ON THE DIMENSION OF MODULES AND ALGEBRAS, VII ALGEBRAS WITH FINITE-DIMENSIONAL RESIDUE-ALGEBRAS

J. P. JANS and TADASI NAKAYAMA

It was shown in Eilenberg-Nagao-Nakayama [3] (Theorem 8 and § 4) that if \mathcal{Q} is an algebra (with unit element) over a field K with $(\mathcal{Q}:K)<\infty$ and if the cohomological dimension of \mathcal{Q} , dim \mathcal{Q} , is ≤ 1 , then every residue-algebra of \mathcal{Q} has a finite cohomological dimension. In the present note we prove a theorem of converse type, which gives, when combined with the cited result, a rather complete general picture of algebras whose residue-algebras are all of finite cohomological dimension. Namely, if Λ is an algebra over a field K with $(\Lambda:K)<\infty$ and if

$$\dim (\Lambda/N^2) < \infty$$
.

where N is the radical of Λ , then Λ is a homomorphic image of an algebra \mathcal{Q} over K with $(\mathcal{Q}:K)<\infty$ such that

$$\dim \Omega \leq 1$$
.

We may further impose the condition

$$\Omega/M^2 \approx \Lambda/N^2$$

where M is the radical of Ω , and with this additional condition the algebra Ω and the homomorphism $\Omega \to \Lambda$ are determined uniquely up to an isomorphism.

Thus, algebras with cohomological dimension ≤ 1 are in a sense "prototypes" for algebras with finite-dimensional residue-algebras. The construction of Ω and the homomorphism $\Omega \to \Lambda$ is essentially what was employed by Hochschild [5, 6] in connection with his notion of "maximal algebra" and by Jans [3] as free algebras.

We shall start with semi-primary rings (in the sense in [3]). For them and for their global dimensions we shall prove a theorem which is quite similar as above but which assumes an additional condition on "splitting".

Received April 14, 1956.

§ 1. Rings with $N^2 = 0$

In this section Λ will denote a semi-primary ring with radical N such that $N^2 = 0$. The quotient ring $\Gamma = \Lambda/N$ is then semi-simple and N is a two-sided Γ -module.

Lemma 1. Let e, e' be primitive idempotents in Γ such that

$$Ne \neq 0 \neq eNe'$$
.

Then

$$0 \le 1.\dim_{\Lambda} Ne < 1.\dim_{\Lambda} Ne'$$
.

Proof. Our lemma (as well as Proposition 2 below) follows readily from the consideration of "minimal resolution" (i.e. a projective resolution consisting of "minimal homomorphisms") (Eilenberg-Nakayama [4], Eilenberg [2]). But, since we are dealing here with a very simple situation, we shall give a direct proof. Since NNe'=0, the left Λ -module Ne' is semi-simple and thus $Ne'\approx \Sigma \Gamma e_\alpha$ where the sum is direct and $\{e_\alpha\}$ is an indexed family of primitive idempotents in Γ . Since $eNe'\neq 0$ we have $e\Gamma e_\alpha\neq 0$ for at least one index α . Thus $e_\alpha\approx e$ (meaning $\Gamma e_\alpha\approx \Gamma e$) and Ne' has a direct factor isomorphic with Γe . Thus

$$1.\dim_{\Lambda} \Gamma e \leq 1.\dim_{\Lambda} Ne'$$

Next consider the exact sequence $0 \to Ne \to \Lambda e \to \Gamma e \to 0$. If Γe is not Λ -projective, then

$$1.\dim_{\Delta} \Gamma e = 1 + 1.\dim_{\Delta} Ne \ge 1$$

which implies the desired result. If Γe is Λ -projective, then the exact sequence splits and we have a direct sum $\Lambda e = Ne + 1$ where 1 is a left ideal of Λ . Multiplying by N we find $Ne = N^2e + N1 = N1 \subset 1$. Thus Ne = 0 contrary to hypothesis.

A sequence (e_0, \ldots, e_n) of primitive idempotents in Γ is called *connected* if $e_{i-1}Ne_i \neq 0$ for $i=1,\ldots,n$. The number n is called the *length* of the connected sequence. It is clear that if in a connected sequence an idempotent is replaced by an isomorphic one, the sequence remains connected.

Proposition 2. A connected sequence of length n exists if and only if $gl. \dim A \ge n$.

Proof. We may assume $n \ge 1$. The condition gl.dim $A \ge n$ is equivalent to

 $1.\dim_{\Lambda} n \ge n-1$. Let (e_0, \ldots, e_n) be a connected sequence. Then, by Lemma 1,

$$0 \leq 1.\dim_{\Delta} Ne_i < 1.\dim_{\Delta} Ne_{i+1}$$
 for $i = 1, \ldots, n-1$.

Thus $1.\dim_{\Delta} Ne \ge n-1$, whence $1.\dim_{\Delta} N \ge n-1$.

Suppose conversely $1.\dim_{\Lambda}N \geq n-1$. Since N is the direct sum of modules of form Ne, where e is a primitive idempotent in Γ , there exists a primitive idempotent e_n in Γ such that $1.\dim_{\Lambda}Ne_n \geq n-1$. Since $NNe_n = 0$, the Λ -module Ne_n is semi-simple and is therefore the direct sum of modules Γe . Thus there exists a primitive idempotent e_{n-1} in Γ such that

- (i) Γe_{n-1} is isomorphic with a direct suumand of Ne_n ,
- (ii) $l.\dim_{\Lambda} \Gamma e_{n-1} \geq n-1$.

Since $e_{n-1}\Gamma$ $e_{n-1} \neq 0$ we have $e_{n-1}Ne \neq 0$. Further, from the exact sequence $0 \rightarrow Ne_{n-1} \rightarrow \Lambda e_{n-1} \rightarrow \Gamma e_{n-1} \rightarrow 0$ we deduce that $1.\dim_{\Lambda}Ne_{n-1} \geq n-2$. Continuing in this fashion we obtain a connected sequence (e_1, \ldots, e_n) such that $1.\dim_{\Lambda}Ne_i \geq i-1$. In particular, $1.\dim_{\Lambda}Ne_1 \geq 0$ i.e. $Ne_1 \neq 0$. There exists therefore a primitive idempotent e_0 in Γ such that $e_0Ne_1 \neq 0$. Thus (e_0, \ldots, e_n) is a connected sequence of length n as desired.

COROLLARY 3. Let Λ be a semi-primary ring with radical N such that $N^2=0$. Let l be the number of simple components of the semi-simple ring $\Gamma=\Lambda/N$. Then

gl. dim
$$\Lambda < l$$
 or $= \infty$.

Proof. Assume gl.dim $\Lambda \ge l$. Then there exists a connected sequence (e_0, \ldots, e_l) of primitive idempotents in Γ . At least two of these idempotents must be isomorphic and therefore there exists a connected sequence (e'_0, \ldots, e'_n) with $e'_0 = e'_n$. This implies the existence of connected sequences of any length. Thus gl.dim $\Lambda = \infty$.

§ 2. The "maximal" ring Ω

Let Γ be a semi-simple ring and A a two-sided Γ -module. Define $A^{(0)} = \Gamma$, $A^{(n+1)} = A^{(n)} \otimes_{\Gamma} A$. Then define the (graded) ring

$$\Omega = \sum_{i=0}^{\infty} A^{(i)}$$
 (restriced direct sum)

with multiplication defined by the obvious mapping $A^{(p)} \times A^{(q)} \to A^{(p+q)}$. Set

 $M = \sum_{i=1}^{\infty} A^{(i)}$. Then

$$\Omega = \Gamma + M = \Gamma + A + M^{2},$$

$$M^{k} = \sum_{i=0}^{\infty} A^{(k+i)}.$$

The ring $\Sigma = \Omega/M^2$ may be identified with the split extension $\Gamma + A$ (in which $A^2 = 0$). Clearly

$$M = \Omega \otimes_{\Gamma} A$$
.

Since A is projective as a left Γ -module, it follows that M is projective as a left Ω -module.

Proposition 4. The following conditions are equivalent:

(a)
$$\operatorname{gl.dim} \Sigma = n$$
,

(b)
$$A^{(n+1)} = 0, A^{(n)} \neq 0.$$

If these conditions hold then Ω is a hereditary (i.e. $gl.dim \Omega \leq 1$) semi-primary ring with radical M such that $M^{n+1} = 0$, $M^n \neq 0$.

Proof. Assume $A^{(n)}
in 0$. Then there exist elements $a_1, \ldots, a_n \in A$ and primitive idempotents $e_1, f_1, \ldots, e_n, f_n \in \Gamma$ such that

$$e_1 a_1 f_1 \otimes \ldots \otimes e_n a_n f_n \neq 0$$

in $A^{(n)}$. Since $e_i a_i f_i \otimes e_{i+1} a_{i+1} f_{i+1} = e_i a_i \otimes f_i e_{i+1} a_{i+1} f_{i+1}$ it follows that $f_i e_{i+1} \neq 0$ for $i = 1, \ldots, n-1$. Thus $f_i \approx e_{i+1}$ for $i = 1, \ldots, n-1$ and therefore $(e_1, f_1, f_2, \ldots, f_n)$ is a connected sequence of idempotents in Γ , in the sense of the preceding section (with Λ replaced by Σ). Thus, by Proposition 2, gl.dim $\Sigma \geq n$.

Now assume $A^{(n+1)}=0$. Then $\mathcal Q$ is semi-primary with radical M and $M^{n+1}=0$. Since M is projective as a left $\mathcal Q$ -module it follows that $\mathrm{gl.dim}\,\mathcal Q \leq 1$, i.e. $\mathcal Q$ is hereditary. By Corollary 11 of [3] we have $\mathrm{gl.dim}\,\mathcal L=\mathrm{gl.dim}\,(\mathcal Q/M^2)$ $\leq n$. This concludes the proof.

§3. Ring in split form

Let Λ be a semi-primary ring with radical N. A *splitting* for Λ is a direct sum decomposition

$$\Lambda = \Gamma + A + N^2$$

such that

$$\Gamma\Gamma \subset \Gamma$$
, $\Gamma A \subset A$, $A\Gamma \subset A$, $A + N^2 = N$.

We have $1 \in \Gamma$. Indeed let $1 = \gamma + (1 - \gamma)$ with $\gamma \in \Gamma$, $1 - \gamma \in N$. Then $\gamma = 1\gamma = \gamma^2 + (1 - \gamma)\gamma$ with $\gamma^2 \in \Gamma$ and $(1 - \gamma)\gamma \in N$. Thus $(1 - \gamma)\gamma = 0$. Consequently $(1 - \gamma)^2 = 1 - \gamma$. Since $1 - \gamma \in N$ it follows that $1 - \gamma = 0$ i.e. $1 = \gamma \in \Gamma$. Thus Γ is a subring of Λ which may be identified with the semi-simple ring Λ/N , and Λ is a two-sided Γ -module which may be identified with N/N^2 . The ring Λ/N^2 may be identified with the split extension $\Sigma = \Gamma + \Lambda$.

Theorem 5. Let Λ be a semi-primary ring with radical N such that Λ admits a splitting and

gl.dim
$$(\Lambda/N^2) = n < \infty$$
.

Then there exist a hereditary semi-primary ring Ω with radical M and a ring epimorphism $\varphi: \Omega \to \Lambda$ such that $\varphi^{-1}(N^2) = M^2$ i.e. φ induces an isomorphism

$$\Omega/M^2 \approx \Lambda/N^2$$
.

The pair (Ω, φ) is determined uniquely up to an isomorphism. Moreover, the ring Ω admits a splitting, $M^{n+1} = 0$, and $N^{n+1} = 0$.

COROLLARY 6. With A as in Theorem 5

gl.dim
$$(\Lambda/a) < \infty$$

for every two-sided ideal a in A. If $a \subseteq N^2$ then

gl.dim
$$(\Lambda/a) \leq n$$
.

Inparticular,

gl.dim
$$\Lambda \leq n$$
.

If l is the number of simple components of $\Gamma = \Lambda/N$ then n < l.

Proof. Let $\Lambda = \Gamma + A + N^2$ be a splitting for Λ . Let Ω be the ring constructed in §2 using the ring Γ and the two-sided Γ -module A. Since $\Sigma = \Lambda/N^2$ we have gl.dim $\Sigma = n < \infty$. Thus, by Proposition 4, Ω is a semi-primary ring with radical M and $M^{n+1} = 0$. Define the ring homomorphism $\varphi : \Omega \to \Lambda$ by setting $\varphi(\gamma) = \gamma$ for $\gamma \in \Gamma$ and $\varphi(a_1 \otimes \ldots \otimes a_k) = a_1 \ldots a_k$ for $a_1 \otimes \ldots \otimes a_k \in A^{(k)}$, k > 0. We have $A \subset \varphi(M) \subset N$. It follows that $N = \varphi(M) + N^2$. There-

fore $N = \varphi(M)$ and φ is an epimorphism. Clearly Ω admits a splitting $\Omega = \Gamma + A + M^2$, and $\varphi^{-1}(N^2) = M^2$.

Let \varOmega' be another hereditary semi-primary ring with radical M' and let $\varphi': \varOmega' \to \Lambda$ be a ring epimorphism such that $\varphi'^{-1}(N^2) = M'^2$. There results for \varOmega' a splitting $\varOmega' = \varphi'^{-1}(\varGamma) + \varphi'^{-1}(\varLambda) + M'^2$. If we identify $\varphi'^{-1}(\varGamma)$ with \varGamma and $\varphi'^{-1}(\varLambda)$ with \varLambda using the mapping φ' we obtain a splitting $\varOmega' = \varGamma + \varLambda + M'$ and φ' is the identity on $\varGamma + \varLambda$. If we replace \varLambda by \varOmega' in the construction above we obtain an epimorphism $\varphi: \varOmega \to \varOmega'$ such that $\varphi^{-1}(M'^2) = M^2$. Since the ring homomorphisms $\varphi, \varphi' \varphi: \varOmega \to \varLambda$ coincide on $\varGamma + \varLambda$, it follows that $\varphi = \varphi' \varphi$. There remains to be shown that φ is an isomorphism. Let α be the kernel of φ . Then $\varOmega/\alpha \approx \varOmega'$ and $\alpha \subset M^2$. It follows then from Theorem I of [4] (or [3], Proposition 10 and Remark there) that $\alpha = 0$. Since $M^{n+1} = 0$ and $N = \varphi(M)$ we have $N^{n+1} = 0$. This concludes the proof of the theorem.

The last statement of the corollary follows from Corollary 3 applied to the ring $\Sigma = \Gamma + A = \Lambda/N^2$.

Let a be any two-sided ideal in Λ and let $b = \varphi^{-1}(a)$. Then $\Lambda/a \approx \Omega/b$ so that by [3], Theorem 8, gl.dim $(\Lambda/a) < \infty$.

If $a \subset N^2$ then $b \subset M^2$ and the conclusion that $\mathrm{gl.dim}\,(A/a) \leq n$ is then a consequence of

Proposition 7. Let Ω be a hereditary semi-primary ring with radical M such that $M^{n+1} = 0$. For any two-sided ideal $b \subset M^2$

gl. dim
$$(\Omega/b) \leq n$$
.

Proof. Assume n even, n=2i. We may assume i>0 since if i=0 then M=0, b=0 and $\mathcal{Q}=\mathcal{Q}/b$ is semi-simple. Since $b\subset M^2$ and $M^{2i+1}=0$ it follows that $b^iM=b^{i+1}=0$. Thus [3] Proposition 9, condition (iii') implies gl.dim(\mathcal{Q}/b) $\leq n$.

Let n be odd, n=2i+1. We may assume i>0 since if i=0 then n=1, $M^2=0$, b=0 and $\gcd(\Omega/b)=\gcd(\dim\Omega)=\gcd(1)$ by hypothesis. Since $b\subset M^2$ and $M^{2i+2}=0$ it follows that $b^{i+1}=0$. Thus [3] Proposition 9, condition (iii) implies $\gcd(\Omega/b) \le n$.

Next we consider a semi-primary ring Λ , with radical N and admitting a splitting $\Lambda = \Gamma + \Lambda + N^2$, which satisfies

gl.dim
$$(\Lambda/N^2) = \infty$$

contrary to Theorem 5. Again construct \mathcal{Q} as in §2 using the ring Λ and the two-sided Λ -module A, and let M have the same significance as before. Let $N^h = 0$. Then Λ is a homomorphic image of \mathcal{Q}/M^m for every $m \ge h$. We want to show

Proposition 8. (Under our assumption gl.dim $(\Lambda/N^2) = \infty$) the semi-primary ring Ω/M^m has gl.dimension ∞ for infinitely many m.

Proof. By our assumption $\operatorname{gl.dim}(\Lambda/N^2)=\infty$, there exists a connected sequence $(e_0, e_1, \ldots, e_{k-1}, e_0)$ $(k \neq 0)$ of primitive idempotents in Γ , with respect to Λ/N^2 , whose first and last terms coincide. We contend that $\operatorname{gl.dim}(\Omega/M^{2k})=\infty$. To see this, consider the left (Ω/M^{2k}) -module $(\Omega/M^k)e_0$. We have the exact sequence

$$0 \longrightarrow (M^k/M^{2k})e_0 \longrightarrow (\Omega/M^{2k})e_0 \longrightarrow (\Omega/M^k)e_0 \longrightarrow 0.$$

Let $1=e_0+\Sigma f_\nu$ be a decomposition of 1 into mutually orthogonal primitive idempotents in Γ . We have $M^k=\mathcal{Q}\otimes_\Gamma A^{(k)}=\mathcal{Q}\otimes_\Gamma e_0A^{(k)}+\Sigma\mathcal{Q}\otimes_\Gamma f_\nu A^{(k)}$ (direct). Hence $M^ke_0=\mathcal{Q}\otimes_\Gamma e_0A^{(k)}e_0+\Sigma\mathcal{Q}\otimes_\Gamma f_\nu A^{(k)}e_0$ (direct). As $M^{2k}=M^k\otimes_\Gamma A^{(k)}$, we have similarly $M^{2k}e_0=M^k\otimes_\Gamma e_0A^{(k)}e_0+\Sigma M^k\otimes_\Gamma f_\nu A^{(k)}e_0$ (direct). Then we obtain readily

$$(M^k/M^{2k})e_0 \approx (\Omega/M^k) \otimes_{\Gamma} e_0 A^{(k)} e_0 + \Sigma(\Omega/M^k) \otimes_{\Gamma} f_{\nu} A^{(k)} e_0 \quad \text{(direct)}.$$

Since $(e_0, e_1, \ldots, e_{k-1}, e_0)$ is connected, we have here $e_0A^{(k)}e_0 \neq 0$. On taking a left e_0Te_0 -basis of $e_0A^{(k)}e_0$ we then obtain an isomorphism

$$(M^k/M^{2k})e_0 \approx (\Omega/M^k)e_0 + W$$
 (direct)

where W is a left (Ω/M^{2k}) -module whose structure does not concern us. Thus we have the exact sequence

$$0 \longrightarrow (\mathcal{Q}/M^k)e_0 + W \longrightarrow (\mathcal{Q}/M^{2k})e_0 \longrightarrow (\mathcal{Q}/M^k)e_0 \longrightarrow 0.$$

Now, suppose $r = 1.\dim_{\Omega/M^{2k}}(\Omega/M^k)e_0 < \infty$ and let

$$0 \longrightarrow X_r \longrightarrow \ldots \longrightarrow X_1 \longrightarrow X_0 \longrightarrow (\Omega/M^k)e_0 \longrightarrow 0$$

be a shortest (Ω/M^{2k}) -projective resolution of $(\Omega/M^k)e_0$; we have r>0 since $(\Omega/M^k)e_0$ is not (Ω/M^{2k}) -projective. We have then an exact sequence

$$0 \longrightarrow X_r + Y_r \longrightarrow \ldots \longrightarrow X_0 + Y_0 \longrightarrow (\Omega/M^{2k})e_0 \longrightarrow (\Omega/M^k)e_0 \longrightarrow 0,$$

where sums are all direct and where $0 \longrightarrow Y_r \longrightarrow \ldots \longrightarrow Y_0 \longrightarrow W \longrightarrow 0$ is an

exact sequence such that all Y_{μ} except Y_r , perhaps, are (Ω/M^{2k}) -projective. Since $\operatorname{l.dim}_{\Omega/M^{2k}}(\Omega/M^k)e_0=r$, then necessarily the image of X_r+Y_r in $X_{r-1}+Y_{r-1}$ is a direct summand. Hence the image of X_r in X_{r-1} is a direct summand. This in turn implies that $(\Omega/M^k)e_0$ has a projective resolution, with respect to Ω/M^{2k} , of length r-1, contradicting the above assumption. Hence $\operatorname{l.dim}_{\Omega/M^{2k}}(\Omega/M^k)e_0=\infty$ and $\operatorname{gl.dim}(\Omega/M^{2k})=\infty$.

Here we may assume that k is arbitrarily large, since otherwise we have simply to repeat the given connected sequence of idempotents sufficiently many times. So this proves our proposition.

§ 4. Algebras

Let Λ be a semi-primary algebra over a field K, let N be the radical of Λ and let $\Gamma = \Lambda/N$. Assume dim $\Gamma = 0$, or equivalently that $\Gamma \otimes_K \Gamma^*$ is semi-simple. Then (Rosenberg-Zelinsky [8]) necessarily $(\Gamma : K) < \infty$ and Γ is separable. It follows readily that Λ admits a splitting $\Lambda = \Gamma + A + N^2$, $\Lambda \approx N/N^2$. It is further known (Eilenberg [1]) that dim $\Lambda = \operatorname{gl.dim} \Lambda$. Similarly if α is any two-sided ideal in Λ then dim $(\Lambda/\alpha) = \operatorname{gl.dim} (\Lambda/\alpha)$.

The same comments apply to the algebra \mathcal{Q} constructed in § 2, provided M is nilpotent. The results of § 3 may now be restated with "dim" replacing "gl.dim".

If we assume that $(\varLambda:K)<\infty$ then clearly \varLambda is semi-primary and the assumption $\dim \varGamma=0$ (i.e. the separability of \varGamma) follows automatically from $\dim(\varLambda/N^2)<\infty$ (Ikeda-Nagao-Nakayama [7], Eilenberg [1]). It is further clear that in the splitting $\varLambda=\varGamma+\varLambda+N^2$ of \varLambda we have $(\varLambda:K)<\infty$. Since $\varOmega=\varGamma+M$ we deduce that $(\varOmega:K)<\infty$. Thus we have

Theorem 9. Let Λ be an algebra over a field K with $(\Lambda:K)<\infty$. Let N be the radical of Λ . Suppose

$$\dim (\Lambda/N^2) = n < \infty$$
.

Then there exist an algebra Ω over K with radical M and an algebra epimorphism $\varphi: \Omega \longrightarrow \Lambda$ such that $(\Omega:K) < \infty$, $\varphi^{-1}(N^2) = M^2$ and

$$\dim \Omega \leq 1$$
.

The pair (Ω, φ) is determined uniquely up to an isomorphism. $M^{n+1} = 0$ and $N^{n+1} = 0$. If a is a two-sided ideal of Λ then $\dim(\Lambda/a) < \infty$, and indeed $\leq n$ if

 $a \subseteq N^2$. If l is the number of simple components in $\Gamma = A/N$ then n < l.

We close our note with a remark on Cartan matrices. Starting again with a semi-primary ring Λ , with radical N, let e_1, \ldots, e_l be a maximal set of non-isomorphic primitive idempotents in Λ . For each pair (i, j) of indices $1, 2, \ldots, l$ we choose a non-negative real number $\beta(i, j)$ so that

$$\beta(i, j) = 0$$
 or > 0 according as $e_i N e_i = 0$ or $\neq 0$,

and otherwise arbitrarily. Let us call the matrix $C(\Lambda) = I + (\beta(i, j))$ a generalized Cartan matrix of Λ , where I is the identity matrix of degree l.

Proposition 10. The matrix $(C(\Lambda) - I)^{n+1} = (\beta(i, j))^{n+1}$ vanishes if and only if gl. dim $(\Lambda/N^2) \leq n$.

Proof. Since the entries $\beta(i, j)$ of $C(\Lambda) - I$ are all non-negative, that $(C(\Lambda) - I)^{n+1} \neq 0$ is equivalent to the existence of n+1 pairs $(i_0, j_0), \ldots, (i_n, j_n)$ such that

(i)
$$j_{\nu} = i_{\nu+1}(\nu = 0, \ldots, n-1), \ \beta(i_{\nu}, j_{\nu}) \neq 0 \ (\nu = 0, \ldots, n).$$

By the definition of $\beta(i, j)$, this is equivalent to

(ii)
$$j_{\nu} = i_{\nu+1}(\nu = 0, \ldots, n-1), e_{i\nu}Ne_{j\nu} \neq 0 \quad (\nu = 0, \ldots, n).$$

Now, if $eN^tf \neq 0$ but $eN^{t+1}f = 0$, with a pair of primitive idempotents e, f in Λ , take t-1 primitive idempotents g_1, \ldots, g_{t-1} such that $Ng_1Ng_2 \ldots Ng_{t-1}Nf \neq 0$. Since $eN^{t+1}f = 0$, it follows that $g_\mu Ng_{\mu+1} \notin N^2$ for $\mu = 0, \ldots, t-1$, where we put $g_0 = e$, $g_t = f$. This observation shows that the existence of n+1 pairs (i_ν, j_ν) satisfying (ii) is equivalent to the existence of a connected sequence of length at least n+1 of primitive idempotents in $\Gamma = \Lambda/N$, with respect to Λ/N^2 , in the sense of §1. This is in turn equivalent to $gl. \dim (\Lambda/N^2) \geq n+1$ by Proposition 2.

In case of an algebra Λ over a field K with $(\Lambda:K)<\infty$, the ordinary Cartan matrix of Λ is clearly a generalized Cartan matrix in the above sense.

REFERENCES

- [1] S. Eilenberg, Algebras of cohomologically finite dimension, Comment. Math. Helv. 28 (1954), 310-319.
- [2] S. Eilenberg, Homological dimension and syzygies, to appear in Ann. Math.
- [3] S, Eilenberg, H. Nagao and T. Nakayama, On the dimension of modules and algebras,

- IV, Nagoya Math. J. 10 (1956), 87-95.
- [4] S. Eilenberg and T. Nakayama, On the dimension of modules and algebras, V, Nagoya Math. J. 11 (1957), 9-12.
- [5] G. Hochschild, On the structure of algebras with nonzero radical, Bull. Amer. Math. Soc. 53 (1947), 369-377.
- [6] G. Hochschild, Note on maximal algebras, Proc. Amer. Math. Soc. 1(1950), 11-14.
- [7] M. Ikeda, H. Nagao and T. Nakayama, Algebras with vanishing n-cohomology grops, Nagoya Math. J. 7 (1954), 115-131.
- [8] J. P. Jans, On segregated rings and algebras, Nagoya Math. J. 11 (1957).
- [9] A. Rosenberg and D. Zelinsky, Cohomology of infinite algebras, Trans. Amer. Math. Soc. 82 (1956), 85-98.

Yale University,

Nagoya University and

The Institute for Advanced Study