ON THE DIMENSION OF MODULES AND ALGEBRAS, VII
ALGEBRAS WITH FINITE-DIMENSIONAL RESIDUE-ALGEBRAS

J. P. JANS and TADASI NAKAYAMA

It was shown in Eilenberg-Nagao-Nakayama [3] (Theorem 8 and §4) that
if 2 is an algebra (with unit element) over a field K with (2 : K) < « and if
the cohomolgical dimension of £, dim @2, is = 1, then every residue-algebra of
£ has a finite cohomological dimension. In the present note we prove a theo-
rem of converse type, which gives, when combined with the cited result, a
rather complete general picture of algebras whose residue-algebras are all of
finite cohomological dimension. Namely, if 4 is an algebra over a field K with
(4:K) < and if

dim (4/N?) < 0,

where IV is the radical of 4, then 4 is a homomorphic image of an algebra 2
over K with (2 : K) < w such that

dim® = 1.
We may further impose the condition
2/M*= A/N*

where M is the radical of £, and with this additional condition the algebra £
and the homomorphism 2 —» A are determined uniquely up to an isomorphism.

Thus, algebras with cohomological dimension £ 1 are in a sense “proto-
types” for algebras with finite-dimensional residue-algebras. The construction
of £ and the homomorphism 2 - A is essentially what was employed by Hoch-
schild [5, 6] in connection with his notion of “maximal algebra” and by Jans
[3] as free algebras.

We shall start with semi-primary rings (in the sense in [3]). For them
and for their global dimensions we shall prove a theorem which is quite similar

as above but which assumes an additional condition on “splitting”.
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§1. Rings with N2=0

In this section A4 will denote a semi-primary ring with radical N such that
N?=0. The quotient ring I'= A/N is then semi-simple and N is a two-sided
I"module.

LemMma 1. Let e, € be primitive idempotents in I' such that
Ne % 0 x eNe'.
Then
0 = l.dim , Ve < l.dim , Ne'.

Proof. Our lemma (as well as Proposition 2 below) follows readily from
the consideration of “minimal resolution” (i.e. a projective resolution consisting
of “minimal homomorphisms”) (Eilenberg-Nakayama [4], Eilenberg [2]). But,
since we are deéling here with a very simple situation, we shall give a direct
proof. Since NNe' =0, the left A-module Ne' is semi-simple and thus Ne'= 3Te,
where the sum is direct and {e.} is an indexed family of primitive idempotents
in I Since eNe' % 0 we have ele, = 0 for at least one index a«. Thus e, X e

(meaning I'e, = I'e) and Ne' has a direct factor isomorphic with I'e. Thus
l.dim s Te =1.dim , Ne'

Next consider the exact sequence 0 - Ne > de¢ > [e - 0. If I'e is not A-projec-

tive, then
lLdima/le =1+ 1Ldim,Nex1

which implies the desired result. If I'e is A-projective, then the exact sequence
splits and we have a direct sum Ae = Ne + [ where [ is a left ideal of 4. Multi-
plying by N we find Ne = N°e+ N{ = N{CI. Thus Ne =0 contrary to hypothesis.

A sequence (e, ..., ex) of primitive idempotents in I is called connected
if ¢;-1Ne;j x0for i=1, ..., n. The number 7 is called the length of the con-
nected sequence. It is clear that if in a connected sequence an idempotent is

replaced by an isomorphic one, the sequence remains connected.

ProrosiTION 2. A connected sequence of length n exists if and only if

gl.dim 4 = ».

Proof. We may assume z# = 1. The condition gl.dim 4 = # is equivalent to
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lL.dimy,n=n~1. Let (e, ..., ex) be a connected sequence. Then, by Lemma 1,
0 < 1.dim, Ne; < 1.dim, Ne; +1 for i=1, ..., n—1

Thus l.dim, Ne = n — 1, whence Ldim,N =n — 1.

Suppose conversely 1.dim,/N= »—1. Since N is the direct sum of modules
of form Ne, where e is a primitive idempotent in I, there exists a primitive idem-
potent e, in I" such that l.dim, Ne, = » —1. Since NNe, =0, the 4-module Ne,
is semi-simple and is therefore the direct sum of modules I'e. Thus there exists
a primitive idempotent e,-; in I" such that

(i) Iex-; is isomorphic with a direct suumand of Ne,,

(ii) LdimaTen-3s=n—1.

Since en-1I" en-1 % 0 we have en-1Ne = 0. Further, from the exact sequence 0 -
Nen-1 - Aen-1—> I'en—1 > 0 we deduce that l.dim,Ne,-1 = »—2. Continuing in
this fashion we obtain a connected sequence (ey, . . ., e,) such that 1.dim,Ne; >
i—1. In particular, l.dim,NNe; =0 i.e. Ne; % 0. There exists therefore a primitive
idempotent ¢, in I such that e,Ne; 2= 0. Thus (e ..., en) is a connected
sequence of lehgth n as desired.

CororrarY 3. Let A be a semi-primary ring with radical N such that N?=
0. Let I be the number of simple components of the semi-simple ring I" = A/ N.
Then

gl.dim4 <! or = %,

Proof. Assume gl.dimA =1 Then there exists a connected sequence
(e, ..., e of primitive idempotents in I. At least two of these idempotents
must be isomorphic and therefore there exists a connected sequence (e, . . ., en)
with ¢ =e,. This implies the existence of connected sequences of any length.
Thus gl.dimd = o,

§2. The “maximal’’ ring 2

Let I" be a semi-simple ring and A a two-sided I“module. Define A =T,
A" = A®rA. Then define the (graded) ring

Q2= _ZOA("’ (restriced direct sum)

with multiplication defined by the obvious mapping A% x A? » A®"?, Set
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M=Z}A"". Then
Q=I'+M=T+A+ M,
B~ p(k+D)
M —-EA .

The ring 3 = £/M? may be identified with the split extension I"4+ A (in which
A?=0). Clearly

M=2&rA.
Since A is projective as a left Immodule, it follows that M is projective as a left
£-module.
ProrosiTioN 4. The following conditions are equivalent :

(a) gl.dim> = n,
(b) A™ =0, A %0,

If these conditions hold them 2 is a hereditary (ie. gl.dim 2 < 1) semi-
primary ring with radical M such that M™" =0, M" = 0.

Proof. Assume A™ % 0. Then there exist elements a;, ..., a» € A and

primitive idempotents e, f1, ..., es, fn €I such that
ela1f1® eo o ®enanfn x0

in A”. Since €;aifi® ei+1Giv1fiv1=€iai® fiir10i+1fir1 it follows that fieiss 0
fori=1, ... n—1. Thus fie fori=1, ..., n--1 and therefore (ei, f1, fo,
..., fn) is a connected sequence of idempotents in I, in the sense of the pre-
ceding section (with A replaced by X). Thus, by Proposition 2, gl.dim > = #.

Now assume A™*Y = (0. Then £ is semi-primary with radical M and
M"*=0. Since M is projective as a left 2-module it follows that gl.dim® <1,
ie. 2 is hereditary. By Corollary 11 of [3] we have gl.dim S = gl.dim (2/M?)
=n. This concludes the proof.

§3. Ring in split form

Let A4 be a semi-primary ring with radical N. A splitting for A is a direct -

sum decomposition

A=T'+A+N?
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such that
ITCI,TACA, ArCA, A+ N*=N.

We have 17 Indeed let 1=y+(1—7y)withyel,1-yeN. Thenr=1r=
P+ 1 ~-7)r with & I'and (1 — v)y€ N. Thus (1 — v)r = 0. Consequently
(1—7)*=1—-7. Since 1—-r& N it follows that 1 =y =01ie. 1=y&7T. Thus I'
is a subring of A4 which may be identified with the semi-simple ring A4/, and
A is a two-sided 7-module which may be identified with N/ N®. The ring 4/N*
may be identified with the split extension 3 =TI+ A.

TaEOREM 5. Let A be a semi-primary ring with radical N such that A

admits a splitting and
gl.dim (A/N?) =n < .

Then there exist a hereditary semi-primary ring 2 with radical M and a ring

epimorphism ¢ : 2 - A such that ¢"(N*) = M? i.e. ¢ induces an isomorphism
2/M* = 4/N”.
The pair (2, ¢) is determined uniquely up to an isomorphism. Moreover, the
ring 2 admits a splitting, M"™" =0, and N"™ =0.
CoroLrarY 6. With A as in Theorem 5
gl.dim(A/a) < o
for every two-sided ideal a in A. If a C N? then
gl.dim (4/a) £ n.
Inparticular,
gl.dim 4 = n.
If 1 is the number of simple components of I'= A/N then n <l

Proof. Let A=I'+ A+ N® be a splitting for 4. Let 2 be the ring con-
structed in §2 using the ring I' and the two-sided Imodule A. Since = A/N?
we have gl.dim 2= < . Thus, by Proposition 4, 2 is a semi-primary ring
with radical M and M""" =0. Define the ring homomorphism ¢ : 2 - 4 by
setting ¢(y) =y for y€land ¢(a. ® ... ar) =a; ... ar for ;;® ... Dax
€ AP, £>0. We have A C ¢(M) C N. It follows that N = ¢(M) + N® There-
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fore N=¢(M) and ¢ is an epimorphism. Clearly £ admits a splitting 2 =TI+
A+ M’ and ¢"'(N?) = M~

Let ' be another hereditary semi-primary ring with radical M’ and let
¢': Q' 4 be a ring epimorphism such that ¢'"*(N?) = M". There results for
&' a splitting 2'= ¢TI+ ¢ (A) + M"®. If we identify ¢'"'(I") with I" and
¢’ Y(A) with A using the mapping ¢’ we obtain a splitting 2’ =I'+ A + M' and
¢' is the identity on I'+ A. If we replace 4 by £' in the construction above
we obtain an epimorphism ¢ : 2 - 2' such that ¢ '(M"*) = M*. Since the ring
homomorphisms ¢, ¢'¢ : 2 - A coincide on I'+ A, it follows that ¢ = ¢’¢. There
remains to be shown that ¢ is an isomorphism. Let @ be the kernel of ¢. Then
2/a= 9 and ¢ C M®. It follows then from Theorem I of [4] (or [3], Propo-
sition 10 and Remark there) that ¢ =0. Since M*"' =0 and N = ¢(M) we have
N™1'=0. This concludes the proof of the theorem.

The last statement of the corollary follows from Corollary 3 applied to the
ring Y =T+ A= A/N*.

Let @ be any two-sided ideal in 4 and let & =¢ "(a). Then A/a= 2/b so
that by [3], Theorem 8, gl.dim (4/a) < oo,

If a C N? then 8 C M? and the conclusion that gl.dim (4/a) < » is then a

consequence of

ProrosiTiON 7. Let 2 be a hereditary semi-primary ring with radical M
such that M™"'=0. For any two-sided ideal b C M*

gl.dim (2/b) £ »n.

Proof. Assume % even, n =27 We may assume ¢ > 0 since if =0 then
M=0,b=0 and 2= 2/b is semi-simple. Since » C M? and M**'=0 it follows
that &'M =5""'=0. Thus [3] Proposition 9, condition (iii’) implies gl.dim (£2/5)
=n.

Let # be odd, n=27+1. We may assume ¢> 0 since if =0 then =1,
M?=0, b=0 and gl.dim (2/5) = gl.dim 2 < 1 by hypothesis. Since » C M? and
M*** =0 it follows that »***=0. Thus [3] Proposition 9, condition (iii) implies
gl.dim (2/b) € n.

Next we consider a semi-primary ring 4, with radical N and admitting a
splitting 4 =I"+ A + N?, which satisfies

gl.dim (4/N?) =



ON THE DIMENSION OF MODULES AND ALGEBRAS, VII 73

contrary to Theorem 5. Again construct £ as in §2 using the ring A and the
two-sided 4-module A, and let M have the same significance as before. Let
N*=0. Then A is a homomorphic image of 2/M™ for every m = h. We want

to show
ProposiTiON 8. (Under our assumption gl.dim (A/N*?) = ) the semi-primary
ying Q/M™ has gl.dimension < for infinitely many m.

Proof. By our assumption gl.dim(A4/N?) = o, there exists a connected
sequence (ey, €, ..., €-1, @) (kx0) of primitive idempotents in I, with re-
spect to A/N°?, whose first and last terms coincide. We contend that gl.dim
(2/M?*) = . To see this, consider the left (2/M?**)-module (2/M*)e,. We
have the exact sequence

0—> (M*/ M**)eo—> (2/ M**)ey—> (2] M*)e)—> 0.

Let 1=e,+ 3f, be a decomposition of 1 into mutually orthogonal primitive
idempotents in I. We have M* = 28:A% = 2®re A® + 22 ®rf,A® (direct).
Hence M¥ey=2®resA%er+ 5211, APey (direct). As M* =M*@r A%, we
have similarly M**¢, = M* ®reo APy + SM* ®rf, APe, (direct). Then we ob-

tain readily
(M*) M*®)ey = (2/M*)Qres APey + 3(2/ MF)Rrf, APe, (direct).

. . \ .
Since (e, €1, . .., ex-1, €) is connected, we have here 2 A®ey % 0. On taking

a left eole,-basis of e,A®e, we then obtain an isomorphism
(M*[M**)ey = (2/ M*)ery+ W (direct)

where W is a left (2/M?*)-module whose structure does not concern us. Thus

we have the exact sequence
0—> (2/M") ey + W—> (2/ M**)es— (2/ M*)es—>0.
Now, suppose 7 = 1.dim g/u2x( 2/ M* Jeo < o and let
0—>X—> ... —Xi—>Xo—> (2/M"*)e, —0

be a shortest (2/M?*)-projective resolution of (2/MF*)e;; we have » >0 since

(2/M¥)e, is not (2/M?**)-projective. We have then an exact sequence
0—X+ Y, ... —Xo+ Yo—> (2/M*)ey—> (2/ M*)er—>0,

where sums are all direct and where 0—>Y,—> ... —Y,—>W—0 is an
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exact sequence such that all Y, except Y, perhaps, are (2/M?**)-projective.
Since 1.dim o/mex(2/M*)e, = 7, then necessarily the image of X, + Y» in Xy—1 + Yy
is a direct summand. Hence the image of X, in X,_, is a direct summand. This
in turn implies that (2/M%)e, has a projective resolution, with respect to 2/M%,
of length 7 — 1, contradicting the above assumption. Hence 1.dim g/u=x(2/M"*)es
= oo and gl.dim (2/M*) = o.

Here we may assume that % is arbitrarily large, since otherwise we have
simply to repeat the given connected sequence of idempotents sufficiently many

times. So this proves our proposition.

§4. Algebras

Let 4 be a semi-primary algebra over a field K, let N be the radical of 4
and let I'= A/N. Assume dim I" =0, or equivalently that I'®x I'* is semi-simple.
Then (Rosenberg-Zelinsky [8]) necessarily (I": K) < oo and I is separable. It
follows readily that 4 admits a splitting A=I'+ A+ N?, A= N/N°. 1t is
further known (Eilenberg [1]) that dim 4 = gl.dim 4. Similarly if a is any two-
sided ideal in A then dim (4/a) = gl.dim (4/a).

The same comments apply to the algebra £ constructed in §2, provided
M is nilpotent. The results of §3 may now be restated with “dim” replacing
“gl.dim”.

If we assume that (4: K)< o then clearly 4 is semi-primary and the
assumption dim I'=0 (ie. the separability of I') follows automatically from
dim(4/N?) < o« (Ikeda-Nagao-Nakayama [7], Eilenberg [17). It is further clear
that in the splitting 4 =I"+ A+ N? of 4 we have (A:K)< . Since @=T+M
we deduce that (£ : K) < . Thus we have

THEOREM 9. Let A be an algebra over a field K with (A: K) <, Let N
be the radical of A. Suppose

dim (4/N¥) =5 < .

Then there exist an algebra £ over K with radical M and an algebra epimor-
phism ¢ : Q—> A such that (2 : K) < oo, ¢ " (N?) = M*? and

dim@ = 1.

The pair (2, ¢) is determined uniquely up to an isomorphism. M" ' =0 and
N""'=0. Jf a is a two-sided ideal of A then dim(4/a) < o, gnd indeed = n if
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a C N If 1 is the number of .simple components in I'= A/N then n <l

We close our note with a remark on Cartan matrices. Starting again with
a semi-primary ring 4, with radical N, let e;, . . ., e; be a maximal set of non-
isomorphic primitive idempotents in 4. For each pair (4, j) of indices 1,2, .. .,
! we choose a non-negative real number B(i, /) so that

B(4, /) =0 or >0 according as ¢;Ne; =0 or =0,

and otherwise arbitrarily. Let us call the matrix C(4) = I+ (3(4, 7)) a general-
ized Cartan matrix of 4, where 7 is the identity matrix of degree 1

ProposiTioN 10.  The matrix (C(A) — "™ = (B3, §))""" vanishes if and only
if gl.dim (4/N?) < n.

Proof. Since the entries §(i, j) of C(A4) — I are all non-negative, that
(C(4) =D™' % 0 is equivalent to the existence of n+1 pairs (4, /),
(4n, 7n) such that

<

(1) jv:ier(T/:O, s e ey 72"‘1), B(i‘nju)ﬂi:o (D=0, ...,7’1).
By the definition of (s, 7), this is equivalent to
(ii) H=tlp=0, ..., n—-1), e, Nej, 0 (p=0, ..., n).

Now, if eN'f % 0 but eN*"'f =0, with a pair of primitive idempotents e, f in 4,
take ¢ —1 primitive idempotents g, ..., g-: such that Ng.Ng ... Ngi-1Nf
%0. Since eN'"'f =0, it follows that g,Ngu+ €& N* for =0, ..., t— 1, where
we put gy =e, gt =f. This observation shows that the existence of # + 1 pairs
(4, jv) satisfying (ii) is equivalent to the existence of a connected sequence of
length at least #+ 1 of primitive idempotents in I"= 4/NV, with respect to A/N?,
in the sense of §1. This is in turn equivalent to gl.dim (A4/N*) = n+ 1 by Pro-
position 2.

In case of an algebra A over a field K with (4 : K) < o, the ordinary
Cartan matrix of A is clearly a generalized Cartan matrix in the above sense.
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