such that a strictly invariant B exists on p.

Assume B is a strictly invariant bilinear form on p. We designate by

(X, Y) its value on J, 7 E p. Returning to our metric, let S be the operator

on p (positive definite with respect to B) defined by

(Sϊ, Y) = {X,Y} (2.3.1)
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for all X,Y<Ξ\>.

Now by Lemma 2.2

2(SazX, Y) =- (SDzX, Y) - (DZY, SX) - (DXY, SZ).

Since Dz and Dx are skew-symmetric relative to B and Dχ(SZ) - - DszX

we have

2(SazX, Y) = (SDZX, Y) + (DZSX, Y)-(DSZX, Y)

so that

= SDz + DzS- Dsz.

Hence az = X (Dz + S'1DZS- S^Dsz) for any Z e p.

But now S commutes with A: for any Zef . Hence setting S = 0 on f and

recalling that az = Dz for all Z E Ϊ we see that

az= l(Dz + S~1DzS-S~ιDsZ) (2.3.2)

for all Zεβ. 1 1 Hence recalling Corollary 4.5 in [1] we have

THEOREM 2.3. Z^ί G/ϋC be given any homogeneous Riemannian ?netric. Let

p be any complement to ! such that D admits a strictly invariant bilinear form

(X, Y). Let {X, Y) be the bilinear form on p given by the metric tensor. Let

S : p -> p be defined by (SX, Y)--={X, Y). Extend S to 9 by denning S = 0 on f.

/or α?2V Z ε d /̂ ί Dz be the operator on p defined by DzY-LZ, y]p /or

/ẑ  linear holonomy algebra is the Lie algebra generated by all oper-

ators on p of the form

ivhere Z e Q.l)

3.1. The counter-example and the holonomy group. Now, of course, if we

fix p and B and vary C through all possible bilinear forms in p invariant under

adu, U&. K, we run through all possible homogeneous metrics that we may

put on G/K. In considering the question as to how az changes from metric to

l) Of course 5 becomes singular in general when extended from p to Q. We under-
stand S" 1 to be the operator on p which is inverse to the restriction of 5 to p.
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metric or how the holonomy algebra changes from metric to metric we are

reduced to seeing how

changes as we vary S through all possible operators which are positive definite

on p with respect to B and which commute with adu for all w e K.

3.2. Let us then consider the question of reducibility of GlK and how this

depends on the choice of the permissible metric C.2) For example, we might

ask the question, if GlK is irreducible relative to one permissible metric when

can we be sure it will remain irreducible when the metric is changed.

Now in [2] and [3D all our considerations were for the case when C-B.

Concerning reducibility among the theorems proved was one, Corollary 9, [3],

asserting that if 9 is simple then GlK is necessarily irreducible.

Now one may wonder whether GlK is always irreducible if 9 is simple

(that is, always, independent of the invariant metric). In fact such a theorem

unknown to us at the time [3] was written had at one time been claimed by

Nomizu. An even more general result had been announced in a paper of

Lichnerowicz (Theorem, parts 1°, 3°, p. 1413, [5]).3) We now construct a counter-

example showing that these theorems are false. That is, we shall give an

example of a case where 9 or G is simple yet GlK is reducible:

We first observe the following fact. Let G and K be as before. Let H be

any compact connected subgroup of G. Let ί) be its Lie algebra. Consider the

action of H on GlK. We assert, first of all, that a necessary and sufficient

condition that H be transitive on GlK is that 9 = ΐ) + ϊ. Indeed this is almost

obvious. If 9 = ί)4- ϊ then H carries o^G/K into a set which is both open and

closed in GlK. By connectivity then the orbit of o must be GlK. Conversely,

if H is transitive an obvious argument on dimension implies that 9 = f) + f.

Now many examples exist where a simple compact Lie algebra 9 is the

sum (not necessarily direct) of two proper subalgebras ΐ) and f. For example,

the β-sphere S6 may be written S6 = SO(7)/SO(6). But G2 (the first exceptional

compact Lie group) is contained in SO(7) and acts transitively on S6 so that

if α is the Lie algebra of SO(7) and f and Ij the Lie algebras of G2 and SO(6)

2) Any positive definite bilinear form C on p which is invariant under adpK will be
called a permissible metric from here on.

3> See, [6] for a new, but weaker, version of this theorem.
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we have such an example. Another example is where Spin(9) acts transitively

on the 15-dimensional sphere.

Assume then that β = ϊ) -f f where of course it may be assumed that both

H and K are compact. Let V= G/HxG/K. Obviously we may put a metric

on V which is reducible and which is invariant under GxG. Let G be the

diagonal of GxG. It is obvious that G is isomorphic to G and that G leaves

the metric on V invariant. We assert that G acts transitively on V so that

V=6/L. Indeed writing V=GxG/H°xK° where H° = Hxe and K° = exK.

Then where ϊ)°, 1° and δ are the respective Lie subalgebras of G© 9 it is clear

that f+f)° + 6 = 9©0. Q.E.D.

3.3. Returning to our considerations of reducibility in the general case

let §o(C) be the holonomy algebra, ψo(C) the linear holonomy group and τo(C)

the restricted linear holonomy group at o induced by the metric C. Of course

Now in [2], φo(B) has been determined as well as τo(B) (that is, without

assumptions such as simple connectivity for G or connectedness for K). To be

more explicit we recall, first of all, that for any permissible metric C, τo(C) is

the identity component of ψo(C). Obviously adpK* ϋ ro(C) where K* is the

identity component of K and ad^K* is the restriction of adK* to p. We have

shown in [3] that when C = B, ψo(B) = advK τo(B). That is, first of all, adpK

Eψo(B) and secondly every coset of τo(B) in ψo(B) contains an element of

adpK. Hence if

then K' is a normal subgroup of K containing K*, and K/K' is naturally iso-

morphic with ψo(B)/τo(B). We now wish to show all of this is true for an

arbitrary metric C.

Let b ϋ g be the subset defined by

If π : G -> G/K is the natural map let X(t), 0 ^ t ^ 1, be the closed curve

in G/K, where X(Q) = X(l) = o, defined by X(t) = π(exptX). Let a{X)^φo(C)

be the element in ψo(C) defined by parallel transport along X(t). For simplicity

write u(X) = exp XEL K. We have shown in [2] that
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a{X) ^adpui - X) exρβA.4) (3.3.1)

Thus advu(X) = exvaX' a(X)~\ Since aχ<ΞZ0(C) it follows then that

adpuiX) £ ψoiC) for all l ε b . Since any u e if is of the form exp X f or i G f i

it follows that adpK E ψo(C). On the other hand we assert that every element

of the fundamental group TTiiG/K, o) has a representative, some curve X(t)

where Xe b. In fact we may choose i G ί ) . This is true since if we use the

metric B instead of C the curves π(expsY) where Y e p and (Y, Y) = l are

all geodesies through o and every geodesic through o (parameterized by the

arc length) is necessarily of this form. Now as pointed out in [2] every

element of ΠiiG/K, o) has as representative, a closed geodesic through o. This

is an easy consequence of the homogeneity of G/K and the classical theorem

that every free homotopy class contains a closed geodesic. But if 7r(expsY)

is closed where we may assume 0 ^ s ^ b then of course bY - i G b Γ\p and

X(t) = π(exvtbY), 0 *έ t £ 1.

Hence if a G ψo(C) is arbitrary we may find I G b Γ\ p such that the curve

defining a& ψo(C) and the curve X(t) are homotopic. Hence o d j ' ^ G τo(C).

Hence e £ f l ( I ) τo(C). But by (3.3.1) we have a^advK τo(C). We have

proved

THEOREM 3.3. Let C be an arbitrary permissible metric. Let §O(C) be the

corresponding holonomy algebra {given explicitly by Theorem 2.3) so that

expZo(C) = τo(C) is the restricted linear holonojny group. Let ψo(C) be the full

linear holonomy group. Then adpK ϋ ψo(C) and in fact

ψoiC) = adv(K) τo(C).

3.4. We wish to show now that the concept of reducibility is independent

of whether we consider ψo(C) or ro(C). More explicitly, we will show that a

subspace p' ϋ $ is invariant under τo(C) if and only if it is invariant under

ψo(C). Furthermore, we will show that an element of p' is fixed under the

action of τo(C) if and only if it is fixed under the action of ψo(C).

We record for later use the following immediate consequence of the relation

(2.1.1).

4) Actually, in 12] we have been dealing with φe case where C = B. However the
proof of this formula makes no use of this fact. Thus the formula holds for an arbitrary
invariant metric C.
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By the definition of az for any Z £ Q we have

LX, Ylp = aχYp-aγXv (3.4.1)

for any Z, Y e 9.

Some lemmas are required.

LEMMA 3.4 A. Let ft ϋ p &£ <z/2y subspace invariant under the action of

τo(C). Let p2 #£ #s (C) orthogonal complement in p. Let ϊji = ϊ -f ft α?z<i ϊ)2 = ϊ -f- p2

Then ί)i αwd % are subalgebras of 9.

Proof. Of course [!, !] £ f and [f, ft] <= pi. Now let X, Y e pi. Then by

(3.4.1), ZX, Y]p = aχY-ctrX. But by Theorem 3.3, [1], βz, *y e S0(C) and

hence αA-F, β r ^ ε ft. Thus [X, Y] p e ft so that CX 7 ] e ί ) i . Thus ί)i is a

subalgebra. Similarly, since p2 is invariant under ro(C), f)2 is a subalgebra.

Q.E.D.

Let ft, p2, ί)i and f)2 be as above. Consider the direct sum β = ft-f fy>. Let

^ : 0 -̂  ft be the projection of Q onto pi which vanishes on ί)2.

Now one cannot expect that Dx is skew-symmetric on p for all l £ 0

(indeed by Lemma 4.2, it follows easily that this is the case if and only is B

and C induce the same affine connection). This situation, however, is somewhat

approached (see proof of Lemma 3. 4B below) by the fact that if I ε t ) 2 then

Q adX, as an operator on ft, is skew-symmetric. This forms the main idea

behind the following lemma. Now let Hi (resp. Ά) be the closure in G of the

subgroup corresponding to the subalgebra f)i (resp. ί)2). We will adhere to this

notation throughout this section.

LEMMA 3. 4B. Let YE: ^ and Λ G f i . Then

(QY, QY) = (Q(adxY), Q(adxY)). (3.4.2)

Moreover, if x is of the form x = exp-X for I G ί)2, then Qiadx Y) = expaxiQY).

Proof. Let X e ' | 2 and ZGft. Then ίX, Zip - axZ- azXp. But since

βλ , βzε§ 0 (C) by Theorem 3.3, and since JYp G p2 we have that axZ^pi and

«zZp G ft. Thus we may write ZX, Zl = βΛ Z + (Ĉ Γ, Z ] f - ^ Zp) where the first

term is in ft and the term within the parentheses is contained in i)2. Thus

QadXZ- axZ and hence QadX-ax on ft. Oh the other hand since ί)> is a

subalgebra we have in fact that
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Q(adX)n=(ax)nQ

on 9 for any integer n and hence Qadx = exp ax Q. (It should be-recalled that

since adX is defined by means of right invariant vector fields on G, expadX

-adexyX.) But since ax is skew-symmetric on pi (and hence expax is

orthogonal on pi) it follows that

(QY, QY) = {Q(adxY), Q{adxY))

when x is of the form exp X for some l £ i)2. Since we may substitute adxY

for Y and choose other elements x in i/2 of this form it follows easily that

(3.4.2) is true for all x in the group corresponding to f)2. By taking limits it

is true whenever x G H2. Q.E.D.

Now it is easy to see that every element ) G G is of the from y-u2uι

where u\ G Hu u2 G H2. Indeed since fl = fh + ί)2 it follows, see § 3.2, that H2 is

transitive on G/Hi. This, however, is equivalent to the statement that every

y G G is of the form, y - u2uι where u2 G iΐ>, Mi G HI.

LEMMA 3. 4C. Assume y G K and y = u2u\ where uι G Hi and u2EiH2\

then U\ and u2 are in the normάlizer of f. That is, both adu\ and adu2 leave f

invariant.

Proof. Obviously it suffices to prove the lemma for just uι. Let ZGf

and let adui Z = Y = YΊ + Y2 where YΊ G ί, Y2 G p. Since it is obvious that adui

leaves fji invariant we must have Y2Gpi. But now by Lemma 3. 4B where

x- u2

(Q(adu2Y), Q(adu2Y)) = (QY, QY)

= (Y2, Y2).

On the other hand adu2 Y = adyZE: f. Thus Q{adu2Y) = 0. Hence Y2 = 0

so that YEit. Thus f is invariant under adui. Q.E.D.

Finally,

LEMMA 3.4D. Let V be a finite dimensional real vector space. Let Ci and

C2 be two positive definite bilinear forms on V given, respectively, by (u, υ)ι and

(u, v)2 for uy v G V. Let A be an operator on V which is orthogonal with respect

to Cι and such that

(u, u)2 E* {An, Au)2

for all UELV. Then A is also orthogonal with respect to C2.
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Proof. Let T be the operator on V, positive definite with respect to Cu

defined by (Tu, v)ι-(u, v)2 for all u, v G V. Assume iv e V where (iv, w)2

> (AiVy Aιv)2. Since w * Q we may assume (ιv, w)ι = 1. Let e, , i = 1, 2, . . . , w

be a basis of V which is (1) orthonormal with respect to d and (2) such that

βι = w. Now

tr A'1 TA= i

and

trΓ=

= Σ U , ft)*.
< = 1

But (έ?, , ̂  )2 ^ (Λβ, , i4ft)2 and (^, ^ ) 2 X ^ i , A^)2. Thus tr T > tr A~ιTA

which is a contradiction. Thus (w, w)2= (Aw, Aιv)2 for all iv e V. Q.E.D.

We now have

THEOREM 3.4. A subspace pι = $ is invariant under τo(C) if and only if

it is invariant under ψo(C). Furthermore the elements of $ι are fixed under

the action of τo(C) if and only if they are fixed under the action of ψo(C).

Proof. Assume ft is invariant under τo(C). To show pi is invariant under

φo(C) it suffices by Theorem 3.3 to show that pi is invariant under adpK.

Now it is obvious that if Theorem 3.4 is proved in terms of a complement

p the theorem is true for any complement pf to f which is invariant under adK.

It is convenient for this proof to choose p as the orthogonal complement to f

relative to a positive definite invariant bilinear form J3* on 0.

Now let y e K, then as mentioned above y may be written as y-u2u\

where ui e Hi and u* G H2. But by Lemma 3.4C adu2 and adu\ leave f invariant.

But then by the definition of p they also leave p invariant. Now let Z E p i ;

we wish of course to show that adyZEipi. Now let W-aduiZ. Then since

both p and ϊji are invariant under adux we have that WE: % Π p = pi. Thus pi

is invariant under adui. Let A be the restriction of adui to pi. Let Y — adyZ

= adu2 W. Write Y = YΊ + Y2 where TΊ e Pi and Y2 e ρ3. Now by Lemma 3. 4B,
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(.W, W> — ( Yu Yi*. On the other hand v €Ξ A' and hence «<iv is orthogonal with

respect to C. Thus

(Z, z ) = (γ, Y)

= <γ,, Fi) + (y2, y2)

= < FF, Ϊ F ) + (Y 2 , y2). ( i )

But then since W — AZ we have by (I) that

(Z, Z) ^ (AZ, AZ)

for all ZE|)i. On the other hand A is orthogonal with respect to the restriction

of J3* to the subspace pi. Thus by Lemma 3. 4D A is orthogonal with respect

to C. Hence <Z, Z) = (W, W) and hence by (I), Y2 = 0. Thus F G D , and

hence Pi is invariant under adK.

Now assume that every vector in pi is invariant under the action of τo(C).

Then for any F e d the range of ay is contained in p2. Thus if J, ZG9 then

ZX, Zl$ = aχZp — azXρ&p2 and hence [X, Y] G ij2. Thus fy> is an ideal in U

which contains the commutator ideal. Thus if ZE|>i it follows that Q{adX)nZ

= 0 for all w > 0 and of course equals Z when n = 0. Thus since every # in G

is of the form exp X for some I G 9 we have Q(adxZ) = Z for all # e G. In

particular if x 6Ξ i£ then since adxZtΞp we may write adxZ—Z+W where

FΓe j>2. On the other hand since (adxZ, adxZ) = (Z, Z) it follows that W^O

and hence adxZ=Z for all ΛΓ G /Γ SO that Z is invariant under the action of

φo(C) by Theorem 3.3. Q.E.D.

4.1. The reducibility equivalence theorem. Now wτe wish to compare the

reducibility properties of the various permissible metrics on p. For this purpose

it is convenient to partially order the metrics. We will say C2 < Ci if whenever

a subspace pi ϋ p is invariant under ψo{Ci) it is also invariant under ψo(C->).

In particular we wish to compare C with B when C is arbitrary. This is true

mainly because we completely know the reducibility properties of B.

Now let p = Σft fC) be the direct sum where po(C) is the set of all vectors
t = 0

in p which are fixed by ψo{C) and pi(C), *'=1, 2, . . . , m(C) are irreducibly

invariant subspaces under the action of ψo(C). By Theorem 3.4 we would get

the exact same decomposition of p had we used τo{C) instead of ψo(C). Since

the representations of τo(C) on the subspaces PΛC) are known to be inequivalent

it follows obviously that the representations of ΦO(C) on these subspaces are
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also inequivalent. Thus a subspace pf ϋ p is invariant under ψ(λC) if and only
k

if p1 is of the form D' = &'Π fo>(C) + Σ p i / O where ij, j = 1, 2, . . . , k runs

through some subset of the numbers i-1, 2, . . . , 7n(C). One sees then that

Cι<C2 if and only if p, (C2) is invariant under ψo(Ci) for all i and t>0(C2)

ϋpo(CΊ). We will say Cι is weakly equivalent to C2 or d — C- whenever

Ci < C2 and C2 < C\. It is immediately clear that d ~ C2 if and only if po(Ci)

= Po(C2) and for any / ^ 1 there exists j ^ l such that pi(Cι) = fy(C2). That

is, except possibly for the order, the decomposition Σ f r ί C ) = p is the same for

both Cι and C2.

4.2. It is convenient to introduce, finally, a strong equivalence for the

permissible metrics. We will say C^^ Ci> or d is strongly equivalent to C2 if

they induce the same afϊine connection on G/K. Obviously, if d = C> then

φo(Ci) =ψo(C 2), since the holonomy group depends solely on the connection.

Hence, of course, Ci = Co implies Cι ~~ C2. A useful criterion for strong equiva-

lence is given in
ltl

LEMMA 4.2. Let d be any permissible metric and let Σtv(C,) = p be the

associated decomposition of p. Let C2 be any positive definite bilinear form on

p and let T : p-> p be the operator defined by {TX, Y}χ = {X, Y}2.

Then Ci is a permissible metric which is strongly equivalent to Ci if and

only if T commutes with ψo(Cι). {That is, if and only if, (1) T leaves iviCi)

invariant for all i and (2) if T, is the restriction of T to pΛCi) then each Ti

reduces to a scalar // when i> 0).

Proof. If C2 is a permissible metric strongly eqnivalent to d then ψ(AC\)

leaves d and C2 invariant. Hence ψo(Ci) commutes with T.

Conversely, if T commutes with ψo(Ci) then by Theorem 3.3, d is invariant

under adpK so that C> is a permissible metric. Furthermore, if C > is the

invariant metric on G/K defined by C2 and T is defined on G/K accordingly

then FxT-^ -lax, T] for any J £ 0 (See §2.2). Here ΓΛ and ax are defined

relative to d. This follows from the fact that Lx = Γx + ax (See [1], §2.1)

where Lx designates Lie differentiation relative to the field X where the value

is computed at o. But by the invariance of T, Lxf =0 .

But now since ^ e M C i ) by Theorem 3.3 in [ l j and ψo(Cι) commutes

with T it follows that Γ\T = 0. By invariance then it follows that T is covariant
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constant. Thus C2 is covariant constant relative to the affine connection

induced by Cu By the uniqueness of the affine connection induced by C2 in

that it is torsion-free and C2 is covariant constant it follows that Ci and C2

induce the same affine connection. Q.E.D.

4.3. Now consider the question as to when C < B where C is an arbitrary

metric. It is suggestive from the results of [3] and also from the example of

§ 3.2 that C < B in most cases. Actually as illustrated in the example of § 5.1

this relation is not true in general. However, it is always true under mildly

restrictive circumstances. For example, see § 6.1, it is always true when K is

connected, p is chosen properly, and there are no non-zero invariant vector

fields.

Now since ax = g-Dχ w n e n B = C it is clear from Theorems 3.3 and 2.3

and the remarks in §4.1 that C<B whenever S leaves the subspaces pi(B),

z' = 0, 1, 2, , . . , πι{B) invariant. To prove the converse we first observe

LEMMA 4.3. For any permissible metric C one ahvays has

Proof. Where C is arbitrary let q(C) = Σfc(C) so that p = po{C) + q(C)
•4 = 1

is a direct sum. Obviously it suffices to show that q(B) ϋ c|(C). But by

Theorems 2.3 and 3.4 it follows that <\(B) is the linear space spanned by all

vectors in p of the form DXY= ίX, y ] p where l e B, ί G p. On the other hand

CZ, Ylv = aχY-ayXp€Ξ<\(C) so that q(β) iq(C). Q.E.D.

Now if C<B then first of all po(B) EJ>o(C). But by Lemma 4.3 this

implies pa(B) =po(C). But then we see that each subspace pi(B), i>0 may be

written as a direct sum of certain of the subspaces pj(C) where j > 0. Since

the subspaces pj(C) are mutually orthogonal with respect to C it follows that

the subspaces pi(B) are also mutually orthogonal with respect to C. This,

however is equivalent to the condition that S leaves the subspace pi(B) invariant.

We have proved

THEOREM 4.3. Let C be any permissible metric. Then C < B if- and only

if S leaves the subspaces pi\B) invariant, i = Q, 1, . . . , m(B).

4.4. We now consider the question as to when B<C. Of course the

counter-example given in § 3.2 for the reducibility of G/K when G is simple is
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a situation where B < C does not hold. One would like to know conditions on

C so as to insure B < C. Such conditions are given in Theorem 4.4. First,

however, we need

LEMMA 4. 4A. Let pi ϋ p be a subspace invariant under ψo(C). Then if S

leaves pi invariant, l\ is also invariant under ψo(B), Moreover if the elements

of pi are invariant under ψo(C) they are also invariant under ψo(B).

Proof. Let p2) ί)i and f)2 be as in Lemma 3. 4 A. According to that lemma

f)j and fy> are subalgebras of β. Thus Dx leaves pi invariant for every XEΞpi.

Now if S leaves pi invariant then pi and p2 are orthogonal relative to B. Thus

Dx leaves p2 invariant also. That is, for any ZG|) 2, DxZ&p*. But DXZ

= — DzX and for similar reasons Dz leaves pi invariant, hence X_Xt Z\EL

pi Π & = 0. Thus DzX- 0. But then px is invariant under Dz for all ZGϋ. Since

of course pi is invariant under adpK it follows that pi is invariant under ψo(B).

Now if the elements of pi are invariant under ψo(C) then where l G ί ) i

and 7Gί)i, IX, Y]p = axY - ay X$ = 0 since Xv e Pi and « Y , ^ G ^ ( C ) . Thus

Dx vanishes on pi when i G i We already know that Dx vanishes on pi when

XEZP*. Thus since pi is element-wise invariant under ad^K it is also element-

wise invariant under ψo(B). Q.E.D.

It follows as an immediate consequence of Lemma 4. 4 that B < C whenever

S leaves the subspaces pjiC) invariant for all j . Unlike the converse in the

case when we were dealing with C < B the converse in this case is not neces-

sarily true. This is so because of the arbitrary nature of S on po{B). The

condition B < C implies that po(C) E Po(B). However, as the example of §6.1

illustrates PQ(B) may actually be larger than pύ(C) and since po(£) = Έjpl(B)
3

where p{(B) = pQ(B) Π pj(C) it is perfectly possible that the subspaces ρl(B)

are not mutually orthogonal with respect to B. On the other hand wτe may

alter B (and hence S) on po(B), preserving its strict invariance, and obtain B'

(and S') which is strongly equivalent to B (see Lemma 4.2) and which is such

that S' leaves the subspaces pj(C) invariant.

We now observe

LEMMA 4.4B. Let c be the center of Q. Then po{B) = c Π p.

Proof It is obvious that cΠp^poiB). On the other hand if A"ep o (B)

a n d - Y e n then D*-X=tY, X\ = 0 so that K Y ] ε f , On the other hand
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[f, Do(iS)] = 0. Thus (adXΫY^O for all ΓGO. But adX is a completely

reducible operator on ft. Hence (<Zί/_Y)2 = 0 implies adX=0 or .Ye c. Q.ED.

Collecting the results in this section we have proved

THEOREM 4.4. Z,£ί C be any permissible metric. Then B < C whenever S

leaves the subspaces Pj(C) invariant. Conversely, if B < C ive may find a per-

missible strictly invariant metric B1 on p which is strongly equivalent to B and

which is such that S' (see above) leaves the spaces ϊyiC) invariant.

If we assume p Π c = 0, tvhere c is the center of 0, then B < C if and only

if S leaves the subspaces pj(C) invariant.

COROLLARY 4.4. Assume Q is semi-simple. Let C be any permissible metric

on p. Then B <C if and only if S leaves the subspaces ly(C) invariant.

4.5. Combining Theorems 4.3 and 4.4 we see that B — C whenever S

leaves the spaces pj(C) and pi(B) invariant. On the other hand if B ^ C then

since we may assume (see §4.1) pj(B) -pi(C) for all i, the subspaces pi(B)

are mutually orthogonal with respect to both C and B. Hence S leaves these

spaces invariant. This gives

COROLLARY 4.5. Let C be a?ίy permissible metric. Then B — C if and only

if S leaves all the subspaces pi(B) and pj(C) invariant.

4.6. Now in order to apply Cor. 4.5 one would like to have conditions

which assert that either (1) S leaves each pj(C) invariant or (2) S leaves each

Di(B) invariant: for example, (1) is true if S is in the associative algebra

generated by ψo(C\ Similarly (2) is true if S is in the associative algebra

generated by ψo(B). A situation in which both (1) and (2) occur is as follows:

Lichnerowicz uses the expression (which we adopt), "'aά\K has inequivalent

representations" when every irreducible representation of adpK has, at most,

multiplicity 1 on p. Now it is an elementary fact that if adχ>K (or any compact

linear group) has inequivalent representations then whenever a subspace pi = p

is invariant under adpK any operator on p which commutes with adpK must

also leave in invariant. Since S always commutes with ad^K it follows that if

advK has inequivalent representations then S leaves both pj(C) and Pi(B)

invariant for all ί, j . Thus by Corollary 4.5 B — C for all C. We thus obtain

THEOREM 4.6. Assume ad^K has inequivalent representations. Then any
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two permissible metrics C\ and C> are weakh equivalent. That is, the decom-

position |) = Σ i v ί O is independent of the metric C.
Ϊ - 0

In [6] Lichnerowicz has shown that if advK has inequivalent represen-

tations and G/K is simply connected then G contains a connected normal sub-

group which is the direct product of the subgroup Γ* which leave invariant

the various "feuille" Wa. Also the subgroups Γ* act effectively and transitively

on the Wa:
r

Thus by making assumptions on the representation of ad^K, Lichnerowicz

obtains a result for an arbitrary metric on G/K which is roughly similar (though

actually weaker) than our Theorem 5, |_3], where no assumptions have been

made on the representation of ad^K but our metric is taken to be of a special

type (C =- B). But now we see as a result of Theorem 4.6 the assumption made

by Lichnerowicz implies that all metrics are equivalent as to their reducibility

properties. Thus with this assumption our Theorem o, [8], can be applied to

give a stronger result than that in [βj. We have in Lie algebra terms,

COROLLARY 4.6. Let B be an invariant {underad G) positive definite

bilinear form on fl. Let i> be the ortho-complement of f. Note assume β acts

effectively on G/K and assume ad^K has inequivalent representations.

Let C be any permissible metric, on n and let <>V C > be the holonomy group

associated with the invariant Riemannian metric on G/K induced by C.

Then (1) Pt ϋ )> is invariant under ψ<AC) if and only if $(pι) = i>i -f Qn, ihi

is an ideal in 0. In such a case OUh) - fi -{• ίh where U~§{\h) Π !.

Furthermore if p— Sί-V(C) is the direct sum decomposition of Ό associated

with C {see §4.1) then where i ^ ^ i v ( C )

(2) α, = r/ -f Γlv, 1?/], i = 0, 1, 2, . . . , m are ideals in fl and ΰ = flo ft ^! ® . . .

Θ ί)//i is ί/2>^c/. Also,

ί n f, ^G, Π ! , ί^= 1, 2, . . . , /;; are ideals in ! and f ^ ί ( ® ! , 6 . . . ® t m as

direct. Finally,

(4) ί?o = l̂o - i1 Π c where c ί's ί/ztj center of 0.

5.1. Applications. It is an immediate consequence of Corollary 4.6 that

5 Although not stated explicitly as it was in [5] it seems clear that the author has
assumed G acts effectively on G/K. One can easily construct counter-examples when
G does not act effectively.
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G/K is irreducible when the following two conditions are satisfied: (1) 0 is

simple and (2) adpK has inequivalent representations.

An important example of when (2) is always satisfied is when the Euler

characteristic of G/K (7ΛG/K)) is not zero (see Theorem 5.3 below). Thus

one obtains the result that if 0 is simple and 7Λ G/K) # 0 then G/K is always

irreducible. The applicability of Corollary 4.6 to obtain this result occurred to

us only after being informed by Matsushima that this result had been proved

(using other methods) in [7]. However, as we shall see below, Corollary 4.6

yields more than this namely, if we assume that 0 acts effectively in G/K (i.e.,

f contains no ideals of 0) then when YΛG/K)*0, G/K is irreducible if and only

if 0 is simple.6) More generally, the subspaces pj(.C) are in a natural one-one

relation with the simple ideals in 0.

5. 2. Let adt and adp designate the respective representations of K on f

and p obtained by restricting adK to these spaces. We will say that adt a n c*

adp are disjoint if every irreducible component of ad\ is not equivalent to any

irreducible component of adt.

We recall that an intertwining operator T for a pair of representations σι

and σ2 of K on the respective vector spaces VΊ and V2 is a linear operator

T : Vi -> F2 such that TσΛx) = ύS(x) T for all X e K In the above sense <JX and

a i are disjoint if and only if the only intertwining operator is the one mapping

Vι into zero.

For the sake of convenience we shall assume in this section that 0 acts

effectively on G/K. (This is not as restrictive as the assumption that G acts

effectively on G/K)

LEMMA 5.2. Assume adp and adt are disjoint. Then

(1) the complement p, to f, is unique in that it is the one and only linear

complement which is invariant under adK,

(2) if 0' is any ideal in 0 then 0' = β' Π f + 0' Π p,
s

(3) if 0o is the center of 0 and 0 = Σ $ is the direct sum where the 0/, i > 0,
ι = 0

are the simple ideals in 0 then p= Σ pj is a direct sum where pj = p Π 0; and

the subspaces pj are identical with the subspaces Pi(B) in some order.

6) This means that if l e g , X = 0 implies X = 0.
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Proof. Let Q | 9 be any invariant subspace for adK. Let ada be the

representation of K obtained by restricting adK to α. Now assume ada is irre-

ducible. Then ada is equivalent to one of the irreducible components of either

ad\ or adp but not both. Without loss of generality assume ada is not equivalent

to any irrebucible component of adp. Now for any I G Q consider the linear

mapping X -> Xp of α into p. This defines an intertwining operator T for the

representations ada and αί/p. But since these representations are disjoint we

must have Xp = 0 for all i G f l so that α i f . Similarly if αdα and «df are dis-

joint it follows that u ϋ p. Thus we see that if ada is irreducible then either

α ϋ ϊ or o i | ) . More generally then, if ada is not necessarily irreducible, by

decomposing it into irreducible summands, we see that ada may be uniquely

written as the direct sum α = αi + α2 where Oi - α Π ! and a2 ~ a Γλ p.

Now if pf is a linear complement to ! which is invariant under adK then

it is clear that adψ is equivalent to adp and hence Ό - t)'. Also from above,

β' = 8'Π!-f-δ'Πj). It should be noted that if 8' 3= 0 then β' Π H 0 since otherwise

8' ϋ f which contradicts our assumption that 9 acts effectively on G/K.

It follows immediately then that p-- Σ p f is direct sum and that r>; A 0 for

z > 0. Furthermore the pj are invariant under ψ(λB). On the other hand if p'

is invariant under ψo(B) then obviously G' - Ep', p'] + p' = f 4- p' where V = ίϊ' Π !

is an ideal in fi. Hence the p/ are irreducibly invariant under ψo(B). But since

po - poiB) by Lemma 4. 4B the subspaces fy must be identical with the subspaces

in some order. Q.E.D.

5.3. Now both the condition that ad$K has inequivalent representations

and the condition ad{ and adp are disjoint are conditions on K as a subgroup

of G. We will say that a compact subgroup K is detached when both these

conditions are satisfied. In other words K is a detached subgroup of G when

the irreducible components of adp occur not only with multiplicity one in adp

but with multiplicity one in ada,. One sees easily that if K is a detached sub-

group of G then any compact subgroup K' of G which contains K is also

detached.

We now observe

LEMMA 5. 3. Let T be a waximal torus in G. Then T is a detached sub-

group.
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Proof, Let f be the Lie algebra of T. Then as one knows we may find a
Γ

complement it such that u= Σt); is direct sum where r is half the number of

roots of the complexification of fl, fy is two-dimensional for each i and t>, is

irreducibly invariant under the action of adT. Furthermore the subspaces t>;

are in one-one correspondence with the set of all pairs consisting of a root and

its negative. This correspondence is such that the representation of T on the

complexification of ty is a direct sum of the character representations of T

defined by the root and its negative. Since two different roots define inequivalent

character representations of T it follows that the representations of T on the

various planes t>, are inequivalent. Furthermore since adt is just a multiple of

the identity representation, T is therefore detached. Q.E.D.

Now one knows that 7JG/K) =̂ 0 if and only if K contains a maximal torus
of G. Hence by Lemma 5.3 and the remark preceeding it K is detached

whenever 7ΛG/K) =*? 0. Combining the results of Corollary 4.6 and Lemma 5.2

or more directly Theorem 4.6 and Lemma 5.2 we obtain the following theorem.

THEOREM 5.3. Assume 7ΛG/K) * 0~and that β acts effectively on G/K.6)

Then with respect to any invariant metric, G/K is irreducible if and only if Q

is simple.
s

More generally, β is necessarily semi-simple and if 0= Σ & is the decompo-
l

sition of 9 as the direct sum of its simple ideals then p = Σ Pj is direct where
.7 = 1

fy-pΠQj and the subspaces pj are identical with the subspaces pAC) in some

order.

One should note that we may substitute the condition K is detached for

the condition 7ΛG/K) =*F 0 in the previous theorem.

5.4. Of course it is quite possible for a compact Riemannian manifold M

to admit as a transitive, effective group of motions both a simple Lie group

and a non-simple Lie group. An example of this is when M is itself a compact

non-abelian simple Lie group G which is provided with a left and right invariant

metric. Then G and G x G modulo a finite group both act transitively and

effectively as motions on G. The following corollary says this cannot happen

if 7AM) ^0. The proof follows immediately from Theorem 5.3.

COROLLARY 5.4. A simple and a non-simple compact Lie group cannot both
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act transitively and effectively as a group of motions on a compact Riemannian

manifold M if YAM) * 0.

5.5. For homogeneous spaces G/K where YΛGIK) =*F 0 the relation between

invariant metrics and affine connections they induce becomes quite direct. We

have

COROLLARY 5.5. Assume YΛG/K) % 0 and β is simple. Then two permissible

metrics Cι and Ci induce the same affine connection if and only if there exists

a scalar λ such that λd- C2.

Proof. Let T be defined as in Lemma 4.2. Now if Ci is strongly equiva-

lent to Co then by Lemma 4.2, T reduces to a scalar since Theorem 5.3 implies

φo(Ci) is irreducible. The converse is trivial. Q.E.D.

6.1. Invariant vector fields and the dominance of natural metrics. Aside

from the case where YAG/K) =v 0 the condition that advK has inequivalent

representations seems to be fairly restrictive. One would like a less restrictive

condition in order to imply that S leaves the spaces bj(C) and ϊviB) invariant.

In the following theorem we give a more likely condition which implies at least

that S leaves the spaces lu(B) invariant. Thus according to Theorem 4.3,

C < B for every permissible metric C when this condition is satisfied. First

we would like to point out that the example in § 3.2 illustrates that B < C does

not always hold. In fact in that example we had reducibility with respect to

C and irreducibility with respect to B. We now give an example where C < B

does not hold. Here we shall have reducibility with respect to B and irreduci-

bility with respect to C. We have seen (see §4.3) that C<B implies that

j)0(C) =po(B). The following example also illustrates that the strict inequality

in the relation dim po(C) != l^B) of Lemma 4.3 may hold. That is, in our

example 0 = άimfoiC) < dim l\(B) = 1.

Let G-U(2), the 2 x 2 unitary group. Then the decomposition of β as

the direct sum of its center and its simple ideals becomes β = v10 + βi where β0

is one-dimensional with basal element Xo and βx is 3-dimensional with basal

elements Xu X2, XΆ. The basis of Qt may be chosen so that ZXU X21 = X3,

ίX2, X{] - Xu Df8, -Yi] = X 2.

Now let K- e so that D - β. Now it is clear that wτe may choose B so that

Xi> 2 = 0, 1, 2, 3 forms an orthonorrnal set. It is obvious also that βo = po(-B)
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and Qi =

Now since K = e> any metric C is permissible and hence every positive

definite (with respect to B) operator S may be obtained.

Now given C then by Lemma 4.3 either dim|)o(C) = l or 0. We assert

that in case dimpo(C)=0, G is irreducible. Indeed if G were reducible then

dimension-wise the only possible decomposition is p = pι(C) -ffc(C) where

dimj)i(Cy = dim})2(C) = 2. On the other hand by Lemma 3.4A, pΛO and p2(C)

are subalgebras of 0. But since G is compact pi(C) and fo(C) must be com-

mutative. Since 0 contains a non-zero center this easily implies the existence of

a three dimensional commutative subalgebra of 9. This, however, is a contra-

diction.

It suffices then to exhibit a metric C for which jjo(C)=O. Now if c\(C)

and (\(B) are defined as in § 4.3 then as we have seen there q(J3) ϋ q(C). Since

c\(B) = 0i, to show po(C) = 0 it suffices to choose C so that q(C) contains a vector

not in 0i. Let S be an operator on 0 defined as follows: SXo = Xo + Xz> SZi = 2 JYΊ,

Ŝ Γ2 = ̂ 2, SX i = 2Xz+ Xo. It is easy to verify that S is positive definite with

respect to B and hence defines C. We observe that S" 1 ^ = X& - Xo Now let

Y = αχιXi&q{C). Then Y

= (S~ 1flΓ lS+ Dχx - S-'Dsx,) X2

= Xo.

Since Zo is not in 0i we conclude that 0 is irreducible.

Now the condition that we shall impose on 0, roughly speaking, produces

the opposite situation from the one above. The condition is that the space of

vectors in p which are point-wise fixed by αd»K* should be at most one dimen-

sional.7* We shall show that this always implies C < B for all C when p is

chosen properly. In order to prove this we have to appeal to the results in

[3]. However, these results were obtained under the additional hypothesis that

0 acts effectively on G/K. Hence we shall have to make this assumption.

However, we wish to point out that the results of [3], especially Theorem 4,

can be modified so as to yield the following theorem without the assumption

of effectiveness.

Now we choose p so that the ideal 0(j)) = p-f [j), pi in 0 is equal to 0. In

/£* is the identity component of K.
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[3] we called p pervasive in 0 if Q(p) = 0. When 0 acts effectively on G/K we

showed (Theorem 4 and Corollary 5) that a necessary and sufficient condition

that p be pervasive in 0 is that B can be extended to an invariant (under adG)

bilinear 'form B* on 0 such that p is orthogonal to f. In such a case J3* is

necessarily unique and non-singular on 0. As mentioned in [3] even though the

unique B* is non-singular and of course positive definite on p it is not neces-

sarily true that B is positive definite on 0. We now have

THEOREM 6.1. Assume 0 acts effectively on G/K. Let B* be a non-singular

invariant {under adG) bilinear form on 0 which is non-singular on ϊ and ivhich

is positive definite on the ortho-complement p to f. Let B be the restriction of

3 * to p.

Now if the identity representation of ad^K^ on p occurs ivith a multiplicity

of at most one then C < B for any permissible metric C.

Proof. Now let pi ϋ p be a subspace invariant under ψo(B). We must show

then that ft is invariant under ψo(C) where C is any permissible metric. By

Theorems 2.3 and 3.3 it suffices then to show that pi is invariant under S.

Now let p2 be the orthocomplement to Di relative to B. We may now apply

the results of [3] (in particular Theorem 5). Let 0/ - p/4- Qv, p,] where i — 1, 2.

Then 0i, 02 are ideals in 0 where 0 = 0i © 02 and fi, ϊ2 are ideals in ! where f =- !i

®f2 and fi = 0iΠί and ϊ2 = 02 Π f. Let Kι and K* be groups corresponding to fi

and ϊ2. Now by our hypothesis either Kι or Ki must have the property that

ad^Ki leaves no non-zero vector fixed in pi. Since otherwise 2 linearly inde-

pendent vectors would be invariant under ad^K*. Assume without loss that

i- 1. Thus the subspace p2 is characterized as the set of fixed vectors for adpKu

Since S commutes with ad$K* it follows that p>> and hence ft is left invariant

by S.

Now it is obvious that if the identity representation of adpK* occurs at

all on p then there exists a non-singular invariant vector field on G/K*. Hence

we have

COROLLARY 6.1. Let B arise from a Bγ in the manner of Theorem 6.1.

Then if there exists no non-singular invariant vector field on G/K and K is

connected, C < B for all permissible metrics C.
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