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The present paper is devoted to the study of differential geometry of

Kaehlerian homogeneous spaces. In section 1 we deal with the canonical de-

composition of a simply connected complete Kaehlerian space and that of its

largest connected group of automorphisms. We know that a simply connected

complete Riemannian space V is the product of Riemannian spaces Fo? Vu .,

Vn, where Fo is a Euclidean space and Vu - . ., Vn are not locally flat and

their homogeneous holonomy groups are irreducible [2]. Moreover, if V is

homogeneous, so are all Vk [101 We shall show that if V is Kaehlerian space

with real analytic metric (resp. Kaehlerian homogeneous space), each factor Vk

is also Kaehlerian (resp. Kaehlerian homogeneous) and that V is the product

of Fo, Fi, . . ., Vn as Kaehlerian space. We call this decomposition the de

Rham decomposition of the Kaehlerian space F. Although this result is sup-

posedly known, there is no published proof as yet. Using this decomposition

theorem we shall show that the largest connected group of automorphisms of

a simply connected complete Kaehlerian space with real analytic metric is the

direct product of those of the factors of the de Rham decomposition. In the

Riemannian case this result has be been established in [3] by one of the authors

of the present paper.

On the other hand, a Kaehlerian homogeneous space GIB of a reductive

Lie group G is the direct product of Kaehlerian homogeneous spaces Wo, Wh

' . ., Wm> where Wo is the center of G with an invariant Kaehlerian structure

and where Wi, VF2, . . ., Wm are simply connected Kaehlerian homogeneous

spaces of simple Lie groups ([1], [7], [8]). In section 2 we shall show that

this decomposition of G/B is equal to the de Rham decomposition of G/B. We

shall prove in fact a theorem that the homogeneous holonomy group of a

Kaehlerian homogeneous space of a simple Lie group is irreducible. To prove
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this theorem we shall use, in addition to the results established in section 1, a

lemma on the root system of a complex simple Lie algebra which is of some

interest for itself. The arguments used in the proof of this theorem give a

proof of a theorem that the restricted homogeneous holonomy group of a Rie-

mannian homogeneous space of a compact simple Lie group with non vanishing

Euler characteristic is irreducible.

Let G/B be a reductive homogeneous space of a Lie group G [91 There

exists a decomposition of the Lie algebra 9 of G into a direct sum of two sub-

spaces m and b, b being the Lie algebra of B, such that ad(x) m = m for all

Λ e B . The notion of the canonical affine connection of the first kind with

respect to such a decomposition of Q has been defined in [9]. In section 3 we

shall first remark that if G/B is a Kaehlerian homogeneous space of a semi-

simple Lie group G, then the decomposition G = m + b having the above men-

tioned properties is unique. Therefore we can speak of the canonical affine

connection of the first kind of G/B. We shall then prove that G/B is hermitian

symmetric if the Riemannian connection induced by the invariant Kaehlerian

metric is the canonical affine connection of the first kind.1* If G is a reductive

Lie group with non-discrete center the decomposition 9 = m + b such that

ad(#) m = m for all x e B is not unique, but we can prove, also in this case, a

theorem analogous to the one mentioned above.

1. Let V be a simply connected complete Riemannian space of class Cro

and let po be a point of V. We denote by Sp0 the homogeneous holonomy group

of V at the point po. The tangent space T(po) of V at the point po decomposes

into the direct sum of mutually orthogonal subspaces To(£o), Tι(p§), , . ., Tn(0o)>

where To(po) is the subspace of all vectors fixed by the operations of the ele-

ments of SpQ and Ti(p0), T2(po), . . ., Tn(po) are irreducible S/>0-stable subspaces.

By the parallel displacement of To(po), Ti(po), . . ., Tn(po) we can define the

completely integrable distributions To, Th . . ., Tn on V. We denote by Fo,

Vi, . . .. Vn the maximal integral manifolds of the distributions To, TΊ, . . .,

Tn respectively passing through the point p0. With respect to the induced Rie-

1} It should be noted here that Nomizu has anounced in a C. R. note a theorem that
the restricted homogeneous holonomy group of a Riemannian homogeneous space G/B
of a simple Lie group G is irreducible. But he has told us that his arguments are exact
only in the case where the invariant Riemannian connection on G/B is canonical of the
first kind with respect to a certain decomposition g = m + b. See also [5],
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mannian metric the homogeneous holonomy group of Vk at the point p0 is equal

to the representation of SPo in Tk(po) and hence it is irreducible for k > 0 and

equal to-the identity group for k = 0. It has been proved by de Rham [2] that

there exists an isometry / of the Riemannian space V onto the Riemannian

space Fo x Fi x . . . xVn. Moreover, if V is real analytic, that is, if the

underlying manifold and the Riemannian metric of V are real analytic, so are

the Fo, Fi, . . . > Vn and the isometry /.

Suppose now that V is a Kaehlerian space with real analytic metric. Then

F is a real analytic Riemannian space. Let / be the tensor field of tye (1,1) de-

fining the underlying complex structure of F. Now let /' be the tensor field of

type (1,1) on Fo x Fi x . . . x Vn such that F(f(X)) = f(I(X)) for all vector

field X on F. Since the tensor field / and the mapping / is real analytic, so is

I' and it defines an almost complex structure on F o x Fi x . . . x F « . Since

/ is integrable, so is /' and since Fo x Vι x . . . x Vn is real analytic, /' defines

a complex structure on F o x F3 x . . . x Vn- It follows from the definition of /'

that the mapping / is complex analytic. Moreover, since / is an isometry, we

can see that the Riemannian metric F o x Fi x . . . x Vn is Kaehlerian. Thus

we have shown that Fo x Vι x . . . x Vn is Kaehlerian and / is an isomorphism

of F onto Fo x Fi x . . . x Vn with respect to the Kaehlerian structure. Now

the tangent space V(q) of F ox V\ x . . . x Vn at the point q = (<?0> <?i> . . ., qn)

may be identified with the product To(<?o)x . . . x Tn(qn\ where Tk(qk) de-

notes the tangent space of Vk at the point qk. We denote by T'k(q) the sub-

space of Tf(q) composed of all the vectors of the form (0, . . ., Xk, 0, . . ., 0),

where X G % ) . Then T0(q), T[(q), . . ., T'n(q) are mutually orthogonal

and Tf(q) - 'ΣtT'k(q). The assignment q-*T'k(q) defines a completely inte-

grable analytic distribution T&. Let Sq be the homogenous holonomy group of

Fo x Vι x . . . x F « at the point q. Then T'0(q) is the subspace of all the

vectors fixed by the operations of the elements of Sq and T'k(q) for k > 0 is an

irreducible S^-stable subspace. Since Fo x Vi x . . . x Vn is Kaehlerian, the

covariant derivatives of the tensor field /' are zero. Therefore the value ΐq of

T at the point q, which is an orthogonal transformation of T(q), commutes

with the elements of the homogeneous holonomy group S'q. We shall show that

the distributions T'k are invariant by /', that is, Γq T'k(q) - T'k(q) for all point

q. This is clear for k = 0, since TΌiq) is the subspace of all vectors fixed by
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the operations of the elements of Sq. As Tq commutes with the elements of Sφ

so does exp t ΐq and hence (exp t ΐq)T'k{q) is an irreducible S^-stable subspace

of T(q) for eaeh k = l, 2, . . ., n. Since an irreducible S^-stable subspace of

T(q) is equal either to a 1-dimensional subspace of TΌ(q) or to some T'i(q)

with i > 0 (see [2]) and since (exp t fy T'kiq) can not be a subspace of Tό(g),

it coincides with some Tάq). Now we show that (exp t I'Q) T'k(q) = Tί(q) for

sufficiently small t. Let X be an element =*F0 of Tk(q) and consider the inner

product (X, (exp t l'Q) X). Since (X (exp t If

q) X) is continuous in t and is

not zero for t = 0, it is not zero for sufficiently small ί. For such ty (exp t Iq)X

can not belong to T, (<?) (ί ^ k), since Tι'(<?) is orthogonal to Tkiq). Hence

(exp t Iq) T'k(q) = TUQ) for sufficiently small t. Then Iq X = lim i ( e χ P

ί 4 - l ) l G T ί ( ^ for all X^Tf

k(q). Thus we have seen that l!, Tί(q) =

Tk(q) for A = 1, 2, . . ., w. Then /' defines a tensor field 7'(*} of type (1,1) on

the integral manifold Vk of the distribution Tl passing through the point (pQt

po, . . ., ί o ) e VoxVxX . . . xF« such that l'q X=l'q'
k) * X for all XέTίiq)

and ^ G 1/̂ . We can see that Γ{k) defines a complex structure on Vi Let ock

be the real analytic homeomorphism of Vk onto F^ such that ak(x) = (ίo, .,

ίo, A;, po, . . ., A) and let /(*° be a tensor field of type (1,1) on Vk such that

αrjfe(/ίΛ)(̂ '))==7'ί*)(α:jfe(.X1)) for all vector field X on Vk. ϊk) defines a complex

structure on Vk. For each tangent vector X= (XQ, Xh . . ., Xn) of Fo x Vι x

. . . x F n a t the point <? = (^0, Φ, . . ., ^n), we have ϊq Z = (^°0

} JYo, /̂ V -XΊ,

. . ., Iq

nn Xn). It follows that Vk is Kaehlerian and that the Kaehlerian struc-

ture of V is equal to the one which can be defined naturally by the Kaehlerian

structures of the factors Vk. Thus we have proved the following

THEOREM 1. A simply connected complete Kaehlerian space with real ana-

lytic metric V is the product of the Kaehlerian spaces Fo, VΊ, „ . ., Vn, where

Vo is a unitary space and Vu - ° > Vn are such that the homogeneous holonomy

groups are irreducible.

We call this decomposition the de Rham decomposition of the Kaehlerian

space V.

Let V be a Kaehlerian space and let /(V) and K( V) be the group of iso-

metries and the group of automorphisms of V respectively. /( V) is a Lie group

with respect to the compact-open topology. An element g G / ( F ) belongs to
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K{ V) if and only if g is complex analytic. It is easily verified that K{ V) is a

closed subgroup of I(V). Therefore K(V) is a Lie group.

THEOREM 2. Let V be a simply connected complete Kaehlerian space with

real analytic metric and let V = F o x V\ x . . . x Vn be the de Rhan decompo-

sition of V. Let KQ(V) and Ko(Vk) be the largest connected groups of auto-

morphisms of V and Vk respectively. Then Ko( V) ^ Ko( F o ) x KQ{ VΊ) x . . . x

Ko(Vn).

Let 7o(Fo) and h(Vk) be the largest connected groups of isometries of V

and Vk. Then there exists an isomorphism g-* (gQ, gh . . ., gn) of 7o(F) onto

/o(Fo)x /O(VΊ) x . . . x Io(Vn) such that g(p0, Pu . ., Pn) = (go(po), gι(pi),

* . ., gn(pn)) for all point {po, pu . . ., pn) e V [3]. Let gE: KQ(V). Then

# G / o ( F ) and ^ is complex analytic. Let I and 7(^) be the tensor fields de-

fining the complex structures of V and Vk and let X = (Xo, X, . . ., ^"n)

be the tangent vector of V at the point p=(po, pi, . . ., pn), where X& is a

tangent vector of Vk at the point pk. Then 7̂  X= (Ip0

] JYΌ, I pi ' Xu ->

I pi! X J and since ^ is complex analytic, we have gilp X) = Ig(P) g(X). As

Ignn\pn^gn(Xn)), we get gkU^Xk) - Jj$/>*>(£feU*)), which shows that gk is com-

plex analytic. It follows that gk e /JLO( VΛ). Conversely, if ^ G ϋΓ0( VΛ), then the

transformation g of F defined by g(po, . . ., i>«) = (go(po), . . ., gn(pn)) be-

longs to /fo(F). Theorem 2 is thus proved.

In the following we call the element gk of iΓ0( V*) associated to the element

g£:K0(V) by the isomorphism iΓ0(T) = Ko{ Fo) x . . . x/iΓo(F«) the UC(F^)-

component of ^.

A Kaehlerian space F is called Kaehlerian homogeneous if the group Ko( V)

is transitive on F. In this case the Kaehlerian metric of F is real analytic.

THEOREM 3. Let V be a simply connected Kaehlerian homogeneous space.

Then each factor of the de Rham decomposition of V is also Kaehlerian homo-

geneous.

Since F is homogeneous, F is complete and ϋΓ0( V) is transitive on F. Let

F = Fo x Fi x . . . x Vn be the de Rham decomposition of F. Let pk and qk

be two points of Vk and let p and q points of F whose F^-componets are equal
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to pk and qu respectively. There exists an element g& KΛ V) such that g(p) = q.

Let gk be the Ko( Vk)-component of g. Then we have gk(pk) = qk and this shows

that Ko(Vk) is transitive on Vk and hence Vk is Kaehlerian homogeneous.

2. A connected Lie group G is called reductive if its Lie algebra 0 is the

direct sum of the center c and a semi-simple ideal § which is equal to the de-

rived algebra of 0. The subgroup C of G corresponding to c is the connected

center of G and the invariant subgroup S of G corresponding to the ideal § will

be called the semi-simple part of G. Now let G/B be a Kaehlerian homogeneous

space of a reductive Lie group G and let G be effective on G/B. We know the

following facts (see [1] and [8]).

1) B is compact connected and contained in S and equal to the centraliser

in S of a toral subgroup of S. B contains a Cartan subgroup of S.

2) The center of S is equal to (e) and G = C x S and hence C is equal to

the center of G.

3) C and S/B are Kaehlerian homogeneous and C/B = C x (S/B) as Kaeh-

lerian space. Moreover S/B is simply connected.

4) Let S = Si x . . . x Sm be the decomposition of S into the direct pro-

duct of simple Lie groups. Then Sk/Bk with Bk — Sk Π B is a simply connected

Kaehlerian homogeneous space and S/B = SjBi x . . . x Sm/Bm as Kaehlerian

space.

It follows from 3) and 4) that G/B = C x SjBi x . . . x Sm/Bm. Since

C is an abelian Lie group with an invariant Kaehlerian structure, it is locally

flat. To see that the above decomposition of G/B is equal to the de Rham de-

composition, it is sufficient to prove the following theorem.

THEOREM 4. Let G/B be a Kaehlerian homogeneous space of a simple Lie

group G and let G be effective on G/B. Then the homogeneous holonomy group

of G/B is irreducible.

To prove this theorem we first prove the following

LEMMA 1. Let 0 be a simple non-abelian Lie algebra over the field of all

complex numbers and let ί) be a Cartan subalgebra of 0. Let Σ be the set of all

non-zero roots of 0 with respect to the Cartan subalgebra ί) and let 2Ί and Σ* be

fwo subsets of Σ satisfying the following conditions,
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1) If a G Σk, then - a & Σk (A = 1, 2).

2) // <χ, # G Σk and a + β&Σ, then a + β&Σk (A = 1, 2).

i/ the union of Σi and Σ2 is equal to Σ, one of 2Ί and Σ2 coincides with Σ.

Let Σ2* Σ and we shall prove that Σ\ = Σ. For each a e 21 we denote by

£ α an element of 9 such that Off, £ J = a(H) * Ea for all ffe|. Let u be the

subspace of G spanned by E* with a G 2Ί - ϋ . Since 2i # 2* and 2Γ= 2Ί U ϋ ,

Σ\ —Σ2 is not empty and therefore u ^ (0). We show that

(1) [ £ α , n] = (0) for all a G 2"2 - 2Ί.

Let α: e 2i - 2Ί and β G 2Ί - Σ2 and suppose that LEΛy EtJ # 0. Then r = ^ + ^

is a non-zero root. As Σ=ΣίU Σ2, γ is contained in 2Ί or in Σ2. If r <Ξ 2i, we

have a - γ - β and since - β G 2Ί, we have α: G 2Ί contrary to the hypothesis.

If r G 2i, we have β = γ - a G 2*2 and this is also a contradiction. Therefore we

must have [_Ea, E^} = 0 and hence [,&«, n] = (0).

Next we show that

(2) [£α, nlCn for all aE: Σtίλ Σ2.

Let α: e Σx Γ\ Σ2 and β^Σ1-Σ2 and suppose that [Eα, £ p ] =* 0. Then r = α: + /5

is a non-zero root and since or, β G 2 Ί , we have r ^ ^ i If γ & Σ2y we have

(5 = r - « G ^2 contrary to the hypothesis. Therefore r G 2Ί — 22 and hence

ZE«, EfJ G U.

Now let & be the subalgebra of 9 generated by n. It follows from (1) and

(2) and from the fact U), u] C u that α' is an ideal of β. Since tt ^ (0), we

have β' # (0) and as G is simple, 0' is equal to G. On the other hand, let Gi

be the subspace of G spanned by ϊj and E^ with a G 2Ί. Then Gi is a subalgebra

of G containing u and therefore θi D 0'. Thus we have G = Gi and this implies

that Σι = 21. Lemma 1 is thus proved.

Proof of Theorem 4. Let GIB be a Kaehlerian homogeneous space of a

simple Lie group G and let G be effective on G/B. Then G/5 is simply con-

nected and complete. Put V = G/B and let V = Fo x VΊ x . . . x F« be the de

Rham decomposition of V, where n ]> 0 and dim F o ̂  0. We show first that

^ 2 ^ 1 . Indeed, if V = F o then F would be a unitary space and G would be a

subgroup of the group K of automorphisms of the unitary space V. Let d be

the complex dimension of V and let a be the natural homomorphism of K onto
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the unitary group U(d) ( = the group of rotations of V around a fixed point).

The restriction of a on G is a representation of G. As G is simple and has

center reduced to (e), the kernel of this representation is equal either to G

itself or to (e). The former case does not occur, because in this case G must

be abelian. In the latter case, the image G' of G in U(d) is a simple Lie sub-

group of U(d) and since every semi-simple Lie subgroup of U(d) is closed in

U(d), Gf is compact. Therefore G is also compact and so is V. This is a con-

tradiction and hence V # Fo and n ^ 1. Now we propose to show that dim Fo = 0

and n = 1. For this purpose, put W\ = Fo x VΊ x . . . x F^-i and P72 =

Vn. By Theorem 2 there exists an isomorphism ψ of K0(V) onto ϋfodViJx

ϋΓoίHPi). Let ψ(g) = (ψi(g), ψ2(g)) for #G HΓo( V). Then ^ is a homomorphism

of ϋΓo(V) onto Ko(Wk). Since G is transitive on V, the image ψk(G) of G in

ϋΓo(W/0 is transitive on Wk Moreover, since G is simple with center reduced

to (e), the homomorphism of G onto ψk(G) is an isomorphism. Let o be the

image in F = GIB of the identity e oί G and let 0 = (01, o2) with 0̂  e PFβ. Let

Gi (resp. G2) be the subgroup of G composed of all the elements g&G such

that φ2(g) Ό2 = o2 (resp. ψi(g) θi = θi). Then ^(G 2) is the subgroup of ψι(G)

of all elements which leave fixed the point oλ. Since Wι is a Kaehlerian

homogeneous space of the simple Lie group ψΛG) and since ψΛG2) is its iso-

tropy group, ψi(G2) is compact and connected. It follows that G2 is compact

and connected. In an analogous way we can show that Gi is compact and

connected. Now let Wί (resp. W'2) be the submanifold of V composed of all the

points of the form (pu 02) (resp. (01, i>2)). Let gE:Gι and let (pi, o2) G W[.

Then g (pi, o2) = (<pi(g) pu <Pz(g) o2) = (ψi(g) 'pi, o2), because φ2(g) Ό2 = o2 by

the definition of Gi. Hence Gi leaves invariant the submanifold W[. Now let

(pi, o2) and (ζfi, o2) be two points of W\. Since G is transitive on V, there

exists an element g^G such that g (pi, 02) = (Qu O2). Since g (pu 02) =

(ψi(g) %Pu ψ2(g) 02) = (#1, 02), we get ^2(£") 02 = 02 and hence gE: Gx. There-

fore Gi is transitive on Wi. Since Gi is compact, Wi is compact. Moreover

the isotropy group at the point 0 G FFί is equal to 5. In the same way we

can show that G2 is transitive on W2 and the isotropy subgroup at the point

0 G Wί is eqal to B. Since G2 is compact, W'2 is compact. Now FF& being

homeomorphic to Wk, Wk is also compact and so is V = Wi x W2. Since V-

GIB and B are compact, G is compact.
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We denote by small German letters the Lie algebras of the Lie groups de-

noted by the corresponding capital Latin letters. The tangent space of V (resp.

Wk) at .the point o may be indentiίied with the vector space fi/b (resp. Qk/b).

Since the tangent space of V at the point o is the direct sum of those of W[ and

W2, we have 9/b = ί?i/b + 92/b. It follows that 9 = &i + 92. Let 9C be the complexi-

ficatin of 9. Since G is compact and simple, 9C is a complex simple Lie algebra.

We denote by nc the complex subspace of 9C spanned over C by a subspace, n

of 9. If n is a subalgebra of 9, nc is a complex subalgebra of 9C. This being

said, let H be a Cartan subgroup of G contained in B. H is a maximal toral

subgroup of G and if is a Cartan subalgebra of 9C. Let 21 be the system of

the non-zero roots of 9C with respect to the Cartan subalgebra ί)c. Now, since

Gk D i/, we have 9l D ϊjc and hence Q% is spanned by ψ and those £"« such that

E* G fi|, where £<*, α G 21, denotes an element of 9C such that ZH, EΌJ = a(H) E*

for all H&ψ. Let ^ be the subset of Σ of all a such that E β e f l i If αr,

/3 G 2fe and if ff + β G i 1 , then J5α, i&β G fi^, and since 9% is a subalgebra, we have

ZEa, Efd - iV α , β ^ α + β GαI with iVβ fp#0. Therefore α + jδeΞ^. Since G^ is

compact, 0,1 is reductive. It follows from this that if ccE: Σk, then - a G Σk.

Moreover, since 9 = Oi + fi2, we have αc = fiί + §1 and hence 21 = Σx U 2"2. By Lemma

1, we have either Σ = 2Ί or 21 - Σ2. If Σ = Σu then αc = βf and hence 9 = fli. Then

G - Gx and we have W[=V. It follows that dim W*2 = dim PF"2 = dim F w = 0 and

this is a contradiction. Therefore Σ - Σ2 and it follows that dim Wi = dim

(FoXViX . . . x T^-i) - 0. Hence dim Fo - 0 and n = 1. Thus F = VΊ and F

is irreducible. Theorem 4 is thus proved.

Incidentally the arguments in the proof of Theorem 4 give a proof of the

following theorem.

THEOREM 5. Let G/B be a Riemannian homogeneous' space of a compact

simple Lie group G with non-vanishing Euler characteristic. Then the restricted

homogeneous holonomy group of G/B is irreducible.

Since the Euler characteristic of G/B does not vanish, B contains a maxi-

mal toral subgroup of G [4]. Let G be the universal covering group of G and

let B be the subgroup of G corresponding to the subalgebra b of 9. Then G is

compact simple and B is a closed subgroup of G containing a maximal toral

subgroup of G. Since G/B is the universal covering space of G/B, the in,-
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variant Riemannian metric on G/B defines an invariant Riemannian metric on

G/B such that the homogeneous holonomy group of G/B can be identified with

the restricted homogeneous holonomy group of G/B. By the arguments used

in the proof of Theorem 4 we can see that the homogeneous holonomy group

of G/B is irreducible.

3. In this section we shall use the following notations. The small German

letters denote the Lie algebras of the Lie groups denoted by the corresponding

capital Latin letters. 8C denotes the complexification of a real Lie algebra 0 and

nc denotes the complex subspace of βc spanned by a subspace n of d. If n is a

subalgebra of β, then rtc is a complex subalgebra of βc.

Now let G/B be a reductive homogeneous space of a connected Lie group

G [9]. There exists a demposition of β into the direct sum β = m + b such

that ad(#) m = m for all x e B. Such a decomposition of 9 will be called in

the following a ^-invariant decomposition of β. To each invariant affine con-

nection on G/B there is associated a bilinear function a on m x m with values

in m such that ad(#) a{ X, Y) = a (ad(AT ) X, ad( x) Y) for all * e 5 and

JY", F e m ([9], Theorem 8.1). We shall call a the connection function of

the invariant affine connection with respect to the ^-invariant decomposition

β = rn -f b. We know that there exists one and only one invariant affine con-

nection on G/B satisfying the following conditions:

1) The torsion is zero.

2) The images in G/B of the one-parameter subgroups generated by the

elements of m are the paths ([9], Theorem 10.1).

The invaraint affine connection of G/B satisfying these two conditions will be

called the canonical affine connection of the first kind on G/B with respect to

the B-invariant decomposition β = m + b. Its connection function is given by

ct(X, Y) = -|-CX, Πm

for all X, Y G m, where [Z, Y2m denotes the m-component of the element

ZX, Yl e 9 = rπ + b.

We denote in the following by o the image in G/B of the identity e of G.

We can identify the vector space m with the tangent space of G/B at the point

o. Suppose now that there is defined an invariant complex structure on G/B

and let I be the tensor field of type (1, 1) defining this complex structure.
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Then the value iό of / at the point o may be considered as an endornorphism

of the vector space m. 70 satisfies the following condition [6]:

(1) 75= - 1 .

(2) ad(Z) 7o r=7o ad(Z) Y for all ZeΞb and F e r n .

(3) 7oEX Πm - [7oZ, F ] m - ZX, 70 Ήm - /o[7o X", 70 Ή m = 0

for all Xy F e r n , where [X, F]m denotes the m-component of the element

[ I , 7 ] G 0 = m + b,

Now let us consider an invariant affine connection on G/B such that the

covariant derivatives (with respect to this affine connection) of the tensor field

I are zero and let a be the corresponding connection function with respect to

the BAnvariant decomposition 9 = in + b. It follows from the definition of a

(see [9], Theorem 8. 1) and from the in variance of I that

(4) αCY,70 Y)=IQ°a(X, Y)

for all X, F e r n .

This being said, we now prove the following

LEMMA 2. Let G/B be a Kaehlerian homogeneous space of a semi-simple

Lie group G and let G be effective on G/B. Then G/B is reductive and the

B-invariant decomposition of 9 is unique, i.e. if 9 = m + b and 9 = m' + b are two

B-invariant decompositions of 9, then m = mf.

Since B is compact, G/B is reductive and let 9 = m + b be a ^-invariant

decomposition of 9. Since ad(#) m = m for all %<ELB, m is a representation

module of the compact connected Lie group B. Let H be a Cartan subgroup

of G contained in B. Then H is a maximal total subgroup of B and mc de-

composes into the direct sum xt\c = Σmi, where λ denotes a linear function on

If and mc

λ is the subspace of mc composed of all the elements 7 £ m c such that

ZX, Yl = λ(X) Y for all I G ψ. Since ίf is a Cartan subalgebra of the complex

semi-simple Lie algebra Qc and since mcCQc and m c ^b c = (0), Λ is a non-zero

root of 9C with respect to f)c. For each non-zero root a we denote by EΛ an

element of fic such that [X, £ J = α(X) •£* for all I E £)c. Then mc is spanned

by those £ λ such that Ex $ bc. The same arguments show that if 9 = m' + b is

an another 23-invariant decomposition of 9, m'c is also spanned by these Ex.

Hence we have mc = m'c and since m = 9^ mc and m' = 9 ^ tn'c, we get m = mr,
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It follows from this lemma that if G/B is a Kaehlerian homogeneous space

of a semi-simple Lie group G, we can speak of the canonical affine connection

of the first kind of G/B, because the 5-invariant decomposition of 0 is unique.

Now a homogeneous space G/B of a connected Lie group is called her-

mitian symmetric, if the following conditions are satisfied:

A) G/B admits an invariant complex structure.

B) B is compact and there exists an involutive automorphism a of G such

that: 1) σ(x) = x for all x e B, 2) B contains the connected component of the

identity of the closed subgroup of G composed of all x & G such that a(χ) = x.

Now we prove the following

THEORHM 6. Let G/B be a Kaehlerian homogeneous space of a semi-simple

Lie group G and let G be effective on GIB. If the Riemannian connection on

G/B induced by the invariant Kaehlerian metric of G/B is the canonical affine

connection of the first kind, then G/B is hermitian symmetric.

Let 0 = m + b be the unique BΛnvariant decomposition of 0 and let f) be a

Cartan subalgebra of 0 contained in b. We denote by a, β, . . . the non-zero

roots of 0C with respect to §c and by EΛ an element of 0C such that [X", £ J =

a(X) EΛ for all I G ^ . Then mc is spanned by those Ea such that EΛφbc

(cf. the proof of Lemma 2). Let / be the tensor field of type (1,1) defining

the underlying invariant complex structure of G/B. Its value 70 at the point o

is an endomorphism of the vector space m satisfying the conditions (1), (2)

and (3). We can extend 70 to a complex endomorphism /J of mc. Then the

following conditions are satisfied:

(10 Uo)2= ~ 1 .

(20 ad(X) /o r = / o ad(X) Y for all l G b c and ΓGtn c .

(30 IilX, Ylmo - C/g X, Πmc - IX, 1% Ήm* - /SC/o X, /o Πm« = 0

for all X, Y e mc, where [X, Π Π F denotes the mc-component of the element

IX, 7 ] G d c = mc + ί)c.

Now let a e r f . Since ψCbc, it follows from (2') that IX, Jo JS*] =

#(X) 7o •£"<« for all Z G ^ and hence I% EΛ - aEa, where α is a complex

number. Since the eigen-values of 7o are ±i by (1'), we have a= ±-i. Thus

7o •£« = ±i EΛ. Let © (resp. ©0 be the set of the non-zero roots a such that

£« e mc and 7o £* = ί ^* (resp. 7o Eα = - ? •'£«). We shall show that a e φ
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if and only if - « ε S ' . For this purpose, let X-+X be the real endomorphism

of the vector space 9C such that I = Σfl/ # X , where (Xl9 . . ., Xn) is a base

of 0 and -Y= Σ β ί -Xϊ with β, G C. Then Df, £ J = cc(X) £* for all I G ί) and

since IX, EJ = [X, £ J , we have [X, £ J = or(30 •£« for all l ε ζ . As # is

compact, the eigen-values a(X) of ad(JY") are purely imaginary for all I G ^ .

Hence we have [X, 2?<J = - a(X) ϊ?α for all l £ ϊ) and hence for all Z G ϊ)c. It

follows that ϊ?« = aE-a, where a is a suitable complex number. Now, since /J

is the extension to mc of the endomorphism 70 of m, we have Io X=I$ X for

all J¥*Gmc. Let α: G ®. Then iZ Et^i E* and /g £« =/o S β = -i Έ*.

Since Έa-aE-Λy we get Io*E-a- —i E-* and hence — α: S ©'. In the same

way we can show that if - α: G ©', then # e ®. Thus we have shown that

a G ® if and only if - α: G ®'. Using the relation (30, we can show that if a,

β G © (resp. ^, i5 G ©') and if or + /? is a root, then a + /9 G ® (resp. α + jSG®')

(cf. [61 p. 574).

Suppose that the Riemannian connection on G/B induced by the invariant

Kaehlerian metric is the canonical aίϊine connection of the first kined. Then

the connection function a is given by

(5) « U , y ) = | [ X , Πm

for all I j G m . Since the covariant derivatives of the tensor field I are zero,

it follows from (4) and (5) that

(6)

for all X, Y G m and hence

(60

for all X, YG mc.

Now let a G © and β G ©' and let or + β be a root. Let us show that

ZEΛ, EH Gb c. If a + ]9 = 0, then [£«, £ p] G §c C bc. Let now α: 4- /9 # 0 and

suppose that [£*, 2?β] φ bc. Then we have [£•«, Ep]m
c = C^α, -Bp] and it follows

from (60 that 7o[£«, JSP] = - * LE*, £P], because /3 G ©r. In the same way we

can show that 7oC£P, EJ = ί [JBP, £ J and hence /o

cC£α, £P] = *[£<*, £P]. There-

fore we get Jo [2?*, i5PD = 0 and this contradicts the hypothesis that L£«, £(,] φ

ϊ)c. Hence [£«, Eβ] G bc.
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Now let α , β ε Φ and suppose that a + β be a root. Then we have γ = α:-+•

β G ® and /9 = r + ( ~ oc) with r ^ ® and - α: e ©'. It follows from what we

have proved above that [£V, E~Λ G bc and hence Ep G bc. This is a contra-

diction, because β ε Φ . Thus we have shown that if a, β G ®, then α: -f β can

not be a root. In the same way we can show that if or, β G S)', then # -j- β can

not be a root. It follows from what we have proved that ίmc, mc] C bc and

hence [m, m] C b. The endomorphism a of Q such that oX- -X for I G I H

and σX= X for -X" G b is an involutive automorphism of the Lie algebra fi. a

defines an involutive automorphism a of the simply connected Lie group G cor-

responding to the Lie algebra 0. G is the universal covering group of G and

since the center of G is equal to (e), we have G-G/Z, where Z denotes the

discrete center of G. Since we have # Z = Z, a induces an involutive auto-

morphism of G which we denote again by a. Since the involutive automor-

phism of 9 induced by a is clearly equal to a, we can see that G/B is hermitian

symmetric. Theorem β is thus proved.

Now let G/B be a Kaehlerian homogeneous space of a reductive Lie group

with non-discrete center and let G be effective on G/B. Then S/B is also

Kaehlerian, where S denotes the semi-simple part of G. We prove now the

following

LEMMA 3. Let G/B be a Kaehlerian homogeneous space of a reductive Lie

group G with non-discrete center C. Let 3 = π -+• b be the unique B-invariant de-

composition of § and let I be the center of b. Let 9 = m + b be a B-invariant

decomposition of 9. Then m = ϊ + n, where f is a subspace of c+3 such that

p(f) = c, Q being the projection of c-f 3 onto c.

Let H be a Cartan subgroup of S contained in B. Then H is a maximal

toral subgroup of B and mc decomposes into the direct sum mc = Σ ml, where λ

denotes a linear function on f)c and mc

λ is the subspace of all Y G mc such that

DC Y3 = λ{X) Y for all Xeff. If A ̂  0, then t< C §c, because [f)c, mj] - m£

and [(f, 0C] = §c. It is easily verified that nc = Σ*Πλ. Then we get m = m ~ trio

+ n. Let Z G m^nio and let X= Zi + Z 2, where X1 G c and Z 2 G §. We shall

show that X2 G a. As X G m ̂  mί and XL G c, we have CFF, Z ] = [TF, JY21 = 0 for

all W G ή. Since ή is a Cartan subalgebra of £, the normalisor of ή in § is equal

to I) and hence X2 G % Now let 7 G b . Then we have LY,Xl = lY, X*l, be-
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cause ZiGc. As l e t π and [b, m]Ctn, we have [Γ, XI e m. On the other

hand, since X2 G ϊj and ί) C b, we have [Γ, X2] e b. Therefore [F, X] = [F, Z2]

= 0, because m ^ b = (0). It follows that X2 is an element of the center 8 of b.

Therefore ί = m^ttio is a subspace of c-H. It is easily verified that p(ϊ) = c.

THEOREM 7. Lef G/B be a Kaehlerian homogeneous space of a reductive

Lie group G and let G be effective on G/B. If the Riemannian connection on

G/B induced by the invariant Kaehlerian metric is the canonical affine con-

nection of the first kind with respect to a certain B-invariant decomposition of

0, then G/B is hermitian symmetric.

Let C and S be the center and the semi-simple part of G respectively.

Then C and S/B admit the homogeneous structures such that G/B = C x S/B.

Let 9 = m -h b be the ^-invariant decomposition of β with respect to which the

Riemannian connection on G/B is canonical of the first kind. Let § = n -f b be

the unique ^-invariant decomposition of §. Then we have n O n by Lemma 3.

Let x*(t) be the image in G/B of the one parameter subgroup of G generated

by an element of π. Then it is a path. Since #*(f) C S/B, it is a path of S/B.

It follows that the Riemannian connection on S/B induced by the invariant

Kaehlerian metric is canonical of the first kind. Hence S/B is hermitian

symmetric by Theorem 6. Therefore there exists an involutive automorphism

a of S such that B is equal to the connected component of the identity of the

closed subgroup of S of all x G S such that σ(x) = x. Now let a! be the mapping

of G = C x S onto itself such that σ'(x,y) = (x~\ σ(y)), where #G C and j Έ S .

Then σf is an involutive automorphism of G and B is equal to the connected

component of the identity of the closed subgroup of G of all w GG such that

af(w)-w. Therefore G/B is hermitian symmetric.
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