
NOTE ON THE CGHOMOLOGY GROUPS OF
ASSOCIATIVE ALGEBRAS

HIROSI NAGAO

The cohomology theory of associative algebras has been developed by G.
lίochschild [1], [2], [3], and the 1-, 2-, and 3-dimensional cohomology groups
have been interpreted with reference to classical notions of structure in his
papers. Recently M. Ikeda has obtained, by a detailed analysis of Hochschild's
modules, an interesting structural characterization of the class of algebras whose
2-dimensional cohomology groups are all zero [51

In sections 1 and 2, we consider an algebra whose residue class algebra
modulo its radical is separable, and offer a criterion for such algebra to have
trivial n{ ^2)-dimensional cohomology group in terms of certain module, which
is similar to Hochschild's module but is rather simpler.

In section 3, we consider the cases of dimensions 2 and 3. We offer another
proof of Ikeda's theorem, and, under the assumption that A/N iN is the radical
of A) is separable, a structural characterization of the class of algebras whose
3-dimensional cohomology groups are all zero.

The writer wishes to express his best thanks to Prof. T. Nakayama for his
kind encouragement and advice, and to Mr. M. Ikeda for his discussions and
suggestions during the preparation of this note.

1. Let A be an associative algebra over a field F which possesses a unit
element 1, and N be its radical. We assume, throughout this and the next
section, that A/N is separable. Since 2-dimensional cohomology groups of A/N
are all zero, A contains a subalgebra Ά such that A is decomposed into the
direct (module) sum of A and Aτ : A-A + N. Evidently Ά is an algebra
isomorphic to A/N, and hence separable. We denote elements of A by a, b,
. . . and those of N by m\, m*, . . . .

With an -A-A-module n and a natural number n we denote, after Hochschild,
the modules of all w-cochains, w-cocycles, w-coboundaries of A in n by Cn(A,
n), Zn(A, n), Bn(A, n) respectively, and /z-dimensicnal cohomology group of A
in n by Hn(A, π).

Let P» = Λ x . . . x Λ b e the w-fo3d direct product of the underlying vector
space of A. We define the operations on Pn by setting
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I βo * (β i X - - X βn) = Σ ( - D'flPo X . . . X Λ, ύf, +i X . . . X Λw,
(1)

This makes Pn an A-A-module^ We call this the n-άimensional Hochschild
module of A.

LEMMA LI . £#/ n be an A-A-modτde. If f is an element of Cn(A, n) and
δf (ά~i, a>, . . . , βΠfi) = 0 /or <zτry element ά\ of A, then there exists an element
g of Cn~ι(A, n) such that (/- $g) (άi, α >, . . . , an) = 0 /or cm' element aΊ of A.

Proof. Let 2?(PTJ, n) be the module of all right operator homomorphisms
from Pn into n. We define the operations of the elements of A for
π) by setting

tfi X 02 X . . - X 0n) = « F ( β i X «2 X . . . X an)9

F° a)(aίxa2x . . .

Under these operations, 7?(PM? π) is an A-A-module.
For an /£• CW(A? π) having the property in the lemma we define an element

F(f) of C\A, R(Pn7 π)) by the relation F{f){άd(a-Zx . . . xβ«H)=/(flt, «23

. . . ,an)an+ι. Then we can verify, from the property of/, that δF(f)~Q.
Since Λ is separable, there exists an element G of R(Pn, π) such that F(f)(a)

= aoG-G°ά. We define ^ e C'2"1!A, n) by setting

then we see, from the property of G, that ^ satisfies the requierment of the
lemma.

Now let Qn-ι- NxAx . . . xA be the direct product of the vector spaces
of N and (« —2)-fold direct product of A. We define the operations of the
element of A, A on Qn-u on the right and left sides, respectively, by setting

\m i x a2 X . . . x an-i) * a n = Σ ( — l ) w z w«i X . . . X β β i + i X . . . X β » ,

This makes ©«-i an A-A-module.
We denote by ZiQn~ι, π) the module of all A-(left) operator homomor-

phisms from Qn-ι into π, and define the operations of the elements of A for
FE:Z{Qn-u π) by setting

, ί (a ° F){mιXa>x . . . xan-ι) =

A module m is called an A-.4-module if m is -4-left and right module and satisfies a(mb)
= (am)b (a, b e A,
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Under these operations ~L{Qn-u π) is an A-A-module.

THEOREM 1.1. Let n be a module such that Nn = x\N= 0. Then {under the

assumption that Λ/N is separable)

Hn(A, n)-EHA, L(Qn-i, n)) (n^2).

Proof. Denote by Cn(A, n) the module of all w-cochains /such that f(au

a<>, . . . ,an) = 0 for any element aγ of A, and set ZW(A, n) = Zn(A, n)^Cn(A,
n), i?n(A? n) = ZΓ(A, nV>Cw(A, n). From Lemma 1.1 every cohomology class
contains an element of Zfί(A, n), and hence Hn(A, π) is isomorphic to Zn(A,
n)/Bn(A, n). With an element / of Zn(A, n) and an element an of A, we
define a linear mapping F{f)(an) from (?«-i into n by the relation F(f)(an)
{niiX a>x . . . x ^ - i ) =/(«2i, #2, . . . , Λ W ) . Since d/(#, w J ? a >, . . , #κ) = d/(?nu

a2, . . . , an) —/{ami, a2, . . . 9an) = 0, F[/)(an) is an element of L{Qn~i, n)
and F(/) is an element of CHA, Σ(Qn-i, tt)). Taking account of the assumed
property of n we see by direct computations that (3F(f)(an, an^ι)){mχX . . .
xan-ι) = δf(ml9 a2, . . . , βn+i) = 0, and hence F(f)&Zι(A, Σ(Qn-i, u ) ) .

Now let / be an element of Bn(A, π). Then there exists an element,^' of
C " " ^ , n) such that f=δg'. Since δg'(al9 a*, . . . , an)=0 for άiGΛ, from
Lemma 1.1 there exists an element h of Cn~2(A,n) such that (gf - δh){du

a2, . . . ,an-i)=0 for c i ε A Set g = gf-δk, then / = δ ^ and ^ G C ' ^ H Λ n).
Since /{do, mi, a*, . . . , an-i) — ogido, ni\, a2, . . . > an-ι) = doginii, a2, . . . ,

«n-i) —giάΌm, a2, . . . , tf«-i) =0, if we set G(miXβ2x . . . x««-i) - g{mu α2,
. . . , ύin-i) then G&L(Qn-i, n). By direct computations we can verify that
F(f)(a) = .-t δG, and hence the mapping /-> F(/) induces a homomorphism from
/ r U ? n) into ^ ( A , Z{Qn-u n)).

Conversely, if F is an element of Z\A, Z(Qn-i, n)) we define an element
/of C"(A- ») by setting

az, . . . ,at7)=0 for #\6=A,
/ ( m i , a>, . . . , «Λ) = F ( β Λ ) ( ; w i X . . . x β » - i ) for

Then it is easily seen that / is an element of Zn(A, n) and F = F(/). This
shows that Rn(A, n) is mapped onto H1(A, L{Qn-u π)) by the above mapping.
Further if F(/) is a coboundary, that is, F(/) = δG, then we see that f=δg,
where g is an element of Cn~1(A, n) defined by the relations ginii, a2, . . . , #w-i)
= G{mιXa->x . . . XΛn-i), for m-i&N, and ̂ («1? «2, - . . , ̂ n-i) = 0, for ^ e ^ l .

This shows that the above homomorphism is an isomorphism.

2. In this section, we recall some definitions and properties about the module
extensions and offer a criterion for A to have trivial ^-dimensional cohomology
groups in terms of Qn-i.

Let m and n be two modules with the same operator domain Ω. We call
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a third J2-module 93ί an (Ω-)extension of n by m if 9ft contains n and 9ft/n = m.

If an extension 93? of n by in contains an (£-)submodule m' such that in is the

direct sum 531 = n + m', then we say that m splits. If for any J2-modu!e 11 every

extension of n by in splits, we call in an (Mo)-module.

Now let m and n be two A-A -modules and 53t be an (-A-yl-)extensions of

π by m. For #€Ξin, take a system of linear representatives {Bu}. Then

, , ί άBu^BauΛ- p(σ, u) , β , ,
(4) \

I Bua = Bua + ΐ(u, a) {aE:A, γ{u, β)εn) .

β(ά, u) and γ{u, a) are linear in a, a, u. From the associative relations

(άBu)b = ά{B,tb), (B»a)b - Bτι{ab), we have

u) H- j9(β, 6M) - β(ab, u) = 0,

(5) \ β(β, ub) — β{a, u)b ~γ(άu, b) — aγiu, b),

* γ{u, a)b -f r(^β, b) — γ(u, ab) = 0.

The structure of 9ft is completely determined by {ft 7-}, and conversely if {β, γ)

sutisfies the relations (5) we have an extension of n by \w, by (4). We call

{& γ) satisfying (5) a factor system. Two factor systems {βi, γL} and {β2, r i)

are called associated if there exists a linear mapping λ from in into n satisfying

the relations

{aλ(ιι) - λiάu)},ί /32(<z? w) = j9i(«, w) + {aλ(ιι) - λiάu)},

\ T2(u, a) =ri(u, a) -t{λ(u)a-λ(ua)}.

As is well known, {/9i, n} and {β2, 7-2} are associated if and only if they define

equivalent extensions.2^

We denote by Z(m, n) the module of all Λ-(left) operator homomorphisms

from πi into n, and, defining the operations as (3), we make this an ̂ 4-A-module.

Since every (Z-A-)extension of n by m is (A"-)left inessential,^ by an argument

similar to those in [3] or [6], we can verify the following lemma.

LEMMA 2.1. Let in and n be tivo A-A-modules. Then all extensions of n

by m split if and only if Hι(A, Z(m, it)) = 0.

Let next

be direct decompositions of A into indecomposable left and right ideals, and

21 Two extensions 9J?i, ^)h of π by in are called equivalent if there exists an isomorphism
between SDfr and SUfe which leaves invariant each element of n as well as the isomorphism
from TO//n to m.

p>) An v4-Λ-extension ?Jt of π by m is called (Λ-) left inessential if M splits as an -A-(left)
extension.



COHOMOLOGY GROUPS OF ASSOCIATIVE ALGEBRAS 89

{eκ} be mutually othogonal primitive idempotents. Then

are direct decompositions of A into indecomposable left and right ideals.
The structure theorem of (Mo)-modules states (see [7]):

LEMMA 2.2. An A-righίmodule m is an (M^-modttle if and only if ml is
ά direct sunt of submodtdes isόmorphic to eκA.

Now we have

LEMMA 2.3. Let m be an A-A-module, and suppose that \u-ιι for «ειii.
m is an (Mo)-module as an A-A-module if and only if it is so as an A-iright)
module.

Proof i) Let iπ be an (Mo)-module as an A-A-moάa\e. Then 1 m 1 = m 1
is a direct sum of submodules isomorphic to Aeκxe>A. and hence as A-ήghi
module directly decomposed into a direct sum of submodules ispmorphic to ehA.
This shovΛδ that m. is an (Mo)~module as .A-right module.

ii) Let m be an (Mo)-module as A-right module. It is sufficient to prove
that for any.Λ-Λ-nipdule n such that niV=0, every extension of n by lit splits.
Let n be such a module, and {$, γ) a factor system. Since A is separable, we
caiί assume that /3(ά, u) = r(u9 α) = 0. Then (β. γ) satisfies the relations

(7)

i) p(ά, u) =γiu, α) =0,
ii) γ{άu, m) — ά~γ(u, m)=0,

iii) γ(u, m)b — γ(u, mb) =0,
iv) γ(uα, m) —γ(u, ά~m)'=0.-

And the extension determined by {/9, γ} splits if and only if there exists a
linear mapping λ from in into n satisfying the relations

( β(α9 u) = αλ(u) - λ(άu) = 0,
γ(u, d) = λ(u)d - λ(uα) = 0,
γ(u, m)•=• —λium).

Since m is an (Mo)-module as an A-right module, there exists a linear
mapping λf satisfying the relations

. v ί γ(u, ά) =λ''(u)β-λ'\u'ά) =0,/
^ γ(u9 m) =• — -jίr(u?n).

Nowf. since m is completely reducible as A-A-mpdμle, m is decomposed into a
direct sum of mN and an another /ϊ->l-submodule m0 m = miVΉ-mύ From
(7)Vϋ) and iii), ' induces an .4-,4-operater homomorphism from iriJV into n.
Hence if we define a mapping λ from in into n by setting
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λ(ztm) = λ'(um),
= 0 for

then λ satisfies the relations (8), and the extension determined by {β,r) splits.

LEMMA 2.4. Hn(A, n) =0 for every A-A-module n //" (tf//r/ o?φ //*) it holds
for every A-A-mochde n such that Nn-rιN=0.

Proof Suppose that Hn(A, π) = 0 for all n such that Nw = niNΓ= 0. Let m
be an AΆ-module and m = lΠoDMiDniiZ) . . . ZDπu^O be a composition series
of iτi. In case t = 1, iViπ = miV- 0 and hence Hn(A, m) = 0. Now suppose that
Hn{A, n) =0 for all n with a length of composition series less than t, and con-
sider an /GZ 7 ί (A m). Set /(αi, . . . , <z») =/(«i, . . . , #«) mod m/-3, then
fEΐZn(A, m/iΠ/-i). Since the length of conposition series is equal to t — 1,
f&Bn(A, m/m/-i). Hence, there exists an element gι of C'ι~ι{A, in) such that
f(a\9 . . . , an) ^δgiiai, . . . , an) mod mί-i. Since /— δgι&Zn(A, \r\t-i) and
Nmt-i - πt/-iiV= 0, there exists a feGC""^, m/-i) such t h a t / - δgi = o^2. This
shows that/GBM(A, in), and hence Hn(A, m) =0.

By an argument similar to those in the above proof, we have "*

LEMMA 2.5. A;2 A-right module m 25 Λ;2 (M*)-??zodzile if {and only if), for
any A-right module n such that nN = 0, all extensions of n by m s/?/2ί.

Now, from Theorem 1.1, Lemmas 2.1? 2. 3, 2.4, and 2.5, we have immedi-
ately the following theorem.

THEOREM 2.1. {Under the assumption that A/N is separable^) all n-di-
mensionaϊ cohomology groups of A are zero if and only if Qn-i is an {MQ)-
module as an A-right module.

3. In this section, we shall consider the cases of dimension 2 and 3.
It was shown in [1] that the class of algebras whose 2-dimensional co-

homology groups are all zero coinsides with the class of absolutely segregated
algebras.

Since Q\ is isomorphic to N as an A-right module, we have immediately the
following theorem, which is a special case of Ikeda's theorem.

THEOREM 3.1. Let A be an algebra such that A/N is seperable. Then A
is absolutely segregated if and only if N is an {Mϋ)-module as an A-right module.

In order to prove the seperability of A/N for an absolutely segregated
algebra A, we mention the following lemma.

LEMMA 3.1. //" an algebra A over an algebraically closed field F is absolutely

segregated then the rank of eκAeκ over F, denoted by LeKAeKl, is equal to 1.

Proof Since F is algebraically closed, A/N is seperable. From theorem
{) Cf. a note at the end.
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3.1, N is an (M0)-module as an .A-right module.
Let tKλ be the number of factors isomorphic to e\A in a direct decomposi-

tion of e,N into directly indecomposable submodules: eκN=*Σtκ\e>A. We
x

assume that the indices are so arranged as ]LeιA]ίkLe 2A~]^ . . . ^LβkAl. Then

ιc<λ implies fcx = 0. Set cκλ^leκAe>l, C=(f κ λ ) , and T=(tκλ). From e*Neλ
~^ΣtκμeμAeχ, we have

μ

C(E- T)=E (E: unit matrix).

Since the matrix E - T is

Ί

its inverse matrix C is of from

Ί
CKX

This shows that c™ = ίeκAeκ2 = 1.

As was shown in the proof of "only if" part of Theorem in § δ of [5],
it is concluded rather easily from lemma 3.1 that A/N is separable if A is an
absolutely segregated algebra. Combining this fact with Theorem 3.1 we have
immediately

THEOREM 3.2. (Ikeda's Theorem). An algebra ivith unit clement is abso-
lutely segregated if and only if

i) A/N is separable,
ii) N is an (Mo)-module as A-right module*

Next, supposing that A/N is separable^ we consider the case of dimension
3. Let λτ&A be a direct product of underlying vector spaces of Λr and A. and
define the operation for m&b&A, as usual, by setting

(m$)b)a = m$)ba.

Then Λr χ)A Is an A-right module. The mapping m g Ή # induces an A-
(right) operator homornorphism from N 8>A on N. We denote its kernel by
No* Then we have

LEMMA 3.1. Q2*I = N) (as A-right modules).

Proof. Since (mxa) *l-mxa - max 1. m Xβ is contained in QyΛ. if and
only if ma = 0. If m xbtΞQ> * 1, then (mxb) * a=^?n x ba - rah x a = m x ba. Hence
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the mapping 772$) b-*mxb induces an isomorphisms from ΛΓo onto ζM'l.
From this lemma and theorem 2.1, we have immediately

THEOREM 3.3. Let A/N be separable. Then 3-dimensional cohomology groups
of A are all zero if and only if No is an (Mo)-module as an A-right module.
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Added in proof: Recently T. Nakayama and M. Ikeda have proved jointly
that if ^-dimensional cohomology groups of A are all zero then A/N is separable.
Using this theorem, Theorem 2.1 and 3.3 are improved as follows:

THEOREM 2.Γ : Let A be an algebra with unit element. Then n-dimensional
cohomology groups of A are all zero if and only if

i) A/N is separable,
ii) Qn-\ is an (Mo)-module as an A-right module.

THEOREM 3. 3': Let A be an algebra with unit element. Then 3-dimensional
cohomology groups are all zero if and only if

i) A/N is separable,
ii) Λ/7(i is an (M$)-module as an A-right module.

As is easily seen. Theorem 2.1' is an actual generalization of Ikeda's theorem.
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